
Unified Extensible Firmware Interface (UEFI)
Specification

Version 2.8

March 2019

UEFI Specification, Version 2.8
Acknowledgments

The material Contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
Controlled By any of the authors or developers of this material or to any Contribution thereto. The material
Contained herein is provided on an "AS IS"Basis and, to the maximum extent permitted By applicable law, this
information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim
all other warranties and Conditions, either express, implied or statutory, including, But not limited to, any (if any)
implied warranties, duties or Conditions of merchantability, of fitness for a particular purpose, of accuracy or
Completeness of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with
regard to this material and any Contribution thereto. Designers must not rely on the absence or Characteristics of any
features or instructions marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or
instructions so marked for future definition and shall have no responsibility whatsoever for Conflicts or
incompatibilities arising from future Changes to them. ALSO, THERE IS NO WARRANTY ORCONDITION OF TITLE,
QUIET ENJOYMENT, QUIET POSSESSION,CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO THE SPECIFICATION AND ANYCONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANYCONTRIBUTION THERETOBE LIABLE TO
ANY OTHER PARTY FOR THECOST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE,
LOSS OF DATA, OR ANY INCIDENTAL,CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER
UNDERCONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

Copyright © 2019, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The UEFI Forum is
the owner of all rights and title in and to this work, including all copyright rights that may exist, and all rights to use
and reproduce this work. Further to such rights, permission is hereby granted to any person implementing this
specification to maintain an electronic version of this work accessible by its internal personnel, and to print a copy of
this specification in hard copy form, in whole or in part, in each case solely for use by that person in connection with
the implementation of this Specification, provided no modification is made to the Specification.
UEFI Forum, Inc. March 2019 ii

UEFI Specification, Version 2.8
Revision History

Revision Mantis Number / Description Date

2.8 1832 Extend SERIAL_IO with DeviceTypeGuid March 2019

2.8 1834 UEFI REST EX Protocol March 2019

2.8 1853 Adding support for a REST style formset March 2019

2.8 1858 New Device Path for bootable NVDIMM namespaces March 2019

2.8 1861 New EFI_MEMORY_RANGE_CAPSULE Descriptor March 2019

2.8 1866 GetInfo() of Adapter Information Protocol should have a provision for IHV to

return no data

March 2019

2.8 1872 Peripheral-attached Memory March 2019

2.8 1876 Remove the EBC support requirement March 2019

2.8 1879 Clarification of REST (EX) protocol March 2019

2.8 1908 Update of uncommitted data in the FOROM_OPEN callback March 2019

2.8 1919 Memory Cryptography Attribute March 2019

2.8 1920 Redfish Discover Protocol March 2019

2.8 1921 HTTPS hostname validation March 2019

2.8 1924 Update to EFI_REST_EX_PROTOCOL.AsyncSendReceive March 2019

2.8 1925 Clarify requirement of REST related protocols March 2019

2.8 1926 New UEFI Spec Revision --> 2.8 March 2019

2.8 1935 UEFI JSON Capsule Support March 2019

2.8 1936 ResetSystem - support ResetData for all status scenarios. March 2019

2.8 1937 Behavior of default values March 2019

2.8 1941 New EFI REST JSON Structure Protocol March 2019

2.8 1942 Adding dependency expression capability into FMP type capsules March 2019

2.8 1947 Keyword strings of Configuration Keyword Handler Protocol Enhancements March 2019

2.8 1953 Add document version# conventions March 2019

2.8 1954 set (*Attributes) when GetVariable() returns EFI_BUFFER_TOO_SMALL and

Attributes is non-NULL

March 2019

2.8 1956 Platform to honor ActionRequest for Action changing March 2019

2.8 1961 Add EFI_UNSUPPORTED to EFI_RUNTIME_SERVICES calls March 2019

2.8 1966 Add new capsule processing error codes March 2019

2.8 1974 Add new CCIX PER Log Error Section to appendix March 2019

2.8 1996 Firmware Processing of the Capsule Identified by EFI_JSON_CAPSULE_ID_GUID March 2019

2.7B 1773 Clarify The EFI System Table entry for capsule image March 2019

2.7B 1801 ExtractConfig() format may change when called multiple times March 2019

2.7B 1835 Misleading / unclear statement about EFI-bootability of UDF media March 2019

2.7B 1838 RGB/BGR Contradiction in 2.7 GOP March 2019

2.7B 1841 BluetoothLE ECR - support autoreconnect March 2019
UEFI Forum, Inc. March 2019 iii

UEFI Specification, Version 2.8
2.7B 1842 BluetoothLE ECR - Add missing ConnectionCompleteCallback March 2019

2.7B 1843 HTTP Example Code Update March 2019

2.7B 1844 Replace obsoleted RFC number with new number for TCP March 2019

2.7B 1845 Clarification on AIP types "Network boot" and "SAN MAC Address" March 2019

2.7B 1846 EFI_LOAD_FILE2 requirement March 2019

2.7B 1865 Adding clarification in EFI_NOT_READY for ReadKeyStrokeEx() March 2019

2.7B 1869 Clarify FMP buffer too small behavior March 2019

2.7B 1874 Add RFC3021 to reference in uefi.org March 2019

2.7B 1875 Clarify platform specific elements in chapter 2.6.2 March 2019

2.7B 1878 Errata - Make DHCP server optional for HTTP boot March 2019

2.7B 1880 Arm binding EL2 register state clarification March 2019

2.7B 1890 EfiMemoryMappedIO Usage Clarification March 2019

2.7B 1897 Clarification on mapping of UEFI memory attributes to ARM memory types and

paging attributes

March 2019

2.7B 1899 Errata: Clarify EFI_INVALID_PARAMETER for FMP->GetImageInfo() March 2019

2.7B 1901 GPT Protective MBR description March 2019

2.7B 1902 CapsuleImageSize Clarification March 2019

2.7B 1903 Root Directory File Name March 2019

2.7B 1906 ACPI Table Pointer Installation March 2019

2.7B 1908 Update of uncommitted data in the FOROM_OPEN callback March 2019

2.7B 1923 Syntax error in EFI iSCSI Initiator Name Protocol March 2019

2.7B 1957 Request to add status code EFI_DEVICE_ERROR for ExtractConfig March 2019

2.7B 1964 Print disclaimer for all future UEFI specs March 2019

2.7B 1987 incorrect VLAN_CONFIG_SET function definition March 2019

2.7A 1830 Label Protocol - EFI_NVDIMM_LABEL_FLAGS_LOCAL definition needs to be

updated

August 2017

2.7A 1829 Label Protocol Section - Missing define for

EFI_NVDIMM_LABEL_FLAGS_UPDATING

August 2017

2.7A 1823 Modifications to the examples of the PCI Option ROM image combinations August 2017

2.7A 1822 UEFI 2.7 Organization chapter duplicated August 2017

2.7A 1821 Modify the requirement to enable PCI Bus Mastering August 2017

2.7A 1817 NVDIMM Label Protocol - SetCookie SerialNumber needs to be UINT32 NOT

UINT64

August 2017

2.7A 1816 Clarification of Using HttpConfigData in HTTP protocol August 2017

2.7A 1815 OpenProtocol() / EFI_ALREADY_STARTED should output existent Interface August 2017

2.7A 1808 Clarification of using option 43 in PXE v2.1 August 2017

2.7 1779 Adjusting UEFI version to UEFI 2.7 April 2017

2.7 1771BluetoothLE minor fix April 2017

2.7 1762 UEFI UFS DEVICECONFIG Protocol April 2017

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 iv

UEFI Specification, Version 2.8
2.7 1751 Update DNS Device Path April 2017

2.7 1750 Add new data type to EFI Supplicant Protocol April 2017

2.7 1745 NVDIMM Label Protocol April 2017

2.7 1744 NVDIMMBlock Translation Table (BTT) Protocol {NewChapter} April 2017

2.7 1730 HII Popup Protocol April 2017

2.7 1726 Host and I/O defense April 2017

2.7 1720 Have Partition driver publish addition information for MBR/GPT partition types. April 2017

2.7 1719 Add EFI HTTP Boot Callback Protocol April 2017

2.7 1718 Allow SetData to clear configuration in Ip4Config2/Ip6Config Protocol April 2017

2.7 1716 Add BluetoothLE ECR April 2017

2.7 1711 Firmware Error Record Update April 2017

2.7 1707 Clarification of Private Authenticated Variables April 2017

2.7 1701 Add wildcard support to RegisterKeyNotify April 2017

2.7 1690 Reset Notification Protocol Update April 2017

2.7 1689 Secure Boot with Externally Managed Configuration April 2017

2.7 1685 Key Management Services (KMS) Protocol Enhancement April 2017

2.7 1672 UEFI Variable Enhancements April 2017

2.7 1654 New AIP Information block for wireless NIC April 2017

2.7 1652 Add DNS device path node April 2017

2.7 1647 UEFI binding for RISC-V April 2017

2.7 1641 Simplify SecureBoot Revocation and Usage of VerifySignature April 2017

2.7 1641 Simplify Secure Boot Revocation and Usage of VerifySignature April 2017

2.7 1627 Support ASCII RegEx Patterns in EFI_REGULAR_EXPRESSION_PROTOCOL April 2017

2.7 1627 EFI regular expression syntax type definitions April 2017

2.7 1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent Redirect April 2017

2.7 1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent Redirect April 2017

2.6B 1772 Clarify EFI_NOT_READY in Media State of AIP April 2017

2.6B 1767 Incorrect structure definition for EFI_IFR_RESET_BUTTON_OP April 2017

2.6B 1742 Clairfy PK enrolling in user mode April 2017

2.6B 1741 The memory map returnedByBS->GetMemoryMap() mayContain impossible

values.

April 2017

2.6B 1739 typos -Broken references link. April 2017

2.6B 1729Cleanup of ACPI 2.0 references in UEFI spec April 2017

2.6B 1708 Typos in Imge Decode and Image Ex Protocols April 2017

2.6B 1700 Align ACPI descriptor definitions in PCI I/O and PCI RootBridge I/O April 2017

2.6B 1698 Update to Mantis 1613 - GetNextVariable April 2017

2.6B 1691 Remove/Deprecate SMM Communication ACPI Table April 2017

2.6B 1682 HII Protocol StatusCodes April 2017

2.6B 1678 Simplify the ACPI Table GUID declarations April 2017

2.6B 1675 section 30.5.1 typo April 2017

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 v

UEFI Specification, Version 2.8
2.6B 1668 Duplicate GUID issue - mustChange the Image Decoder Protocol GUID April 2017

2.6B 1655 HTTP errata inConfigure() April 2017

2.6B 1653 Incorrect errorCode value in MTFTP6 April 2017

2.6B 1634 Update to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL TPL restriction April 2017

2.6B 1629 Errata in GetVariable description April 2017

2.6B 1625 Clarification of HTTPBoot wire protocol “HTTPClient” VendorClass Option April 2017

2.6B 1624 Fix spelling typo in EFI_HTTP_STATUS_CODE April 2017

2.6B 1613 GetNextVariableName Errata April 2017

2.6B 1612 ResetSystem Errata April 2017

2.6B 1609 UEFI Errata - Address Security problems in the Pkcs7Verify Protocol April 2017

2.6B 1608 Enhance EFI_IFR_NUMERIC (Step) April 2017

2.6B 1586 Errors in appendix N for ARM ProcessorContext Information April 2017

2.6B 1584 WIFI errata April 2017

2.6B 1580 Correct some typos April 2017

2.6B 1559 Clarify return value for NULL pointer in LocateProtocol() API April 2017

2.6B 1557 secureBoot and auth variable errata April 2017

2.6B 1556 HTTPv6Boot DHCP Options Errata April 2017

2.6B 1555 USB Function port protocol errata April 2017

2.6B 1554 fix to ecr 1539 April 2017

2.6B 1553 os recoveryBoot option errata April 2017

2.6B 1551 EFIBluetoothConfiguration Protocol Errata April 2017

2.6B 1550 Replace FTP4 dataCallback pointer-to-function-pointer with regular function

pointer

April 2017

2.6A SameContent as version 2.6,But with the Adobe “accessibility” feature activated so

text-to-speech will work.

December 2016

2.6 1548ClarifyBoot procedure when file name is absent2. January, 2016

2.6 1547Clarify requirements for setting the PK variable. January, 2016

2.6 1544 DNS lookup API spelling January, 2016

2.6 1543 ip4/6Config policy errata/2.6 update January, 2016

2.6 1542 UEFI 2.6 supplicant errata January, 2016

2.6 1539 New EFI_HTTP_ERROR StatusCode December, 2015

2.6 1538 UEFI TLS errata December, 2015

2.6 1536 UEFI 2.6 Errata : IMAGE EX Protocol and EFI HII Image Decoder protocol Errata December, 2015

2.6 1534 EditorialComments against 2.6 Final Draft December, 2015

2.6 1533Bugs in the HTTP usage example December, 2015

2.6 1523Comments against 2.6 Draft December, 2015

2.6 1522 AArch64Bindings AlignmentBit errata December, 2015

2.6 1521Comment against UEFI.next draft - M1479 December, 2015

2.6 1519 Version for the next UEFI spec is... December, 2015

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 vi

UEFI Specification, Version 2.8
2.6 1518Comments against 2.6 Draft December, 2015

2.6 1516 EditorialComments against 2.6 Draft December, 2015

2.6 1509 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL Response to

unsupported ParameterTypeGuid

December, 2015

2.6 1508 Lack of flexibility and realism in exception levelChoice whenCalling runtime

services

December, 2015

2.6 1507 Insufficient qualification of page attributes for AArch64 December, 2015

2.6 1502 PCI IO Define how to use the Address Translation Offset for systems that are not

mapped 1:1

November, 2015

2.6 1501 Define the usage of the "Address Space Granularity" field is defined in the PCI

Root IO

November, 2015

2.6 1496Bad table reference in 13.2

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

November, 2015

2.6 1494 Errata against UEFI 2.5 Properties Table November, 2015

2.6 1493 Updates to the SD_MMC_PASS_THRU interface November, 2015

2.6 1492 wireless macConnection protocol II errata November, 2015

2.6 1491 supplicant errata November, 2015

2.6 1480 Refine Progress description in EFI_KEYWORD_HANDLER_PROTOCOL November, 2015

2.6 1479 UEFI Properties TableClarification November, 2015

2.6 1471 SD/eMMC PassThru Protocol update (follow up to mantis 1376) November, 2015

2.6 1467 New API - EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL November, 2015

2.6 1466 UEFI Ram disk protocol November, 2015

2.6 1452 Minor edits to 0001409 November, 2015

2.6 1414 Generalisation ofCommunication method in Appendix O November, 2015

2.6 1409 EFI HII ImageEX protocol and EFI HII Image Decoder protocols November, 2015

2.6 1408 EFI HII Font EX protocol and EFI HII Font Glyph Generator protocols November, 2015

2.6 1402 Add EFI_BROWSER_ACTION_SUBMITTED November, 2015

2.6 1383 Adding an EraseBlocks() function to a new protocol November, 2015

2.6 1376 SD/eMMC PassThru Protocol November, 2015

2.6 1357 ARMCPER extensions November, 2015

2.5A 1481 new networkConfig2 protocol data structure has a magic number October 2015

2.5A 1477 AllowCloseEvent toBeCalled within the Notification Function October 2015

2.5A 1476 Update to Indicate thatCloseEvent UnregistersCorresponding Protocol

Notification Registrations

October 2015

2.5A 1472 ATA Pass Thru Errata October 2015

2.5A 1469 UNDI Errata - add more statistics October 2015

2.5A 1468 Errata on UEFI Supplicant protocol October 2015

2.5A 1451 Memory MapConsistency October 2015

2.5A 1441 UEFI2.5A – UNDI ProtocolClarification October 2015

2.5A 1426 UEFI 2.5 typo October 2015

2.5A 1424 Incorrect link in Section 22.1 FMP GetImageInfo() October 2015

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 vii

UEFI Specification, Version 2.8
2.5A 1421 Misc HTTP API typos October 2015

2.5A 1420 GetNextHighMonotonicCountClarification October 2015

2.5A 1419 Supplicant protocol using same GUID as TLS protocol October 2015

2.5A 1418 Inconsistent issues in DNS October 2015

2.5A 1417 Add HttpMethodMax to EFI_HTTP_METHOD enum October 2015

2.5A 1410Clarifications in appendix O October 2015

2.5A 1407 Networking errata - EFI_HTTP_STATUS typos October 2015

2.5A 1405 Errata in table 271 in Appendix O October 2015

2.5A 1399Clarification for EFI_BROWSER_ACTION_REQUEST_RECONNECT October 2015

2.5A 1398 Errata update to the runtime GetVariable operation documentation October 2015

2.5A 1388 Missed memory type fixes October 2015

2.5A 1381 Remove informativeContent in 12.6.1 October 2015

2.5A 1365 7.4 Virtual Memory Services lists Section 2.3.2 through Section 2.3.4. incorrectly October 2015

2.5A 1363 Short form URI device path October 2015

2.5A 1209 UEFI networking APIChapter 2.6 requirements errors October 2015

2.5A October 2015

2.5 1364 Extend supplicant data type for EAP April, 2015

2.5 1362 HTTPBoot typos/bugs April, 2015

2.5 1360 Vendor Range for UEFI memory Types April, 2015

2.5 1358 v2.5 amendment and v2.4 errata (missed implementation of Mantis 1089) April, 2015

2.5 1353 SATA Device Path Node Errata April, 2015

2.5 1352 Errata for 1263 and 1227

2.5 1350 Keyword Strings Errata April, 2015

2.5 1348 ERRATA - Section 10.12 EFI_ADAPTER_INFORMATION_PROTOCOLCustom Types April, 2015

2.5 1347Boot Manager Policy Errata April, 2015

2.5 1346 Mantis 1288 Errata April, 2015

2.5 1345 EFI_USB2_HC_PROTOCOL Errata April, 2015

2.5 1342 DNS6 - friendly amendment for reviewBy USWG April, 2015

2.5 1341 DNS4 - friendly amendment toBe reviewedBy USWG April, 2015

2.5 1339 Errata in section 7.2.3.2 Hardware Error Record Variables April, 2015

2.5 1309 Disallow EFI_VARIABLE_AUTHENTICATION from SecureBoot Policy Variables April, 2015

2.5 1308 Fix typo's found in the final/published UEFI 2.4 ErrataB spec February, 2015

2.5 1304 Add IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE to FMPCheck image February, 2015

2.5 1303 Update the UEFI version to reflect new revision February, 2015

2.5 1288 The Macro definitionConflict in

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4B

February, 2015

2.5 1287 Errata: EFI Driver Supported EFI Version not matching the spec revision February, 2015

2.5 1269Configuration Routing Protocol andConfiguration String Updates February, 2015

2.5 1268 RAM Disk UEFI Device Path Node February, 2015

2.5 1266 UEFI.Next Feature - IP_CONFIG2 Protocol February, 2015

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 viii

UEFI Specification, Version 2.8
2.5 1263Customized Deployment of SecureBoot February, 2015

2.5 1257Correct the typedef definitions for EFI_BOOT_SERVICES/EFI_RUNTIME_SERVICES-

-Reiterate

February, 2015

2.5 1255 UFS Device Path Node Length February, 2015

2.5 1254 SD Device Path February, 2015

2.5 1251 EFI_REGULAR_EXPRESSION_PROTOCOL and EFI_IFR_MATCH2 HII op-code February, 2015

2.5 1244 sections of the spec mis-arranged February, 2015

2.5 1234 UEFI.Next feature - SmartCard edge protocol February, 2015

2.5 1227 UEFI.Next feature - Platform recovery February, 2015

2.5 1224 UEFI.Next - Adding support for No executable data areas February, 2015

2.5 1223 UEFI.Next networking features -Chapter 2.6 requirements February, 2015

2.5 1222 UEFI.Next feature -BMC/Service Processor Device Path February, 2015

2.5 1221 UEFI.Next feature - REST Protocol February, 2015

2.5 1220 UEFI.Next feature -Bluetooth February, 2015

2.5 1219 UEFI.Next Feature - UEFI TLS API February, 2015

2.5 1218 UEFI.Next feature - EAP2 Protocol February, 2015

2.5 1217 UEFI.Next feature - WIFI support February, 2015

2.5 1216 UEFI.next feature - DNS version 6 February, 2015

2.5 1215 UEFI.Next feature - DNS version 4 February, 2015

2.5 1214 UEFI.Next feature - HTTPBoot February, 2015

2.5 1213 UEFI.Next feature - HTTP helper API February, 2015

2.5 1212 UEFI.Next feature - HTTP API February, 2015

2.5 1204 new UEFI USB Function I/O Protocol addition to the UEFI spec February, 2015

2.5 1201 Exposing Memory Redundancy to OSPM February, 2015

2.5 1199 Add NVM Express Pass Thru Protocol February, 2015

2.5 1191 Add new SMBIOS3_TABLE_GUID in EFI_CONFIGURATION_TABLE February, 2015

2.5 1186 AArch64BindingClarifications and errata February, 2015

2.5 1183 New Protocol with 2 Function for PKCS7 Signature Verification Services February, 2015

2.5 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart February, 2015

2.5 1167 Persistent Memory Type support February, 2015

2.5 1166 hash 2 protocol errata February, 2015

2.5 1163 InlineCryptographic Interface Protocol proposal February, 2015

2.5 1159 Proposal for System Prep Applications February, 2015

2.5 1158 errata -Boot managerClarification February, 2015

2.5 1147--REDACT February, 2015

2.5 1121 IPV6 support from UNDI February, 2015

2.5 1109 SmartCard Reader February, 2015

2.5 1103 Longer term NewCPER Memory Section February, 2015

2.5 1091Clarification of handle to host FMP February, 2015

2.5 1090 ESRT: EFI System Resource Table andComponent firmware updates February, 2015

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 ix

UEFI Specification, Version 2.8
2.5 1071 New EFI_HASH2_PROTOCOL February, 2015

2.4C 1308 Fix typo's found in the final/published UEFI 2.4 ErrataB spec January 2015

2.4C 1287 Errata: EFI Driver Supported EFI Version not matching the spec revision January 2015

2.4C 1257Correct the typedef definitions for EFI_BOOT_SERVICES/EFI_RUNTIME_SERVICES January 2015

2.4C 1244 sections of the spec misarranged January 2015

2.4C 1211 EFI_LOAD_OPTION Definition January 2015

2.4C 1209 Errata - UEFI networking APIChapter 2.6 requirements January 2015

2.4C 1205 Errata for Hii Set item January 2015

2.4C 1200 Universal Flash Storage (UFS) Device Path January 2015

2.4C 1198 EFI_ATA_PASS_THRU_PROTOCOLClarification January 2015

2.4C 1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED January 2015

2.4C 1192Cleanup GUID formatting issues January 2015

2.4C 1186 AArch64BindingClarifications and errata January 2015

2.4C 1185 errata - tcp api January 2015

2.4C 1184 errata - snp modeClarification January 2015

2.4C 1182 Errata - UEFI URI Device path issue January 2015

2.4C 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart January 2015

2.4C 1173 EFI_IFR_NUMERIC Errata July 11, 2014

2.4C 1172 EfiACPIMemoryNVS definition missing S4 July 11, 2014

2.4C 1170 Errata pxeBc apiClarifiation July 11, 2014

2.4C 1169 Errata - volatile networking variableCleanup July 11, 2014

2.4C 1168 MTFTP Errata July 11, 2014

2.4C 1165 Option rom layout errata July 11, 2014

2.4C 1162 Typo in ReinstallProtocolInterface() EFI 1.10 Extension section July 11, 2014

2.4C 1150 Missing LineBreakCharacter (HII Errata) July 11, 2014

2.4C 1147 EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer() Errata July 11, 2014

2.4C 1141 UEFI errata - ia32/x64 vector register management July 11, 2014

2.4C 1140UEFI Errata - image execution info table July 11, 2014

2.4C 1139 UEFI Errata on the storage securityCommand protocol July 11, 2014

2.4C 1066 Errata--reference to missing table (90) removed July 11, 2014

2.4C 1043 Ability to refresh the entire form [newContent] July 11, 2014

2.4C 1042 AddBrowser Action Request "reconnect" July 11, 2014

2.4B 1146 Typos andBroken links April 17, 2014

2.4B 1137 Typographic errors in the 2.4 ErrataB draft April 16, 2014

2.4B 1128 URI device path node redux--supersedes (defunct) 1119 April 4, 2014

2.4B 1127 USB Errata - unnecessary restriction on UEFI interrupt transfer types March 27, 2014

2.4B 1124 Adding text description for NVMe device node March 27, 2014

2.4B 1122Correct misleading language in the UEFI 2.4a specification about the

EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_GET_SUPPORTED_TYP

ES function

March 27, 2014

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 x

UEFI Specification, Version 2.8
2.4B 1120 Make time stamp handlingConsistent around all of the networking API’s March 27, 2014

2.4B 1118 Network Performance EnhancementsConcerning Volatile Variables March 27, 2014

2.4B 1115Clarification on the usage of XMM/FPU instructions from within a UEFI Runtime

Service on an x64 processor

March 27, 2014

2.4B 1111 Errors in DisconnectController() returnCode descriptions March 27, 2014

2.4B 1101 Errata – ReinstallProtocolInterface March 27, 2014

2.4B 1092Clarification to PCI Option ROM Driver Loading Description March 27, 2014

2.4B 1085 Error--added in missing text approved for 2.4A April 17, 2014

2.4B 1014 HIIConfig Access Protocol Errata April 3, 2014

2.4 A 1089 Short-termCPER Memory Section errata Nov. 14, 2013

2.4 A 1088 Add revision #define to EFI_FILE_PROTOCOL Nov. 6, 2013

2.4 A 1085 Issues with Interactive password Nov.14, 2013

2.4 A 1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State Nov. 6, 2013

2.4 A 1081 Update Install Table protocol to deal with duplicate tables Nov. 6, 2013

2.4 A 1079 UEFI 2.4: Remove repetitive "the" (typo) Nov. 6, 2013

2.4 A 1078 Adjust some text for handling EFI_BROWSER_ACTION_CHANGING Nov. 6, 2013

2.4 A 1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES Nov. 6, 2013

2.4 A 1076 typo in UEFI v2.3.1d and v2.4 Nov. 6, 2013

2.4 A 1075Clarifications to Table 88. Device Node Table (Device Node to TextConversion) Nov. 6, 2013

2.4 A 1074 AddClarifications on DMA requirements for PCI_IO Nov. 6, 2013

2.4 A 1073 Add requirement for EFI_USB_IO_PROTOCOL Nov. 6, 2013

2.4 A 1066 Errata - ISCSI IPV6 Root PathClarification Nov. 6, 2013

2.4 A 1064 AIP Errata Nov. 6, 2013

2.4 A 1063Correction to GPT expression for SizeofPartitionEntry Nov. 6, 2013

2.4 A 1062 EFI_CERT_X509_GUID does not specify theCertificate encoding Nov. 6, 2013

2.4 A 1061 UEFI 2.4 section 2.6.2 and 2.6.3 don't use protocol hyperlinksConsistently Nov. 6, 2013

2.4 A 1060 SlightClarification to FMP Authentication Requirments Nov. 6, 2013

2.4 A 1059Clarification of a return statusCode of HASH protocol Nov. 6, 2013

2.4 A 1058Correct mistake in the system table revision Nov. 6, 2013

2.4 A 1056 text modification to definition of EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION

2

Nov. 6, 2013

2.4 A 1055 Disk IO 2 errata Nov. 6, 2013

2.4 A 1054 Deprecate 6 Hash Algorithms with inconsistent usage Nov. 6, 2013

2.4 A 1053 Reduce Name space ofCapsule Result variable to increase performance Nov. 6, 2013

2.4 A 1035 PCI Option ROM Errata (five figures) Nov. 6, 2013

2.4 997 Driver Health Protocol errorCodes April 25, 2013

2.4 993 (original ticket--supersededBy 1026)

2.4 992 Adapter Information Protocol (AIP) April 25, 2013

2.4 991 Greater than 256 NICs support on UNDI April 25, 2013

2.4 968 HII Forms op-code for displaying a warning message April 25, 2013

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xi

UEFI Specification, Version 2.8
2.4 966 Spec typos April 25, 2013

2.4 964 Disk IO 2 Protocol to support Async IO April 25, 2013

2.4 963 Add new device path node NVM Express devices April 25, 2013

2.4 956 Require network drivers to return EFI_NO_MEDIA April 25, 2013

2.4 946 ForbidCreation of non-spec variables in EFI_GLOBAL_VARIABLE namespace April 25, 2013

2.4 920 Add a variable for indicating out ofBand key modification April 25, 2013

2.4 905 Need more granularity in EFI_RESET_TYPE to support platform specific resets April 25, 2013

2.4 1052 UEFI 2.4 Draft April 25th -Corrections to ARM sections May 16, 2013

2.4 1050 2.4 Draft April 25 has missing text for ECR 1009 May 16, 2013

2.4 1049 2.4 Draft April 25 has missing text for ECR 1008 May 16, 2013

2.4 1048Comment against UEFI 2.4 - NVMe related May 16, 2013

2.4 1047Comment on Feb 25th draft - fix alignment issue May 16, 2013

2.4 1045 PCI OpROM Device ListChanges to section 14.2 June 28, 2013

2.4 1044Corrections to Mantis 1015, Interruptible driver diagnostics May 16, 2013

2.4 1037 Add 2.4 to the system table version May 16, 2013

2.4 1036Comments on April 25 Draft May 16, 2013

2.4 1033 HiiConfigAccess->ExtractConfig StatusCodes Errata May 16, 2013

2.4 1032 HiiConfigRouting->ExtractConfig StatusCodes Errata May 16, 2013

2.4 1031 NVMe subtypeConflict errata April 25, 2013

2.4 1029 Method for delivery ofCapsule on disk; Method for reportingCapsule processing

status

April 25, 2013

2.4 1026 (supersedes 993) Update to the AArch64 proposedBindingChange April 25, 2013

2.4 1024Clarification to the NVMe Device Path text descriptions April 25, 2013

2.4 1023 Definition ofCapsule format to deliver update image to firmware management

protocol

April 25, 2013

2.4 1022 adapter information protocol for NIC iSCSI and FCoEBootCapabilities

andCurrentBooot Mode.

April 25, 2013

2.4 1017 AIP Instance - FCOE SAN MAC Address April 25, 2013

2.4 1016 AIP Instance - Image Update April 25, 2013

2.4 1015 Interruptible driver diagnostics April 25, 2013

2.4 1009 Enable hashes ofCertificates toBe used for revocation, and timestamp support April 25, 2013

2.4 1008 New Random Number Generator / Entropy Protocol April 25, 2013

2.4 1007Create a new Security Technologies section to avoidBlurring with SecureBoot April 25, 2013

2.4 1002 Timestamp Protocol April 25, 2013

2.3.1D 996 UEFI 2.0 version number still in the 2.3.1C spec April 3, 2013

2.3.1D 995CSA linkChange April 3, 2013

2.3.1D 994 Spec typos April 3, 2013

2.3.1D 990 EFI_ATA_PASS_THRU need oneClarification if it supports ATAPI device April 3, 2013

2.3.1D 989Clarify hot-remove responsibility of aBus Driver April 3, 2013

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xii

UEFI Specification, Version 2.8
2.3.1D 988 EFI_BLOCK_IO2_PROTOCOLBlocksChild from stopping while doing non-blocking I/

O

April 3, 2013

2.3.1D 987 EFI_BLOCK_IO2_PROTOCOL has aCopy pasteBug describing the Token Parameter April 3, 2013

2.3.1D 980 Errata on SNP Media detect April 3, 2013

2.3.1D 978 Error Retun IndicatesCapsule requiresBoot Services April 3, 2013

2.3.1D 977 missing statement April 3, 2013

2.3.1D 976BrowserCallback text update to description April 3, 2013

2.3.1D 975 UNDI errata to add missing memory type definitions April 3, 2013

2.3.1D 974 UNDI IncorrectCPB function names ECR April 3, 2013

2.3.1D 973 UNDI Mem_Map()Clarification April 3, 2013

2.3.1D 972 ISCSI DHCP6Boot April 3, 2013

2.3.1D 971 typo April 3, 2013

2.3.1D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3, 2013

2.3.1D 965 File IO Async extenstion April 3, 2013

2.3.1D 962 Remove 2.3 table revision number April 3, 2013

2.3.1D 960 Typo in netboot6 description April 3, 2013

2.3.1D 959 InstallAcpiTable() does not say what to do when an attempt is made to install a

duplicate table

April 3, 2013

2.3.1D 955Clearing The Platform Key Errata April 3, 2013

2.3.1D 954 LoadImage Errata April 3, 2013

2.3.1D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3, 2013

2.3.1D 952Clarification of requirements to update timestamp associated with authenticated

variable

April 3, 2013

2.3.1D 950 IndeterminateBehavior for attribute modifications mayCause security issues April 3, 2013

2.3.1D 949 PCI IO.GetBarAttributes needs adjustment - - Address Space Granularity field April 3, 2013

2.3.1D 944 Errata - Replace RFC reference April 3, 2013

2.3.1D 943 Errata - Proposed updates to required interfaces inChapter 2.6 April 3, 2013

2.3.1D 942 ExportConfig() description does not make sense April 3, 2013

2.3.1D 941 Add OEM StatusCode ranges to EFI StatusCode Ranges Table April 3, 2013

2.3.1D 938 InstallMultipleProtocolInterface() is missing StatusCode Returned values April 3, 2013

2.3.1D 935ClarifyChaining requirements with regards to the Platform Key April 3, 2013

2.3.1D 934 Missing Figures and typos April 3, 2013

2.3.1D 930Clarify usage of EFI Variable Varstores in HII April 3, 2013

2.3.1D 928Best Matching Language algorithm April 3, 2013

2.3.1D 926 UEFI Image VerificationClarification April 3, 2013

2.3.1D 924 New ErrorCode to handle reporting of IPV4 duplicate address detection April 3, 2013

2.3.1D 1021 ATA_PASS_THRU on ATAPI device handle. April 3, 2013

2.3.1D 1020Clarify HII variable store definitions. April 3, 2013

2.3.1D 1019 Alignment RequirementsClarification April 3, 2013

2.3.1D 1018 HII Font Errata April 3, 2013

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xiii

UEFI Specification, Version 2.8
2.3.1D 1013 HII Errata April 3, 2013

2.3.1D 1012 Touchup to text of GPT April 3, 2013

2.3.1D 1011 Typo regarding Debug Port in UEFI Spec April 3, 2013

2.3.1D 1003 Missing “(“ in section 11.7 April 3, 2013

2.3.1D 1000Clarification to the IFR_REF4 opcode April 3, 2013

2.3.1C 921 Length of IPv6 Device Path is incorrect June 13, 2012

2.3.1C 917 UNDI drive does not need toBe initialized as runtime driver June 13, 2012

2.3.1C 915 For x64,Change Floating Point DefaultConfiguration to Double-Extended Precision June 13, 2012

2.3.1C 914 Error Descriptor Reset FlagClarification June 13, 2012

2.3.1C 913 Enum definition does not match what ourCurrentCompilers implement. June 13, 2012

2.3.1C 912 UEFI 2.3.1 Type June 13, 2012

2.3.1C 909 Update to returnCodes for AllocatePool / AllocatePages June 13, 2012

2.3.1C 907 iSCSI Device Path error June 13, 2012

2.3.1C 882 Indications Variable - OS/FW feature &CapabilityCommunication June 13, 2012

2.3.1C 882 Indications Variable - OS/FW feature &CapabilityCommunication June 13, 2012

2.3.1C 874 Provide a mechanism for providing keys in setup mode June 13, 2012

2.3.1C 831 PXEBootCSA Type definitionCleanup June 13, 2012

2.3.1B 896 StartImage andConnectController returnCodes April 10, 2012

2.3.1B 893 SMMCommunication ACPI Table Update April 10, 2012

2.3.1B 891Component Name Protocol References April 10, 2012

2.3.1B 890 DriveConfiguration Protocol Phantom. April 10, 2012

2.3.1B 888 typo in EFI_USB_HC Protocol April 10, 2012

2.3.1B 887 union is declared twice in same section April 10, 2012

2.3.1B 885 Errata in the GPT Table structureComment April 10, 2012

2.3.1B 884 EFI_BOOT_KEY_DATA relies on implementation-definedBehavior April 10, 2012

2.3.1B 881 netboot6 - multicast versus unicast April 10, 2012

2.3.1B 880 netboot6Clarification/errata April 10, 2012

2.3.1B 879 Reference to unsupported specification in SCSIChapter (14.1) April 10, 2012

2.3.1B 878 Updated HII "Selected Form"Behaviors to Reflect NewCallback Results April 10, 2012

2.3.1B 877 TableChecksum updateBy the ACPI_TABLE_PROTOCOL.InstallAcpiTable April 10, 2012

2.3.1B 876 ToClarify EDID_OVERRIDE attribute definitions and expected operations April 10, 2012

2.3.1B 873 Section 9.3.7 incorrectly assumes that all uses ofBBS device paths are non-UEFI April 10, 2012

2.3.1B 872Change to SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify/

UnregisterKeyNotify

April 10, 2012

2.3.1B 871 Typo in InstallMultipleProtocolInterfaces April 10, 2012

2.3.1B 870Clarify FrameBufferSize definition under

EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct

April 10, 2012

2.3.1B 869 Reference to FIPS 180 inChapter 27.3 is obsolete and incorrect April 10, 2012

2.3.1B 867Clarify requirment for use of EFI_HASH_SERVICE_BINDING_PROTOCOL April 10, 2012

2.3.1B 866 PK, KEK, db, dbx relationsClarification April 10, 2012

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xiv

UEFI Specification, Version 2.8
2.3.1B 865 Modify Protective MBRBootIndicator definition April 10, 2012

2.3.1B 864 Typo in Question-Level Validation section April 10, 2012

2.3.1B 863 Attributes of the Globally Defined Variables April 10, 2012

2.3.1B 862 User identity typo April 10, 2012

2.3.1B 861 Globally Defined Variables Errata April 10, 2012

2.3.1B 858 Superfluous and incorrect image hash description April 10, 2012

2.3.1B 857 Absolute pointer typo April 10, 2012

2.3.1B 855Clarification of UEFI driver signing/Code definitions April 10, 2012

2.3.1B 853 The EFI_HASH_PROTOCOL.Hash() description needsClarification on padding

responsibilities

April 10, 2012

2.3.1B 852 Various EFI_IFR_REFRESH_ID errata. April 10, 2012

2.3.1B 851 For EFI_IFR_REFRESH opcode,Clarify RefreshInterval = 0 means no auto-refresh. April 10, 2012

2.3.1B 850Clarification of responsibility for array allocation in EFI_HASH_PROTOCOL April 10, 2012

2.3.1B 849 IFR EFI_IFR_MODAL_TAG_OP is also valid under EFI_IFR_FORM_MAP_OP April 10, 2012

2.3.1B 848Clarification of semantics of SecureBoot variable April 10, 2012

2.3.1B 847 When enrolling a PK, the platform shall not require a reboot to leave SetupMode April 10, 2012

2.3.1B 845 EFI_SCSI_PASS_THRU_PROTOCOL replacement April 10, 2012

2.3.1B 842 Text to explain how the UEFI revision is referred April 10, 2012

2.3.1B 836 StructureComment for EFI_IFR_TYPE_VALUE references unknown value type. April 10, 2012

2.3.1B 828 Network Driver Options April 10, 2012

2.3.1B 826Comments against Mantis 790 April 10, 2012

2.3.1B 825 DMTF SMCLP errata April 10, 2012

2.3.1B 819 Mantis 715 was not fully implemented April 10, 2012

2.3.1B 812 Errata – DUID-UUID usage April 10, 2012

2.3.1B 809 Errata – Messaging Device PathClarification April 10, 2012

2.3.1B 808 Errata –Boot File URL April 10, 2012

2.3.1B 807 Give specific TPL rules to Stall()Boot services April 10, 2012

2.3.1B 771 SHA1 and MD5 references April 10, 2012

2.3.1A MinorCorrections in toes to tickets 772, 785, 794, 804, also formattingCorrection for

_WIN_CERTIFICATE_UEFI_GUID typedef’s parameters

September 7, 2011

2.3.1A 820 Driver Health Needs to have Mantis 0000169 implemented August 17, 2011

2.3.1A 819 ECR715 was not fully implemented August 17, 2011

2.3.1A 806 Text update to Driver Health Description -Clarify role of user interaction August 17, 2011

2.3.1A 805Correct Wrong Palette Information in 28.3.7.2.3 example August 17, 2011

2.3.1A 804ClarifyContraints and alternatives when enrolling PK, KeK, db or dbx keys August 17, 2011

2.3.1A 803 Fix AcpiExp device node text description. August 17, 2011

2.3.1A 801ClarifyIFR Opcode Summary and Description #4 August 17, 2011

2.3.1A 800Clarify IFR Opcode Summary and Description #3 August 17, 2011

2.3.1A 797Clarify IFR Opcode Summary and Description #2 August 17, 2011

2.3.1A 796Clarify IFR Opcode Summary and Description #1 August 17, 2011

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xv

UEFI Specification, Version 2.8
2.3.1A 795 Typo in ReadKeyStrokeEx() August 17, 2011

2.3.1A 794 Incomplete text describingClearing of Platform Key August 17, 2011

2.3.1A 793 Inconsistent wording about RemainingDevicePath August 17, 2011

2.3.1A 790 Add warning to ReadKeyStrokeEx for partial key press August 17, 2011

2.3.1A 789Clarify HII opcode definition August 17, 2011

2.3.1A 788 SasEx entry in Table 86-Device Node TableContains optional Reserved entry that

does not exist in device path

August 17, 2011

2.3.1A 786 PCI I/O Dual AddressCycle attributeClarification August 17, 2011

2.3.1A 785 Allowing more general use of UEFI 2.3.1 Variable time-based authentication August 17, 2011

2.3.1A 780 Errata in returnCode descriptions August 17, 2011

2.3.1A 778 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Errata August 17, 2011

2.3.1A 777 Specified signature sizes incorrect in Section 27.6.1 August 17, 2011

2.3.1A 776Clarifycomputation of EFI_VARIABLE_AUTHENTICATION_2 hash value August 17, 2011

2.3.1A 774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3 August 17, 2011

2.3.1A 773Clarify the value for opcode EFI_IFR_REFRESH_ID_OP August 17, 2011

2.3.1A 772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID incorrect August 17, 2011

2.3.1A 770 Remove references to UEFI 2.1 spec August 17, 2011

2.3.1A 767 The ReadBlocks function forBlockIO andBlockIO2 need synchronization August 17, 2011

2.3.1A 212 (revisit) final sentence section 28.2.15 missing final words. April 21, 2011

2.3.1 765 ECR to limit the hash and encryption algorithms used with PKCSCertificates April 5, 2011

2.3.1 762 DevicePath in the Image Execution Information Table. April 5, 2011

2.3.1 761 Table 195. Information for Types of Storage April 5, 2011

2.3.1 760 SuggestedChanges to 2.3.1 final draft spec April 5, 2011

2.3.1 759 UEFI Errata - wincerts for rest of hash algorithms April 5, 2011

2.3.1 755 Errata in Legacy MBR table and Legacy MBR GUID April 5, 2011

2.3.1 754 USB timeout parameter mismatch. April 5, 2011

2.3.1 751 Fix USB HC2 erroneous references to IsSlowDevice March 11, 2011

2.3.1 750 Fix section 27.2.5 "related definitions" re: RSA public key exponent March 11, 2011

2.3.1 749 Fix Table 10 (Global Variables) WithCorrect Attributes March 11, 2011

2.3.1 748Clarify Standard GUID Text Representation March 11, 2011

2.3.1 744 ProcessorContext information structure definition notClear March 11, 2011

2.3.1 741 Errata:Corrected text for section 7.2.1.4 step 7 March 11, 2011

2.3.1 740 Errata: signatureheadersize inconsistencyCorrections April 6, 2011

2.3.1 736 Insert SMMCommunication ACPI Table and related data structures to the UEFI

Specification

April 5, 2011

2.3.1 735Clarification on Tape Header Format March 11, 2011

2.3.1 734 SecureBoot variable April 5, 2011

2.3.1 733 Errata: 27.6.1 signatureheadersize definition March 11, 2011

2.3.1 732 Amendment to Mantis 711: section 7.2.1.6 March 11, 2011

2.3.1 729 Errata:Clarification of Microsoft references in appendix Q March 11, 2011

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xvi

UEFI Specification, Version 2.8
2.3.1 728 Netboot 6 errata - DUID-UUID March 11, 2011

2.3.1 727 Errata on returnCode for User Info Identity policy record March 11, 2011

2.3.1 726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN definition March 11, 2011

2.3.1 724 SetVariable Update 2 March 11, 2011

2.3.1 723 User Identification (UID) Errata – EFI User Manager Notify & EnrollClarification April 5, 2011

2.3.1 722 User Identification (UID) Errata –Credential Provider EnrollClarification April 5, 2011

2.3.1 721 User Identification (UID) Errata – SetInfoClarification March 11, 2011

2.3.1 720 User Identification (UID) Errata –Credential Provider EnrollClarification March 11, 2011

2.3.1 716 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() IN OUT parameter Target

input value shallBe 0xFFs

March 11, 2011

2.3.1 715CPER Record and section fieldClarification March 11, 2011

2.3.1 713 Remove the errata revision from the EFI_IFR_VERSION format. March 11, 2011

2.3.1 711 SetVariable Update March 11, 2011

2.3.1 709 NewCallback() Action Requests Related To Individual Forms. Feb. 3, 2011

2.3.1 708 Errata (non-blockingBLOCK IO) April 5, 2011

2.3.1 707 Errata revision in the EFI_IFR_VERSION format Feb. 3, 2011

2.3.1 705 REPC signature definition stillConfusing Feb. 3, 2011

2.3.1 704 Unload() definition is wrong Feb. 3, 2011

2.3.1 702Clarifications on Variable Storage for Questions Feb. 3, 2011

2.3.1 696 Update System Table with this new #define for EFI_SYSTEM_TABLE_REVISION Feb. 3, 2011

2.3.1 695 Add Port Ownership probing Feb. 3, 2011

2.3.1 687 Update System Table with this new #define for 2.3.1 Jan. 17, 2011

2.3.1 686 HII -Clarify FormsBrowser 'standard' user interfactions. Feb. 3, 2011

2.3.1 685 HII - New op-code to enable event initiated refresh ofBrowserContext data Feb. 3, 2011

2.3.1 682 [UCST] Modal Form Feb. 3, 2011

2.3.1 681 Typo: Pg. 56 Jan. 17, 2011

2.3.1 680 Netboot6 handleClarification Jan. 17, 2011

2.3.1 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17, 2011

2.3.1 678 Section 27.6.2: Imagehash reference needs toBe removed Jan. 17, 2011

2.3.1 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17, 2011

2.3.1 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17, 2011

2.3.1 671 Errata: USB device path example is incorrect Jan. 17, 2011

2.3.1 668 LUN implementations are notConsistent Feb. 3, 2011

2.3.1 661 USB 3.0 Updates Oct. 29, 2010

2.3.1 645 Non-blocking interface forBLOCK oriented devices (BLOCK_IO_EX transition

toBLOCK_IO_2)

Oct. 29, 2010

2.3.1 634 FormsBrowser DefaultBehavior Jan. 17, 2011

2.3.1 634 FormsBrowser DefaultBehavior Oct. 29, 2010

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xvii

UEFI Specification, Version 2.8
2.3.1 616 Security ProtocolCommand to support encrypted HDD Jan. 17, 2011

2.3.1 616 Security ProtocolCommand to support encrypted HDD Oct. 29, 2010

2.3.1 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010

2.3.1 484 Key Management Service Protocol Oct. 28, 2010

2.3.1 484 Key Management Service (KMS) Protocol Oct. 29, 2010

2.3.1 478 (REVISIT) Update to ALTCFG references March 11, 2011

2.3 D 667Clarification to the UEFIConfiguration Table definition Oct. 28, 2010

2.3 D 664 Appendix update for IPV6 networkBoot Oct. 28, 2010

2.3 D 663 Update ARM PlatformBinding to allow OS loader to assume unaligned access

support is enabled

Nov. 10, 2010

2.3 D 662 ARM ABI errata Oct. 28, 2010

2.3 D 659Clarify section length definition in the error record Oct. 28, 2010

2.3 D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010

2.3 D 652Clarification to the TimeZone value usage Oct. 28, 2010

2.3 D 651 update to IPSec for tunnel mode support Oct. 28, 2010

2.3 D 650 networking support errata Oct. 28, 2010

2.3 D 638 Add facility for dynamic IFR dynamicCross-references Oct. 28, 2010

2.3 D 538 IPV6 PXE Oct. 28, 2010

2.3C 640 String ReferenceCleanup July 14, 2010

2.3C 639Callback() does not describe FORM_OPEN/FORM_CLOSEBehavior July 14, 2010

2.3C 637Clarification for Date/Time Question usage in IFR expressions. July 14, 2010

2.3C 636 Mistaken Reference to "Date" inside ofBoolean question description July 14, 2010

2.3C 635 Missing GUID label forConfig Access protocol July 14, 2010

2.3C 633 Explicitly Specify ACPI Table Signature Format July 14, 2010

2.3C 632ClarifyBlock IO ReadBlocks and WriteBlocks functions handling of media

stateChange events
July 14, 2010

2.3C 625 Minor typo in surrogateCharacter description section July 14, 2010

2.3C 622 Identify() function errata July 14, 2010

2.3C 621 Typos in an EFI_HII_CONFIG_ACCESS_PROTOCOL.Callback() member July 14, 2010

2.3C 620Carification of need for Path MTU support for IPV4 and IPV6 July 14, 2010

2.3C 613 PAUSE Key July 14, 2010

2.3C 611 LanguageCorrection requested for InstallProtocolInterface() and

InstallConfigurationTable(), Ref# 583

July 14, 2010

2.3C 610 RSA data structureClarification July 14, 2010

2.3C 609 StartImage returnCode update July 14, 2010

2.3C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14, 2010

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xviii

UEFI Specification, Version 2.8
2.3C 508 Update networking references, incl ipv6 July 14, 2010

2.3B 608 more media detectClean-up Feb. 24, 2010

2.3B 605Clarify user identity Find API Feb. 24, 2010

2.3B 601 UNDI update as part of media detectChanges Feb. 24, 2010

2.3B 600 Update toConfigAccess/ConfigRouting Feb. 24, 2010

2.3B 598 ARP is only an IPV4Concept. Feb. 24, 2010

2.3B 590 Media detectClean-up Feb. 24, 2010

2.3B 589 Device path representation of IPv4/v6 text Feb. 24, 2010

2.3B 588 UEFI User Identity - ReturnCodes Feb. 24, 2010

2.3B 587 UEFI User Identity - NamingConsistency Feb. 24, 2010

2.3B 586Clarification of PXE2.1 specification for IPV4 interoperability issues Feb. 24, 2010

2.3B 585 Errata to EFI_IFR_SET op-code Feb. 24, 2010

2.3B 584 EFI_PXE_BASE_CODE_DHCPV6_PACKET missing for pxeBc protocol Feb. 24, 2010

2.3B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24, 2010

2.3B 580 ACPI_SUPPORT_PROTOCOLClarifications related to FADT and the DSDT/FACS Dec. 15, 2009

2.3B 578 ATA Passthrough updates / questions Dec. 15, 2009

2.3B 577Clarifications on the user identity protocol Dec. 15, 2009

2.3B 576Clarifications in the Routing Protocol Dec. 15, 2009

2.3B 575 Machine hand-off/MP state modification Feb. 24, 2010

2.3B 574 Add an "OPTIONAL" tag to a parameter in NewPackageList Dec. 15, 2009

2.3B 573 EFI_DESCRIPTION_STRING and EFI_DESCRIPTION_BUNDLE adjustments Feb. 24, 2010

2.3B 572 EFI_IFR_SECURITY shouldBe EFI_IFR_SECURITY_OP in Table 194 Dec. 15, 2009

2.3B 568 ATA_STATUS_BLOCK name errata Dec. 15, 2009

2.3B 567 Various miscellaneous typos/updates Feb. 24, 2010

2.3B 566 Minor update to HII->NewString function description Dec. 15, 2009

2.3B 560Correct erroneous example in ExtractConfig() Dec. 15, 2009

2.3B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009

2.3B 558Clarify VLANConfig publication requirements Dec. 15, 2009

2.3B 557Corrected Image Execution Information omission & ambiguity Dec. 15, 2009

2.3B 556 additional IPSec errata/issues Dec. 15, 2009

2.3B 549Binary prefixChange Dec. 15, 2009

2.3B 547Clean-Up In HII Sections Dec. 15, 2009

2.3B 546 typo in GOP definiton Dec. 15, 2009

2.3B 545 Action parameter of the EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Dec. 15, 2009

2.3B 542 Device Path DescriptionChanges Dec. 15, 2009

2.3B 540 Register name usage Dec. 15, 2009

2.3B 539CHAP node fix for iSCSI Dec. 15, 2009

2.3B 537 Add missing ACPI ADR Device Path Representation Dec. 15, 2009

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xix

UEFI Specification, Version 2.8
2.3B 536 IPSec errata Dec. 15, 2009

2.3B 534 Size of Partition Entry restriction Dec. 15, 2009

2.3B 533 GPT editorialCleanup Dec. 15, 2009

2.3B 532 “LegacyBIOSBootable” GPT attribute Dec. 15, 2009

2.3B 531Clarify HII Variable Storage Dec. 15, 2009

2.3B 519 AddConsole table (chapt 11) for EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL Dec. 15, 2009

2.3B 518 Typos in the UEFI2.3 specification Feb. 24, 2010

2.3B 515 Authenticated VariablesClarification Feb. 24, 2010

2.3B 514 HIIConfiguration String SyntaxClarification Feb. 24, 2010

2.3B 507Clarify ACPI Protocol’s position onChecksums Dec. 15, 2009

2.3B 479 TPM guideline added to section 2.6.2 Dec. 15, 2009

2.3B 476 Text adjustment toConfigAccess &ConfigRouting Dec. 15, 2009

2.3B 460 Section 2.6 languageChange Dec. 15, 2009

2.3B 454 Dynamic support of media dectection - network stack Dec. 15, 2009

2.3B 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 24, 2010

2.3B 301 Errata to the Authentication Protocol Dec. 15, 2009

2.3B 215 previously added to Device Driver (wrong), nowBusDriver (correct) Dec. 15, 2009

2.3A 522Bugs in EFI_CERT_BLOCK_RSA_2048_SHA256, ISCSI device path,CHAP device path Sept 15, 2009

2.3A 518 typos Sept 15, 2009

2.3A 517 IP stack related protocol update Sept 15, 2009

2.3A 516 User Identity ProtocolBugs Sept 15, 2009

2.3A 513 add support for gateways in ipv4 & ipv6 device path nodes Sept 15, 2009

2.3A 506 TCP6/MTFTP6 StatusCode Definition Sept 15, 2009

2.3A 505 TCP4/MTFTP4 statusCodes Sept 15, 2009

2.3A 490Correction 28.2.5.6, Table 185. Information for Types of Storage Sept 15, 2009

2.3A 478 Update to ALTCFG references Sept 15, 2009

2.3A 477 Text adjustment toConfigAccess/ConfigRouting Sept 15, 2009

2.3 463 Update EFI_IP6_PROTOCOL.Neighbors() API May 7, 2009

2.3 462 ExitBootServices timers deavtivation May 7, 2009

2.3 461IP4 Mode Data definition update May 7, 2009

2.3 460Chapter 2.6 language update May 7, 2009

2.3 457Change KeyData.PackedValue to 0x40000200, page 63. May 7, 2009

2.3 456 How to handle PXEBoot w/o NII Section 21.3 May 7, 2009

2.3 454 Dynamic support of media detection - network stack May 7, 2009

2.3 453 Errata to support dynamic media detection - UNDI May 7, 2009

2.3 452 Support to dynamically detect media errata - SNP May 7, 2009

2.3 450 Missing opcode headers and formatting, section 28.3.8.3.x. May 7, 2009

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xx

UEFI Specification, Version 2.8
2.3 449 Add missing EFI_IFR_GET, EFI_IFR_SET and EFI_IFR_MAP to the syntax.Section

28.2.5.7.

May 7, 2009

2.3 448 Section 28.2.5.4 Questions, Syntax, Update question-option-tag; Add

EFI_IFR_READ and EFI_IFR_WRITE in the question syntax.

May 7, 2009

2.3 447Section 28.2.5.11.2 Moving Forms, Update line that starts with EFI_IFR_FORM to:

EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all references in EFI_IFR_REF)

May 7, 2009

2.3 446 Section 28.2.5.2 Forms, Syntax,Change 3rd line to:

form := EFI_IFR_FORM form-tag-list |

 EFI_IFR_FORM_MAP form-tag-list

May 7, 2009

2.3 445 Table 194: EFI_IFR_FORM_MAP_OP, 2ndColumn shouldBe 0x5d (not 05xd) May 7, 2009

2.3 444 Form Set Syntax: Section 28.2.5.1.1, section shouldBe subheading, not heading

level 5; Section 28.2.5.1, Syntax, line 3, text after := is not aligned with other text on

line 2, 4

May 7, 2009

2.3 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, outdent 2 spaces. May 7, 2009

2.3 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, indentBy 2 spaces May 7, 2009

2.3 440Change the defined type of EFI_STATUs from INTN to UINTN May 7, 2009

2.3 439 Incorrect definitions of UEFI_CONFIG_LANG and UEFI_CONFIG_LANG_2 in UEFI

2.3 Feb18 draft

Feb 25, 2009

2.3 438 UEFI 2.3 Feb 13 Draft:Chapter 28 Formatting Issues Feb 18, 2009

2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3_Draft_Jan29 Feb 18, 2009

2.3 436 UEFI 2.3 split Figure 88 into 3 figures Feb. 12, 2009

2.3 435 Partition SignatureClarification Feb. 12, 2009

2.3 434 UEFI 2.3 Feb Draft: 28.3.8.3.58 Feb. 12, 2009

2.3 432 UEFI 2.3 Feb Draft: Appendix M. Feb. 12, 2009

2.3 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 12, 2009

2.3 418Change Appendix O from "UEFI ACPI Table" to "UEFI ACPI Data Feb 18, 2009

2.3 413Correct the definition of UEFI_CONFIG_LANG Feb 18, 2009

2.3 410 UNDIBuffer usage Feb 18, 2009

2.3 408 ARMBindingCorrections Feb. 12, 2009

2.3 406 Missing EFI System Table Revision In UEFI 2.3 Draft Feb. 12, 2009

2.3 395 New "Non-removable MediaBootBehavior" section Feb. 12, 2009

2.3 394 Omission in EFI_USB2_HC_PROTOCOL Feb. 12, 2009

2.3 388 Add HIICallback types (FORM_OPEN, FORM_CLOSE) when a form is opened

orClosed.

Feb. 12, 2009

2.3 376 Add ARM processorBinding to UEFI Jan. 12, 2009

2.3 326 Add Firmware Management Protocol Feb. 12, 2009

2.2A 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID define misses _GUID Feb. 12, 2009

2.2A 404 RemoveConstraint form EFI_TIME.YearComment Feb. 12, 2009

2.2A 400 FreePool() description error Feb. 12, 2009

2.2A 393 UEFI 2.1/2.2Boot ManagerBehaviorClarification Feb. 12, 2009

2.2A 392 MBR errata in UEFI 2.2 Feb. 12, 2009

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xxi

UEFI Specification, Version 2.8
2.2A 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR opcodes wrong Feb. 12, 2009

2.2A 390 UEFI 2.2 Miscellaneous HII-related errata Feb. 12, 2009

2.2A 389 UEFI 2.2 HII-Related Formatting Issues Feb. 12, 2009

2.2A 387 UEFI 2.1/UEFI 2.2A (ch. 12) Feb. 12, 2009

2.2A 384 Fix HII package description omission. Feb. 12, 2009

2.2A 379 UEFI 2.1/UEFI 2.2 HII-Related Errata Feb. 12, 2009

2.2A 378 UEFI 2.1 & UEFI 2.2 HIICallbackClarifications Feb. 12, 2009

2.2A 377 MissingBLTBuffer figure. Feb. 12, 2009

2.2A 375 Extra periods errata in UEFI 2.2 Feb. 12, 2009

2.2A 374 UEFI 2.1 & UEFI 2.2A (10.7-10.10) Feb. 12, 2009

2.2A 373 UEFI 2.2,Chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata Feb. 12, 2009

2.2A 372 UEFI 2.2 remove "Draft for Review” Feb. 12, 2009

2.2A 371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10) Feb. 12, 2009

2.2A 370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2) Feb. 12, 2009

2.2A 368 EFI_FONT_DISPLAY_INFO.FontInfo description incorrect Feb. 12, 2009

2.2A 366 UEFI 2.x: Erroneous references to EFI_BOOT_SERVICES_TABLE,

EFI_RUNTIME_SERVICES_TABLE

Feb. 12, 2009

2.2A 364 UEFI 2.2 Typos & Formatting Issues (ch. 9) Feb. 12, 2009

2.2A 362 UEFI 2.2 Typos (Next) Feb. 12, 2009

2.2A 361 UEFI 2.2 Typos & Formatting Issues Feb. 12, 2009

2.2A 359 TPL Table Feb. 12, 2009

2.2A 358 Missing signature for UEFI 2.2. Feb. 12, 2009

2.2 398 Update to M348 to fix small typo Jan. 11, 2009

2.2 397 PCICopyMem() misspelling Jan. 11, 2009

2.2 394 Omission in EFI_USB2_HC_PROTOCOL Jan. 11, 2009

2.2 357Clarify EFI_IFR_DISABLE_IFBehavior with regard to dynamic values Jan. 11, 2009

2.2 351 Fix an unaligned field in a device path Jan. 11, 2009

2.2 350 EFI_HII_STRING_PROTOCOL Typos Jan. 11, 2009

2.2 348 EFI_IFR_RESET_BUTTON is incorrectly listed as a question Jan. 11, 2009

2.2 347 Replace first paragraph of the “Description” section for the ExitBootServices() Sept. 25, 2008

2.2 346 Nest, Sections 10.11 & 10.12 Under 10.10 Sept. 25, 2008

2.2 344Correct missing statusCodes returned section for Form() in

EFI_USER_CREDENTIAL_PROTOCOL.

Sept. 25, 2008

2.2 343Correct missing parameter for User() function in

EFI_USER_CREDENTIAL_PROTOCOL

Sept. 25, 2008

2.2 340 UEFI 2.2 Editorial / Formatting Issues Sept. 25, 2008

2.2 339 Update missing TPL restrictions Sept. 25, 2008

2.2 337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec API)with a self-

contained, independent definition.

Sept. 25, 2008

2.2 335 User Authentication errata Sept. 25, 2008

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xxii

UEFI Specification, Version 2.8
2.2 334 Standardized "Unicode" References Jan. 11, 2009

2.2 333Correct the incorrect ';' at the end of EFI_GUID #defines Sept. 25, 2008

2.2 332Correct SendForm description Type, PackageGuid and FormsetGuid parameters Sept. 25, 2008

2.2 331 Definition for EFI_BROWSER_ACTION and the related #defines were not present--

Insert.

Sept. 25, 2008

2.2 330 EFI_IFR_REF:ChangeCross reference to a question Sept. 25, 2008

2.2 327Clarify the support in DHCP4 protocol for "Inform" (DHCPINFORM) messages. Sept. 25, 2008

2.2 325 MinorCorrection 28.3.8.3.20 July 25, 2008

2.2 324 ATA Pass-Thru ECR Update July 25, 2008

2.2 323 VLAN modificationBecause of IPV6 July 25, 2008

2.2 322Chapter 2 updates for IP6 net stack July 25, 2008

2.2 321Enable PCIe 2.0 andBeyond support in the UEFI error records July 25, 2008

2.2 320Clarifcation for WIN_CERTIFICATE types & relationship with signature database

types

July 25, 2008

2.2 319 UEFI IPSec protocol July 25, 2008

2.2 315 EFI TCP6 Protocol July 25, 2008

2.2 314 EFI MTFTP6 Protocol July 25, 2008

2.2 313 EFI IPv6Configuration Protocol July 25, 2008

2.2 312 EFI IPv6 Protocol July 25, 2008

2.2 311EFI DHCPv6 Protocol July 25, 2008

2.2 310 EFI UDPv6 Protocol July 25, 2008

2.2 309 IPv6 Address display formatClarification July 25, 2008

2.2 306 Some errata to the animation support July 25, 2008

2.2 304 Errata to UpdateCapsule() July 25, 2008

2.2 303 Add ability to have aCapsule that initiates a reset & doesn’t return to theCaller July 25, 2008

2.2 301 Errata to the Authentication Protocol July 25, 2008

2.2 300 MTFTP errata July 25, 2008

2.2 299 PIWG Firmware File/Firmware Volume Typo Errata July 25, 2008

2.2 294 LocateDevicePath with multi-instance device path July 25, 2008

2.2 291 HII Errata / Update July 25, 2008

2.2 288 Additional wording fixes for GPT Entry AttributeBit 1 July 25, 2008

2.2 282 Updated Requirements Section For ATA Pass Through (M242) July 25, 2008

2.2 279 Firmware/OS Trusted Key Exchange and Image Validation July 25, 2008

2.2 242 UEFI ATA Pass-Through Protocol July 25, 2008

2.2 237 UEFI User Identification Proposal (from USST) July 25, 2008

2.2 215 new Start() RemainingDevicePath Syntax July 25, 2008

2.2 212 UEFI HII Standards Mapping July 25, 2008

2.2 211UEFI Setup Question / Form Access Update July 25, 2008

2.2 210 UEFI HII Animation addition July 25, 2008

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xxiii

UEFI Specification, Version 2.8
2.2 202 EAP Management July 25, 2008

2.2 201EAP July 25, 2008

2.2 200 VLAN July 25, 2008

2.2 199 FTP API July 25, 2008

2.2 198 GUID Partition Entry AttributesClarification and Definition July 25, 2008

2.2 169 EFI Driver Health Protocol July 25, 2008

2.2 157 Floating-Point ABIChanges For X86, X64 & Itanium July 25, 2008

2.1C Re-format Revision History fromBulleted lists to one row per Mantis ticket/

EngineeringChange Request

June 5, 2008

2.1C 60 iSCSI Device Path Update June 5, 2008

2.1C 59 Add returnCode to Diagnostics Protocol June 5, 2008

2.1C 58 Language update for EfiReservedMemory type usage June 5, 2008

2.1C 57Clarify text for Extended SCSI Pass Thru Protocol.GetNextTargetLun() June 5, 2008

2.1C 56Clarification on ResetSystem June 5, 2008

2.1C 55Clarification on UpdateCapsule June 5, 2008

2.1C 54 ACPI Table Protocol GUID Update June 5, 2008

2.1C 52 New GUID for Driver Diagnostics and DriverConfiguration Protocols with new GUID June 5, 2008

2.1C 283 Minor update toClarify a typedef/returnCode in HII June 5, 2008

2.1C 281 Runtime memory allocation June 5, 2008

2.1C 280 Some minor errata to keyboard related topics June 5, 2008

2.1C 278Change references to EFI_SIMPLE_INPUT_PROTOCOL into

EFI_SIMPLE_TEXT_INPUT_PROTOCOL

June 5, 2008

2.1C 266 PKCS11.5 structure does notCorrectly specify the portion of theCited RFC that

pertains to theCertificate struct/algorithm

June 5, 2008

2.1C 249 Latest update to UCST Errata list June 5, 2008

2.1C 248Correction to text inChapter 8.2 of UEFI 2.1B June 5, 2008

2.1C 246 New returnCode June 5, 2008

2.1C 245 Remove extraneous text inChapter 29 June 5, 2008

2.1C 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_PPI with

EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

June 5, 2008

2.1C 221ImageBlock Structure name typos in 27.3.7.2 June 5, 2008

2.1C 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008

2.1C 219 IA-32 and x64 stack need toBe 16-byte aligned June 5, 2008

2.1C 218 SATA update to section 9.3.5.6 June 5, 2008

2.1C 217 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query() Update June 5, 2008

2.1C 216 UEFI 2.1 textCorrections June 5, 2008

2.1C 214 Device_IO + typos June 5, 2008

2.1C 213 UEFI HII Errata June 5, 2008

2.1C 209 ESP number/locationClarifications June 5, 2008

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xxiv

UEFI Specification, Version 2.8
2.1C 208 Driver Protocol Names and GUIDs June 5, 2008

2.1C 207 Updated Wording for the File Path June 5, 2008

2.1C 206Clarify return values for extended scsi passthru protocol June 5, 2008

2.1C 203 Platform Error Record - x64 register state errata June 5, 2008

2.1C 193 Loaded Image device paths for EFI Drivers loaded from PCI Option ROMs June 5, 2008

2.1C 189 Graphics Output ProtocolClarification June 5, 2008

2.1B 51 Long physicalBlocks updates December 11, 2007

2.1B 205Change LoadImage() parameter name from FilePath to DevicePath; endsConfusion

with EFI_LOADED_IMAGE_PROTOCOL

December 11, 2007

2.1B 197 EFI Loaded Image Device Path Protocol December 11, 2007

2.1B 190 Extensive errata form UCST including OPCodesChanges ro resolveConflicts. December 11, 2007

2.1B 187Clarify input protocols. December 11, 2007

2.1B 186Change PCIR struct to match PCI FW Spec 3.0 December 11, 2007

2.1B 185Change EFI term to UEFI forConsistency December 11, 2007

2.1B 184 SNIA/DDF Wording Update December 11, 2007

2.1B 182Clarify EFI_MTFTP4_TOKEN December 11, 2007

2.1B 181Correct MNP GUIDCollision December 11, 2007

2.1B 177 remove ending paragraph (editing text) in section 9.6 December 11, 2007

2.1B 175 Update to SendForm API December 11, 2007

2.1B 174 Error record addition for dma remapping units December 11, 2007

2.1B 173 MinorChanges to the description of two of the fields in theCommon Platform

Error Record, in Appendix N

December 11, 2007

2.1B 172 Typo for ResetSystem() December 11, 2007

2.1B 170 (Addition of) Driver Family Override Protocol December 11, 2007

2.1B 168 Remove LOAD_OPTION_GRAPHICS December 11, 2007

2.1B 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL December 11, 2007

2.1B 164 Update to USB2_HC_PROTOCOL Table December 11, 2007

2.1B 162 UEFI PIWG Device Path Errata December 11, 2007

2.1B 160Clean up references to PCIR December 11, 2007

2.1B 158 Errata to the UEFI 2.1Configuration sections December 11, 2007

2.1B 156 SendForm API Errata December 11, 2007

2.1B 159 Adjust some of the #define names in the Simple Text Input Ex protocol December 11, 2007

2.1A UEFI 2.1 incorporating Errata through 4-27-07 April 27, 2007

2.1 Second release January 23, 2007

2.0 First release of specification. January 31, 2006

Revision Mantis Number / Description Date
UEFI Forum, Inc. March 2019 xxv

UEFI Specification, Version 2.8
Table of Contents

Acknowledgments ... ii

Revision History .. iii

Table of Contents...xxvi

List of Tables ..lxii

List of Figures ...lxx

1 Introduction .. 1

1.1 UEFI Driver Model Extensions ..1
1.2 Organization ...2
1.3 Goals ...4
1.4 Target Audience..6
1.5 UEFI Design Overview...7
1.6 UEFI Driver Model...8

1.6.1 UEFI Driver Model Goals ..8
1.6.2 Legacy Option ROM Issues...9

1.7 Migration Requirements...9
1.7.1 Legacy Operating System Support ...9
1.7.2 Supporting the UEFI Specification on a Legacy Platform ...10

1.8 Conventions Used in this Document ..10
1.8.1 Data Structure Descriptions...10
1.8.2 Protocol Descriptions...10
1.8.3 Procedure Descriptions..10
1.8.4 Instruction Descriptions...11
1.8.5 Pseudo-Code Conventions ...11
1.8.6 Typographic Conventions ..11
1.8.7 Number formats...12
1.8.8 Binary prefixes ...13
1.8.9 Revision Numbers ..13

2 Overview... 14

2.1 Boot Manager ...14
2.1.1 UEFI Images..15
2.1.2 UEFI Applications ...16
2.1.3 UEFI OS Loaders ...16
2.1.4 UEFI Drivers..17

2.2 Firmware Core ..17
2.2.1 UEFI Services ..17
2.2.2 Runtime Services..18

2.3 Calling Conventions ..19
2.3.1 Data Types ...19
2.3.2 IA-32 Platforms ..21

2.3.3 Intel® Itanium®-Based Platforms ..24
UEFI Forum, Inc. March 2019 xxvi

UEFI Specification, Version 2.8
2.3.4 x64 Platforms ...27
2.3.5 AArch32 Platforms ...31
2.3.6 AArch64 Platforms ...34
2.3.7 RISC-V Platforms ..39

2.4 Protocols ...44
2.5 UEFI Driver Model...49

2.5.1 Legacy Option ROM Issues...51
2.5.2 Driver Initialization...53
2.5.3 Host Bus Controllers ..54
2.5.4 Device Drivers ..56
2.5.5 Bus Drivers ...57
2.5.6 Platform Components..58
2.5.7 Hot-Plug Events..59
2.5.8 EFI Services Binding..59

2.6 Requirements ...61
2.6.1 Required Elements...61
2.6.2 Platform-Specific Elements ...62
2.6.3 Driver-Specific Elements ..65
2.6.4 Extensions to this Specification published elsewhere ...67

3 Boot Manager ... 68

3.1 Firmware Boot Manager...68
3.1.1 Boot Manager Programming ...69
3.1.2 Load Option Processing ...70
3.1.3 Load Options ..71
3.1.4 Boot Manager Capabilities...73
3.1.5 Launching Boot#### Applications..73
3.1.6 Launching Boot#### Load Options Using Hot Keys ...74
3.1.7 Required System Preparation Applications ...76

3.2 Boot Manager Policy Protocol ..76
EFI_BOOT_MANAGER_POLICY_PROTOCOL ..76
EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()...77
EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass() ..78

3.3 Globally Defined Variables..79
3.4 Boot Option Recovery...85

3.4.1 OS-Defined Boot Option Recovery...85
3.4.2 Platform-Defined Boot Option Recovery ...86
3.4.3 Boot Option Variables Default Boot Behavior ...86

3.5 Boot Mechanisms ...86
3.5.1 Boot via the Simple File Protocol ...86
3.5.2 Boot via the Load File Protocol ..87

4 EFI System Table ... 89

4.1 UEFI Image Entry Point ...89
EFI_IMAGE_ENTRY_POINT ..89

4.2 EFI Table Header ...90
EFI_TABLE_HEADER...90
UEFI Forum, Inc. March 2019 xxvii

UEFI Specification, Version 2.8
4.3 EFI System Table ...91
EFI_SYSTEM_TABLE ...92

4.4 EFI Boot Services Table ...93
EFI_BOOT_SERVICES ...93

4.5 EFI Runtime Services Table ...97
EFI_RUNTIME_SERVICES ...98

4.6 EFI Configuration Table & Properties Table..99
EFI_CONFIGURATION_TABLE ..100
EFI_PROPERTIES_TABLE ..102
EFI_MEMORY_ATTRIBUTES_TABLE ..103

4.7 Image Entry Point Examples ...104
4.7.1 Image Entry Point Examples ..104
4.7.2 UEFI Driver Model Example ...106
4.7.3 UEFI Driver Model Example (Unloadable) ...107
4.7.4 EFI Driver Model Example (Multiple Instances)...109

5 GUID Partition Table (GPT) Disk Layout ... 111

5.1 GPT and MBR disk layout comparison..111
5.2 LBA 0 Format ..111

5.2.1 Legacy Master Boot Record (MBR) ..111
5.2.2 OS Types...114
5.2.3 Protective MBR ..114
5.2.4 Partition Information ...116

5.3 GUID Partition Table (GPT) Disk Layout..116
5.3.1 GPT overview ...116
5.3.2 GPT Header ..118
5.3.3 GPT Partition Entry Array...120

6 Block Translation Table (BTT) Layout ... 124

6.1 Block Translation Table (BTT) Background ...124
6.2 Block Translation Table (BTT) Data Structures ...125

6.2.1 BTT Info Block ..125
6.2.2 BTT Map Entry..128
6.2.3 BTT Flog..129
6.2.4 BTT Data Area ..130
6.2.5 NVDIMM Label Protocol Address Abstraction Guid ..130

6.3 BTT Theory of Operation ..131
6.3.1 BTT Arenas ...131
6.3.2 Atomicity of Data Blocks in an Arena...132
6.3.3 Atomicity of BTT Data Structures...133
6.3.4 Writing the Initial BTT layout ...133
6.3.5 Validating BTT Arenas at start-up ..134
6.3.6 Validating the Flog entries at start-up ...135
6.3.7 Read Path ...136
6.3.8 Write Path..137
UEFI Forum, Inc. March 2019 xxviii

UEFI Specification, Version 2.8
7 Services — Boot Services ... 139

7.1 Event, Timer, and Task Priority Services ...140
EFI_BOOT_SERVICES.CreateEvent() ..144
EFI_BOOT_SERVICES.CreateEventEx()...147
EFI_BOOT_SERVICES.CloseEvent() ..151
EFI_BOOT_SERVICES.SignalEvent() ...151
EFI_BOOT_SERVICES.WaitForEvent() ..152
EFI_BOOT_SERVICES.CheckEvent() ...153
EFI_BOOT_SERVICES.SetTimer() ...154
EFI_BOOT_SERVICES.RaiseTPL() ..156
EFI_BOOT_SERVICES.RestoreTPL() ..157

7.2 Memory Allocation Services ...158
EFI_BOOT_SERVICES.AllocatePages()..161
EFI_BOOT_SERVICES.FreePages() ...163
EFI_BOOT_SERVICES.GetMemoryMap() ...164
EFI_BOOT_SERVICES.AllocatePool()..168
EFI_BOOT_SERVICES.FreePool()..169

7.3 Protocol Handler Services...170
EFI_BOOT_SERVICES.InstallProtocolInterface() ..174
EFI_BOOT_SERVICES.UninstallProtocolInterface()..177
EFI_BOOT_SERVICES.ReinstallProtocolInterface() ..178
EFI_BOOT_SERVICES.RegisterProtocolNotify() ...180
EFI_BOOT_SERVICES.LocateHandle() ..181
EFI_BOOT_SERVICES.HandleProtocol() ...183
EFI_BOOT_SERVICES.LocateDevicePath() ...185
EFI_BOOT_SERVICES.OpenProtocol()..186
EFI_BOOT_SERVICES.CloseProtocol()..192
EFI_BOOT_SERVICES.OpenProtocolInformation() ..194
EFI_BOOT_SERVICES.ConnectController() ..195
EFI_BOOT_SERVICES.DisconnectController() ..200
EFI_BOOT_SERVICES.ProtocolsPerHandle() ..202
EFI_BOOT_SERVICES.LocateHandleBuffer() ..203
EFI_BOOT_SERVICES.LocateProtocol()..206
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces() ...207
EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces() ..208

7.4 Image Services ..209
EFI_BOOT_SERVICES.LoadImage() ..210
EFI_BOOT_SERVICES.StartImage() ..213
EFI_BOOT_SERVICES.UnloadImage() ..214
EFI_IMAGE_ENTRY_POINT ..215
EFI_BOOT_SERVICES.Exit() ..216
EFI_BOOT_SERVICES.ExitBootServices() ...218

7.5 Miscellaneous Boot Services ..219
EFI_BOOT_SERVICES.SetWatchdogTimer() ...219
EFI_BOOT_SERVICES.Stall() ...220
EFI_BOOT_SERVICES.CopyMem() ...221
UEFI Forum, Inc. March 2019 xxix

UEFI Specification, Version 2.8
EFI_BOOT_SERVICES.SetMem() ..222
EFI_BOOT_SERVICES.GetNextMonotonicCount() ...222
EFI_BOOT_SERVICES.InstallConfigurationTable() ...223
EFI_BOOT_SERVICES.CalculateCrc32() ..224

8 Services — Runtime Services ... 226

8.1 Runtime Services Rules and Restrictions ..226
8.1.1 Related Definitions...228
8.1.2 Exception for Machine Check, INIT, and NMI ..228

8.2 Variable Services...229
GetVariable() ...229
GetNextVariableName()..233
SetVariable()..235

8.2.1 Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor ..241
8.2.2 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor ..244
8.2.3 Using the EFI_VARIABLE_AUTHENTICATION descriptor ..247

QueryVariableInfo() ..248
8.2.4 Hardware Error Record Persistence...250

8.3 Time Services ..251
GetTime() ..251
SetTime() ...254
GetWakeupTime() ...255
SetWakeupTime()..256

8.4 Virtual Memory Services...257
SetVirtualAddressMap() ..258
ConvertPointer() ...259

8.5 Miscellaneous Runtime Services ..260
8.5.1 Reset System..261

ResetSystem() ...261
8.5.2 Get Next High Monotonic Count..262

GetNextHighMonotonicCount() ..262
8.5.3 Update Capsule..263

UpdateCapsule()..264
EFI_MEMORY_RANGE_CAPSULE_GUID ..270
QueryCapsuleCapabilities() ...271

8.5.4 Exchanging information between the OS and Firmware ...272
8.5.5 Delivery of Capsules via file on Mass Storage device ..274
8.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of

capsules after restart ...275

9 Protocols — EFI Loaded Image... 280

9.1 EFI Loaded Image Protocol ...280
EFI_LOADED_IMAGE_PROTOCOL ...280
EFI_LOADED_IMAGE_PROTOCOL.Unload() ..281

9.2 EFI Loaded Image Device Path Protocol ...282
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL ...282
UEFI Forum, Inc. March 2019 xxx

UEFI Specification, Version 2.8
10 Protocols — Device Path Protocol ... 283

10.1 Device Path Overview...283
10.2 EFI Device Path Protocol...283

EFI_DEVICE_PATH_PROTOCOL..283
10.3 Device Path Nodes..284

10.3.1 Generic Device Path Structures ...285
10.3.2 Hardware Device Path ...286
10.3.3 ACPI Device Path..288
10.3.4 Messaging Device Path ..291
10.3.5 Media Device Path ...317
10.3.6 BIOS Boot Specification Device Path..322

10.4 Device Path Generation Rules ..323
10.4.1 Housekeeping Rules...323
10.4.2 Rules with ACPI _HID and _UID..324
10.4.3 Rules with ACPI _ADR ..324
10.4.4 Hardware vs. Messaging Device Path Rules...325
10.4.5 Media Device Path Rules..325
10.4.6 Other Rules ..326

10.5 Device Path Utilities Protocol ...326
EFI_DEVICE_PATH_UTILITIES_PROTOCOL...326
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()327
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()327
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath().....................................328
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()329
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()329
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()330
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()331
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance()332

10.6 EFI Device Path Display Format Overview ..332
10.6.1 Design Discussion...333
10.6.2 Device Path to Text Protocol..348

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL ...348
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText().........................349
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()350

10.6.3 Device Path from Text Protocol ...350
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL..350
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()351
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDevicePath()352

11 Protocols — UEFI Driver Model ... 353

11.1 EFI Driver Binding Protocol ...353
EFI_DRIVER_BINDING_PROTOCOL..353
EFI_DRIVER_BINDING_PROTOCOL.Supported() ...355
EFI_DRIVER_BINDING_PROTOCOL.Start()...360
EFI_DRIVER_BINDING_PROTOCOL.Stop() ...369

11.2 EFI Platform Driver Override Protocol ..373
UEFI Forum, Inc. March 2019 xxxi

UEFI Specification, Version 2.8
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL..373
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()...375
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()376
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()...................................377

11.3 EFI Bus Specific Driver Override Protocol ...378
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL ...378
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()379

11.4 EFI Driver Diagnostics Protocol...380
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL..380
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics() ..381

11.5 EFI Component Name Protocol ..384
EFI_COMPONENT_NAME2_PROTOCOL ..384
EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName() ...385
EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()386

11.6 EFI Service Binding Protocol ...388
EFI_SERVICE_BINDING_PROTOCOL...388
EFI_SERVICE_BINDING_PROTOCOL.CreateChild() ..389
EFI_SERVICE_BINDING_PROTOCOL.DestroyChild() ..393

11.7 EFI Platform to Driver Configuration Protocol..397
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL..398
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query().............................398
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Response()400

11.7.1 DMTF SM CLP ParameterTypeGuid..403
11.8 EFI Driver Supported EFI Version Protocol ...405

EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL ...405
11.9 EFI Driver Family Override Protocol..405

11.9.1 Overview ..405
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL ...406
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion () ...407

11.10 EFI Driver Health Protocol ..407
EFI_DRIVER_HEALTH_PROTOCOL ...407
EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus() ...409
EFI_DRIVER_HEALTH_PROTOCOL.Repair ()...413

11.10.1 UEFI Boot Manager Algorithms..415
11.10.2 UEFI Driver Algorithms...419

11.11 EFI Adapter Information Protocol...420
EFI_ADAPTER_INFORMATION_PROTOCOL...420
EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_GET_INFO()421
EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_SET_INFO()422
EFI_ADAPTER_INFORMATION_PROTOCOL.

EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES() ..423
11.12 EFI Adapter Information Protocol Information Types ..424

11.12.1 Network Media State...424
11.12.2 Network Boot...425
11.12.3 SAN MAC Address ...426
11.12.4 IPV6 Support from UNDI ...426
11.12.5 Network Media Type...427
UEFI Forum, Inc. March 2019 xxxii

UEFI Specification, Version 2.8
12 Protocols — Console Support .. 428

12.1 Console I/O Protocol...428
12.1.1 Overview ..428
12.1.2 ConsoleIn Definition ..428

12.2 Simple Text Input Ex Protocol...430
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL ..431
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset()..431
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx().......................................432
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState() ...435
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify()436
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()437

12.3 Simple Text Input Protocol ...437
EFI_SIMPLE_TEXT_INPUT_PROTOCOL ..438
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()..438
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke() ..439

12.3.1 ConsoleOut or StandardError ..440
12.4 Simple Text Output Protocol ..441

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL...441
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset() ..443
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString() ..443
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString() ...447
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()..448
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()...449
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() ...449
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen() ..452
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition() ..452
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()..453

12.5 Simple Pointer Protocol ..454
EFI_SIMPLE_POINTER_PROTOCOL..454
EFI_SIMPLE_POINTER_PROTOCOL.Reset() ...455
EFI_SIMPLE_POINTER_PROTOCOL.GetState() ..456

12.6 EFI Simple Pointer Device Paths ..458
12.7 Absolute Pointer Protocol ..461

EFI_ABSOLUTE_POINTER_PROTOCOL...461
EFI_ABSOLUTE_POINTER_PROTOCOL.Reset() ..463
EFI_ABSOLUTE_POINTER_PROTOCOL.GetState() ...463

12.8 Serial I/O Protocol...465
EFI_SERIAL_IO_PROTOCOL ...465

12.8.1 Serial Device Identification ..469
12.8.2 Serial Device Type GUIDs ...470

EFI_SERIAL_IO_PROTOCOL.Reset() ...470
EFI_SERIAL_IO_PROTOCOL.SetAttributes()...471
EFI_SERIAL_IO_PROTOCOL.SetControl() ...472
EFI_SERIAL_IO_PROTOCOL.GetControl() ..473
EFI_SERIAL_IO_PROTOCOL.Write() ...474
EFI_SERIAL_IO_PROTOCOL.Read() ..475
UEFI Forum, Inc. March 2019 xxxiii

UEFI Specification, Version 2.8
12.9 Graphics Output Protocol ...476
12.9.1 Blt Buffer ..476

EFI_GRAPHICS_OUTPUT_PROTOCOL ..477
EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() ...482
EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()..483
EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt() ..484
EFI_EDID_DISCOVERED_PROTOCOL ...487
EFI_EDID_ACTIVE_PROTOCOL...487
EFI_EDID_OVERRIDE_PROTOCOL..488
EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() ...489

12.10 Rules for PCI/AGP Devices ..491

13 Protocols — Media Access... 494

13.1 Load File Protocol ...494
EFI_LOAD_FILE_PROTOCOL...494
EFI_LOAD_FILE_PROTOCOL.LoadFile()..494

13.2 Load File 2 Protocol ..496
EFI_LOAD_FILE2_PROTOCOL...496
EFI_LOAD_FILE2_PROTOCOL.LoadFile()..497

13.3 File System Format ...498
13.3.1 System Partition...498
13.3.2 Partition Discovery...501
13.3.3 Number and Location of System Partitions ...502
13.3.4 Media Formats...503

13.4 Simple File System Protocol..504
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL...504
EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume() ...505

13.5 File Protocol ..506
EFI_FILE_PROTOCOL..506
EFI_FILE_PROTOCOL.Open() ...508
EFI_FILE_PROTOCOL.Close() ...510
EFI_FILE_PROTOCOL.Delete()..510
EFI_FILE_PROTOCOL.Read() ..511
EFI_FILE_PROTOCOL.Write() ...512
EFI_FILE_PROTOCOL.OpenEx()..513
EFI_FILE_PROTOCOL.ReadEx() ..515
EFI_FILE_PROTOCOL.WriteEx() ...516
EFI_FILE_PROTOCOL.SetPosition() ..520
EFI_FILE_PROTOCOL.GetPosition() ...521
EFI_FILE_PROTOCOL.GetInfo() ..522
EFI_FILE_PROTOCOL.SetInfo()...523
EFI_FILE_PROTOCOL.Flush()..524
EFI_FILE_INFO ...525
EFI_FILE_SYSTEM_INFO...527
EFI_FILE_SYSTEM_VOLUME_LABEL ..528

13.6 Tape Boot Support..528
13.6.1 Tape I/O Support..528
UEFI Forum, Inc. March 2019 xxxiv

UEFI Specification, Version 2.8
13.6.2 Tape I/O Protocol...528
EFI_TAPE_IO_PROTOCOL ..528
EFI_TAPE_IO_PROTOCOL.TapeRead()...530
EFI_TAPE_IO_PROTOCOL.TapeWrite()..531
EFI_TAPE_IO_PROTOCOL.TapeRewind()...532
EFI_TAPE_IO_PROTOCOL.TapeSpace() ...533
EFI_TAPE_IO_PROTOCOL.TapeWriteFM()...534
EFI_TAPE_IO_PROTOCOL.TapeReset() ..535

13.6.3 Tape Header Format ..536
13.7 Disk I/O Protocol...537

EFI_DISK_IO_PROTOCOL ...538
EFI_DISK_IO_PROTOCOL.ReadDisk()...539
EFI_DISK_IO_PROTOCOL.WriteDisk()..540

13.8 Disk I/O 2 Protocol ..541
EFI_DISK_IO2_PROTOCOL ...541
EFI_DISK_IO2_PROTOCOL.Cancel() ...542
EFI_DISK_IO2_PROTOCOL.ReadDiskEx() ...543
EFI_DISK_IO2_PROTOCOL.WriteDiskEx() ..544
EFI_DISK_IO2_PROTOCOL.FlushDiskEx()...546

13.9 Block I/O Protocol...547
EFI_BLOCK_IO_PROTOCOL..547
EFI_BLOCK_IO_PROTOCOL.Reset() ...551
EFI_BLOCK_IO_PROTOCOL.ReadBlocks() ..551
EFI_BLOCK_IO_PROTOCOL.WriteBlocks() ...553
EFI_BLOCK_IO_PROTOCOL.FlushBlocks()..554

13.10 Block I/O 2 Protocol ..555
EFI_BLOCK_IO2_PROTOCOL..555
EFI_BLOCK_IO2_PROTOCOL.Reset() ...556
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx() ..556
EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx() ...558
EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx() ..560

13.11 Inline Cryptographic Interface Protocol..561
EFI_BLOCK_IO_CRYPTO_PROTOCOL ...561
EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset()...565
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities() ...566
EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration() ..567
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()..569
EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended() ..570
EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended() ...572
EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks() ...574

13.12 Erase Block Protocol ...575
EFI_ERASE_BLOCK_PROTOCOL ...575
EFI_ERASE_BLOCK_PROTOCOL.EraseBlocks() ...576

13.13 ATA Pass Thru Protocol...577
EFI_ATA_PASS_THRU_PROTOCOL ..577
EFI_ATA_PASS_THRU_PROTOCOL.PassThru() ..581
EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()...587
UEFI Forum, Inc. March 2019 xxxv

UEFI Specification, Version 2.8
EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()...588
EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()...590
EFI_ATA_PASS_THRU_PROTOCOL.GetDevice() ..591
EFI_ATA_PASS_THRU_PROTOCOL.ResetPort() ...592
EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice() ...593

13.14 Storage Security Command Protocol..594
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL ..595
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()596
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()......................................598

13.15 NVM Express Pass Through Protocol..600
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL ...600
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru() ...603
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()607
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath()608
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()609

13.16 SD MMC Pass Thru Protocol ...610
EFI_SD_MMC_PASS_THRU_PROTOCOL..610
EFI_SD_MMC_PASS_THRU_PROTOCOL.PassThru()..611
EFI_SD_MMC_PASS_THRU_PROTOCOL.GetNextSlot()...614
EFI_SD_MMC_PASS_THRU_PROTOCOL.BuildDevicePath() ..615
EFI_SD_MMC_PASS_THRU_PROTOCOL.GetSlotNumber() ...616
EFI_SD_MMC_PASS_THRU_PROTOCOL.ResetDevice()...616

13.17 RAM Disk Protocol ..618
EFI_RAM_DISK_PROTOCOL...618
EFI_RAM_DISK_PROTOCOL.Register() ..618
EFI_RAM_DISK_PROTOCOL.Unregister() ..620

13.18 Partition Information Protocol ...621
13.19 NVDIMM Label Protocol ...623

EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageInformation()..623
EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageRead()...624
EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageWrite()..625

13.20 EFI UFS Device Config Protocol...640
EFI_UFS_DEVICE_CONFIG_PROTOCOL..640
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsDescriptor() ...640
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsFlag() ...641
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsAttribute() ...642

14 Protocols — PCI Bus Support ... 644

14.1 PCI Root Bridge I/O Support ...644
14.1.1 PCI Root Bridge I/O Overview ..644

14.2 PCI Root Bridge I/O Protocol ..649
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL..649
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()..656
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo() ...657
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write() ...659
UEFI Forum, Inc. March 2019 xxxvi

UEFI Specification, Version 2.8
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()...660

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write() ...661

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem() ...663
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map() ...665
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()...666
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer() ...667
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer() ...669
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush() ..669
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() ..670
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes() ...671
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() ..673

14.2.1 PCI Root Bridge Device Paths...675
14.3 PCI Driver Model...678

14.3.1 PCI Driver Initialization...678
14.3.2 PCI Bus Drivers ...680
14.3.3 PCI Device Drivers ..685

14.4 EFI PCI I/O Protocol...686
EFI_PCI_IO_PROTOCOL ...687
EFI_PCI_IO_PROTOCOL.PollMem() ...696
EFI_PCI_IO_PROTOCOL.PollIo()...698
EFI_PCI_IO_PROTOCOL.Mem.Read() 

EFI_PCI_IO_PROTOCOL.Mem.Write()...699
EFI_PCI_IO_PROTOCOL.Io.Read() 

EFI_PCI_IO_PROTOCOL.Io.Write() ..701
EFI_PCI_IO_PROTOCOL.Pci.Read()

EFI_PCI_IO_PROTOCOL.Pci.Write()...703
EFI_PCI_IO_PROTOCOL.CopyMem() ..704
EFI_PCI_IO_PROTOCOL.Map() ..706
EFI_PCI_IO_PROTOCOL.Unmap() ..708
EFI_PCI_IO_PROTOCOL.AllocateBuffer()...708
EFI_PCI_IO_PROTOCOL.FreeBuffer()...710
EFI_PCI_IO_PROTOCOL.Flush() ...711
EFI_PCI_IO_PROTOCOL.GetLocation() ..712
EFI_PCI_IO_PROTOCOL.Attributes()..713
EFI_PCI_IO_PROTOCOL.GetBarAttributes() ..715
EFI_PCI_IO_PROTOCOL.SetBarAttributes() ...718

14.4.1 PCI Device Paths ..719
14.4.2 PCI Option ROMs ...721
14.4.3 Nonvolatile Storage ...732
14.4.4 PCI Hot-Plug Events..732

15 Protocols — SCSI Driver Models and Bus Support 733

15.1 SCSI Driver Model Overview ...733
15.2 SCSI Bus Drivers ..733

15.2.1 Driver Binding Protocol for SCSI Bus Drivers..734
UEFI Forum, Inc. March 2019 xxxvii

UEFI Specification, Version 2.8
15.2.2 SCSI Enumeration...735
15.3 SCSI Device Drivers ...735

15.3.1 Driver Binding Protocol for SCSI Device Drivers...735
15.4 EFI SCSI I/O Protocol ...735

EFI_SCSI_IO_PROTOCOL..736
EFI_SCSI_IO_PROTOCOL.GetDeviceType()..737
EFI_SCSI_IO_PROTOCOL.GetDeviceLocation() ..738
EFI_SCSI_IO_PROTOCOL.ResetBus() ...739
EFI_SCSI_IO_PROTOCOL.ResetDevice() ..740
EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand() ...741

15.5 SCSI Device Paths..745
15.5.1 SCSI Device Path Example ..745
15.5.2 ATAPI Device Path Example ...746
15.5.3 Fibre Channel Device Path Example...747
15.5.4 InfiniBand Device Path Example ..748

15.6 SCSI Pass Thru Device Paths ...749
15.7 Extended SCSI Pass Thru Protocol ..752

EFI_EXT_SCSI_PASS_THRU_PROTOCOL ..752
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru() ..755
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() ...761
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()...763
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()...764
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()...765
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()..766
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() ...767

16 Protocols — iSCSI Boot .. 769

16.1 Overview...769
16.1.1 iSCSI UEFI Driver Layering ..769

16.2 EFI iSCSI Initiator Name Protocol..769
EFI_ISCSI_INITIATOR_NAME_PROTOCOL..769
EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get() ...770
EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set() ...771

17 Protocols — USB Support .. 773

17.1 USB2 Host Controller Protocol ...773
17.1.1 USB Host Controller Protocol Overview...773

EFI_USB2_HC_PROTOCOL...773
EFI_USB2_HC_PROTOCOL.GetCapability()..775
EFI_USB2_HC_PROTOCOL.Reset() ..776
EFI_USB2_HC_PROTOCOL.GetState() ...778
EFI_USB2_HC_PROTOCOL.SetState() ..779
EFI_USB2_HC_PROTOCOL.ControlTransfer() ..780
EFI_USB2_HC_PROTOCOL.BulkTransfer() ...783
EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer() ..785
EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer() ..788
EFI_USB2_HC_PROTOCOL.IsochronousTransfer() ..790
UEFI Forum, Inc. March 2019 xxxviii

UEFI Specification, Version 2.8
EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer() ...792
EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus() ..794
EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()...797
EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()..800

17.2 USB Driver Model ...801
17.2.1 Scope..801
17.2.2 USB Bus Driver ...802
17.2.3 USB Device Driver ..803
17.2.4 USB I/O Protocol ..804

EFI_USB_IO_PROTOCOL..804
EFI_USB_IO_PROTOCOL.UsbControlTransfer()...806
EFI_USB_IO_PROTOCOL.UsbBulkTransfer() ..808
EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()...809
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()...813
EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer() ...814
EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()..815
EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()...817
EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor() ...818
EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor() ...820
EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor() ...821
EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor() ..823
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()...824
EFI_USB_IO_PROTOCOL.UsbPortReset() ..825

17.3 USB Function Protocol ..825
EFI_USBFN_IO_PROTOCOL ...826
EFI_USBFN_IO_PROTOCOL.DetectPort() ..828
EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints() ...829
EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()..831
EFI_USBFN_IO_PROTOCOL.GetDeviceInfo() ...832
EFI_USBFN_IO_PROTOCOL.GetVendorIdProductId()..833
EFI_USBFN_IO_PROTOCOL.AbortTransfer() ...834
EFI_USBFN_IO_PROTOCOL.GetEndpointStallState() ..835
EFI_USBFN_IO_PROTOCOL.SetEndpointStallState() ...835
EFI_USBFN_IO_PROTOCOL.EventHandler() ..837
EFI_USBFN_IO_PROTOCOL.Transfer()...841
EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize()..842
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()..843
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() ...844
EFI_USBFN_IO_PROTOCOL.StartController() ..844
EFI_USBFN_IO_PROTOCOL.StopController() ..845
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() ...846
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy() ..848

18 Protocols — Debugger Support.. 851

18.1 Overview...851
18.2 EFI Debug Support Protocol..851

18.2.1 EFI Debug Support Protocol Overview...851
UEFI Forum, Inc. March 2019 xxxix

UEFI Specification, Version 2.8
EFI_DEBUG_SUPPORT_PROTOCOL ...852
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()854
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()855
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()....................................863
EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()...................................867

18.3 EFI Debugport Protocol...868
18.3.1 EFI Debugport Overview ..868

EFI_DEBUGPORT_PROTOCOL..869
EFI_DEBUGPORT_PROTOCOL.Reset() ...870
EFI_DEBUGPORT_PROTOCOL.Write() ...870
EFI_DEBUGPORT_PROTOCOL.Read() ..871
EFI_DEBUGPORT_PROTOCOL.Poll() ..872

18.3.2 Debugport Device Path ..872
18.3.3 EFI Debugport Variable ..873

18.4 EFI Debug Support Table ..874
18.4.1 Overview ..874
18.4.2 EFI System Table Location..875
18.4.3 EFI Image Info ..876

19 Protocols — Compression Algorithm Specification 878

19.1 Algorithm Overview..878
19.2 Data Format..879

19.2.1 Bit Order...879
19.2.2 Overall Structure..880
19.2.3 Block Structure...880

19.3 Compressor Design ...883
19.3.1 Overall Process...883
19.3.2 String Info Log ..884
19.3.3 Huffman Code Generation...887

19.4 Decompressor Design ...889
19.5 Decompress Protocol..890

EFI_DECOMPRESS_PROTOCOL..890
EFI_DECOMPRESS_PROTOCOL.GetInfo() ..890
EFI_DECOMPRESS_PROTOCOL.Decompress() ..892

20 Protocols — ACPI Protocols ... 894

EFI_ACPI_TABLE_PROTOCOL...894
EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()..894
EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable() ...895

21 Protocols — String Services ... 897

21.1 Unicode Collation Protocol ...897
EFI_UNICODE_COLLATION_PROTOCOL ..897
EFI_UNICODE_COLLATION_PROTOCOL.StriColl() ...898
EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch() ...899
EFI_UNICODE_COLLATION_PROTOCOL.StrLwr() ..900
EFI_UNICODE_COLLATION_PROTOCOL.StrUpr() ..900
UEFI Forum, Inc. March 2019 xl

UEFI Specification, Version 2.8
EFI_UNICODE_COLLATION_PROTOCOL.FatToStr() ...901
EFI_UNICODE_COLLATION_PROTOCOL.StrToFat() ...902

21.2 Regular Expression Protocol ..902
EFI_REGULAR_EXPRESSION_PROTOCOL ..903
EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()..903
EFI_REGULAR_EXPRESSION_PROTOCOL.GetInfo() ...905

21.2.1 EFI Regular Expression Syntax Type Definitions...906

22 EFI Byte Code Virtual Machine... 908

22.1 Overview...908
22.1.1 Processor Architecture Independence...908
22.1.2 OS Independent ..908
22.1.3 EFI Compliant ...908
22.1.4 Coexistence of Legacy Option ROMs ...909
22.1.5 Relocatable Image..909
22.1.6 Size Restrictions Based on Memory Available ..909

22.2 Memory Ordering ...910
22.3 Virtual Machine Registers...910
22.4 Natural Indexing ...911

22.4.1 Sign Bit ...912
22.4.2 Bits Assigned to Natural Units..912
22.4.3 Constant...912
22.4.4 Natural Units ..912

22.5 EBC Instruction Operands...913
22.5.1 Direct Operands ...913
22.5.2 Indirect Operands ..913
22.5.3 Indirect with Index Operands ..913
22.5.4 Immediate Operands ...914

22.6 EBC Instruction Syntax ...914
22.7 Instruction Encoding...915

22.7.1 Instruction Opcode Byte Encoding ..915
22.7.2 Instruction Operands Byte Encoding ...915
22.7.3 Index/Immediate Data Encoding ...916

22.8 EBC Instruction Set ...916
ADD ...916
AND ...917
ASHR..918
BREAK..919
CALL...920
CMP...922
CMPI ..924
DIV...925
DIVU ..926
EXTNDB ...927
EXTNDD ...928
EXTNDW ..929
JMP..930
UEFI Forum, Inc. March 2019 xli

UEFI Specification, Version 2.8
JMP8..931
LOADSP..932
MOD ..932
MODU ...933
MOV ..934
MOVI ...936
MOVIn ...937
MOVn ..938
MOVREL ..939
MOVsn...940
MUL...941
MULU ..942
NEG ...943
NOT ...944
OR..945
POP..946
POPn..947
PUSH..948
PUSHn..948
RET ..949
SHL...950
SHR ..951
STORESP ..952
SUB ..952
XOR..953

22.9 Runtime and Software Conventions ...954
22.9.1 Calling Outside VM...954
22.9.2 Calling Inside VM..954
22.9.3 Parameter Passing ...955
22.9.4 Return Values...955
22.9.5 Binary Format ..955

22.10 Architectural Requirements..955
22.10.1 EBC Image Requirements...955
22.10.2 EBC Execution Interfacing Requirements ..955
22.10.3 Interfacing Function Parameters Requirements..956
22.10.4 Function Return Requirements..956
22.10.5 Function Return Values Requirements ..956

22.11 EBC Interpreter Protocol...956
EFI_EBC_PROTOCOL..956
EFI_EBC_PROTOCOL.CreateThunk()..957
EFI_EBC_PROTOCOL.UnloadImage()...958
EFI_EBC_PROTOCOL.RegisterICacheFlush() ..959
EFI_EBC_PROTOCOL.GetVersion() ..960

22.12 EBC Tools ..961
22.12.1 EBC C Compiler...961
22.12.2 C Coding Convention..961
22.12.3 EBC Interface Assembly Instructions ...961
UEFI Forum, Inc. March 2019 xlii

UEFI Specification, Version 2.8
22.12.4 Stack Maintenance and Argument Passing..961
22.12.5 Native to EBC Arguments Calling Convention..962
22.12.6 EBC to Native Arguments Calling Convention..962
22.12.7 EBC to EBC Arguments Calling Convention ..962
22.12.8 Function Returns..962
22.12.9 Function Return Values..962
22.12.10 Thunking ..963
22.12.11 EBC Linker ..965
22.12.12 Image Loader ...965
22.12.13 Debug Support ...965

22.13 VM Exception Handling ..966
22.13.1 Divide By 0 Exception...966
22.13.2 Debug Break Exception ..966
22.13.3 Invalid Opcode Exception ..966
22.13.4 Stack Fault Exception ...966
22.13.5 Alignment Exception ..966
22.13.6 Instruction Encoding Exception ...966
22.13.7 Bad Break Exception ..967
22.13.8 Undefined Exception..967

22.14 Option ROM Formats..967
22.14.1 EFI Drivers for PCI Add-in Cards ...967
22.14.2 Non-PCI Bus Support..967

23 Firmware Update and Reporting ... 968

23.1 Firmware Management Protocol..968
EFI_FIRMWARE_MANAGEMENT_PROTOCOL...968
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()969
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()..977
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage() ..978
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckImage() ..981
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackageInfo()982
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackageInfo().....................................984

23.2 Dependency Expression Instruction Set ...985
PUSH_GUID ...987
PUSH_VERSION ...987
DECLARE_VERSION_NAME ...988
AND ...988
OR..989
NOT ...989
TRUE..990
FALSE ...990
EQ..991
GT ..991
GTE ..992
LT...992
LTE ...993
END..993
UEFI Forum, Inc. March 2019 xliii

UEFI Specification, Version 2.8
23.3 Delivering Capsules Containing Updates to Firmware Management Protocol994
23.3.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID ...994
23.3.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE994
23.3.3 Firmware Processing of the Capsule Identified by

EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID..999
23.4 EFI System Resource Table ...1002

EFI_SYSTEM_RESOURCE_TABLE..1002
23.4.1 Adding and Removing Devices from the ESRT ...1004
23.4.2 ESRT and Firmware Management Protocol ...1005
23.4.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries1005

23.5 Delivering Capsule Containing JSON payload ...1006
23.5.1 EFI_JSON_CAPSULE_ ID_GUID ...1006
23.5.2 Defined JSON Capsule Data Structure ...1006
23.5.3 Firmware Processing of the Capsule Identified by EFI_JSON_CAPSULE_ID_GUID 1008

24 Network Protocols — SNP, PXE, BIS and HTTP Boot 1010

24.1 Simple Network Protocol ...1010
EFI_SIMPLE_NETWORK_PROTOCOL ...1010
EFI_SIMPLE_NETWORK.Start() ..1014
EFI_SIMPLE_NETWORK.Stop() ..1015
EFI_SIMPLE_NETWORK.Initialize() ..1016
EFI_SIMPLE_NETWORK.Reset()...1017
EFI_SIMPLE_NETWORK.Shutdown() ...1018
EFI_SIMPLE_NETWORK.ReceiveFilters() ...1018
EFI_SIMPLE_NETWORK.StationAddress() ...1021
EFI_SIMPLE_NETWORK.Statistics() ...1022
EFI_SIMPLE_NETWORK.MCastIPtoMAC() ...1025
EFI_SIMPLE_NETWORK.NvData()..1026
EFI_SIMPLE_NETWORK.GetStatus() ..1027
EFI_SIMPLE_NETWORK.Transmit() ...1028
EFI_SIMPLE_NETWORK.Receive() ...1030

24.2 Network Interface Identifier Protocol ..1031
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL..1032

24.3 PXE Base Code Protocol..1034
EFI_PXE_BASE_CODE_PROTOCOL...1034
EFI_PXE_BASE_CODE_PROTOCOL.Start() ...1044
EFI_PXE_BASE_CODE_PROTOCOL.Stop() ..1046
EFI_PXE_BASE_CODE_PROTOCOL.Dhcp() ...1047
EFI_PXE_BASE_CODE_PROTOCOL.Discover() ...1048
EFI_PXE_BASE_CODE_PROTOCOL.Mtftp() ..1052
EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite() ...1056
EFI_PXE_BASE_CODE_PROTOCOL.UdpRead() ..1058
EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()...1061
EFI_PXE_BASE_CODE_PROTOCOL.Arp() ...1062
EFI_PXE_BASE_CODE_PROTOCOL.SetParameters() ...1063
EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()..1065
EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()..1066
UEFI Forum, Inc. March 2019 xliv

UEFI Specification, Version 2.8
24.3.1 Netboot6..1067
24.4 PXE Base Code Callback Protocol..1073

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL ...1074
EFI_PXE_BASE_CODE_CALLBACK.Callback() ...1074

24.5 Boot Integrity Services Protocol ...1076
EFI_BIS_PROTOCOL ...1076
EFI_BIS_PROTOCOL.Initialize() ..1078
EFI_BIS_PROTOCOL.Shutdown() ...1081
EFI_BIS_PROTOCOL.Free() ..1082
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate().....................................1083
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()1084
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()................................1085
EFI_BIS_PROTOCOL.GetSignatureInfo() ..1086
EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization() ...1090
EFI_BIS_PROTOCOL.VerifyBootObject()..1098
EFI_BIS_PROTOCOL.VerifyObjectWithCredential() ...1105

24.6 DHCP options for ISCSI on IPV6 ..1112
24.7 HTTP Boot ...1113

24.7.1 Boot from URL..1113
24.7.2 Concept configuration for a typical HTTP Boot scenario ...1114
24.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical HTTP Boot

scenario ..1116
24.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in Corporate

Environment)..1118
24.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6)1122
24.7.6 EFI HTTP Boot Callback Protocol ..1124

EFI_HTTP_BOOT_CALLBACK_PROTOCOL..1124
EFI_HTTP_BOOT_CALLBACK_PROTOCOL.Callback() ...1124

25 Network Protocols — Managed Network .. 1127

25.1 EFI Managed Network Protocol..1127
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL ..1127
EFI_MANAGED_NETWORK_PROTOCOL..1127
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData() ...1129
EFI_MANAGED_NETWORK_PROTOCOL.Configure()...1131
EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac() ..1133
EFI_MANAGED_NETWORK_PROTOCOL.Groups()...1134
EFI_MANAGED_NETWORK_PROTOCOL.Transmit() ..1135
EFI_MANAGED_NETWORK_PROTOCOL.Receive() ..1140
EFI_MANAGED_NETWORK_PROTOCOL.Cancel()..1141
EFI_MANAGED_NETWORK_PROTOCOL.Poll() ..1142

26 Network Protocols — Bluetooth.. 1143

26.1 EFI Bluetooth Host Controller Protocol ..1143
EFI_BLUETOOTH_HC_PROTOCOL..1143
BLUETOOTH_HC_PROTOCOL.SendCommand() ..1144
BLUETOOTH_HC_PROTOCOL.ReceiveEvent() ...1145
UEFI Forum, Inc. March 2019 xlv

UEFI Specification, Version 2.8
BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent()..1146
BLUETOOTH_HC_PROTOCOL.SendACLData() ...1147
BLUETOOTH_HC_PROTOCOL.ReceiveACLData()...1148
BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData() ...1149
BLUETOOTH_HC_PROTOCOL.SendSCOData()...1150
BLUETOOTH_HC_PROTOCOL.ReceiveSCOData() ..1151
BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData()...1152

26.2 EFI Bluetooth Bus Protocol ...1153
EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL ...1153
EFI_BLUETOOTH_IO_PROTOCOL ..1153
BLUETOOTH_IO_PROTOCOL.GetDeviceInfo ...1155
BLUETOOTH_IO_PROTOCOL.GetSdpInfo ..1157
BLUETOOTH_IO_PROTOCOL.L2CapRawSend..1158
BLUETOOTH_IO_PROTOCOL.L2CapRawReceive ...1159
BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive..1160
BLUETOOTH_IO_PROTOCOL.L2CapSend ..1161
BLUETOOTH_IO_PROTOCOL.L2CapReceive ..1162
BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive...1163
BLUETOOTH_IO_PROTOCOL.L2CapConnect ...1164
BLUETOOTH_IO_PROTOCOL.L2CapDisconnect...1165
BLUETOOTH_IO_PROTOCOL.L2CapRegisterService..1166

26.3 EFI Bluetooth Configuration Protocol...1167
EFI_BLUETOOTH_CONFIG_PROTOCOL ...1167
BLUETOOTH_CONFIG_PROTOCOL.Init ..1169
BLUETOOTH_CONFIG_PROTOCOL.Scan..1169
BLUETOOTH_CONFIG_PROTOCOL.Connect..1171
BLUETOOTH_CONFIG_PROTOCOL.Disconnect ...1172
BLUETOOTH_CONFIG_PROTOCOL.GetData..1172
BLUETOOTH_CONFIG_PROTOCOL.SetData...1175
BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData ...1176
BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback..1177
BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback...................................1179
BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback1180
BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback1181

26.4 EFI Bluetooth Attribute Protocol ..1183
EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL ..1183
EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL.....................................1192

26.5 EFI Bluetooth LE Configuration Protocol ..1192
EFI_BLUETOOTH_LE_CONFIG_PROTOCOL..1192
BLUETOOTH_LE_CONFIG_PROTOCOL.Init ..1194
BLUETOOTH_LE_CONFIG_PROTOCOL.Scan ..1194
BLUETOOTH_LE_CONFIG_PROTOCOL.Connect ..1197
BLUETOOTH_LE_CONFIG_PROTOCOL.Disconnect..1198
BLUETOOTH_LE_CONFIG_PROTOCOL.GetData ..1199
BLUETOOTH_LE_CONFIG_PROTOCOL.SetData ...1200
BLUETOOTH_LE_CONFIG_PROTOCOL.GetRemoteData..1201
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpAuthCallback1202
UEFI Forum, Inc. March 2019 xlvi

UEFI Specification, Version 2.8
BLUETOOTH_LE_CONFIG_PROTOCOL.SendSmpAuthData ...1204
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpGetDataCallback...........................1205
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpSetDataCallback1209
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback............1210

27 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant 1212

27.1 VLAN Configuration Protocol..1212
EFI_VLAN_CONFIG_PROTOCOL...1212
EFI_VLAN_CONFIG_PROTOCOL.Set () ...1212
EFI_VLAN_CONFIG_PROTOCOL.Find() ..1213
EFI_VLAN_CONFIG_PROTOCOL.Remove () ...1215

27.2 EAP Protocol ...1215
EFI_EAP_PROTOCOL..1215
EFI_EAP.SetDesiredAuthMethod()..1216
EFI_EAP.RegisterAuthMethod() ..1217

27.2.1 EAPManagement Protocol...1219
EFI_EAP_MANAGEMENT_PROTOCOL...1219
EFI_EAP_MANAGEMENT.GetSystemConfiguration()..1220
EFI_EAP_MANAGEMENT.SetSystemConfiguration() ..1221
EFI_EAP_MANAGEMENT.InitializePort() ...1222
EFI_EAP_MANAGEMENT.UserLogon() ..1222
EFI_EAP_MANAGEMENT.UserLogoff()..1223
EFI_EAP_MANAGEMENT.GetSupplicantStatus()...1223
EFI_EAP_MANAGEMENT.SetSupplicantConfiguration() ...1226
EFI_EAP_MANAGEMENT.GetSupplicantStatistics() ..1226

27.2.2 EFI EAP Management2 Protocol ..1228
EFI_EAP_MANAGEMENT2_PROTOCOL...1228
EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()..1229

27.2.3 EFI EAP Configuration Protocol ..1230
EFI_EAP_CONFIGURATION_PROTOCOL ..1230
EFI_EAP_CONFIGURATION_PROTOCOL.SetData() ..1230
EFI_EAP_CONFIGURATION_PROTOCOL.GetData() ...1233

27.3 EFI Wireless MAC Connection Protocol ..1234
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL ..1234
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan() ...1235
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate()..1245
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate()1250
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate()1252
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate()1256

27.4 EFI Wireless MAC Connection II Protocol ..1258
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL ..1258
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.GetNetworks()..............................1259
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.ConnectNetwork()........................1263
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.DisconnectNetwork()1266

27.5 EFI Supplicant Protocol ...1267
27.5.1 Supplicant Service Binding Protocol ..1267

EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL...1267
UEFI Forum, Inc. March 2019 xlvii

UEFI Specification, Version 2.8
27.5.2 Supplicant Protocol ..1268
EFI_SUPPLICANT_PROTOCOL..1268
EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket() ..1269
EFI_SUPPLICANT_PROTOCOL.ProcessPacket() ...1270
EFI_SUPPLICANT_PROTOCOL.SetData()..1271
EFI_SUPPLICANT_PROTOCOL.GetData() ...1277

28 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations 1279

28.1 EFI TCPv4 Protocol ..1279
28.1.1 TCP4 Service Binding Protocol ...1279

EFI_TCP4_SERVICE_BINDING_PROTOCOL ..1279
28.1.2 TCP4 Protocol...1279

EFI_TCP4_PROTOCOL..1279
EFI_TCP4_PROTOCOL.GetModeData()..1281
EFI_TCP4_PROTOCOL.Configure()...1286
EFI_TCP4_PROTOCOL.Routes() ...1288
EFI_TCP4_PROTOCOL.Connect() ...1290
EFI_TCP4_PROTOCOL.Accept() ...1292
EFI_TCP4_PROTOCOL.Transmit() ..1294
EFI_TCP4_PROTOCOL.Receive() ..1298
EFI_TCP4_PROTOCOL.Close()..1300
EFI_TCP4_PROTOCOL.Cancel()..1302
EFI_TCP4_PROTOCOL.Poll() ..1303

28.2 EFI TCPv6 Protocol ..1304
28.2.1 TCPv6 Service Binding Protocol ...1304

EFI_TCP6_SERVICE_BINDING_PROTOCOL ..1304
28.2.2 TCPv6 Protocol ...1305

EFI_TCP6_PROTOCOL..1305
EFI_TCP6_PROTOCOL.GetModeData()..1306
EFI_TCP6_PROTOCOL.Configure()...1310
EFI_TCP6_PROTOCOL.Connect() ...1312
EFI_TCP6_PROTOCOL.Accept() ...1314
EFI_TCP6_PROTOCOL.Transmit() ..1316
EFI_TCP6_PROTOCOL.Receive() ..1320
EFI_TCP6_PROTOCOL.Close()..1322
EFI_TCP6_PROTOCOL.Cancel()..1323
EFI_TCP6_PROTOCOL.Poll() ..1324

28.3 EFI IPv4 Protocol ...1325
28.3.1 IP4 Service Binding Protocol ..1325

EFI_IP4_SERVICE_BINDING_PROTOCOL..1325
28.3.2 IP4 Protocol..1326

EFI_IP4_PROTOCOL...1326
EFI_IP4_PROTOCOL.GetModeData()...1327
EFI_IP4_PROTOCOL.Configure()..1332
EFI_IP4_PROTOCOL.Groups()..1333
EFI_IP4_PROTOCOL.Routes() ..1334
EFI_IP4_PROTOCOL.Transmit() ...1336
UEFI Forum, Inc. March 2019 xlviii

UEFI Specification, Version 2.8
EFI_IP4_PROTOCOL.Receive() ...1342
EFI_IP4_PROTOCOL.Cancel()...1344
EFI_IP4_PROTOCOL.Poll()..1345

28.4 EFI IPv4 Configuration Protocol ..1346
EFI_IP4_CONFIG_PROTOCOL ..1346
EFI_IP4_CONFIG_PROTOCOL.Start() ...1347
EFI_IP4_CONFIG_PROTOCOL.Stop()..1349
EFI_IP4_CONFIG_PROTOCOL.GetData()..1350
Related Definitions..1351

28.5 EFI IPv4 Configuration II Protocol ...1351
EFI_IP4_CONFIG2_PROTOCOL ..1351
EFI_IP4_CONFIG2_PROTOCOL.SetData() ..1352
EFI_IP4_CONFIG2_PROTOCOL.GetData()..1357
EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify () ...1359
EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify () ...1360

28.6 EFI IPv6 Protocol ..1360
28.6.1 IPv6 Service Binding Protocol ..1361

EFI_IP6_SERVICE_BINDING_PROTOCOL..1361
28.6.2 IPv6 Protocol ..1361

EFI_IP6_PROTOCOL...1361
EFI_IP6_PROTOCOL.GetModeData()...1363
EFI_IP6_PROTOCOL.Configure()..1371
EFI_IP6_PROTOCOL.Groups()..1372
EFI_IP6_PROTOCOL.Routes() ..1373
EFI_IP6_PROTOCOL.Neighbors() ...1375
EFI_IP6_PROTOCOL.Transmit() ...1376
EFI_IP6_PROTOCOL.Receive() ...1383
EFI_IP6_PROTOCOL.Cancel()...1384
EFI_IP6_PROTOCOL.Poll()..1385

28.7 EFI IPv6 Configuration Protocol ...1386
EFI_IP6_CONFIG_PROTOCOL ..1386
EFI_IP6_CONFIG_PROTOCOL.SetData() ..1387
EFI_IP6_CONFIG_PROTOCOL.GetData()..1392
EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify () ...1393
EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()..1394

28.8 IPsec..1395
28.8.1 IPsec Overview...1395
28.8.2 EFI IPsec Configuration Protocol ..1396

EFI_IPSEC_CONFIG_PROTOCOL ..1396
EFI_IPSEC_CONFIG_PROTOCOL.SetData() ..1397
EFI_IPSEC_CONFIG_PROTOCOL.GetData()..1409
EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector() ..1411
EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify ()..1412
EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify ()..1413

28.8.3 EFI IPsec Protocol ..1414
EFI_IPSEC_PROTOCOL ...1414
EFI_IPSEC_PROTOCOL.Process() ...1415
UEFI Forum, Inc. March 2019 xlix

UEFI Specification, Version 2.8
28.8.4 EFI IPsec2 Protocol ..1416
EFI_IPSEC2_PROTOCOL ...1416
EFI_IPSEC2_PROTOCOL.ProcessExt() ...1417

28.9 Network Protocol - EFI FTP Protocol...1419
EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary...1419
EFI_FTP4_PROTOCOL ..1420
EFI_FTP4_PROTOCOL.GetModeData()..1421
EFI_FTP4_PROTOCOL.Connect() ...1421
EFI_FTP4_PROTOCOL.Close() ..1423
EFI_FTP4_PROTOCOL.Configure() ...1424
EFI_FTP4_PROTOCOL.ReadFile() ...1426
EFI_FTP4_PROTOCOL.WriteFile() ..1429
EFI_FTP4_PROTOCOL.ReadDirectory()..1430
EFI_FTP4_PROTOCOL.Poll()...1431

28.10 EFI TLS Protocols ...1432
28.10.1 EFI TLS Service Binding Protocol ..1432

EFI_TLS_SERVICE_BINDING_PROTOCOL ...1432
28.10.2 EFI TLS Protocol..1432

EFI_TLS_PROTOCOL...1432
EFI_TLS_PROTOCOL.SetSessionData ()..1433
EFI_TLS_PROTOCOL.GetSessionData () ...1440
EFI_TLS_PROTOCOL.BuildResponsePacket () ..1441
EFI_TLS_PROTOCOL.ProcessPacket () ...1442

28.10.3 EFI TLS Configuration Protocol...1444
EFI_TLS_CONFIGURATION_PROTOCOL...1444
EFI_TLS_CONFIGURATION_PROTOCOL.SetData()...1445
EFI_TLS_CONFIGURATION_PROTOCOL.GetData() ..1446

29 Network Protocols — ARP, DHCP, DNS, HTTP and REST 1448

29.1 ARP Protocol ...1448
EFI_ARP_SERVICE_BINDING_PROTOCOL ..1448
EFI_ARP_PROTOCOL ...1449
EFI_ARP_PROTOCOL.Configure() ..1450
EFI_ARP_PROTOCOL.Add()..1452
EFI_ARP_PROTOCOL.Find() ...1454
Related Definitions..1455
EFI_ARP_PROTOCOL.Delete() ...1456
EFI_ARP_PROTOCOL.Flush()..1456
EFI_ARP_PROTOCOL.Request() ...1457
EFI_ARP_PROTOCOL.Cancel() ...1458

29.2 EFI DHCPv4 Protocol ...1459
EFI_DHCP4_SERVICE_BINDING_PROTOCOL ...1460
EFI_DHCP4_PROTOCOL...1460
EFI_DHCP4_PROTOCOL.GetModeData()...1462
EFI_DHCP4_PROTOCOL.Configure() ...1465
EFI_DHCP4_PROTOCOL.Start()..1472
EFI_DHCP4_PROTOCOL.RenewRebind() ...1473
UEFI Forum, Inc. March 2019 l

UEFI Specification, Version 2.8
EFI_DHCP4_PROTOCOL.Release() ...1474
EFI_DHCP4_PROTOCOL.Stop() ..1475
EFI_DHCP4_PROTOCOL.Build() ...1476
EFI_DHCP4_PROTOCOL.TransmitReceive()...1477
EFI_DHCP4_PROTOCOL.Parse()...1479

29.3 EFI DHCP6 Protocol ...1481
29.3.1 DHCP6 Service Binding Protocol ..1481

EFI_DHCP6_SERVICE_BINDING_PROTOCOL ...1481
29.3.2 DHCP6 Protocol..1482

EFI_DHCP6_PROTOCOL...1482
EFI_DHCP6_PROTOCOL.GetModeData ()..1483
EFI_DHCP6_PROTOCOL.Configure () ..1489
EFI_DHCP6_PROTOCOL.Start () ...1495
EFI_DHCP6_PROTOCOL.InfoRequest () ...1496
EFI_DHCP6_PROTOCOL.RenewRebind () ..1499
EFI_DHCP6_PROTOCOL.Decline ()...1501
EFI_DHCP6_PROTOCOL.Release () ..1502
EFI_DHCP6_PROTOCOL.Stop () ...1503
EFI_DHCP6_PROTOCOL.Parse ()..1504

29.4 EFI DNSv4 Protocol ...1505
EFI_DNS4_SERVICE_BINDING_PROTOCOL..1505
EFI_DNS4_PROTOCOL ...1506
EFI_DNS4_PROTOCOL.GetModeData()...1507
EFI_DNS4_PROTOCOL.Configure() ..1510
EFI_DNS4_PROTOCOL.HostNameToIp()..1511
EFI_DNS4_PROTOCOL.IpToHostName()..1514
EFI_DNS4_PROTOCOL.GeneralLookUp()...1515
EFI_DNS4_PROTOCOL.UpdateDnsCache() ..1516
EFI_DNS4_PROTOCOL.Poll()..1517
EFI_DNS4_PROTOCOL.Cancel() ...1518

29.5 EFI DNSv6 Protocol ...1519
29.5.1 DNS6 Service Binding Protocol ..1519

EFI_DNS6_SERVICE_BINDING_PROTOCOL..1519
29.5.2 DNS6 Protocol ..1520

EFI_DNS6_PROTOCOL ...1520
EFI_DNS6_PROTOCOL.GetModeData()...1521
EFI_DNS6_PROTOCOL.Configure() ..1524
EFI_DNS6_PROTOCOL.HostNameToIp()..1525
EFI_DNS6_PROTOCOL.IpToHostName()..1529
EFI_DNS6_PROTOCOL.GeneralLookUp()...1530
EFI_DNS6_PROTOCOL.UpdateDnsCache() ..1531
EFI_DNS6_PROTOCOL.POLL()..1532
EFI_DNS6_PROTOCOL.Cancel() ...1533

29.6 EFI HTTP Protocols ..1534
29.6.1 HTTP Service Binding Protocol ...1534

EFI_HTTP_SERVICE_BINDING_PROTOCOL ..1534
29.6.2 EFI HTTP Protocol Specific Definitions ..1535
UEFI Forum, Inc. March 2019 li

UEFI Specification, Version 2.8
EFI_HTTP_PROTOCOL..1535
EFI_HTTP_PROTOCOL.GetModeData() ...1535
EFI_HTTP_PROTOCOL.Configure() ..1538
EFI_HTTP_PROTOCOL.Request() ...1539
EFI_HTTP_PROTOCOL.Cancel()..1544
EFI_HTTP_PROTOCOL.Response()...1545
EFI_HTTP_PROTOCOL.Poll() ..1546

29.6.3 HTTP Utilities Protocol ...1553
EFI_HTTP_UTILITIES_PROTOCOL...1554
EFI_HTTP_UTILITIES_PROTOCOL.Build() ...1554
EFI_HTTP_UTILITIES_PROTOCOL.Parse()...1555

29.7 EFI REST Support Overview...1557
29.7.1 EFI REST Protocol ...1562

EFI_REST_PROTOCOL ..1562
EFI_REST_PROTOCOL.SendReceive() ..1562
EFI_REST_PROTOCOL.GetServiceTime() ...1564

29.7.2 EFI REST EX Protocol ..1564
EFI_REST_EX_SERVICE_BINDING_PROTOCOL...1564
EFI_REST_EX_PROTOCOL ..1565
EFI_REST_EX_PROTOCOL.SendReceive() ..1566
EFI_REST_EX_PROTOCOL.GetService() ...1567
EFI_REST_EX_PROTOCOL.GetModeData()..1571
EFI_REST_EX_PROTOCOL.Configure() ...1572
EFI_REST_EX_PROTOCOL.AsyncSendReceive() ...1574
EFI_REST_EX_PROTOCOL.EventService() ..1577
EFI_REST_EX_PROTOCOL.EventService() ..1585

29.7.3 EFI REST JSON Resource to C Structure Converter ..1587
EFI_REST_JSON_STRUCTURE.Register () ...1588
EFI_REST_JSON_STRUCTURE.ToStructure () ...1590
EFI_REST_JSON_STRUCTURE.ToJson () ...1592
EFI_REST_JSON_STRUCTURE.DestroyStructure ()...1594

30 Network Protocols — UDP and MTFTP .. 1595

30.1 EFI UDP Protocol...1595
30.1.1 UDP4 Service Binding Protocol ..1595

EFI_UDP4_SERVICE_BINDING_PROTOCOL..1595
30.1.2 UDP4 Protocol..1595

EFI_UDP4_PROTOCOL...1595
EFI_UDP4_PROTOCOL.GetModeData()...1597
EFI_UDP4_PROTOCOL.Configure()..1599
EFI_UDP4_PROTOCOL.Groups()..1601
EFI_UDP4_PROTOCOL.Routes() ..1602
EFI_UDP4_PROTOCOL.Transmit() ...1604
EFI_UDP4_PROTOCOL.Receive() ...1609
EFI_UDP4_PROTOCOL.Cancel() ...1611
EFI_UDP4_PROTOCOL.Poll()..1612

30.2 EFI UDPv6 Protocol ...1613
UEFI Forum, Inc. March 2019 lii

UEFI Specification, Version 2.8
30.2.1 UDP6 Service Binding Protocol ..1613
EFI_UDP6_SERVICE_BINDING_PROTOCOL..1613

30.2.2 EFI UDP6 Protocol ..1613
EFI_UDP6_PROTOCOL...1613
EFI_UDP6_PROTOCOL.GetModeData()...1615
EFI_UDP6_PROTOCOL.Configure()..1617
EFI_UDP6_PROTOCOL.Groups()..1619
EFI_UDP6_PROTOCOL.Transmit() ...1620
EFI_UDP6_PROTOCOL.Receive() ...1626
EFI_UDP6_PROTOCOL.Cancel() ...1627
EFI_UDP6_PROTOCOL.Poll()..1628

30.3 EFI MTFTPv4 Protocol ...1629
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL ...1629
EFI_MTFTP4_PROTOCOL...1629
EFI_MTFTP4_PROTOCOL.GetModeData()...1631
EFI_MTFTP4_PROTOCOL.Configure()..1633
EFI_MTFTP4_PROTOCOL.GetInfo() ...1634
EFI_MTFTP4_PROTOCOL.ParseOptions() ..1643
EFI_MTFTP4_PROTOCOL.ReadFile()..1644
EFI_MTFTP4_PROTOCOL.WriteFile()...1649
EFI_MTFTP4_PROTOCOL.ReadDirectory() ..1651
EFI_MTFTP4_PROTOCOL.POLL() ...1653

30.4 EFI MTFTPv6 Protocol ...1654
30.4.1 MTFTP6 Service Binding Protocol ..1654

EFI_MTFTP6_SERVICE_BINDING_PROTOCOL ...1654
30.4.2 MTFTP6 Protocol..1655

EFI_MTFTP6_PROTOCOL...1655
EFI_MTFTP6_PROTOCOL.GetModeData()...1656
EFI_MTFTP6_PROTOCOL.Configure()..1658
EFI_MTFTP6_PROTOCOL.GetInfo() ...1659
EFI_MTFTP6_PROTOCOL.ParseOptions() ..1667
EFI_MTFTP6_PROTOCOL.ReadFile()..1669
EFI_MTFTP6_PROTOCOL.WriteFile()...1674
EFI_MTFTP6_PROTOCOL.ReadDirectory() ..1676
EFI_MTFTP6_PROTOCOL.Poll() ...1678

31 EFI Redfish Service Support .. 1680

31.1 EFI Redfish Discover Protocol ...1680
31.1.1 Overview ..1680
31.1.2 EFI Redfish Discover Driver ..1681
31.1.3 EFI Redfish Discover Client...1682
31.1.4 EFI Redfish Discover Protocol ..1684

EFI_REDFISH_DISCOVER_PROTOCOL.GetNetworkInterfaceList ()1684
EFI_REDFISH_DISCOVER_PROTOCOL.AcquireRedfishService ()....................................1686
EFI_REDFISH_DISCOVER_PROTOCOL.AbortAcquireRedfishService ()...........................1691
EFI_REDFISH_DISCOVER_PROTOCOL.ReleaseRedfishService ()....................................1692

31.1.5 Implementation Examples ...1693
UEFI Forum, Inc. March 2019 liii

UEFI Specification, Version 2.8
31.2 EFI Redfish JSON Structure Converter ..1695
31.2.1 The Guidance of Writing EFI Redfish JSON Structure Converter1695

32 Secure Boot and Driver Signing ... 1698

32.1 Secure Boot...1698
EFI_AUTHENTICATION_INFO_PROTOCOL...1698
EFI_AUTHENTICATION_INFO_PROTOCOL.Get()..1698
EFI_AUTHENTICATION_INFO_PROTOCOL.Set() ..1699

32.2 UEFI Driver Signing Overview ...1703
32.2.1 Digital Signatures ...1703
32.2.2 Embedded Signatures ..1705
32.2.3 Creating Image Digests from Images ...1706
32.2.4 Code Definitions...1706

WIN_CERTIFICATE ...1707
WIN_CERTIFICATE_EFI_PKCS1_15 ..1708
WIN_CERTIFICATE_UEFI_GUID ...1709

32.3 Firmware/OS Key Exchange: creating trust relationships ..1710
32.3.1 Enrolling The Platform Key...1712
32.3.2 Clearing The Platform Key..1713
32.3.3 Transitioning to Audit Mode..1713
32.3.4 Transitioning to Deployed Mode ...1713
32.3.5 Enrolling Key Exchange Keys ..1713
32.3.6 Platform Firmware Key Storage Requirements ...1714

32.4 Firmware/OS Key Exchange: passing public keys ..1714
32.4.1 Signature Database ..1714

EFI_SIGNATURE_DATA ..1714
32.4.2 Image Execution Information Table...1720

32.5 UEFI Image Validation...1723
32.5.1 Overview ..1723
32.5.2 Authorized User ...1724
32.5.3 Signature Database Update ...1724

32.6 Code Definitions ...1730
32.6.1 UEFI Image Variable GUID & Variable Name ...1730

33 Human Interface Infrastructure Overview ... 1731

33.1 Goals ...1731
33.2 Design Discussion ...1732

33.2.1 Drivers And Applications..1732
33.2.2 Localization ..1740
33.2.3 User Input ..1740
33.2.4 Keyboard Layout ..1741
33.2.5 Forms ...1744
33.2.6 Strings ..1774
33.2.7 Fonts ..1778
33.2.8 Images..1785
33.2.9 HII Database...1786
33.2.10 Forms Browser ...1786
UEFI Forum, Inc. March 2019 liv

UEFI Specification, Version 2.8
33.2.11 Configuration Settings ...1791
33.2.12 Form Callback Logic ...1794
33.2.13 Driver Model Interaction ...1797
33.2.14 Human Interface Component Interactions ..1798
33.2.15 Standards Map Forms ..1799

33.3 Code Definitions ...1803
33.3.1 Package Lists and Package Headers ...1804

EFI_HII_PACKAGE_HEADER...1804
33.3.2 Simplified Font Package ...1806
33.3.3 Font Package..1809
33.3.4 Device Path Package ..1821
33.3.5 GUID Package...1822
33.3.6 String Package..1822
33.3.7 Image Package ...1838
33.3.8 Forms Package ...1855
33.3.9 Keyboard Package..1933
33.3.10 Animations Package...1933

34 HII Protocols.. 1945

34.1 Font Protocol ..1945
EFI_HII_FONT_PROTOCOL...1945
EFI_HII_FONT_PROTOCOL.StringToImage()..1945
EFI_HII_FONT_PROTOCOL.StringIdToImage()...1949
EFI_HII_FONT_PROTOCOL.GetGlyph() ..1951
EFI_HII_FONT_PROTOCOL.GetFontInfo()..1952

34.2 EFI HII Font Ex Protocol..1954
EFI_HII_FONT_EX_PROTOCOL...1954
EFI_HII_FONT_EX_PROTOCOL.StringToImageEx() ..1955
EFI_HII_FONT_EX_PROTOCOL.StringIdToImageEx() ...1955
EFI_HII_FONT_EX_PROTOCOL.GetGlyphEx() ..1956
EFI_HII_FONT_EX_PROTOCOL.GetFontInfoEx() ..1957
EFI_HII_FONT_EX_PROTOCOL.GetGlyphInfo()..1958

34.2.1 Code Definitions...1959
EFI_FONT_DISPLAY_INFO..1959
EFI_IMAGE_OUTPUT ...1961

34.3 String Protocol ..1962
EFI_HII_STRING_PROTOCOL..1962
EFI_HII_STRING_PROTOCOL.NewString() ...1963
EFI_HII_STRING_PROTOCOL.GetString() ...1964
EFI_HII_STRING_PROTOCOL.SetString()..1966
EFI_HII_STRING_PROTOCOL.GetLanguages() ...1967
EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages()...1968

34.4 Image Protocol..1969
EFI_HII_IMAGE_PROTOCOL ..1969
EFI_HII_IMAGE_PROTOCOL.NewImage()..1970
EFI_HII_IMAGE_PROTOCOL.GetImage() ...1971
EFI_HII_IMAGE_PROTOCOL.SetImage() ..1972
UEFI Forum, Inc. March 2019 lv

UEFI Specification, Version 2.8
EFI_HII_IMAGE_PROTOCOL.DrawImage()...1973
EFI_HII_IMAGE_PROTOCOL.DrawImageId() ...1975

34.5 EFI HII Image Ex Protocol ...1976
EFI_HII_IMAGE_EX_PROTOCOL ..1977
EFI_HII_IMAGE_EX_PROTOCOL.NewImageEx() ..1977
EFI_HII_IMAGE_EX_PROTOCOL.GetImageEx()..1978
EFI_HII_IMAGE_EX_PROTOCOL.SetImageEx() ..1979
EFI_HII_IMAGE_EX_PROTOCOL.DrawImageEx() ...1979
EFI_HII_IMAGE_EX_PROTOCOL.DrawImageIdEx()..1980
EFI_HII_IMAGE_EX_PROTOCOL.GetImageInfo() ...1981

34.6 EFI HII Image Decoder Protocol ..1982
EFI_HII_IMAGE_DECODER_PROTOCOL.DecodeImage() ...1983
EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageDecoderName()1984
EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageInfo() ...1985
EFI_HII_IMAGE_DECODER_PROTOCOL.Decode() ...1988

34.7 Font Glyph Generator Protocol ..1988
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL..1989
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyph()1989
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyphImage()1990

34.8 Database Protocol ..1992
EFI_HII_DATABASE_PROTOCOL ..1992
EFI_HII_DATABASE_PROTOCOL.NewPackageList() ...1993
EFI_HII_DATABASE_PROTOCOL.RemovePackageList() ...1994
EFI_HII_DATABASE_PROTOCOL.UpdatePackageList() ..1995
EFI_HII_DATABASE_PROTOCOL.ListPackageLists() ...1996
EFI_HII_DATABASE_PROTOCOL.ExportPackageLists() ..1997
EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify()...1998
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify()...2000
EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts() ..2000
EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout() ...2001
EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()..2007
EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle() ...2008

34.8.1 Database Structures...2009
EFI_HII_DATABASE_NOTIFY ..2009
EFI_HII_DATABASE_NOTIFY_TYPE ..2010

35 HII Configuration Processing and Browser Protocol 2011

35.1 Introduction..2011
35.1.1 Common Configuration Data Format...2011
35.1.2 Data Flow ...2011

35.2 Configuration Strings ..2011
35.2.1 String Syntax ..2011
35.2.2 String Types..2017

35.3 EFI Configuration Keyword Handler Protocol ...2018
EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL ...2018
EFI_KEYWORD_HANDLER _PROTOCOL.SetData()...2019
EFI_KEYWORD_HANDLER _PROTOCOL.GetData() ..2021
UEFI Forum, Inc. March 2019 lvi

UEFI Specification, Version 2.8
35.4 EFI HII Configuration Routing Protocol ...2023
EFI_HII_CONFIG_ROUTING_PROTOCOL..2023
EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig()...2024
EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig() ...2025
EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig() ..2026
EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig() ...2027
EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock() ...2029
EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg()...2031

35.5 EFI HII Configuration Access Protocol...2032
EFI_HII_CONFIG_ACCESS_PROTOCOL...2032
EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() ..2034
EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig() ...2036
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() ..2037

35.6 Form Browser Protocol...2042
EFI_FORM_BROWSER2_PROTOCOL..2042
EFI_FORM_BROWSER2_PROTOCOL.SendForm()..2043
EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()..2046

35.7 HII Popup Protocol..2047
EFI_HII_POPUP_PROTOCOL ..2047
EFI_HII_POPUP_PROTOCOL.CreatePopup()..2048

36 User Identification... 2051

36.1 User Identification Overview ..2051
36.1.1 User Identify...2051
36.1.2 User Profiles...2053
36.1.3 Credential Providers ..2054
36.1.4 Security Considerations ...2055
36.1.5 Deferred Execution ..2057

36.2 User Identification Process ...2057
36.2.1 User Identification Process ..2057
36.2.2 Changing The Current User Profile ..2058
36.2.3 Ready To Boot ..2058

36.3 Code Definitions ...2058
36.3.1 User Manager Protocol ..2058

EFI_USER_MANAGER_PROTOCOL ..2058
EFI_USER_MANAGER_PROTOCOL.Create() ..2060
EFI_USER_MANAGER_PROTOCOL.Delete() ..2061
EFI_USER_MANAGER_PROTOCOL.GetNext()..2062
EFI_USER_MANAGER_PROTOCOL.Current()...2062
EFI_USER_MANAGER_PROTOCOL.Identify()...2063
EFI_USER_MANAGER_PROTOCOL.Find() ..2064
EFI_USER_MANAGER_PROTOCOL.Notify() ...2065
EFI_USER_MANAGER_PROTOCOL.GetInfo()...2066
EFI_USER_MANAGER_PROTOCOL.SetInfo() ...2069
EFI_USER_MANAGER_PROTOCOL.DeleteInfo() ..2070
EFI_USER_MANAGER_PROTOCOL.GetNextInfo() ...2071

36.3.2 Credential Provider Protocols ..2072
UEFI Forum, Inc. March 2019 lvii

UEFI Specification, Version 2.8
EFI_USER_CREDENTIAL2_PROTOCOL ...2072
EFI_USER_CREDENTIAL2_PROTOCOL.Enroll()...2075
EFI_USER_CREDENTIAL2_PROTOCOL.Form()..2076
EFI_USER_CREDENTIAL2_PROTOCOL.Tile() ..2077
EFI_USER_CREDENTIAL2_PROTOCOL.Title() ...2078
EFI_USER_CREDENTIAL2_PROTOCOL.User()...2079
EFI_USER_CREDENTIAL2_PROTOCOL.Select() ..2080
EFI_USER_CREDENTIAL2_PROTOCOL.Deselect() ..2081
EFI_USER_CREDENTIAL2_PROTOCOL.Default() ..2081
EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo() ..2082
EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo() ..2083
EFI_USER_CREDENTIAL2_PROTOCOL.Delete() ...2084

36.3.3 Deferred Image Load Protocol ...2085
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL ...2085
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetImageInfo()..2085

36.4 User Information ..2087
36.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD ...2088
36.4.2 EFI_USER_INFO_CBEFF_RECORD...2092
36.4.3 EFI_USER_INFO_CREATE_DATE_RECORD..2092
36.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD ..2093
36.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD..2093
36.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD...2093
36.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD...2094
36.4.8 EFI_USER_INFO_GUID_RECORD ..2094
36.4.9 EFI_USER_INFO_FAR_RECORD ..2094
36.4.10 EFI_USER_INFO_IDENTIFIER_RECORD...2095
36.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD...2095
36.4.12 EFI_USER_INFO_NAME_RECORD...2097
36.4.13 EFI_USER_INFO_PKCS11_RECORD...2097
36.4.14 EFI_USER_INFO_RETRY_RECORD...2098
36.4.15 EFI_USER_INFO_USAGE_DATE_RECORD ...2098
36.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD..2098

36.5 User Information Table...2099

37 Secure Technologies .. 2100

37.1 Hash Overview..2100
37.1.1 Hash References ..2100

EFI_HASH_SERVICE_BINDING_PROTOCOL..2100
EFI_HASH_PROTOCOL...2101
EFI_HASH_PROTOCOL.GetHashSize() ...2101
EFI_HASH_PROTOCOL.Hash() ...2102

37.1.2 Other Code Definitions ..2104
EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH, EFI_SHA384_HASH,

EFI_SHA512HASH, EFI_MD5_HASH ..2104
37.2 Hash2 Protocols ..2106

37.2.1 EFI Hash2 Service Binding Protocol..2106
EFI_HASH2_SERVICE_BINDING_PROTOCOL..2106
UEFI Forum, Inc. March 2019 lviii

UEFI Specification, Version 2.8
37.2.2 EFI Hash2 Protocol ...2107
EFI_HASH2_PROTOCOL...2107
EFI_HASH2_PROTOCOL.GetHashSize() ...2110
EFI_HASH2_PROTOCOL.Hash() ...2110
EFI_HASH2_PROTOCOL.HashInit() ..2111
EFI_HASH2_PROTOCOL.HashUpdate()..2112
EFI_HASH2_PROTOCOL.HashFinal() ..2113

37.2.3 Other Code Definitions ...2116
EFI_HASH2_OUTPUT ...2116

37.3 Key Management Service ...2116
EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL ..2116
EFI_KMS_PROTOCOL.GetServiceStatus() ..2130
EFI_KMS_PROTOCOL.RegisterClient()...2131
EFI_KMS_PROTOCOL.CreateKey()...2133
EFI_KMS_PROTOCOL.GetKey()..2135
EFI_KMS_PROTOCOL.AddKey() ...2138
EFI_KMS_PROTOCOL.DeleteKey()...2140
EFI_KMS_PROTOCOL.GetKeyAttributes() ...2142
EFI_KMS_PROTOCOL.AddKeyAttributes()...2144
EFI_KMS_PROTOCOL.DeleteKeyAttributes()...2147
EFI_KMS_PROTOCOL.GetKeyByAttributes() ...2149

37.4 PKCS7 Verify Protocol ...2152
EFI_PKCS7_VERIFY_PROTOCOL...2152
EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer() ..2154
EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature()...2157

37.5 Random Number Generator Protocol ..2160
EFI_RNG_PROTOCOL...2160
EFI_RNG_PROTOCOL.GetInfo..2161
EFI_RNG_PROTOCOL.GetRNG...2162

37.5.1 EFI RNG Algorithm Definitions ...2163
37.5.2 RNG References ...2164

37.6 
Smart Card Reader and Smart Card Edge Protocols ..2164

37.6.1 Smart Card Reader Protocol..2165
EFI_SMART_CARD_READER_PROTOCOL Summary ..2165
EFI_SMART_CARD_READER_PROTOCOL.SCardConnect() ..2166
EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect() ..2168
EFI_SMART_CARD_READER_PROTOCOL.SCardStatus()..2169
EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()..2170
EFI_SMART_CARD_READER_PROTOCOL.SCardControl()..2172
EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()...2174

37.6.2 Smart Card Edge Protocol ...2175
EFI_SMART_CARD_EDGE_PROTOCOL...2175
EFI_SMART_CARD_EDGE_PROTOCOL.GetContext()...2177
EFI_SMART_CARD_EDGE_PROTOCOL. Connect() ...2179
EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect() ...2180
EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn ..2181
UEFI Forum, Inc. March 2019 lix

UEFI Specification, Version 2.8
EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName...2181
EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin()...2182
EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining() ...2184
EFI_SMART_CARD_EDGE_PROTOCOL.GetData()..2185
EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials() ...2186
EFI_SMART_CARD_EDGE_PROTOCOL.SignData() ...2188
EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData() ...2190
EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement() ..2193

38 Miscellaneous Protocols.. 2195

38.1 EFI Timestamp Protocol ..2195
EFI_TIMESTAMP_PROTOCOL ..2195
EFI_TIMESTAMP_PROTOCOL.GetTimestamp() ...2195
EFI_TIMESTAMP_PROTOCOL.GetProperties () ...2196

38.2 Reset Notification Protocol...2197
EFI_RESET_NOTIFICATION_PROTOCOL...2197
EFI_RESET_NOTIFICATION_PROTOCOL.RegisterResetNotify()2197
EFI_RESET_NOTIFICATION_PROTOCOL.UnregisterResetNotify()2198

Appendix A GUID and Time Formats .. 2200

Appendix B Console ... 2202

Appendix C Device Path Examples.. 2206

Appendix D Status Codes ... 2212

Appendix E Universal Network Driver Interfaces .. 2215

Appendix F Using the Simple Pointer Protocol.. 2305

Appendix G Using the EFI Extended SCSI Pass Thru Protocol......................... 2306

Appendix H Compression Source Code ... 2309

Appendix I Decompression Source Code... 2339

Appendix J EFI Byte Code Virtual Machine Opcode List 2356

Appendix K Alphabetic Function Lists... 2359

Appendix L EFI 1.10 Protocol Changes and Deprecation List 2360

Appendix M Formats — 
Language Codes and Language Code Arrays ... 2363

Appendix N Common Platform Error Record .. 2364

Appendix O UEFI ACPI Data Table... 2411

Appendix P Hardware Error Record Persistence Usage 2414

Appendix Q References .. 2415

Appendix R Glossary .. 2422
UEFI Forum, Inc. March 2019 lx

UEFI Specification, Version 2.8
Index.. 2446
UEFI Forum, Inc. March 2019 lxi

UEFI Specification, Version 2.8
List of Tables

SI prefixes ..13

 Binary prefixes..13

UEFI Image Memory Types ...15

UEFI Runtime Services...18

Common UEFI Data Types...20

Modifiers for Common UEFI Data Types...21

Map: EFI Cacheability Attributes to AArch64 Memory Types...38

Map: UEFI Permission Attributes to ARM Paging Attributes ..38

.RV32 datatype alignment...43

RV64 datatype alignment..43

Register name and ABI name. ...44

UEFI Protocols ...46

Required UEFI Implementation Elements...61

Global Variables ..80

UEFI Image Types ..87

Usage of Memory Attribute Definitions..104

Legacy MBR ...111

Legacy MBR Partition Record..112

Protective MBR ...114

Protective MBR Partition Record protecting the entire disk ..114

GPT Header ...119

GPT Partition Entry..120

Defined GPT Partition Entry - Partition Type GUIDs ...121

Defined GPT Partition Entry - Attributes...122

Event, Timer, and Task Priority Functions...140

TPL Usage ..140

TPL Restrictions ...141

Memory Allocation Functions ...158

Memory Type Usage before ExitBootServices()..159

Memory Type Usage after ExitBootServices()...160

Protocol Interface Functions...170

Image Type Differences Summary ..209

Image Functions ..210

Miscellaneous Boot Services Functions ..219

Rules for Reentry Into Runtime Services...227

Functions that may be called after Machine Check ,INIT and NMI ..229

Variable Services Functions...229

Hardware Error Record Persistence Variables ..250

Time Services Functions ..251

Virtual Memory Functions ..258

Miscellaneous Runtime Services...261
UEFI Forum, Inc. March 2019 lxii

UEFI Specification, Version 2.8
Flag Firmware Behavior...266

Variables Using EFI_CAPSULE_REPORT_GUID ..276

Generic Device Path Node Structure ..285

Device Path End Structure ..285

PCI Device Path ...286

PCCARD Device Path ...286

Memory Mapped Device Path ..287

Vendor-Defined Device Path...287

Controller Device Path ..287

BMC Device Path...288

ACPI Device Path ...289

Expanded ACPI Device Path ..289

ACPI _ADR Device Path ...290

NVDIMM Device Path..291

ATAPI Device Path ...291

SCSI Device Path..292

Fibre Channel Device Path ..292

Fibre Channel Ex Device Path ...292

Fibre Channel Ex Device Path Example ...293

1394 Device Path...294

USB Device Path ..294

USB Device Path Examples..295

Another USB Device Path Example ...295

SATA Device Path ..296

USB WWID Device Path...297

Device Logical Unit ..297

USB Class Device Path ...298

I2O Device Path...298

MAC Address Device Path ...298

IPv4 Device Path..299

IPv6 Device Path..299

InfiniBand Device Path ..300

UART Device Path..300

Vendor-Defined Messaging Device Path...301

UART Flow Control Messaging Device Path ..302

Messaging Device Path Structure ...303

Messaging Device Path Structure ...305

iSCSI Device Path Node (Base Information) ..305

IPv4 configuration ...307

IPv6 configuration ...310

NVM Express Namespace Device Path..313

URI Device Path...314

UFS Device Path ..314
UEFI Forum, Inc. March 2019 lxiii

UEFI Specification, Version 2.8
SD Device Path ..314

Bluetooth Device Path ..315

Wi-Fi Device Path ..315

eMMC Device Path..315

EFI BluetoothLE Device Path ...315

DNS Device Path..316

NVDIMM Namespace Device Path..316

Hard Drive Media Device Path ..317

CD-ROM Media Device Path ...319

Vendor-Defined Media Device Path..319

File Path Media Device Path..319

Media Protocol Media Device Path...320

 PIWG Firmware Volume Device Path...320

PIWG Firmware Volume Device Path..321

Relative Offset Range..321

RAM Disk Device Path ...321

BIOS Boot Specification Device Path...323

ACPI _CRS to EFI Device Path Mapping ...324

ACPI _ADR to EFI Device Path Mapping ..325

EFI Device Path Option Parameter Values ..336

Device Node Table ..337

Supported Unicode Control Characters ..428

EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL..429

EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL...429

EFI Cursor Location/Advance Rules...446

PS/2 Mouse Device Path ...458

Serial Mouse Device Path ...459

USB Mouse Device Path ...460

Blt Operation Table ...486

Attributes Definition Table..490

Tape Header Formats..536

PATA device mapping to ports and port multiplier ports ...581

Special programming considerations..586

PCI Configuration Address...663

QWORD Address Space Descriptor ...674

End Tag..674

PCI Root Bridge Device Path for a Desktop System ..675

PCI Root Bridge Device Path for Bridge #0 in a Server System ...676

PCI Root Bridge Device Path for Bridge #1 in a Server System ...676

PCI Root Bridge Device Path for Bridge #2 in a Server System ...676

PCI Root Bridge Device Path for Bridge #3 in a Server System ...677

PCI Root Bridge Device Path Using Expanded ACPI Device Path...677

QWORD Address Space Descriptor ...717
UEFI Forum, Inc. March 2019 lxiv

UEFI Specification, Version 2.8
End Tag..717

PCI Device 7, Function 0 on PCI Root Bridge 0 ..720

PCI Device 7, Function 0 behind PCI to PCI bridge ..721

Standard PCI Expansion ROM Header (Example from PCI Firmware Specification 3.0)723

PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)723

EFI PCI Expansion ROM Header...723

Device Path for an EFI Driver loaded from PCI Option ROM...725

Recommended PCI Device Driver Layout..731

SCSI Device Path Examples..746

ATAPI Device Path Examples...747

Fibre Channel Device Path Examples ..748

InfiniBand Device Path Examples ..749

Single Channel PCI SCSI Controller ...750

Single Channel PCI SCSI Controller behind a PCI Bridge..751

Channel #3 of a PCI SCSI Controller behind a PCI Bridge ..752

USB Hub Port Status Bitmap ...795

Hub Port Change Status Bitmap..796

USB Port Features ..798

Payload-associated Messages and Descriptions ...838

Debugport Messaging Device Path ...873

Block Header Fields ...881

General Purpose VM Registers ...910

Dedicated VM Registers ..910

VM Flags Register..911

Index Encoding ..911

Index Size in Index Encoding ...912

Opcode Byte Encoding ..915

Operand Byte Encoding...915

ADD Instruction Encoding ...916

AND Instruction Encoding ..917

ASHR Instruction Encoding ...918

VM Version Format ...919

BREAK Instruction Encoding..920

CALL Instruction Encoding ..921

CMP Instruction Encoding...923

CMPI Instruction Encoding ...924

DIV Instruction Encoding ..925

DIVU Instruction Encoding ...926

EXTNDB Instruction Encoding ..927

EXTNDD Instruction Encoding ..928

EXTNDW Instruction Encoding ..929

JMP Instruction Encoding ...930

JMP8 Instruction Encoding ...931
UEFI Forum, Inc. March 2019 lxv

UEFI Specification, Version 2.8
LOADSP Instruction Encoding..932

MOD Instruction Encoding ..933

MODU Instruction Encoding ...933

MOV Instruction Encoding ..935

MOVI Instruction Encoding ...936

MOVIn Instruction Encoding ..937

MOVn Instruction Encoding ...938

MOVREL Instruction Encoding ..939

MOVsn Instruction Encoding...940

MUL Instruction Encoding...941

MULU Instruction Encoding ..942

NEG Instruction Encoding ...943

NOT Instruction Encoding ..944

OR Instruction Encoding..945

POP Instruction Encoding..946

POPn Instruction Encoding..947

PUSH Instruction Encoding..948

PUSHn Instruction Encoding ...949

RET Instruction Encoding ..949

SHL Instruction Encoding ..950

SHR Instruction Encoding ..951

STORESP Instruction Encoding ...952

SUB Instruction Encoding ...953

XOR Instruction Encoding..954

PUSH_GUID Instruction Encoding ...987

PUSH_VERSION Instruction Encoding ...988

DECLARE_VERSION_NAME Instruction Encoding ...988

AND Instruction Encoding ...989

OR Instruction Encoding..989

NOT Instruction Encoding ...990

TRUE Instruction Encoding..990

FALSE Instruction Encoding...990

EQ Instruction Encoding..991

GT Instruction Encoding ..991

GTE Instruction Encoding ..992

LT Instruction Encoding...992

LTE Instruction Encoding...993

END Instruction Encoding ...993

ESRT and FMP Fields ...1005

PXE Tag Definitions for EFI ..1043

Destination IP Filter Operation ...1060

Destination UDP Port Filter Operation..1060

Source IP Filter Operation ...1060
UEFI Forum, Inc. March 2019 lxvi

UEFI Specification, Version 2.8
Source UDP Port Filter Operation ...1060

DHCP4 Enumerations ..1463

Field Descriptions..1486

Callback Return Values..1492

Descriptions of Parameters in MTFTPv4 Packet Structures..1639

Descriptions of Parameters in MTFTPv6 Packet Structures..1664

MTFTP Packet OpCode Descriptions ...1665

MTFTP ERROR Packet ErrorCode Descriptions..1666

Generic Authentication Node Structure ...1700

CHAP Authentication Node Structure using RADIUS ..1701

CHAP Authentication Node Structure using Local Database ..1702

 PE/COFF Certificates Types and UEFI Signature Database Certificate Types ...1708

Authorization process flow ...1728

Localization Issues...1740

Information for Types of Storage ..1764

Common Control Codes for Font Display Information..1776

Guidelines for UEFI System Fonts ...1783

Truth table: Mapping a single question to three configuration settings ..1802

Multiple configuration settings Example #2 ...1802

Values:...1803

Package Types ...1805

Block Types..1840

IFR Opcodes...1859

VarStoreType Descriptions..1880

Animation Block Types ..1934

Callback Behavior ..2039

Record values and descriptions...2087

Standard values for access to configure the platform ..2090

EFI Hash Algorithms ..2105

Identical hash results ..2108

Algorithms that may be used with EFI_HASH2_PROTOCOL ...2114

Encryption algorithm properties. ..2125

 Details of Supported Signature Format..2153

EFI GUID Format..2200

Text representation relationships ...2200

EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL..2202

EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL..2203

Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL..2204

Legacy Floppy Device Path ..2208

IDE Disk Device Path..2209

Secondary Root PCI Bus with PCI to PCI Bridge Device Path...2210

EFI_STATUS Code Ranges..2212

EFI_STATUS Success Codes (High Bit Clear) ..2212
UEFI Forum, Inc. March 2019 lxvii

UEFI Specification, Version 2.8
EFI_STATUS Error Codes (High Bit Set)..2212

EFI_STATUS Warning Codes (High Bit Clear) ...2214

Definitions ...2215

Referenced Specifications ...2216

Driver Types: Pros and Cons..2219

!PXE Structure Field Definitions ..2221

UNDI CDB Field Definitions ...2225

EBC Virtual Machine Opcode Summary ..2356

Protocol Name changes ..2360

Revision Identifier Name Changes ..2361

Alias codes supported in addition to RFC 4646...2363

Error record header...2365

Error Record Header Flags ..2368

Section Descriptor...2370

Processor Generic Error Section ...2374

Processor Error Record ...2376

IA32/X64 Processor Error Information Structure..2377

IA32/X64 Cache Check Structure ..2377

IA32/X64 TLB Check Structure ..2378

IA32/X64 Bus Check Structure ..2380

IA32/X64 MS Check Field Description ...2381

IA32/X64 Processor Context Information ...2382

IA32 Register State..2382

X64 Register State ...2383

ARM Processor Error Section ..2384

ARM Processor Error Information Structure...2386

ARM Cache Error Structure ...2387

 ARM TLB Error Structure ..2388

ARM Bus Error Structure...2389

ARM Processor Error Context Information Header Structure...2391

ARMv8 AArch32 GPRs (Type 0) ...2391

ARM AArch32 EL1 Context System Registers (Type 1)..2392

ARM AArch32 EL2 Context System Registers (Type 2)..2392

ARM AArch32 secure Context System Registers (Type 3)...2393

ARMv8 AArch64 GPRs (Type 4) ...2393

ARM AArch64 EL1 Context System Registers (Type 5)..2394

ARM AArch64 EL2 Context System Registers (Type 6)..2396

ARM AArch64 EL3 Context System Registers (Type 7)..2396

ARM Misc. Context System Register (Type 8) – Single Register Entry ..2397

Memory Error Record ...2398

Memory Error Record 2 ..2400

PCI Express Error Record...2402

PCI/PCI-X Bus Error Section...2403
UEFI Forum, Inc. March 2019 lxviii

UEFI Specification, Version 2.8
PCI/PCI-X Component Error Section..2404

Firmware Error Record Reference ..2405

DMAr Generic Errors ..2406

Intel® VT for Directed I/O specific DMAr Errors..2407

IOMMU specific DMAr Errors..2408

Error Status Fields ...2408

Error Types ..2409

CCIX PER Log Error Record ..2410

UEFI Table Structure..2411

SMM Communication ACPI Table. ..2411
UEFI Forum, Inc. March 2019 lxix

UEFI Specification, Version 2.8
List of Figures

UEFI Conceptual Overview..7

Booting Sequence ...14

Stack after AddressOfEntryPoint Called, IA- 32 ...24

Stack after AddressOfEntryPoint Called, Itanium-based Systems..26

Construction of a Protocol ..45

Desktop System...50

Server System..50

Image Handle ..53

Driver Image Handle ...54

Host Bus Controllers..55

PCI Root Bridge Device Handle ...55

Connecting Device Drivers ..56

Connecting Bus Drivers ...57

Child Device Handle with a Bus Specific Override...58

Software Service Relationships ...60

MBRDisk Layout with legacy MBR example ..113

GPT disk layout with protective MBR example ...115

GPT disk layout with protective MBR on a disk with capacity exceeding LBA 0xFFFFFFFF example.116

GUID Partition Table (GPT) example ...117

The BTT Layout in a BTT Arena..124

A BTT With Multiple Arenas in a Large Namespace..125

Cyclic Sequence Numbers for Flog Entries..130

BTT Read Path Overview ...137

BTT Write Path Overview ..138

Device Handle to Protocol Handler Mapping..172

Handle Database ...173

Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures..269

Text to Binary Conversion ...333

Binary to Text Conversion ...333

Device Path Text Representation..335

Text Device Node Names ..335

Device Node Option Names ..336

Driver Health Status States ...409

Serial Device Identification Driver Relationships ..470

Software BLT Buffer ..477

Nesting of Legacy MBR Partition Records...501

Cyclic Sequence Numbers in Label Index Block ..627

Host Bus Controllers..645
UEFI Forum, Inc. March 2019 lxx

UEFI Specification, Version 2.8
Device Handle for a PCI Root Bridge Controller ..646

Desktop System with One PCI Root Bridge ...646

Server System with Four PCI Root Bridges..647

Server System with Two PCI Segments ...648

Server System with Two PCI Host Buses ...648

Image Handle ..678

PCI Driver Image Handle ...679

PCI Host Bus Controller ...680

Device Handle for a PCI Host Bus Controller...681

Physical PCI Bus Structure...682

Connecting a PCI Bus Driver ..683

Child Handle Created by a PCI Bus Driver ...683

Connecting a PCI Device Driver ...686

Unsigned PCI Driver Image Layout ..726

Signed and Compressed PCI Driver Image Flow..727

Signed and Compressed PCI Driver Image Layout ..728

Signed but not Compressed PCI Driver Image Flow..729

Signed and Uncompressed PCI Driver Image Layout ..730

Device Handle for a SCSI Bus Controller ...734

Child Handle Created by a SCSI Bus Driver..734

Software Triggered State Transitions of a USB Host Controller..780

USB Bus Controller Handle..801

Sequence of Operations with Endpoint Policy Changes ...850

Debug Support Table Indirection and Pointer Usage..875

Bit Sequence of Compressed Data ..879

Compressed Data Structure ..880

Block Structure..881

Block Body...883

String Info Log Search Tree ...885

Node Split..887

Firmware Image with no Authentication Support ..975

Firmware Image with Authentication Support ...976

Firmware Image with Dependency/Authentication Support..976

Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule()...................................995

Capsule Header and Firmware Management Capsule Header ...996

Firmware Management and Firmware Image Management headers ..997

 IPv6-based PXE boot ..1070

netboot6 (DHCP6 and ProxyDHCP6 reside on the same server)...1072

IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server).....................................1073

HTTP Boot Network Topology Concept – Corporate Environment...1114

HTTP Boot Network Topology Concept2 – Home environments..1115
UEFI Forum, Inc. March 2019 lxxi

UEFI Specification, Version 2.8
UEFI HTTP Boot Protocol Layout ...1116

HTTP Boot overall flow ...1119

EFI REST Support, Single Protocol ...1557

EFI REST Support, Multiple Protocols..1558

EFI REST Support, BMC on Board ..1559

EFI REST Support, Redfish Service ...1560

EFI REST Support, Protocol Usages ...1561

Creating A Digital Signature ..1704

Verifying a Digital Signature..1705

Embedded Digital Certificates...1706

Secure Boot Modes ...1712

Signature lists ..1716

Process for adding a new signature by the OS..1726

Platform Configuration Overview ...1732

HII Resources In Drivers & Applications ..1733

Creating UI Resources With Resource Files...1734

Creating UI Resources With Intermediate Source Representation...1735

The Platform and Standard User Interactions...1736

User and Platform Component Interaction...1736

User Interface Components ..1737

Connected Forms Browser/Processor...1738

Disconnected Forms Browser/Processor ..1738

O/S-Present Forms Browser/Processor ..1739

Platform Data Storage...1739

Keyboard Layout ...1742

Forms-based Interface Example..1745

Platform Configuration Overview ...1746

Question Value Retrieval Process ...1755

Question Value Change Process..1756

String Identifiers..1774

Fonts..1780

Font Description Terms...1781

16 x 19 Font Parameters ...1782

Font Structure Layout ...1783

Proportional Font Parameters and Byte Padding ...1784

Aligning Glyphs..1784

HII Database ..1786

Setup Browser ...1787

Storing Configuration Settings ..1792

OS Runtime Utilization ..1793

Standard Application Obtaining Setting Example ...1794
UEFI Forum, Inc. March 2019 lxxii

UEFI Specification, Version 2.8
Typical Forms Processor Decisions Necessitating a Callback (1)...1795

Typical Forms Processor Decisions Necessitating a Callback (2)...1796

Typical Forms Processor Decisions Necessitating a Callback (3)...1797

Driver Model Interactions ...1798

Managing Human Interface Components ...1799

EFI IFR Form set configuration ..1800

EFI IFR Form Set question changes ...1801

Glyph Information Encoded in Blocks ...1810

Glyph Block Processing..1813

EFI_HII_GIBT_GLYPH_VARIABLITY Glyph Drawing Processing..1821

String Information Encoded in Blocks ...1824

String Block Processing: Base Processing..1826

String Block Processing: SCSU Processing ...1827

String Block Processing: UTF Processing ...1828

Image Information Encoded in Blocks...1839

Palette Structure of a Black & White, One-Bit Image ...1853

Palette Structure of a Four-Bit Image ...1854

Palette Structure of a Four-Bit, Six-Color Image ...1854

Simple Binary Object ...1855

Password Flowchart (part one) ...1901

Password Flowchart (part two) ...1902

Animation Information Encoded in Blocks..1934

Glyph Example...1959

How EFI_HII_IMAGE_EX_PROTOCOL uses EFI_HII_IMAGE_DECODER_PROTOCOL1983

Keyboard Layout ...2005

User Identity..2052

Hash workflow ..2109

Example Computer System ...2206

Partial ACPI Name Space for Example System ..2207

EFI Device Path Displayed As a Name Space...2211

Network Stacks with Three Classes of Drivers ..2219

!PXE Structures for H/W and S/W UNDI ...2220

Issuing UNDI Commands...2224

UNDI Command Descriptor Block (CDB) ...2225

Storage Types..2229

UNDI States, Transitions & Valid Commands..2253

Linked CDBs...2254

Queued CDBs ..2255

Error Record Format ...2364
UEFI Forum, Inc. March 2019 lxxiii

UEFI Specification, Version 2.8
1 - Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification describes an interface
between the operating system (OS) and the platform firmware. UEFI was preceded by the Extensible
Firmware Interface Specification 1.10 (EFI). As a result, some code and certain protocol names retain the
EFI designation. Unless otherwise noted, EFI designations in this specification may be assumed to be part
of UEFI.

The interface is in the form of data tables that contain platform-related information, and boot and
runtime service calls that are available to the OS loader and the OS. Together, these provide a standard
environment for booting an OS. This specification is designed as a pure interface specification. As such,
the specification defines the set of interfaces and structures that platform firmware must implement.
Similarly, the specification defines the set of interfaces and structures that the OS may use in booting.
How either the firmware developer chooses to implement the required elements or the OS developer
chooses to make use of those interfaces and structures is an implementation decision left for the
developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate only
information necessary to support the OS boot process. This is accomplished through a formal and
complete abstract specification of the software-visible interface presented to the OS by the platform and
firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible with supported
processor specifications will be able to boot on a variety of system designs without further platform or OS
customization. The definition will also allow for platform innovation to introduce new features and
functionality that enhance platform capability without requiring new code to be written in the OS boot
sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code over
time. New device types and associated code can provide equivalent functionality through the same
defined abstract interface, again without impact on the OS boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems to servers. The
specification provides a core set of services along with a selection of protocol interfaces. The selection of
protocol interfaces can evolve over time to be optimized for various platform market segments. At the
same time, the specification allows maximum extensibility and customization abilities for OEMs to allow
differentiation. In this, the purpose of UEFI is to define an evolutionary path from the traditional “PC-AT”-
style boot world into a legacy-API free environment.

1.1 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of the UEFI Driver
Model is to provide a replacement for “PC-AT”-style option ROMs. It is important to point out that drivers
written to the UEFI Driver Model are designed to access boot devices in the preboot environment. They
are not designed to replace the high-performance, OS-specific drivers.

The UEFI Driver Model is designed to support the execution of modular pieces of code, also known as
drivers, that run in the preboot environment. These drivers may manage or control hardware buses and
devices on the platform, or they may provide some software-derived, platform-specific service.
UEFI Forum, Inc. March 2019 1

UEFI Specification, Version 2.8 Introduction
The UEFI Driver Model also contains information required by UEFI driver writers to design and implement
any combination of bus drivers and device drivers that a platform might need to boot a UEFI-compliant
OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or device. The
UEFI Specification describes how to write PCI bus drivers, PCI device drivers, USB bus drivers, USB device
drivers, and SCSI drivers. Additional details are provided that allow UEFI drivers to be stored in PCI option
ROMs, while maintaining compatibility with legacy option ROM images.

One of the design goals in the UEFI Specification is keeping the driver images as small as possible.
However, if a driver is required to support multiple processor architectures, a driver object file would also
be required to be shipped for each supported processor architecture. To address this space issue, this
specification also defines the EFI Byte Code Virtual Machine. A UEFI driver can be compiled into a single
EFI Byte Code object file. UEFI Specification-complaint firmware must contain an EFI Byte Code
interpreter. This allows a single EFI Byte Code object file that supports multiple processor architectures to
be shipped. Another space saving technique is the use of compression. This specification defines
compression and decompression algorithms that may be used to reduce the size of UEFI Drivers, and thus
reduce the overhead when UEFI Drivers are stored in ROM devices.

The information contained in the UEFI Specification can be used by OSVs, IHVs, OEMs, and firmware
vendors to design and implement firmware conforming to this specification, drivers that produce
standard protocol interfaces, and operating system loaders that can be used to boot UEFI-compliant
operating systems.

1.2 Organization

The high-level organization of this specification is as follows:

Section(s) Description

Introduction / Overview Introduces the UEFI Specification, and describes the major components of UEFI.

Boot Manager Manager used to load drivers and applications written to this specification.

EFI System Table and
Partitions

Describes an EFI System Table that is passed to every compliant driver and application, and
defines a GUID-based partitioning scheme.

Block Transition Table A layout and set of rules for doing block I/O that provide powerfail write atomicity of a single
block.

Boot Services Contains the definitions of the fundamental services that are present in a UEFI-compliant
system before an OS is booted.

Runtime Services Contains definitions for the fundamental services that are present in a compliant system before
and after an OS is booted.
UEFI Forum, Inc. March 2019 2

UEFI Specification, Version 2.8 Introduction
Protocols • The EFI Loaded Image Protocol describes a UEFI Image that has been loaded into memory.
• The Device Path Protocol provides the information needed to construct and manage device

paths in the UEFI environment.
• The UEFI Driver Model describes a set of services and protocols that apply to every bus and

device type.
• The Console Support Protocol defines I/O protocols that handle input and output of text-

based information intended for the system user while executing in the boot services
environment.

• The Media Access Protocol defines the Load File protocol, file system format and media
formats for handling removable media.

• PCI Bus Support Protocols define PCI Bus Drivers, PCI Device Drivers, and PCI Option ROM
layouts. The protocols described include the PCI Root Bridge I/O Protocol and the PCI I/O
Protocol.

• SCSI Driver Models and Bus support defines the SCSI I/O Protocol and the Extended SCSI Pass
Thru Protocol that is used to abstract access to a SCSI channel that is produced by a SCSI host
controller.

• The iSCSI protocol defines a transport for SCSI data over TCP/IP.
• The USB Support Protocol defines USB Bus Drivers and USB Device Drivers.
• Debugger Support Protocols describe an optional set of protocols that provide the services

required to implement a source-level debugger for the UEFI environment.
• The Compression Algorithm Specification describes the compression/decompression

algorithm in detail, plus a standard EFI decompression interface for use at boot time.
• ACPI Protocols may be used to install or remove an ACPI table from a platform.
• String Services: the Unicode Collation protocol allows code running in the boot services

environment to perform lexical comparison functions on Unicode strings for given languages;
the Regular Expression Protocol is used to match Unicode strings against Regular Expression
patterns.

EFI Byte Code Virtual
Machine

Defines the EFI Byte Code virtual processor and its instruction set. It also defines how EBC object
files are loaded into memory, and the mechanism for transitioning from native code to EBC code
and back to native code.

Firmware Update and
Reporting

Provides an abstraction for devices to provide firmware management support.

Network Protocols • SNP, PXE, BIS, and HTTP Boot protocols define the protocols that provide access to network
devices while executing in the UEFI boot services environment.

• Managed Network protocols define the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet I/O services and Managed Network Service
Binding Protocol, used to locate communication devices that are supported by an MNP
driver.

• VLAN, EAP, Wi-Fi and Supplicant protocols define a protocol that is to provide a
manageability interface for VLAN configurations.

• Bluetooth protocol definitions.
• TCP, IP, PIPsec, FTP, GTLS, and Configurations protocols define the EFI TCPv4 (Transmission

Control Protocol version 4) Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol.
• ARP, DHCP, DNS, HTTP, and REST protocols define the EFI Address Resolution Protocol (ARP)

Protocol interface and the EFI DHCPv4 Protocol.
• UDP and MTFTP protocols define the EFI UDPv4 (User Datagram Protocol version 4) Protocol

that interfaces over the EFI IPv4 Protocol and defines the EFI MTFTPv4 Protocol interface
that is built on the EFI UDPv4 Protocol.

Secure Boot and Driver
Signing

Describes Secure Boot and a means of generating a digital signature for UEFI.

Human Interface
Infrastructure (HII)

• Defines the core code and services that are required for an implementation of the Human
Interface Infrastructure (HII), including basic mechanisms for managing user input and code
definitions for related protocols.

• Describes the data and APIs used to manage the system’s configuration: the actual data that
describes the knobs and settings.

Section(s) Description
UEFI Forum, Inc. March 2019 3

UEFI Specification, Version 2.8 Introduction
1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry. Each
new platform capability or hardware innovation requires firmware developers to craft increasingly
complex solutions, and often requires OS developers to make changes to their boot code before
customers can benefit from the innovation. This can be a time-consuming process requiring a significant
investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment that can alleviate
some of these considerations. In this goal, the specification is similar to other existing boot specifications.
The main properties of this specification can be summarized by these attributes:

• Coherent, scalable platform environment. The specification defines a complete solution for
the firmware to describe all platform features and surface platform capabilities to the OS

User Identification Describes services that describe the current user of the platform.

Secure Technologies Describes the protocols for utilizing security technologies, including cryptographic hashing and
key management.

Miscellaneous Protocols The Timestamp protocol provides a platform independent interface for retrieving a high
resolution timestamp counter. The Reset Notification Protocol provides services to register for a
notification when ResetSystem is called.

Appendices • GUID and Time Formats.

• Console requirements for a basic text-based console required by EFI-conformant systems to
provide communication capabilities.

• Device Path examples of use of the data structures that define various hardware devices to
the boot services.

• Status Codes lists success, error, and warning codes returned by UEFI interfaces.

• Universal Network Driver Interfaces defines the 32/64-bit hardware and software Universal
Network Driver Interfaces (UNDIs).

• Using the Simple Pointer Protocol.

• Using the EFI Extended SCISI Pass-thru Protocol .

• Compression Source Code for an implementation of the Compression Algorithm.

• Decompression Source Code for an implementation of the EFI Decompression Algorithm.

• The EFI Byte Code Virtual Machine Opcode List provides a summary of the corresponding
instruction set.

• Alphabetic Function Lists identify all UEFI interface functions alphabetically.

• EFI 1.10 Protocol Changes and Depreciation List identifies the Protocol, GUID, and revision
identifier name changes and the deprecated protocols compared to the EFI Specification
1.10.

• Formats: Language Codes and Language Code Arrays list the formats for language codes and
language code arrays.

• The Common Platform Error Record describes the common platform error record format for
representing platform hardware errors.

• The UEFI ACPI Data Table defines the UEFI ACPI table format.

• Hardware Error Record Persistence Usage.

• References

• Glossary

Index Provides an index to the key terms and concepts in the specification.

Section(s) Description
UEFI Forum, Inc. March 2019 4

UEFI Specification, Version 2.8 Introduction
during the boot process. The definitions are rich enough to cover a range of contemporary
processor designs.

• Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader to be
constructed with far less knowledge of the platform and firmware that underlie those
interfaces. The interfaces represent a well-defined and stable boundary between the
underlying platform and firmware implementation and the OS loader. Such a boundary allows
the underlying firmware and the OS loader to change provided both limit their interactions to
the defined interfaces.

• Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the
OS loader to have specific knowledge of the workings of certain hardware devices. This
specification provides OS loader developers with something different: abstract interfaces that
make it possible to build code that works on a range of underlying hardware devices without
having explicit knowledge of the specifics for each device in the range.

• Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list of
supported bus types may grow over time, so a mechanism to extend to future bus types is
included. These defined interfaces, and the ability to extend to future bus types, are
components of the UEFI Driver Model. One purpose of the UEFI Driver Model is to solve a wide
range of issues that are present in existing “PC-AT” option ROMs. Like OS loaders, drivers use
the abstract interfaces so device drivers and bus drivers can be constructed with far less
knowledge of the platform and firmware that underlie those interfaces.

• Architecturally shareable system partition. Initiatives to expand platform capabilities and add
new devices often require software support. In many cases, when these platform innovations
are activated before the OS takes control of the platform, they must be supported by code that
is specific to the platform rather than to the customer’s choice of OS. The traditional approach
to this problem has been to embed code in the platform during manufacturing (for example, in
flash memory devices). Demand for such persistent storage is increasing at a rapid rate. This
specification defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of how this
works is made clear in the specification to ensure that firmware developers, OEMs, operating
system vendors, and perhaps even third parties can share the space safely while adding to
platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways. Indeed,
several alternatives, perhaps viable from an academic point of view, already existed at the time this
specification was written. These alternatives, however, typically presented high barriers to entry given
the current infrastructure capabilities surrounding supported processor platforms. This specification is
intended to deliver the attributes listed above, while also recognizing the unique needs of an industry
that has considerable investment in compatibility and a large installed base of systems that cannot be
abandoned summarily. These needs drive the requirements for the additional attributes embodied in this
specification:

• Evolutionary, not revolutionary. The interfaces and structures in the specification are designed
to reduce the burden of an initial implementation as much as possible. While care has been
taken to ensure that appropriate abstractions are maintained in the interfaces themselves, the
design also ensures that reuse of BIOS code to implement the interfaces is possible with a
UEFI Forum, Inc. March 2019 5

UEFI Specification, Version 2.8 Introduction
minimum of additional coding effort. In other words, on PC-AT platforms the specification can
be implemented initially as a thin interface layer over an underlying implementation based on
existing code. At the same time, introduction of the abstract interfaces provides for migration
away from legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy code
underneath the abstract interfaces at leisure. A similar migration for hardware legacy is also
possible. Since the abstractions hide the specifics of devices, it is possible to remove underlying
hardware, and replace it with new hardware that provides improved functionality, reduced
cost, or both. Clearly this requires that new platform firmware be written to support the device
and present it to the OS loader via the abstract interfaces. However, without the interface
abstraction, removal of the legacy device might not be possible at all.

• Compatibility by design. The design of the system partition structures also preserves all the
structures that are currently used in the “PC-AT” boot environment. Thus, it is a simple matter
to construct a single system that is capable of booting a legacy OS or an EFI-aware OS from the
same disk.

• Simplifies addition of OS-neutral platform value-add. The specification defines an open,
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process, or
they may be used to implement enhanced platform capabilities, such as fault tolerance or
security. Furthermore, this ability to extend platform capability is designed into the
specification from the outset. This is intended to help developers avoid many of the
frustrations inherent in trying to squeeze new code into the traditional BIOS environment. As a
result of the inclusion of interfaces to add new protocols, OEMs or firmware developers have
an infrastructure to add capability to the platform in a modular way. Such drivers may
potentially be implemented using high-level coding languages because of the calling
conventions and environment defined in the specification. This in turn may help to reduce the
difficulty and cost of innovation. The option of a system partition provides an alternative to
nonvolatile memory storage for such extensions.

• Built on existing investment. Where possible, the specification avoids redefining interfaces
and structures in areas where existing industry specifications provide adequate coverage. For
example, the ACPI specification provides the OS with all the information necessary to discover
and configure platform resources. Again, this philosophical choice for the design of the
specification is intended to keep barriers to its adoption as low as possible.

1.4 Target Audience

This document is intended for the following readers:

• IHVs and OEMs who will be implementing UEFI drivers.

• OEMs who will be creating supported processor platforms intended to boot shrink-wrap
operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products
or those who modify these products for use in supported processor-based products.

• Operating system developers who will be adapting their shrink-wrap operating system
products to run on supported processor-based platforms.
UEFI Forum, Inc. March 2019 6

UEFI Specification, Version 2.8 Introduction
1.5 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

• Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing specifications
that are commonly implemented on platforms compatible with supported processor
specifications must be implemented on platforms wishing to comply with the UEFI
specification. (For additional information, see Appendix Q: References.)

• System partition. The System partition defines a partition and file system that are designed to
allow safe sharing between multiple vendors, and for different purposes. The ability to include
a separate, sharable system partition presents an opportunity to increase platform value-add
without significantly growing the need for nonvolatile platform memory.

• Boot services. Boot services provide interfaces for devices and system functionality that can be
used during boot time. Device access is abstracted through “handles” and “protocols.” This
facilitates reuse of investment in existing BIOS code by keeping underlying implementation
requirements out of the specification without burdening the consumer accessing the device.

• Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its
normal operations.

Figure 1 shows the principal components of UEFI and their relationship to platform hardware and OS
software.

Figure 1. UEFI Conceptual Overview

Figure 1 illustrates the interactions of the various components of an UEFI specification-compliant system
that are used to accomplish platform and OS boot.

OM13141

ACPI
SMBIOS

(OTHER)

INTERFACES
FROM

OTHER
REQUIRED

SPECS PLATFORM HARDWARE

EFI BOOT SERVICES EFI RUNTIME
SERVICES

EFI OS LOADER

OPERATING SYSTEM

EFI SYSTEM PARTITION
EFI OS

LOADER
UEFI Forum, Inc. March 2019 7

UEFI Specification, Version 2.8 Introduction
The platform firmware is able to retrieve the OS loader image from the System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM, and DVD as well
as remote boot via a network. Through the extensible protocol interfaces, it is possible to add other boot
media types, although these may require OS loader modifications if they require use of protocols other
than those defined in this document.

Once started, the OS loader continues to boot the complete operating system. To do so, it may use the
EFI boot services and interfaces defined by this or other required specifications to survey, comprehend,
and initialize the various platform components and the OS software that manages them. EFI runtime
services are also available to the OS loader during the boot phase.

1.6 UEFI Driver Model

This section describes the goals of a driver model for firmware conforming to this specification. The goal
is for this driver model to provide a mechanism for implementing bus drivers and device drivers for all
types of buses and devices. At the time of writing, supported bus types include PCI, USB, and so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms are
increasing. This trend is especially true in high-end servers. However, a more diverse set of bus types is
being designed into desktop and mobile systems and even some embedded systems. This increasing
complexity means that a simple method for describing and managing all the buses and devices in a
platform is required in the preboot environment. The UEFI Driver Model provides this simple method in
the form of protocols services and boot services.

1.6.1 UEFI Driver Model Goals

The UEFI Driver Model has the following goals:

• Compatible – Drivers conforming to this specification must maintain compatibility with the EFI
1.10 Specification and the UEFI Specification. This means that the UEFI Driver Model takes
advantage of the extensibility mechanisms in the UEFI 2. 0 Specification to add the required
functionality.

• Simple – Drivers that conform to this specification must be simple to implement and simple to
maintain. The UEFI Driver Model must allow a driver writer to concentrate on the specific
device for which the driver is being developed. A driver should not be concerned with platform
policy or platform management issues. These considerations should be left to the system
firmware.

• Scalable – The UEFI Driver Model must be able to adapt to all types of platforms. These
platforms include embedded systems, mobile, and desktop systems, as well as workstations
and servers.

• Flexible – The UEFI Driver Model must support the ability to enumerate all the devices, or to
enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device enumeration
provides the ability to perform OS installations, system maintenance, or system diagnostics on
any boot device present in the system.

• Extensible – The UEFI Driver Model must be able to extend to future bus types as they are
defined.
UEFI Forum, Inc. March 2019 8

UEFI Specification, Version 2.8 Introduction
• Portable – Drivers written to the UEFI Driver Model must be portable between platforms and
between supported processor architectures.

• Interoperable – Drivers must coexist with other drivers and system firmware and must do so
without generating resource conflicts.

• Describe complex bus hierarchies – The UEFI Driver Model must be able to describe a variety of
bus topologies from very simple single bus platforms to very complex platforms containing
many buses of various types.

• Small driver footprint – The size of executables produced by the UEFI Driver Model must be
minimized to reduce the overall platform cost. While flexibility and extensibility are goals, the
additional overhead required to support these must be kept to a minimum to prevent the size
of firmware components from becoming unmanageable.

• Address legacy option rom issues – The UEFI Driver Model must directly address and solve the
constraints and limitations of legacy option ROMs. Specifically, it must be possible to build add-
in cards that support both UEFI drivers and legacy option ROMs, where such cards can execute
in both legacy BIOS systems and UEFI-conforming platforms, without modifications to the code
carried on the card. The solution must provide an evolutionary path to migrate from legacy
option ROMs driver to UEFI drivers.

1.6.2 Legacy Option ROM Issues

This idea of supporting a driver model came from feedback on the UEFI Specification that provided a
clear, market-driven requirement for an alternative to the legacy option ROM (sometimes also referred
to as an expansion ROM). The perception is that the advent of the UEFI Specification represents a chance
to escape the limitations implicit in the construction and operation of legacy option ROM images by
replacing them with an alternative mechanism that works within the framework of the UEFI Specification.

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification to a
future time when all platforms and operating systems implement to this specification. During this period,
two major compatibility considerations are important:

• The ability to continue booting legacy operating systems;

• The ability to implement UEFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support

The UEFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the boot process. However, choosing to make a platform that complies with this
specification in no way precludes a platform from also supporting existing legacy OS binaries that have no
knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both the UEFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is to be
implemented, it should be developed in accordance with existing industry practice that is defined outside
the scope of this specification. The choice of legacy operating systems that are supported on any given
platform is left to the manufacturer of that platform.
UEFI Forum, Inc. March 2019 9

UEFI Specification, Version 2.8 Introduction
1.7.2 Supporting the UEFI Specification on a Legacy Platform

The UEFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the UEFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing and supported 32-bit-based platform that uses
traditional BIOS to support operating system boot, an additional layer of firmware code would need to be
provided. This extra code would be required to translate existing interfaces for services and devices into
support for the abstractions defined in this specification.

1.8 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of a
multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported 64-bit processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize such
fields to zero and ignore them when read. On an update operation, software must preserve any reserved
field.

1.8.2 Protocol Descriptions

A protocol description generally has the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol interface.

Protocol Interface Structure: A “C-style” data structure definition containing the procedures and data
fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface structure.

Description: A description of the functionality provided by the interface, including any limitations and
caveats of which the caller should be aware.

Related Definitions: The type declarations and constants that are used in the protocol interface structure
or any of its procedures.

1.8.3 Procedure Descriptions

A procedure description generally has the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.
UEFI Forum, Inc. March 2019 10

UEFI Specification, Version 2.8 Introduction
Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface, including any limitations and
caveats of which the caller should be aware.

Related Definitions: The type declarations and constants that are used only by this procedure.

Status Codes Returned: A description of any codes returned by the interface. The procedure is required
to implement any status codes listed in this table. Additional error codes may be returned, but they will
not be tested by standard compliance tests, and any software that uses the procedure cannot depend on
any of the extended error codes that an implementation may provide.

1.8.4 Instruction Descriptions

An instruction description for EBC instructions generally has the following format:

InstructionName: The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction accompanied by a table that
details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions: An item-by-item description of the behavior of each operand involved in the
instruction and any restrictions that apply to the operands or the instruction.

1.8.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in this
document are intended to be compiled directly. The code is presented at a level corresponding to the
surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an ordered
list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding style,
particularly the indentation style, is used for readability and does not necessarily comply with an
implementation of the UEFI Specification.

1.8.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) Any plain text that is underlined and in blue indicates an active link
to the cross-reference. Click on the word to follow the hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a
new term or to indicate a manual or specification name.
UEFI Forum, Inc. March 2019 11

UEFI Specification, Version 2.8 Introduction
BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate
paragraphs, though words or segments can also be embedded in a
normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and in
blue indicate an active hyperlink to the code definition for that
function or type definition. Click on the word to follow the hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on
each page is an active link. Subsequent references on the same page will not be actively linked to
the definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on the
word to jump to the function or type definition.

Italic Monospace In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

1.8.7 Number formats

A binary number is represented in this standard by any sequence of digits consisting of only the Western-
Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).

Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

1.8.7.1 Hexadecimal

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits consisting
of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A through F (e.g.,
0xFA23).

Underscores or spaces may be included between characters in hexadecimal number representations to
increase readability or delineate field boundaries (e.g., 0xB FD8C FA23 or 0xB_FD8C_FA23).

1.8.7.2 Decimal

A decimal number is represented in this standard by any sequence of digits consisting of only the Arabic
numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of
a number.
UEFI Forum, Inc. March 2019 12

UEFI Specification, Version 2.8 Introduction
1.8.8 Binary prefixes

This standard uses the prefixes defined in the International System of Units (SI) for values that are powers
of ten. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "SI Binary
Prefixes”.

Table 1. SI prefixes

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for values
that are powers of two.

Table 2. Binary prefixes

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

1.8.9 Revision Numbers

Updates to the UEFI specification are considered either new revisions or errata as described below:

• A new revision is produced when there is substantive new content or changes that may modify
existing behavior. New revisions are designated by a major.minor version number (e.g. xx.yy).
In cases where the changes are exceptionally minor, we may have a major.minor.minor naming
convention (e.g. xx.yy.zz).

• Errata versions are produced when approved updates to the specification do not include any
significant new material or modify existing behavior. Errata are designated by adding an upper-
case letter at the end of the version number, such as xx.yy errata A.

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi
UEFI Forum, Inc. March 2019 13

UEFI Specification, Version 2.8
2 - Overview

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI application images. When
UEFI drivers and UEFI applications are loaded they have access to all UEFI-defined runtime and boot
services. See Figure 2.

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware into a single
platform firmware menu. These platform firmware menus will allow the selection of any UEFI OS loader
from any partition on any boot medium that is supported by UEFI boot services. An UEFI OS loader can
support multiple options that can appear on the user interface. It is also possible to include legacy boot
options, such as booting from the A: or C: drive in the platform firmware boot menus.

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined System Partition. An
UEFI-defined System Partition is required by UEFI to boot from a block device. UEFI does not require any
change to the first sector of a partition, so it is possible to build media that will boot on both legacy
architectures and UEFI platforms.

2.1 Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this specification
(including OS 1st stage loader) or UEFI drivers from any file on an UEFI-defined file system or through the
use of an UEFI-defined image loading service. UEFI defines NVRAM variables that are used to point to the
file to be loaded. These variables also contain application-specific data that are passed directly to the
UEFI application. The variables also contain a human readable string that can be displayed in a menu to
the user.

OM13144

Standard
firmware
platform
initialization

Drivers and
applications
loaded
iteratively

Boot from
ordered list
of EFIOS
loaders

Operation
handed off
to OS loader

API specified Value add implementation

Boot Manager EFI binaries

Platform
Init

EFI Image
Load

EFI
OS Loader

Load

Boot
Services

Terminate

EFI
Driver

EFI
Application

EFI
Bootcode OS Loader

EFI APIRetry
Failure
UEFI Forum, Inc. March 2019 14

UEFI Specification, Version 2.8 Overview
The variables defined by UEFI allow the system firmware to contain a boot menu that can point to all of
the operating systems, and even multiple versions of the same operating systems. The design goal of
UEFI was to have one set of boot menus that could live in platform firmware. UEFI specifies only the
NVRAM variables used in selecting boot options. UEFI leaves the implementation of the menu system as
value added implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the PC-AT-class
system. The PC-AT-class systems today are restricted to boot from the first floppy, hard drive, CD-ROM,
USB keys, or network card attached to the system. Booting from a common hard drive can cause many
interoperability problems between operating systems, and different versions of operating systems from
the same vendor.

2.1.1 UEFI Images

UEFI Images are a class of files defined by UEFI that contain executable code. The most distinguishing
feature of UEFI Images is that the first set of bytes in the UEFI Image file contains an image header that
defines the encoding of the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The modification to the
signature value in the PE32+ image is done to distinguish UEFI images from normal PE32 executables. The
“+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header are defined
below. The major differences between image types are the memory type that the firmware will load the
image into, and the action taken when the image’s entry point exits or returns. A UEFI application image
is always unloaded when control is returned from the image’s entry point. A UEFI driver image is only
unloaded if control is passed back with a UEFI error code.

// PE32+ Subsystem type for EFI images

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10

#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11

#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

// PE32+ Machine type for EFI images

#define EFI_IMAGE_MACHINE_IA32 0x014c

#define EFI_IMAGE_MACHINE_IA64 0x0200

#define EFI_IMAGE_MACHINE_EBC 0x0EBC

#define EFI_IMAGE_MACHINE_x64 0x8664

#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2

#define EFI_IMAGE_MACHINE_AARCH64 0xAA64

#define EFI_IMAGE_MACHINE_RISCV32 0x5032

#define EFI_IMAGE_MACHINE_RISCV64 0x5064

#define EFI_IMAGE_MACHINE_RISCV128 0x5128

Note: This image type is chosen to enable UEFI images to contain Thumb and Thumb2 instructions while
defining the EFI interfaces themselves to be in ARM mode.

Table 3. UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type
UEFI Forum, Inc. March 2019 15

UEFI Specification, Version 2.8 Overview
The Machine value that is found in the PE image file header is used to indicate the machine code type of
the image. The machine code types for images with the UEFI image signature are defined below. A given
platform must implement the image type native to that platform and the image type for EFI Byte Code
(EBC). Support for other machine code types is optional to the platform.

A UEFI image is loaded into memory through the EFI_BOOT_SERVICES.LoadImage() Boot Service.
This service loads an image with a PE32+ format into memory. This PE32+ loader is required to load all
sections of the PE32+ image into memory. Once the image is loaded into memory, and the appropriate
fix-ups have been performed, control is transferred to a loaded image at the AddressOfEntryPoint
reference according to the normal indirect calling conventions of applications based on supported 32-bit,
64-bit, or 128-bit processors. All other linkage to and from an UEFI image is done programmatically.

2.1.2 UEFI Applications

Applications written to this specification are loaded by the Boot Manager or by other UEFI applications.
To load a UEFI application the firmware allocates enough memory to hold the image, copies the sections
within the UEFI application image to the allocated memory, and applies the relocation fix-ups needed.
Once done, the allocated memory is set to be the proper type for code and data for the image. Control is
then transferred to the UEFI application’s entry point. When the application returns from its entry point,
or when it calls the Boot Service EFI_BOOT_SERVICES.Exit(), the UEFI application is unloaded from
memory and control is returned to the UEFI component that loaded the UEFI application.

When the Boot Manager loads a UEFI application, the image handle may be used to locate the “load
options” for the UEFI application. The load options are stored in nonvolatile storage and are associated
with the UEFI application being loaded and executed by the Boot Manager.

2.1.3 UEFI OS Loaders

A UEFI OS loader is a special type of UEFI application that normally takes over control of the system from
firmware conforming to this specification. When loaded, the UEFI OS loader behaves like any other UEFI
application in that it must only use memory it has allocated from the firmware and can only use UEFI
services and protocols to access the devices that the firmware exposes. If the UEFI OS loader includes any
boot service style driver functions, it must use the proper UEFI interfaces to obtain access to the bus
specific-resources. That is, I/O and memory-mapped device registers must be accessed through the
proper bus specific I/O calls like those that a UEFI driver would perform.

If the UEFI OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit() call. The
Exit() call allows both an error code and ExitData to be returned. The ExitData contains both a
string and OS loader-specific data to be returned.

If the UEFI OS loader successfully loads its operating system, it can take control of the system by using the
Boot Service EFI_BOOT_SERVICES.ExitBootServices(). After successfully calling
ExitBootServices(), all boot services in the system are terminated, including memory management,
and the UEFI OS loader is responsible for the continued operation of the system.

EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData

EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER EfiBootServicesCode EfiBootServicesData

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER EfiRuntimeServicesCode EfiRuntimeServicesData
UEFI Forum, Inc. March 2019 16

UEFI Specification, Version 2.8 Overview
2.1.4 UEFI Drivers

UEFI drivers are loaded by the Boot Manager, firmware conforming to this specification, or by other UEFI
applications. To load a UEFI driver the firmware allocates enough memory to hold the image, copies the
sections within the UEFI driver image to the allocated memory and applies the relocation fix-ups needed.
Once done, the allocated memory is set to be the proper type for code and data for the image. Control is
then transferred to the UEFI driver’s entry point. When the UEFI driver returns from its entry point, or
when it calls the Boot Service EFI_BOOT_SERVICES.Exit(), the UEFI driver is optionally unloaded
from memory and control is returned to the component that loaded the UEFI driver. A UEFI driver is not
unloaded from memory if it returns a status code of EFI_SUCCESS. If the UEFI driver’s return code is an
error status code, then the driver is unloaded from memory.

There are two types of UEFI drivers: boot service drivers and runtime drivers. The only difference
between these two driver types is that UEFI runtime drivers are available after a UEFI OS loader has taken
control of the platform with the Boot Service EFI_BOOT_SERVICES.ExitBootServices().

UEFI boot service drivers are terminated when ExitBootServices() is called, and all the memory
resources consumed by the UEFI boot service drivers are released for use in the operating system
environment.

A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER gets fixed up with virtual
mappings when the OS calls SetVirtualAddressMap().

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot services and
runtime services.

2.2.1 UEFI Services

The purpose of the UEFI interfaces is to define a common boot environment abstraction for use by
loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS loaders. The calls are
defined with a full 64-bit interface, so that there is headroom for future growth. The goal of this set of
abstracted platform calls is to allow the platform and OS to evolve and innovate independently of one
another. Also, a standard set of primitive runtime services may be used by operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option ROMs as the
underlying implementation methodology for the boot services. The interfaces have been designed in
such as way as to map back into legacy interfaces. These interfaces have in no way been burdened with
any restrictions inherent to legacy Option ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the platform and the OS
that is to boot on the platform. The UEFI specification also provides abstraction between diagnostics or
utility programs and the platform; however, it does not attempt to implement a full diagnostic OS
environment. It is envisioned that a small diagnostic OS-like environment can be easily built on top of an
UEFI system. Such a diagnostic environment is not described by this specification.

Interfaces added by this specification are divided into the following categories and are detailed later in
this document:

• Runtime services

• Boot services interfaces, with the following subcategories:
UEFI Forum, Inc. March 2019 17

UEFI Specification, Version 2.8 Overview
— Global boot service interfaces

— Device handle-based boot service interfaces

— Device protocols

— Protocol services

2.2.2 Runtime Services

This section describes UEFI runtime service functions. The primary purpose of the runtime services is to
abstract minor parts of the hardware implementation of the platform from the OS. Runtime service
functions are available during the boot process and also at runtime provided the OS switches into flat
physical addressing mode to make the runtime call. However, if the OS loader or OS uses the Runtime
Service SetVirtualAddressMap() service, the OS will only be able to call runtime services in a virtual
addressing mode. All runtime interfaces are non-blocking interfaces and can be called with interrupts
disabled if desired.To ensure maximum compatibility with existing platforms it is recommended that all
UEFI modules that comprise the Runtime Services be represented in the MemoryMap as a single
EFI_MEMORY_DESCRIPTOR of Type EfiRuntimeServicesCode.

In all cases memory used by the runtime services must be reserved and not used by the OS. runtime
services memory is always available to an UEFI function and will never be directly manipulated by the OS
or its components. UEFI is responsible for defining the hardware resources used by runtime services, so
the OS can synchronize with those resources when runtime service calls are made, or guarantee that the
OS never uses those resources.

Table 4 lists the Runtime Services functions.

Table 4. UEFI Runtime Services

Name Description

GetTime() Returns the current time, time context, and time
keeping capabilities.

SetTime() Sets the current time and time context.

GetWakeupTime() Returns the current wakeup alarm settings.

SetWakeupTime() Sets the current wakeup alarm settings.

GetVariable() Returns the value of a named variable.

GetNextVariableName() Enumerates variable names.

SetVariable() Sets, and if needed creates, a variable.

SetVirtualAddressMap() Switches all runtime functions from physical to virtual
addressing.

ConvertPointer() Used to convert a pointer from physical to virtual
addressing.

GetNextHighMonotonicCount() Subsumes the platform's monotonic counter
functionality.

ResetSystem() Resets all processors and devices and reboots the
system.

UpdateCapsule() Passes capsules to the firmware with both virtual and
physical mapping.
UEFI Forum, Inc. March 2019 18

UEFI Specification, Version 2.8 Overview
2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through pointers in
common, architecturally defined, calling conventions found in C compilers. Pointers to the various global
UEFI functions are found in the EFI_RUNTIME_SERVICES and EFI_BOOT_SERVICES tables that are
located via the system table. Pointers to other functions defined in this specification are located
dynamically through device handles. In all cases, all pointers to UEFI functions are cast with the word
EFIAPI. This allows the compiler for each architecture to supply the proper compiler keywords to
achieve the needed calling conventions. When passing pointer arguments to Boot Services, Runtime
Services, and Protocol Interfaces, the caller has the following responsibilities:

• It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location (i.e., a
memory mapped I/O region), the results are unpredictable and the system may halt.

• It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the system may
halt.

• It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is explicitly
allowed. If a NULL pointer is passed to a function, the results are unpredictable and the system
may hang.

• Unless otherwise stated, a caller should not make any assumptions regarding the state of
pointer parameters if the function returns with an error.

• A caller may not pass structures that are larger than native size by value and these structures
must be passed by reference (via a pointer) by the caller. Passing a structure larger than native
width (4 bytes on supported 32-bit processors; 8 bytes on supported 64-bit processor
instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are described in more detail
below. Any function or protocol may return any valid return code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public interfaces include
the image entry point, UEFI event handlers, and protocol member functions. The type EFIAPI is used to
indicate conformance to the calling conventions defined in this section. Non public interfaces, such as
private functions and static library calls, are not required to follow the UEFI calling conventions and may
be optimized by the compiler.

2.3.1 Data Types

Table 5 lists the common data types that are used in the interface definitions, and Table 6 lists their
modifiers. Unless otherwise specified all data types are naturally aligned. Structures are aligned on
boundaries equal to the largest internal datum of the structure and internal data are implicitly padded to
achieve natural alignment.

EFI_MEMORY_RANGE_CAPSULE_GUID Returns if the capsule can be supported via

UpdateCapsule().

QueryVariableInfo() Returns information about the EFI variable store.

Name Description
UEFI Forum, Inc. March 2019 19

UEFI Specification, Version 2.8 Overview
The values of the pointers passed into or returned by the UEFI interfaces must provide natural alignment
for the underlying types.

Table 5. Common UEFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other values are

undefined.

INTN Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8 bytes
on supported 64-bit processor instructions, 16 bytes on supported 128-bit processor
instructions)

UINTN Unsigned value of native width. (4 bytes on supported 32-bit processor instructions, 8
bytes on supported 64-bit processor instructions, 16 bytes on supported 128-bit processor
instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

INT128 16-byte signed value.

UINT128 16-byte unsigned value.

CHAR8

1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and strings are
stored in 8-bit ASCII encoding format, using the ISO-Latin-1 character set.

CHAR16 2-byte Character. Unless otherwise specified all characters and strings are stored in the
UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified, aligned on a
64-bit boundary.

EFI_STATUS Status code. Type UINTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRES
S

32-byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRE
SS

4-byte buffer. An IPv4 internet protocol address.
UEFI Forum, Inc. March 2019 20

UEFI Specification, Version 2.8 Overview
Table 6. Modifiers for Common UEFI Data Types

2.3.2 IA-32 Platforms

All functions are called with the C language calling convention. The general-purpose registers that are
volatile across function calls are eax, ecx, and edx. All other general-purpose registers are nonvolatile and
are preserved by the target function. In addition, unless otherwise specified by the function definition, all
other registers are preserved.

Firmware boot ‘services and runtime services run in the following processor execution mode prior to the
OS calling ExitBootServices():

• Uniprocessor, as described in chapter 8.4 of:

— Intel 64 and IA-32 Architectures Software Developer's Manual

— Volume 3, System Programming Guide, Part 1

— Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "Intel
Processor Manuals.

• Protected mode

• Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address Extensions)
mode is recommended. If paging mode is enabled, any memory space defined by the UEFI
memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation.

• Selectors are set to be flat and are otherwise not used

EFI_IPv6_ADDRE
SS

16-byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol address.

<Enumerated Type> Element of a standard ANSI C enum type declaration. Type INT32.or UINT32. ANSI C does

not define the size of sign of an enum so they should never be used in structures. ANSI C
integer promotion rules make INT32 or UINT32 interchangeable when passed as an
argument to a function.

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit processor
instructions. 16 bytes on supported 128-bit processor.

Bitfields Bitfields are ordered such that bit 0 is the least significant bit.

Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be passed if

the value is not supplied.

CONST Datum is read-only.

EFIAPI Defines the calling convention for UEFI interfaces.

Mnemonic Description
UEFI Forum, Inc. March 2019 21

UEFI Specification, Version 2.8 Overview
• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

• Direction flag in EFLAGs is clear

• Other general purpose flag registers are undefined

• 128 KiB, or more, of available stack space

• The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

• Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

• CR0.EM must be zero

• CR0.TS must be zero

An application written to this specification may alter the processor execution mode, but the UEFI image
must ensure firmware boot services and runtime services are executed with the prescribed execution
environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available
and it is illegal to call any boot service. After ExitBootServices, firmware runtime services are still
available and may be called with paging enabled and virtual address pointers if
SetVirtualAddressMap() has been called describing all virtual address ranges used by the firmware
runtime service.

For an operating system to use any UEFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

— In protected mode

— Paging may or may not be enabled, however if paging is enabled and
SetVirtualAddressMap() has not been called, any memory space defined by the UEFI
memory map is identity mapped (virtual address equals physical address), although the
attributes of certain regions may not have all read, write, and execute attributes or be
unmarked for purposes of platform protection. The mappings to other regions are
undefined and may vary from implementation to implementation. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

— Direction flag in EFLAGs clear

— 4 KiB, or more, of available stack space

— The stack must be 16-byte aligned

— Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

— Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow)

— CR0.EM must be zero

— CR0.TS must be zero
UEFI Forum, Inc. March 2019 22

UEFI Specification, Version 2.8 Overview
— Interrupts disabled or enabled at the discretion of the caller

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on a
4 KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to
be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware
must not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. Also, only OSes conforming to the UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServicesData.

2.3.2.1 Handoff State

When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit mode. All
descriptors are set to their 4GiB limits so that all of memory is accessible from all segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been called on
supported 32-bit systems. All UEFI image entry points take two parameters. These are the image handle
of the UEFI image, and a pointer to the EFI System Table.
UEFI Forum, Inc. March 2019 23

UEFI Specification, Version 2.8 Overview
Figure 3. Stack after AddressOfEntryPoint Called, IA- 32

2.3.2.2 Calling Convention

All functions are called with the C language calling convention. The general-purpose registers that are
volatile across function calls are eax, ecx, and edx. All other general-purpose registers are nonvolatile
and are preserved by the target function.

In addition, unless otherwise specified by the function definition, all other CPU registers (including MMX
and XMM) are preserved.

The floating point status register is not preserved by the target function. The floating point control
register and MMX control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(0).

2.3.3 Intel® Itanium®-Based Platforms

UEFI executes as an extension to the SAL execution environment with the same rules as laid out by the
SAL specification.

During boot services time the processor is in the following execution mode:

• Uniprocessor, as detailed in chapter 13.1.2 of:

— Intel Itanium Architecture Software Developer's Manual

— Volume 2: System Architecture

— Revision 2.2

— January 2006

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel
Itanium Documentation”.

— Document Number: 245318-005

• Physical mode

• 128 KiB, or more, of available stack space

• 16 KiB, or more, of available backing store space

— FPSR.traps:Set to all 1's (all exceptions disabled)

— FPSR.sf0:

• .pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• .wre:Widest Range Exponent - 0 (IEEE mode)

OM13145

 Stack Location

EFI_SYSTEM_TABLE *

EFI_HANDLE

<return address>

ESP + 8

ESP + 4

ESP
UEFI Forum, Inc. March 2019 24

UEFI Specification, Version 2.8 Overview
• .ftz:Flush-To-Zero mode - 0 (off)

— FPSR.sf1:

• .td:Traps Disable = 1 (traps disabled)

• .pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• wreWidest Range Exponent - 1 (full register exponent range)

• ftzFlush-To-Zero mode - 0 (off)

— FPSR.sf2,3:

• .tdTraps Disable = 1 (traps disabled)

• pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• .wre:Widest Range Exponent - 0 (IEEE mode)

• .ftz:Flush-To-Zero mode - 0 (off)

An application written to this specification may alter the processor execution mode, but the UEFI image
must ensure firmware boot services and runtime services are executed with the prescribed execution
environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available and it
is illegal to call any boot service. After ExitBootServices, firmware runtime services are still available
When calling runtime services, paging may or may not be enabled, however if paging is enabled and
SetVirtualAddressMap() has not been called, any memory space defined by the UEFI memory map
is identity mapped (virtual address equals physical address). The mappings to other regions are
undefined and may vary from implementation to implementation. See description of
SetVirtualAddressMap() for details of memory map after this function has been called. After
ExitBootServices(), runtime service functions may be called with interrupts disabled or enabled at the
discretion of the caller.

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS. must be
aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on an
8 KiB boundary and must be a multiple of 8 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be non-cacheable.
UEFI Forum, Inc. March 2019 25

UEFI Specification, Version 2.8 Overview
• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to
be non-cached.

• In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended and the system firmware must
not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

Refer to the IA-64 System Abstraction Layer Specification (see Appendix Q) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel® Itanium®-based
applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions for IA-64 (see
Appendix Q) for more information.

2.3.3.1 Handoff State

UEFI uses the standard P64 C calling conventions that are defined for Itanium-based operating systems.
Figure 4 shows the stack after ImageEntryPoint has been called on Itanium-based systems. The
arguments are also stored in registers: out0 contains EFI_HANDLE and out1 contains the address of the
EFI_SYSTEM_TABLE. The gp for the UEFI Image will have been loaded from the plabel pointed to by the
AddressOfEntryPoint in the image’s PE32+ header. All UEFI image entry points take two
parameters. These are the image handle of the image, and a pointer to the System Table.

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see Appendix Q) defines the state of the system registers at boot handoff. The SAL
specification also defines which system registers can only be used after UEFI boot services have been
properly terminated.

OM13146

EFI_SYSTEM_TABLE *

EFI_HANDLE

SP + 8

SP

out1

out0

Stack Location Register
UEFI Forum, Inc. March 2019 26

UEFI Specification, Version 2.8 Overview
2.3.3.2 Calling Convention

UEFI executes as an extension to the SAL execution environment with the same rules as laid out by

the SAL specification. UEFI procedures are invoked using the P64 C calling conventions defined for Intel®
Itanium®-based applications. Refer to the document 64 Bit Runtime Architecture and Software
Conventions for IA-64 (see Glossary for more information.

For floating point, functions may only use the lower 32 floating point registers Return values appear in f8-
f15 registers. Single, double, and extended values are all returned using the appropriate format. Registers
f6-f7 are local registers and are not preserved for the caller. All other floating point registers are
preserved. Note that, when compiling UEFI programs, a special switch will likely need to be specified to
guarantee that the compiler does not use f32-f127, which are not normally preserved in the regular
calling convention for Itanium. A procedure using one of the preserved floating point registers must save
and restore the caller's original contents without generating a NaT consumption fault.

Floating point arguments are passed in f8-f15 registers when possible. Parameters beyond the registers
appear in memory, as explained in Section 8.5 of the Itanium Software Conventions and Runtime
Architecture Guide. Within the called function, these are local registers and are not preserved for the
caller. Registers f6-f7 are local registers and are not preserved for the caller. All other floating point
registers are preserved. Note that, when compiling UEFI programs, a special switch will likely need to be
specified to guarantee that the compiler does not use f32-f127, which are not normally preserved in the
regular calling convention for Itanium. A procedure using one of the preserved floating point registers
must save and restore the caller's original contents without generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function. Flags fields in
SF1,2,3 are not preserved for the caller. Flags fields in SF0 upon return will reflect the value passed in,
and with bits set to 1 corresponding to any IEEE exceptions detected on non-speculative floating-point
operations executed as part of the callee.

Floating-point operations executed by the callee may require software emulation. The caller must be
prepared to handle FP Software Assist (FPSWA) interruptions. Callees should not raise IEEE traps by
changing FPSR.traps bits to 0 and then executing floating-point operations that raise such traps.

2.3.4 x64 Platforms

All functions are called with the C language calling convention. See Section 2.3.4.2 for more detail.

During boot services time the processor is in the following execution mode:

• Uniprocessor, as described in chapter 8.4 of:

— Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3, System
Programming Guide, Part 1, Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel
Processor Manuals”.

• Long mode, in 64-bit mode

• Paging mode is enabled and any memory space defined by the UEFI memory map is identity
mapped (virtual address equals physical address), although the attributes of certain regions
may not have all read, write, and execute attributes or be unmarked for purposes of platform
protection. The mappings to other regions are undefined and may vary from implementation
to implementation.
UEFI Forum, Inc. March 2019 27

UEFI Specification, Version 2.8 Overview
• Selectors are set to be flat and are otherwise not used.

• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

• Direction flag in EFLAGs is clear

• Other general purpose flag registers are undefined

• 128 KiB, or more, of available stack space

• The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

• Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

• CR0.EM must be zero

• CR0.TS must be zero

For an operating system to use any UEFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• In long mode, in 64-bit mode

• Paging enabled

• All selectors set to be flat with virtual = physical address. If the UEFI OS loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address space, then
this condition does not have to be met. See description of SetVirtualAddressMap() for
details of memory map after this function has been called.

• Direction flag in EFLAGs clear

• 4 KiB, or more, of available stack space

• The stack must be 16-byte aligned

• Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow)

• CR0.EM must be zero

• CR0.TS must be zero

• Interrupts may be disabled or enabled at the discretion of the caller.

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.
UEFI Forum, Inc. March 2019 28

UEFI Specification, Version 2.8 Overview
• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must
be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on a
4 KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to
be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware
must not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.4.1 Handoff State

Rcx – EFI_HANDLE

Rdx – EFI_SYSTEM_TABLE *

RSP - <return address>

2.3.4.2 Detailed Calling Conventions

The caller passes the first four integer arguments in registers. The integer values are passed from left to
right in Rcx, Rdx, R8, and R9 registers. The caller passes arguments five and above onto the stack. All
arguments must be right-justified in the register in which they are passed. This ensures the callee can
process only the bits in the register that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The caller passes
structures and unions of size 8, 16, 32, or 64 bits as if they were integers of the same size. The caller is not
allowed to pass structures and unions of other than these sizes and must pass these unions and
structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The most common
requirement is to take the address of an argument.
UEFI Forum, Inc. March 2019 29

UEFI Specification, Version 2.8 Overview
If the parameters are passed through varargs then essentially the typical parameter passing applies,
including spilling the fifth and subsequent arguments onto the stack. The callee must dump the
arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does not fit within
64-bits, then the caller must allocate and pass a pointer for the return value as the first argument, Rcx.
Subsequent arguments are then shifted one argument to the right, so for example argument one would
be passed in Rdx. User-defined types to be returned must be 1,2,4,8,16,32, or 64 bits in length.

The registers Rax, Rcx Rdx R8, R9, R10, R11, and XMM0-XMM5 are volatile and are, therefore, destroyed
on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered nonvolatile and
must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require special treatment.

A caller must always call with the stack 16-byte aligned.

For MMX, XMM and floating-point values, return values that can fit into 64-bits are returned through RAX
(including MMX types). However, XMM 128-bit types, floats, and doubles are returned in XMM0. The
floating point status register is not saved by the target function. Floating-point and double-precision
arguments are passed in XMM0 - XMM3 (up to 4) with the integer slot (RCX, RDX, R8, and R9) that would
normally be used for that cardinal slot being ignored (see example) and vice versa. XMM types are never
passed by immediate value but rather a pointer will be passed to memory allocated by the caller. MMX
types will be passed as if they were integers of the same size. Callees must not unmask exceptions
without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers (including MMX
and XMM) are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application

Boot Services define an execution environment where paging is not enabled (supported 32-bit) or where
translations are enabled but mapped virtual equal physical (x64) and this section will describe how to
write an application with alternate translations or with paging enabled. Some Operating Systems require
the OS Loader to be able to enable OS required translations at Boot Services time.

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure that the firmware
executes with each supplanted data structure. There are two ways that firmware conforming to this
specification can execute when the application has paging enabled.

• Explicit firmware call

• Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before each UEFI call.
However the possibility of preemption may require the translation enabled application to disable
interrupts while alternate translations are enabled. It’s legal for the translation enabled application to
enable interrupts if the application catches the interrupt and restores the EFI firmware environment prior
to calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will return to the translation
enabled application context and restore any mappings required by the application.
UEFI Forum, Inc. March 2019 30

UEFI Specification, Version 2.8 Overview
2.3.5 AArch32 Platforms

All functions are called with the C language calling convention specified in Section 2.3.5.3. In addition, the
invoking OSs can assume that unaligned access support is enabled if it is present in the processor.

During boot services time the processor is in the following execution mode:

• Unaligned access should be enabled if supported; Alignment faults are enabled
otherwise.

• Uniprocessor.

• A privileged mode.

• The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any RAM
defined by the UEFI memory map is identity mapped (virtual address equals physical address).
The mappings to other regions are undefined and may vary from implementation to
implementation

• The core will be configured as follows (common across all processor architecture revisions):

• MMU enabled

• Instruction and Data caches enabled

• Access flag disabled

• Translation remap disabled

• Little endian mode

• Domain access control mechanism (if supported) will be configured to check access
permission bits in the page descriptor

• Fast Context Switch Extension (FCSE) must be disabled

This will be achieved by:

• Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1, C=1, B=0, TRE=0,
AFE=0, M=1

• Configuring the CP15 c3 Domain Access Control Register (DACR) to 0x33333333.

• Configuring the CP15 c1 System Control Register (SCTLR), A=1 on ARMv4 and ARMv5, A=0,
U=1 on ARMv6 and ARMv7.

The state of other system control register bits is not dictated by this specification.

• Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using CP15 operations using mechanisms and procedures
defined in the ARM Architecture Reference Manual. They should not enable caches requiring
platform information to manage or invoke non-architectural cache/TLB lockdown mechanisms

• MMU configuration--Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0 must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

• On processors implementing the ARMv4 through ARMv6K architecture definitions, the
core is additionally configured to disable extended page tables support, if present.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=0
UEFI Forum, Inc. March 2019 31

UEFI Specification, Version 2.8 Overview
• On processors implementing the ARMv7 and later architecture definitions, the core will be
configured to enable the extended page table format and disable the TEX remap
mechanism.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=1, TRE=0

• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

• 128 KiB or more of available stack space

For an operating system to use any runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• In a privileged mode.

• The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See
description of SetVirtualAddressMap() for details of memory map after this function has
been called.

• The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

• 4 KiB, or more, of available stack space

• Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking OS
must ensure firmware boot services and runtime services are executed with the prescribed execution
environment.

If ACPI is supported :

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on a 4
KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be non-cacheable.
UEFI Forum, Inc. March 2019 32

UEFI Specification, Version 2.8 Overview
• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to
be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware
must not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.5.1 Handoff State

R0 – EFI_HANDLE

R1 – EFI_SYSTEM_TABLE *

R14 – Return Address

2.3.5.2 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the OS
Loader to be able to enable OS required translations at Boot Services time, and make other changes to
the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure that
the firmware executes with each supplanted functionality. There are two ways that firmware conforming
to this specification can execute in this alternate execution environment:

• Explicit firmware call

• Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches the
interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the UEFI
ISR context is executed it will return to the alternate execution environment enabled application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices(), including the bit layout of the page table entries.
UEFI Forum, Inc. March 2019 33

UEFI Specification, Version 2.8 Overview
After an OS loader calls ExitBootServices() it should immediately configure the exception vector to
point to appropriate code.

2.3.5.3 Detailed Calling Convention

The base calling convention for the ARM binding is defined here:

Procedure Call Standard for the ARM Architecture V2.06 (or later)
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm Architecture Base
Calling Convention”.

This binding further constrains the calling convention in these ways:

• Calls to UEFI defined interfaces must be done assuming that the target code requires the ARM
instruction set state. Images are free to use other instruction set states except when invoking
UEFI interfaces.

• Floating point, SIMD, vector operations and other instruction set extensions must not be used.

• Only little endian operation is supported.

• The stack will maintain 8 byte alignment as described in the AAPCS for public interfaces.

• Use of coprocessor registers for passing call arguments must not be used

• Structures (or other types larger than 64-bits) must be passed by reference and not by value

• The EFI ARM platform binding defines register r9 as an additional callee-saved variable register.

2.3.6 AArch64 Platforms

AArch64 UEFI will only execute 64-bit ARM code, as the ARMv8 architecture does not allow for the mixing
of 32-bit and 64-bit code at the same privilege level.

All functions are called with the C language calling convention specified in Detailed calling Convention
section below. During boot services only a single processor is used for execution. All secondary
processors must be either powered off or held in a quiescent state.

The primary processor is in the following execution mode:

• Unaligned access must be enabled.

• Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or Non-secure
EL1(Kernel).

• The MMU is enabled and any RAM defined by the UEFI memory map is identity mapped
(virtual address equals physical address). The mappings to other regions are undefined and
may vary from implementation to implementation

• The core will be configured as follows:

• MMU enabled

• Instruction and Data caches enabled

• Little endian mode

• Stack Alignment Enforced

• NOT Top Byte Ignored

• Valid Physical Address Space
UEFI Forum, Inc. March 2019 34

UEFI Specification, Version 2.8 Overview
• 4K Translation Granule

This will be achieved by:

1. Configuring the System Control Register SCTLR_EL2 or SCTLR_EL1:

• EE=0, I=1, SA=1, C=1, A=0, M=1

2. Configuring the appropriate Translation Control Register:

• TCR_EL2

• TBI=0

• PS must contain the valid Physical Address Space Size.

• TG0=00

• TCR_EL1

• TBI0=0

• IPS must contain the valid Intermediate Physical Address Space Size.

• TG0=00

Note: The state of other system control register bits is not dictated by this specification.

• All floating point traps and exceptions will be disabled at the relevant exception levels (FPCR=0,
CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will be enabled by default.

• Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using implementation independent registers using
mechanisms and procedures defined in the ARM Architecture Reference Manual. They should
not enable caches requiring platform information to manage or invoke non-architectural
cache/TLB lockdown mechanisms.

• MMU configuration: Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0 must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

• Interrupts are enabled, though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling”). All
UEFI interrupts must be routed to the IRQ vector only.

• The architecture generic timer must be initialized and enabled. The Counter Frequency register
(CNTFRQ) must be programmed with the timer frequency. Timer access must be provided to
non-secure EL1 and EL0 by setting bits EL1PCTEN and EL1PCEN in register CNTHCTL_EL2.

• The system firmware is not expected to initialize EL2 registers that do not have an architectural
reset value, except in cases where firmware itself is running at EL2 and needs to do so.

• 128 KiB or more of available stack space

• The ARM architecture allows mapping pages at a variety of granularities, including 4KiB and
64KiB. If a 64KiB physical page contains any 4KiB page with any of the following types listed
below, then all 4KiB pages in the 64KiB page must use identical ARM Memory Page Attributes
(as described in Table 7):

— EfiRuntimeServicesCode

— EfiRuntimeServicesData
UEFI Forum, Inc. March 2019 35

UEFI Specification, Version 2.8 Overview
— EfiReserved

— EfiACPIMemoryNVS

Mixed attribute mappings within a larger page are not allowed.

Note: This constraint allows a 64K paged based Operating System to safely map runtime services
memory.

For an operating system to use any runtime services, Runtime services must:

• Support calls from either the EL1 or the EL2 exception levels.

• Once called, simultaneous or nested calls from EL1 and EL2 are not permitted.

Note: Sequential, non-overlapping, calls from EL1 and EL2 are permitted.

Runtime services are permitted to make synchronous SMC and HVC calls into higher exception levels.

Note: These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1
Operating System. In this case a call to SetVirtualAddressMap()is expected to provided an
EL1 appropriate set of mappings.

For an operating system to use any runtime services, it must:

• Enable unaligned access support.

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• From either EL1 or EL2 exception levels.

• Consistently call runtime services from the same exception level. Sharing of runtime
services between different exception levels is not permitted.

• Runtime services must only be assigned to a single operating system or hypervisor. They
must not be shared between multiple guest operating systems.

• The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the
runtime services in a virtual address space, then this condition does not have to be met.
See description of SetVirtualAddressMap() for details of memory map after this
function has been called.

• The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

• 8 KiB, or more, of available stack space.

• The stack must be 16-byte aligned (128-bit).

• Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking OS
must ensure firmware boot services and runtime services are executed with the prescribed execution
environment.

If ACPI is supported :
UEFI Forum, Inc. March 2019 36

UEFI Specification, Version 2.8 Overview
• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS.

• ACPI FACS must be contained in memory of type EfiACPIMemoryNVS. The system firmware
must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on a 4
KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to
be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware
must not request a virtual mapping), EfiBootServicesdata, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 clarified the
situation moving forward. Also, only OSes conforming to UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServiceData.
UEFI Forum, Inc. March 2019 37

UEFI Specification, Version 2.8 Overview
2.3.6.1 Memory types

Table 7. Map: EFI Cacheability Attributes to AArch64 Memory Types

Table 8. Map: UEFI Permission Attributes to ARM Paging Attributes

2.3.6.2 Handoff State

X0 – EFI_HANDLE

X1 – EFI_SYSTEM_TABLE *

X30 – Return Address

2.3.6.3 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the OS
Loader to be able to enable OS required translations at Boot Services time, and make other changes to
the UEFI defined execution environment.

EFI Memory Type ARM Memory Type:

 MAIR attribute encoding

Attr<n> [7:4] [3:0]

ARM Memory Type:

Meaning

EFI_MEMORY_UC (Not cacheable)
0000 0000

Device-nGnRnE
(Device non-Gathering,
non-Reordering,
no Early Write Acknowledgement)

EFI_MEMORY_WC (Write combine) 0100 0100 Normal Memory
Outer non-cacheable
Inner non-cacheable

EFI_MEMORY_WT (Write through) 1011 1011 Normal Memory
Outer Write-through non-transient
Inner Write-through non-transient

EFI_MEMORY_WB (Write back) 1111 1111 Normal Memory
Outer Write-back non-transient
Inner Write-back non-transient

EFI_MEMORY_UCE Not used or defined

EFI Memory Type ARM Paging Attributes

EFI_MEMORY_XP EL2 translation regime:
 XN Execute never
EL1/0 translation regime:
 UXN Unprivileged execute never
 PXN Privileged execute never

EFI_MEMORY_RO Read only access AP[2]=1

EFI_MEMORY_RP
EFI_MEMORY_WP

Not used or defined
UEFI Forum, Inc. March 2019 38

UEFI Specification, Version 2.8 Overview
If a UEFI application uses its own page tables, or other processor state, the application must ensure that
the firmware executes with each supplanted functionality. There are two ways that firmware conforming
to this specification can execute in this alternate execution environment:

• Explicit firmware call

• Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches the
interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the UEFI
ISR context is executed it will return to the alternate execution environment enabled application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception vector to
point to appropriate code.

2.3.6.4 Detailed Calling Convention

The base calling convention for the AArch64 binding is defined in the document Procedure Call Standard
for the ARM 64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-bit Base Calling
Convention”

This binding further constrains the calling convention in these ways:

• The AArch64 execution state must not be modified by the callee.

• All code exits, normal and exceptional, must be from the A64 instruction set.

• Floating point and SIMD instructions may be used.

• Optional vector operations and other instruction set extensions may only be used:

• After dynamically checking for their existence.

• Saving and then later restoring any additional execution state context.

• Additional feature enablement or control, such as power, must be explicitly managed.

• Only little endian operation is supported.

• The stack will maintain 16 byte alignment.

• Structures (or other types larger than 64-bits) must be passed by reference and not by value.

• The EFI AArch64 platform binding defines the platform register (r18) as “do not use”. Avoiding
use of r18 in firmware makes the code compatible with both a fixed role for r18 defined by the
OS platform ABI and the use of r18 by the OS and its applications as a temporary register.

2.3.7 RISC-V Platforms

All functions are called with the C language calling convention. See 2.3.7.3 for more detail.
UEFI Forum, Inc. March 2019 39

UEFI Specification, Version 2.8 Overview
On RISC-V platform, four privileged levels are introduced in RISC-V architecture. Beyond the User
privilege, Supervisor, Hypervisor and Machine privileges cover all aspects of RISC-V system. The
privileged instructions are also defined in each privilege level.

RISC-V UEFI will only execute in machine mode. The machine mode has the highest privilege and this
mode is the only mandatory privilege level for RISC-V platform, all other privilege levels are optional.
Machine mode is the first mode entered at the power-on reset. This level is used in UEFI for low-
level access to a hardware platform.

The processor is in the following execution mode during boot service:

· Total 32 general-purpose registers x1-x31. Register x0 is hardwired to 0. Each register has its ABI
(Application Binary Interface) name. See 2.3.7.3 for more detail.

· The width of the processor registers depends on the processor architecture. XLEN is a term which
used to refer the current width of register in bits.

· For the RV32I (Base Integer ISA), XLEN = 32

· The registers are 32 bits wide to support 32-bit user address space.

· For the RV64I, XLEN = 64

· RV64I is built upon RV32 variant. It widens the integer registers and supported user address
space to 64-bit.

· For the RV128I, XLEN = 128

· A variant of the RISC-V ISA which support flat 128-bit address space and 128-bit registers. RV128I
builds upon RV64I in the same way RV64I builds upon RV32I.

· Processor reset vector is platform specified. In UEFI, it is configured to the highest processor
addressing space, The value in mtvec (Machine Trap Vector Base Address) register is set to
0xF…FFE00H. The reset vector is at offset 100h of mtvec. The reset vector address is the first
instruction which fetched by RISC-V processor when the power-on reset.

· The mstatus.PRV stores the current processor privilege mode. Upon the reset, the privilege mode
is set to M (Machine mode).

· mstatus.PRV = 11b for the machine mode.

· The mstatus.IE indicates the current processor interrupt activation in current mode.

· mstatus.IE = 1b

· The machine mode interrupt is enabled during boot service in UEFI. Two kinds of interrupts are
enabled, one is for timer interrupt and another is software interrupt.

· mie.MSIE = 1

· mie.MTIE = 1

· The memory is in physical addressing mode. Page is disabled in RISC-V machine mode during UEFI
boot service.

· I/O access is through memory map I/O.

· Only support Machine level Control and Status Registers (CSRs) in UEFI.

· Machine ISA (misa) register contains the information regarding to the capabilities of CPU
implementation. The Base field encodes the native base integer ISA width.

· misa.Base = 1 is 32
UEFI Forum, Inc. March 2019 40

UEFI Specification, Version 2.8 Overview
· misa.Base = 2 is 64

· misa.Base = 3 is 128

· RISC-V processor supports extensive customization and specialization instruction sets. RISC-V
variations provide various purposes of processor implementations and the processor capability is
reported in the extension bits in in misa register. UEFI drivers will need to know the capabilities
of processor before executing the specified RISC-V extension instructions. The extensions fields
encodes the presence of the standard extensions, with a single bit per letter of the alphabet. (Bit
0 encodes presence of extension “A”, Bit 1 encodes presence of extension “B” and so on.
Currently the single letter extension mnemonics are as below,

· A – Atomic extension

· B – Tentatively reserved for Bit operations extension

· C - Compressed extension

· D - Double-Precision Floating-Point extension

· E - Reduced Register Set Indicator RV32E (16 registers)

· F - Single-Precision Floating-Point extension

· G – Additional standard extensions present

· H – Hypervisor mode implemented

· I – RV32I/64I/128I base ISA

· J – Reserved

· K – Reserved

· L – Tentatively reserved for Decimal Floating-Point extension
M - Integer Multiplication and Division extension

· N – User-level interrupts supported

· O – Reserved

· P - Tentatively reserved for Packed-SIMD extension
Q - Quad-Precision Floating-Point extension
S – Supervisor mode implemented
T - Tentatively reserved for Transactional Memory extension
U – User mode implemented

· V - Tentatively reserved for Vector extension

· W - Reserved

· X – Non-standard extension present

· Y - Reserved

· Z - Reserved

· Machine Vendor ID Register

This is the read-only register encoding the manufacture of the part. Value of 0 indicates this field is
not implemented or this is a non-commercial implementation.

· Implementation ID Register

· This provides a unique encoding of the source and version of processor implementation.
UEFI Forum, Inc. March 2019 41

UEFI Specification, Version 2.8 Overview
· mimpid.Source is in 16-bit which describe the origin of the processor design,

· For example, mimpid.Source = 0x0000 is UC Berkeley Rocket repo.

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices (), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available and may be called with paging enabled and virtual address pointers if
SetVirtualAddressMap () has been called describing all virtual address ranges used by the
firmware runtime service.

If ACPI is supported:

• ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory
(recommended) or EfiACPIMemoryNVS. ACPI FACS must be contained in memory of type
EfiACPIMemoryNVS

• The system firmware must not request a virtual mapping for any memory descriptor of type

EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the

EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on a 4 KiB
boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region must
inherit its cacheability attributes from the ACPI name space. If no cacheability attributes exist in the
system memory map or the ACPI name space, then the region must be assumed to be non-
cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.

The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, cacheability
attributes may be obtained from ACPI memory descriptors. If no information about the table
location exists in the UEFI memory map or ACPI memory descriptors, the table is assumed to be
non-cached.

· In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware must
not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
UEFI Forum, Inc. March 2019 42

UEFI Specification, Version 2.8 Overview
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration

Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI

Specification intends to clarify the situation moving forward. Also, only OSes conforming to the

UEFI Specification are guaranteed to handle SMBIOS table in memory of type

EfiBootServicesData.

2.3.7.1 Handoff State

When UEFI firmware handoff control to OS, the RISC-V is operated in machine-mode privilege.

All UEFI image takes two parameters, these are UEFI image handle and the pointer to EFI System
Table. According to the RISC-V calling convention, EFI_HANDLE is passed through a0 register and
EFI_SYSTEM_TABLE is passed through a1 register.

x10 –EFI_HANDLE(ABI name: a0)

x11 – EFI_SYSTEM_TABLE *(ABI name: a1)

x1 – Return Address(ABI name: ra)

2.3.7.2 Data alignment

In the RV32I and RV64I, the datatypes must be aligned at its natural size when stored in memory.

The following table describes the datatype and its alignment in RV32I and RV64I in UEFI.

Table 9. .RV32 datatype alignment

Table 10. RV64 datatype alignment

Datatype Description Alignment
BOOLEAN
INTN
UINTN
INT8
UINT8
INT16
UINT16
INT32
UINT32
INT64
UINT64
CHAR8
CHAR16
VOID

Logical Boolean
Signed value in native width.
Unsigned value in native width.
1-byte signed value
1-byte unsigned value
2-byte signed value
2-byte unsigned value
4-byte signed value
4-byte unsigned value
8-byte signed value
8-byte unsigned value
1-byte character
2-byte character
Undeclared type

1
4
4
1
1
2
2
4
4
8
8
1
2
4

Datatype Description Alignment
UEFI Forum, Inc. March 2019 43

UEFI Specification, Version 2.8 Overview
2.3.7.3 Detailed Calling Convention

The RISC-V calling convention passes arguments in register when necessary. In RISC-V, total 32
general registers are declared, each register has its corresponding ABI name.

Table 11. Register name and ABI name.

In RISC-V calling convention, up to eight integer registers are used for passing argument, a0-a7. a0-a7 are
the ABI names and the corresponding registers are x10-x17. Values are returned from functions in integer
registers a0 and a1, those are register x10 and x11. In the standard RISC-V calling convention, the stack
grows downward and the stack point is always kept 16-byte aligned. Five integer register t0-t6 are
temporary registers that are volatile across calls and must be saved by the caller if later used. Twelve
integer registers s0-s11 are preserved across calls and must be saved by the callee if used.

2.4 Protocols

The protocols that a device handle supports are discovered through the
EFI_BOOT_SERVICES.HandleProtocol() Boot Service or the
EFI_BOOT_SERVICES.OpenProtocol() Boot Service. Each protocol has a specification that includes
the following:

• The protocol’s globally unique ID (GUID)

• The Protocol Interface structure

• The Protocol Services

BOOLEAN
INTN
UINTN
INT8
UINT8
INT16
UINT16
INT32
UINT32
INT64
UINT64
CHAR8
CHAR16
VOID

Logical Boolean
Signed value in native width.
Unsigned value in native width.
1-byte signed value
1-byte unsigned value
2-byte signed value
2-byte unsigned value
4-byte signed value
4-byte unsigned value
8-byte signed value
8-byte unsigned value
1-byte character
2-byte character
Undeclared type

1
8
8
1
1
2
2
4
4
8
8
1
2
8

Register ABI Name Description
x0
x1
x2
x3
x4
x5-7
x8
x9
x10-11
x12-17
x18-27
x28-31

zero
ra
sp
gp
tp
t0-2
s0/fp
s1
a0-1
a2-7
s2-11
t3-6

Hardwired to zero
Return address
Stack pointer
Global pointer
Thread pointer
Temporaries
Saved register/frame pointer
Saved register
Function arguments/Return values
Function arguments
Saved registers
Temporaries
UEFI Forum, Inc. March 2019 44

UEFI Specification, Version 2.8 Overview
Unless otherwise specified a protocol’s interface structure is not allocated from runtime memory and the
protocol member functions should not be called at runtime. If not explicitly specified a protocol member
function can be called at a TPL level of less than or equal to TPL_NOTIFY (see Section 7.1). Unless
otherwise specified a protocol’s member function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be implemented,
Additional error codes may be returned, but they will not be tested by standard compliance tests, and
any software that uses the procedure cannot depend on any of the extended error codes that an
implementation may provide.

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a pointer to
the defined Protocol Interface structure is returned. The Protocol Interface structure links the caller to
the protocol-specific services to use for this device.

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific to one or more
protocol implementations, and registers them with the Boot Service
EFI_BOOT_SERVICES.InstallProtocolInterface(). The firmware returns the Protocol Interface
for the protocol that is then used to invoke the protocol specific services. The UEFI driver keeps private,
device-specific context with protocol interfaces.

Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

OM13147

Protocol Interface
Function Pointer
Function Pointer

Device specific
context

...

GUID 1

GUID 2

Protocol
specific
functions

Protocol
specific
functions

EFI Driver

Invoking one of
the protocol
services

HandleProtocol (GUID, ...)

Handle

Device, or
next Driver
UEFI Forum, Inc. March 2019 45

UEFI Specification, Version 2.8 Overview
// There is a global “EffectsDevice” structure. This

// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,

// by calling HandleProtocol with the device’s EFI device handle

// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (

EffectsDevice.EFIHandle,

&IllustrationProtocolGuid,

&EffectsDevice.IllustrationProtocol

);

// Use the EffectsDevice illustration protocol’s “MakeEffects”

// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (

EffectsDevice.IllustrationProtocol,

TheFlashyAndNoisyEffect

);

Table 12 lists the UEFI protocols defined by this specification.

Table 12. UEFI Protocols

 Protocol Description

EFI_LOADED_IMAGE_PROTOCOL Provides information on the image.

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCO
L

Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service LoadImage().

EFI_DEVICE_PATH_PROTOCOL Provides the location of the device.

EFI_DRIVER_BINDING_PROTOCOL Provides services to determine if an UEFI driver supports a
given controller, and services to start and stop a given
controller.

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL Provides a the Driver Family Override mechanism for
selecting the best driver for a given controller.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCO
L

Provide a platform specific override mechanism for the
selection of the best driver for a given controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PRO
TOCOL

Provides a bus specific override mechanism for the selection
of the best driver for a given controller.

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL Provides diagnostics services for the controllers that UEFI
drivers are managing.

EFI_COMPONENT_NAME2_PROTOCOL Provides human readable names for UEFI Drivers and the
controllers that the drivers are managing.

EFI_SIMPLE_TEXT_INPUT_PROTOCOL Protocol interfaces for devices that support simple console
style text input.
UEFI Forum, Inc. March 2019 46

UEFI Specification, Version 2.8 Overview
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL Protocol interfaces for devices that support console style text
displaying.

EFI_SIMPLE_POINTER_PROTOCOL Protocol interfaces for devices such as mice and trackballs.

EFI_SERIAL_IO_PROTOCOL Protocol interfaces for devices that support serial character
transfer.

EFI_LOAD_FILE_PROTOCOL Protocol interface for reading a file from an arbitrary device.

EFI_LOAD_FILE2_PROTOCOL Protocol interface for reading a non-boot option file from an
arbitrary device

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL Protocol interfaces for opening disk volume containing a UEFI
file system.

EFI_FILE_PROTOCOL Provides access to supported file systems.

EFI_DISK_IO_PROTOCOL A protocol interface that layers onto any BLOCK_IO or
BLOCK_IO_EX interface.

EFI_BLOCK_IO_PROTOCOL Protocol interfaces for devices that support block I/O style
accesses.

EFI_BLOCK_IO2_PROTOCOL Protocol interfaces for devices that support block I/O style
accesses. This interface is capable of non-blocking
transactions.

EFI_UNICODE_COLLATION_PROTOCOL Protocol interfaces for string comparison operations.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL Protocol interfaces to abstract memory, I/O, PCI
configuration, and DMA accesses to a PCI root bridge
controller.

EFI_PCI_IO_PROTOCOL Protocol interfaces to abstract memory, I/O, PCI
configuration, and DMA accesses to a PCI controller on a PCI
bus.

EFI_USB_IO_PROTOCOL Protocol interfaces to abstract access to a USB controller.

EFI_SIMPLE_NETWORK_PROTOCOL Provides interface for devices that support packet based
transfers.

EFI_PXE_BASE_CODE_PROTOCOL Protocol interfaces for devices that support network booting.

EFI_BIS_PROTOCOL Protocol interfaces to validate boot images before they are
loaded and invoked.

EFI_DEBUG_SUPPORT_PROTOCOL Protocol interfaces to save and restore processor context and
hook processor exceptions.

EFI_DEBUGPORT_PROTOCOL Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

EFI_DECOMPRESS_PROTOCOL Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI_EBC_PROTOCOL Protocols interfaces required to support an EFI Byte Code
interpreter.

EFI_GRAPHICS_OUTPUT_PROTOCOL Protocol interfaces for devices that support graphical output.

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL Protocol interfaces that allow NVM Express commands to be
issued to an NVM Express controller.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL Protocol interfaces for a SCSI channel that allows SCSI
Request Packets to be sent to SCSI devices.

 Protocol Description
UEFI Forum, Inc. March 2019 47

UEFI Specification, Version 2.8 Overview
EFI_USB2_HC_PROTOCOL Protocol interfaces to abstract access to a USB Host
Controller.

EFI_AUTHENTICATION_INFO_PROTOCOL Provides access for generic authentication information
associated with specific device paths

EFI_DEVICE_PATH_UTILITIES_PROTOCOL Aids in creating and manipulating device paths.

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL Converts device nodes and paths to text.

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL Converts text to device paths and device nodes.

EFI_EDID_DISCOVERED_PROTOCOL Contains the EDID information retrieved from a video output
device.

EFI_EDID_ACTIVE_PROTOCOL Contains the EDID information for an active video output
device.

EFI_EDID_OVERRIDE_PROTOCOL Produced by the platform to allow the platform to provide
EDID information to the producer of the Graphics Output
protocol

EFI_ISCSI_INITIATOR_NAME_PROTOCOL Sets and obtains the iSCSI Initiator Name.

EFI_TAPE_IO_PROTOCOL Provides services to control and access a tape drive.

EFI_MANAGED_NETWORK_PROTOCOL Used to locate communication devices that are supported by
an MNP driver and create and destroy instances of the MNP
child protocol driver that can use the underlying
communications devices.

EFI_ARP_SERVICE_BINDING_PROTOCOL Used to locate communications devices that are supported by
an ARP driver and to create and destroy instances of the ARP
child protocol driver.

EFI_ARP_PROTOCOL Used to resolve local network protocol addresses into
network hardware addresses.

EFI_DHCP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are supported by
an EFI DHCPv4 Protocol driver and to create and destroy EFI
DHCPv4 Protocol child driver instances that can use the
underlying communications devices.

EFI_DHCP4_PROTOCOL Used to collect configuration information for the EFI IPv4
Protocol drivers and to provide DHCPv4 server and PXE boot
server discovery services.

EFI_TCP4_SERVICE_BINDING_PROTOCOL Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other host
using TCP protocol.

EFI_TCP4_PROTOCOL Provides services to send and receive data stream.

EFI_IP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are supported by
an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver that
can use the underlying communication device.

EFI_IP4_PROTOCOL Provides basic network IPv4 packet I/O services.

EFI_IP4_CONFIG_PROTOCOL The EFI IPv4 Config Protocol driver performs platform- and
policy-dependent configuration of the EFI IPv4 Protocol
driver.

 Protocol Description
UEFI Forum, Inc. March 2019 48

UEFI Specification, Version 2.8 Overview
2.5 UEFI Driver Model

The UEFI Driver Model is intended to simplify the design and implementation of device drivers, and
produce small executable image sizes. As a result, some complexity has been moved into bus drivers and
in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on which the
driver was loaded. It then waits for the system firmware to connect the driver to a controller. When that
occurs, the device driver is responsible for producing a protocol on the controller’s device handle that
abstracts the I/O operations that the controller supports. A bus driver performs these exact same tasks.
In addition, a bus driver is also responsible for discovering any child controllers on the bus, and creating a
device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more processors
connected to one or more core chipsets. The core chipsets are responsible for producing one or more I/O
buses. The UEFI Driver Model does not attempt to describe the processors or the core chipsets. Instead,
the UEFI Driver Model describes the set of I/O buses produced by the core chipsets, and any children of
these I/O buses. These children can either be devices or additional I/O buses. This can be viewed as a tree
of buses and devices with the core chipsets at the root of that tree.

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could include
keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data between
devices and buses, or between different bus types. Figure 6 shows a sample desktop system with four
buses and six devices.

EFI_IP4_CONFIG2_PROTOCOL The EFI IPv4 Configuration II Protocol driver performs
platform- and policy-dependent configuration of the EFI IPv4
Protocol driver.

EFI_UDP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are supported by
an EFI UDPv4 Protocol driver and to create and destroy
instances of the EFI UDPv4 Protocol child protocol driver that
can use the underlying communication device.

EFI_UDP4_PROTOCOL Provides simple packet-oriented services to transmit and
receive UDP packets.

EFI_MTFTP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are supported by
an EFI MTFTPv4 Protocol driver and to create and destroy
instances of the EFI MTFTPv4 Protocol child protocol driver
that can use the underlying communication device.

EFI_MTFTP4_PROTOCOL Provides basic services for client-side unicast or multicast
TFTP operations.

EFI_HASH_PROTOCOL Allows creating a hash of an arbitrary message digest using
one or more hash algorithms.

EFI_HASH_SERVICE_BINDING_PROTOCOL Used to locate hashing services support provided by a driver
and create and destroy instances of the EFI Hash Protocol so
that a multiple drivers can use the underlying hashing
services.

EFI_SD_MMC_PASS_THRU_PROTOCOL Protocol interface that allows SD/eMMC commands to be
sent to an SD/eMMC controller.

 Protocol Description
UEFI Forum, Inc. March 2019 49

UEFI Specification, Version 2.8 Overview
Figure 6. Desktop System

Figure 7 is an example of a more complex server system. The idea is to make the UEFI Driver Model
simple and extensible so more complex systems like the one below can be described and managed in the
preboot environment. This system contains six buses and eight devices.

Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given platform is likely to be
produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These different components from
different vendors are required to work together to produce a protocol for an I/O device than can be used
to boot a UEFI compliant operating system. As a result, the UEFI Driver Model is described in great detail
in order to increase the interoperability of these components.

OM13142

CPU

North
Bridge

USB

ATA

VGA

PCI-ISA
Bridge

PCI Bus

Hard
Drive

CD-ROM

Keyboard

MouseATA

USB Bus

Bus Controller

Device Controller

Other

OM13143

CPU

North
Bridge

PCI-IBA
Bridge

USB

VGA

PCI Bus

KBD

MOUSE

USB Bus

CPU

SCSI

PCI Bus

Hard
Drive

Hard
Drive

Hard
Drive

Hard
Drive
UEFI Forum, Inc. March 2019 50

UEFI Specification, Version 2.8 Overview
This remainder of this section is a brief overview of the UEFI Driver Model. It describes the legacy option
ROM issues that the UEFI Driver Model is designed to address, the entry point of a driver, host bus
controllers, properties of device drivers, properties of bus drivers, and how the UEFI Driver Model can
accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues

Legacy option ROMs have a number of constraints and limitations that restrict innovation on the part of
platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters use legacy
option ROMs. For the purposes of this discussion, only PCI option ROMs will be considered; legacy ISA
option ROMs are not supported as part of the UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each issue, the
design considerations that went into the design of the UEFI Driver Model are also listed. Thus, the design
of the UEFI Driver Model directly addresses the requirements for a solution to overcome the limitations
implicit to PC-AT-style legacy option ROMs.

2.5.1.1 32-bit/16-Bit Real Mode Binaries

Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means that the
legacy option ROM on a PCI card cannot be used in platforms that do not support the execution of IA-32
real mode binaries. Also, 16-bit real mode only allows the driver to access directly the lower 1 MiB of
system memory. It is possible for the driver to switch the processor into modes other than real mode in
order to access resources above 1 MiB, but this requires a lot of additional code, and causes
interoperability issues with other option ROMs and the system BIOS. Also, option ROMs that switch the
processor into to alternate execution modes are not compatible with Itanium Processors.

UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.

• Drivers need to be written in C so they are portable between processor architectures.

• Drivers may be compiled into a virtual machine executable, allowing a single binary driver to
work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs

Since legacy option ROMs can only directly address the lower 1 MiB of system memory, this means that
the code from the legacy option ROM must exist below 1 MiB. In a PC-AT platform, memory from
0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory, and memory from
0xF0000-0xFFFFF is reserved for the system BIOS. Also, since system BIOS has become more complex
over the years, many platforms also use 0xE0000-0xEFFFF for system BIOS. This leaves 128 KiB of memory
from 0xC0000-0xDFFFF for legacy option ROMs. This limits how many legacy option ROMs can be run
during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to allocate
memory from Extended BIOS Data Area (EBDA), allocate memory through a Post Memory Manager
(PMM), or search for free memory based on a heuristic. Of these, only EBDA is standard, and the others
are not used consistently between adapters, or between BIOS vendors, which adds complexity and the
potential for conflicts.
UEFI Forum, Inc. March 2019 51

UEFI Specification, Version 2.8 Overview
UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.

• Drivers need to be capable of being relocated so that they can be loaded anywhere in memory
(PE/COFF Images)

• Drivers should allocate memory through the boot services. These are well-specified interfaces,
and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some legacy option
ROMs search the entire system for controllers to manage. This can be a lengthy process depending on
the size and complexity of the platform. Also, due to limitation in BIOS design, all the legacy option ROMs
must be executed, and they must scan for all the peripheral devices before an operating system can be
booted. This can also be a lengthy process, especially if SCSI buses must be scanned for SCSI devices. This
means that legacy option ROMs are making policy decision about how the platform is being initialized,
and which controllers are managed by which legacy option ROMs. This makes it very difficult for a system
designer to predict how legacy option ROMs will interact with each other. This can also cause issues with
on-board controllers, because a legacy option ROM may incorrectly choose to manage the on-board
controller.

UEFI Driver Model design considerations:

• Driver to controller matching must be deterministic

• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol

• It must be possible to start only the drivers and controllers required to boot an operating
system.

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that directly
touches hardware registers. This can make them incompatible on legacy-free and headless platforms.
Legacy option ROMs may also contain setup programs that assume a PC-AT-like system architecture to
interact with a keyboard or video display. This makes the setup application incompatible on legacy-free
and headless platforms.

UEFI Driver Model design considerations:

• Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities between
legacy option ROMs and system BIOS. These incompatibilities exist in part because there are no clear
specifications on how to write a legacy option ROM or write a system BIOS.
UEFI Forum, Inc. March 2019 52

UEFI Specification, Version 2.8 Overview
Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not always
clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

• Drivers and firmware are written to follow this specification. Since both components have a
clearly defined specification, compliance tests can be developed to prove that drivers and
system firmware are compliant. This should eliminate the need to build workarounds into
either drivers or system firmware (other than those that might be required to address specific
hardware issues).

• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include ROM, FLASH, hard
drives, floppy drives, CD-ROM, or even a network connection. Once a driver image has been found, it can
be loaded into system memory with the boot service EFI_BOOT_SERVICES.LoadImage().
LoadImage() loads a PE/COFF formatted image into system memory. A handle is created for the driver,
and a Loaded Image Protocol instance is placed on that handle. A handle that contains a Loaded Image
Protocol instance is called an Image Handle. At this point, the driver has not been started. It is just sitting
in memory waiting to be started. Figure 8 shows the state of an image handle for a driver after
LoadImage() has been called.

Figure 8. Image Handle

After a driver has been loaded with the boot service LoadImage(), it must be started with the boot
service EFI_BOOT_SERVICES.StartImage(). This is true of all types of UEFI Applications and UEFI
Drivers that can be loaded and started on an UEFI-compliant system. The entry point for a driver that
follows the UEFI Driver Model must follow some strict rules. First, it is not allowed to touch any hardware.
Instead, the driver is only allowed to install protocol instances onto its own Image Handle. A driver that
follows the UEFI Driver Model is required to install an instance of the Driver Binding Protocol onto its own
Image Handle. It may optionally install the Driver Configuration Protocol, the Driver Diagnostics Protocol,
or the Component Name Protocol. In addition, if a driver wishes to be unloadable it may optionally
update the Loaded Image Protocol (see Section 9) to provide its own Unload() function. Finally, if a
driver needs to perform any special operations when the boot service
EFI_BOOT_SERVICES.ExitBootServices() is called, it may optionally create an event with a
notification function that is triggered when the boot service ExitBootServices() is called. An Image
Handle that contains a Driver Binding Protocol instance is known as a Driver Image Handle. Figure 9

Image Handle

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

OM13148

EFI_LOADED_IMAGE_PROTOCOL
UEFI Forum, Inc. March 2019 53

UEFI Specification, Version 2.8 Overview
shows a possible configuration for the Image Handle from Figure 8 after the boot service StartImage()
has been called.

Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will be
loaded and started, but they will all be waiting to be told to manage one or more controllers in the
system. A platform component, like the Boot Manager, is responsible for managing the connection of
drivers to controllers. However, before even the first connection can be made, there has to be some
initial collection of controllers for the drivers to manage. This initial collection of controllers is known as
the Host Bus Controllers. The I/O abstractions that the Host Bus Controllers provide are produced by
firmware components that are outside the scope of the UEFI Driver Model. The device handles for the
Host Bus Controllers and the I/O abstraction for each one must be produced by the core firmware on the
platform, or a driver that may not follow the UEFI Driver Model. See the PCI Root Bridge I/O Protocol
Specification for an example of an I/O abstraction for PCI buses.

A platform can be viewed as a set of processors and a set of core chipset components that may produce
one or more host buses. Figure 10 shows a platform with n processors (CPUs), and a set of core chipset
components that produce m host bridges.

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_LOADED_IMAGE_PROTOCOL

Image Handle

EFI _DRIVER _FAM ILY_OVERRIDE _PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional

Optional

Optional
UEFI Forum, Inc. March 2019 54

UEFI Specification, Version 2.8 Overview
Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol instance,
and a protocol instance that abstracts the I/O operations that the host bus can perform. For example, a
PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted by the PCI Root Bridge
I/O Protocol. Figure 11 shows an example device handle for a PCI Root Bridge.

Figure 11. PCI Root Bridge Device Handle

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the PCI
devices in the system. PCI Device Drivers should then be connected to these child handles, and produce I/
O abstractions that may be used to boot a UEFI compliant OS. The following section describes the
different types of drivers that can be implemented within the UEFI Driver Model. The UEFI Driver Model is
very flexible, so all the possible types of drivers will not be discussed here. Instead, the major types will
be covered that can be used as a starting point for designing and implementing additional driver types.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL
UEFI Forum, Inc. March 2019 55

UEFI Specification, Version 2.8 Overview
2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs additional protocol
interfaces on an existing device handle. The most common type of device driver will attach an I/O
abstraction to a device handle that was created by a bus driver. This I/O abstraction may be used to boot
a UEFI compliant OS. Some example I/O abstractions would include Simple Text Output, Simple Input,
Block I/O, and Simple Network Protocol. Figure 12 shows a device handle before and after a device driver
is connected to it. In this example, the device handle is a child of the XYZ Bus, so it contains an XYZ I/O
Protocol for the I/O services that the XYZ bus supports. It also contains a Device Path Protocol that was
placed there by the XYZ Bus Driver. The Device Path Protocol is not required for all device handles. It is
only required for device handles that represent physical devices in the system. Handles for virtual devices
will not contain a Device Path Protocol.

Figure 12. Connecting Device Drivers

The device driver that connects to the device handle in Figure 12 must have installed a Driver Binding
Protocol on its own image handle. The Driver Binding Protocol (see Section 11.1) contains three functions
called Supported(), Start(), and Stop(). The Supported() function tests to see if the driver
supports a given controller. In this example, the driver will check to see if the device handle supports the
Device Path Protocol and the XYZ I/O Protocol. If a driver’s Supported() function passes, then the
driver can be connected to the controller by calling the driver’s Start() function. The Start()
function is what actually adds the additional I/O protocols to a device handle. In this example, the Block I/
O Protocol is being installed. To provide symmetry, the Driver Binding Protocol also has a Stop()

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

OM13152

Stop()
Start()

Installed by Start()
Uninstalled by Stop()
UEFI Forum, Inc. March 2019 56

UEFI Specification, Version 2.8 Overview
function that forces the driver to stop managing a device handle. This will cause the device driver to
uninstall any protocol interfaces that were installed in Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are required to
make use of the boot service EFI_BOOT_SERVICES.OpenProtocol() to get a protocol interface and
the boot service EFI_BOOT_SERVICES.CloseProtocol() to release a protocol interface.
OpenProtocol() and CloseProtocol() update the handle database maintained by the system
firmware to track which drivers are consuming protocol interfaces. The information in the handle
database can be used to retrieve information about both drivers and controllers. The new boot service
EFI_BOOT_SERVICES.OpenProtocolInformation() can be used to get the list of components that
are currently consuming a specific protocol interface.

2.5.5 Bus Drivers

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of view. The only
difference is that a bus driver creates new device handles for the child controllers that the bus driver
discovers on its bus. As a result, bus drivers are slightly more complex than device drivers, but this in turn
simplifies the design and implementation of device drivers. There are two major types of bus drivers. The
first creates handles for all child controllers on the first call to Start(). The other type allows the
handles for the child controllers to be created across multiple calls to Start(). This second type of bus
driver is very useful in supporting a rapid boot capability. It allows a few child handles or even one child
handle to be created. On buses that take a long time to enumerate all of their children (e.g. SCSI), this can
lead to a very large timesaving in booting a platform. Figure 13 shows the tree structure of a bus
controller before and after Start() is called. The dashed line coming into the bus controller node
represents a link to the bus controller’s parent controller. If the bus controller is a Host Bus Controller,
then it will not have a parent controller. Nodes A, B, C ,D, and E represent the child controllers of the bus
controller.

Figure 13. Connecting Bus Drivers

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E
UEFI Forum, Inc. March 2019 57

UEFI Specification, Version 2.8 Overview
A bus driver that supports creating one child on each call to Start() might choose to create child C first,
and then child E, and then the remaining children A, B, and D. The Supported(), Start(), and Stop()
functions of the Driver Binding Protocol are flexible enough to allow this type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum, it must
install a protocol interface that provides an I/O abstraction of the bus’s services to the child controllers. If
the bus driver creates a child handle that represents a physical device, then the bus driver must also
install a Device Path Protocol instance onto the child handle. A bus driver may optionally install a Bus
Specific Driver Override Protocol onto each child handle. This protocol is used when drivers are
connected to the child controllers. The boot service EFI_BOOT_SERVICES.ConnectController()
uses architecturally defined precedence rules to choose the best set of drivers for a given controller. The
Bus Specific Driver Override Protocol has higher precedence than a general driver search algorithm, and
lower precedence than platform overrides. An example of a bus specific driver selection occurs with PCI.
A PCI Bus Driver gives a driver stored in a PCI controller’s option ROM a higher precedence than drivers
stored elsewhere in the platform. Figure 14 shows an example child device handle that was created by
the XYZ Bus Driver that supports a bus specific driver override mechanism.

Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the UEFI
Boot Manager, but other implementations are possible. The boot services
EFI_BOOT_SERVICES.ConnectController() and
EFI_BOOT_SERVICES.DisconnectController() can be used by the platform firmware to
determine which controllers get started and which ones do not. If the platform wishes to perform system
diagnostics or install an operating system, then it may choose to connect drivers to all possible boot
devices. If a platform wishes to boot a preinstalled operating system, it may choose to only connect
drivers to the devices that are required to boot the selected operating system. The UEFI Driver Model
supports both these modes of operation through the boot services ConnectController() and
DisconnectController(). In addition, since the platform component that is in charge of booting the

OM13154

Optional

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
UEFI Forum, Inc. March 2019 58

UEFI Specification, Version 2.8 Overview
platform has to work with device paths for console devices and boot options, all of the services and
protocols involved in the UEFI Driver Model are optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles and
gain access to a boot device, the OS present device drivers cannot assume that a UEFI driver for a device
has been executed. The presence of a UEFI driver in the system firmware or in an option ROM does not
guarantee that the UEFI driver will be loaded, executed, or allowed to manage any devices in a platform.
All OS present device drivers must be able to handle devices that have been managed by a UEFI driver
and devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol. This is
similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives the platform
firmware the highest priority when deciding which drivers are connected to which controllers. The
Platform Driver Override Protocol is attached to a handle in the system. The boot service
ConnectController() will make use of this protocol if it is present in the system.

2.5.7 Hot-Plug Events

In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any time,
it is important to make sure that it is possible to describe these types of buses in the UEFI Driver Model. It
is up to the bus driver of a bus that supports the hot adding and removing of devices to provide support
for such events. For these types of buses, some of the platform management is going to have to move
into the bus drivers. For example, when a keyboard is hot added to a USB bus on a platform, the end user
would expect the keyboard to be active. A USB Bus driver could detect the hot-add event and create a
child handle for the keyboard device. However, because drivers are not connected to controllers unless
EFI_BOOT_SERVICES.ConnectController() is called, the keyboard would not become an active
input device. Making the keyboard driver active requires the USB Bus driver to call
ConnectController() when a hot-add event occurs. In addition, the USB Bus Driver would have to
call EFI_BOOT_SERVICES.DisconnectController()when a hot-remove event occurs. If
EFI_BOOT_SERVICES.DisconnectController() returns an error the USB Bus Driver needs to retry
the EFI_BOOT_SERVICES.DisconnectController() from a timer event until it succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be removed
without any notice. This means that the Stop() functions of USB device drivers will have to deal with
shutting down a driver for a device that is no longer present in the system. As a result, any outstanding I/
O requests will have to be flushed without actually being able to touch the device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers and
device drivers. Adding this support is up to the driver writer, so the extra complexity and size of the driver
will need to be weighed against the need for the feature in the preboot environment.

2.5.8 EFI Services Binding

The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and simple
combinations of software services that layer on top of hardware devices. However, the UEFI driver Model
does not map well onto complex combinations of software services. As a result, an additional set of
complementary protocols are required for more complex combinations of software services.

Figure 15 contains three examples showing the different ways that software services relate to each
other. In the first two cases, each service consumes one or more other services, and at most one other
UEFI Forum, Inc. March 2019 59

UEFI Specification, Version 2.8 Overview
service consumes all of the services. Case #3 differs because two different services consume service A.
The EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but it cannot be used to
model case #3 because of the way that the UEFI Boot Service OpenProtocol()behaves. When used
with the BY_DRIVER open mode, OpenProtocol()allows each protocol to have only at most one
consumer. This feature is very useful and prevents multiple drivers from attempting to manage the same
controller. However, it makes it difficult to produce sets of software services that look like case #3.

Figure 15. Software Service Relationships

The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that allows protocols to have more
than one consumer. The EFI_SERVICE_BINDING_PROTOCOL is used with the
EFI_DRIVER_BINDING_PROTOCOL. A UEFI driver that produces protocols that need to be available to
more than one consumer at the same time will produce both the EFI_DRIVER_BINDING_PROTOCOL
and the EFI_SERVICE_BINDING_PROTOCOL. This type of driver is a hybrid driver that will produce the
EFI_DRIVER_BINDING_PROTOCOL in its driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started. The
EFI_SERVICE_BINDING_PROTOCOL is slightly different from other protocols defined in the UEFI
Specification. It does not have a GUID associated with it. Instead, this protocol instance structure actually
represents a family of protocols. Each software service driver that requires an
EFI_SERVICE_BINDING_PROTOCOL instance will be required to generate a new GUID for its own type
of EFI_SERVICE_BINDING_PROTOCOL. This requirement is why the various network protocols in this
specification contain two GUIDs. One is the EFI_SERVICE_BINDING_PROTOCOL GUID for that network
protocol, and the other GUID is for the protocol that contains the specific member services produced by
the network driver. The mechanism defined here is not limited to network protocol drivers. It can be
applied to any set of protocols that the EFI_DRIVER_BINDING_PROTOCOL cannot directly map because
the protocols contain one or more relationships like case #3 in Figure 15.

Neither the EFI_DRIVER_BINDING_PROTOCOL nor the combination of the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL can handle circular

A

B

C

Case #1: Linear Stack

A

B C

Case #2: Multiple Dependencies

B C

A

Case #3: Multiple Consumers
UEFI Forum, Inc. March 2019 60

UEFI Specification, Version 2.8 Overview
dependencies. There are methods to allow circular references, but they require that the circular link be
present for short periods of time. When the protocols across the circular link are used, these methods
also require that the protocol must be opened with an open mode of EXCLUSIVE, so that any attempts
to deconstruct the set of protocols with a call to DisconnectController() will fail. As soon as the
driver is finished with the protocol across the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation. However, there are certain requirements on
which elements of this specification must be implemented to ensure that operating system loaders and
other code designed to run with UEFI boot services can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches the
element name. For required elements however, the definition may in a few cases not be entirely self
contained in the section that is named for the particular element. In implementing required elements,
care should be taken to cover all the semantics defined in this specification that relate to the particular
element.

2.6.1 Required Elements

Table 13 lists the required elements. Any system that is designed to conform to this specification must
provide a complete implementation of all these elements. This means that all the required service
functions and protocols must be present and the implementation must deliver the full semantics defined
in the specification for all combinations of calls and parameters. Implementers of applications, drivers or
operating system loaders that are designed to run on a broad range of systems conforming to the UEFI
specification may assume that all such systems implement all the required elements.

A system vendor may choose not to implement all the required elements, for example on specialized
system configurations that do not support all the services and functionality implied by the required
elements. However, since most applications, drivers and operating system loaders are written assuming
all the required elements are present on a system that implements the UEFI specification; any such code
is likely to require explicit customization to run on a less than complete implementation of the required
elements in this specification.

Table 13. Required UEFI Implementation Elements

Element Description

EFI_SYSTEM_TABLE Provides access to UEFI Boot Services, UEFI Runtime Services, consoles,
firmware vendor information, and the system configuration tables.

EFI_BOOT_SERVICES All functions defined as boot services.

EFI_RUNTIME_SERVICES All functions defined as runtime services.

EFI_LOADED_IMAGE_PROTOCOL Provides information on the image.

EFI_LOADED_IMAGE_DEVICE_PA
TH_PROTOCOL

Specifies the device path that was used when a PE/COFF image was
loaded through the EFI Boot Service LoadImage().

EFI_DEVICE_PATH_PROTOCOL Provides the location of the device.
UEFI Forum, Inc. March 2019 61

UEFI Specification, Version 2.8 Overview
2.6.2 Platform-Specific Elements

There are a number of elements that can be added or removed depending on the specific features that a
platform requires. Platform firmware developers are required to implement UEFI elements based upon
the features included. The following is a list of potential platform features and the elements that are
required for each feature type:

1. If a platform includes console devices, the EFI_SIMPLE_TEXT_INPUT_PROTOCOL,
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL, and EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
must be implemented.

2. If a platform includes a configuration infrastructure, then the EFI_HII_DATABASE_PROTOCOL,
EFI_HII_STRING_PROTOCOL, EFI_HII_CONFIG_ROUTING_PROTOCOL, and
EFI_HII_CONFIG_ACCESS_PROTOCOL are required. If you support bitmapped fonts, you must
support EFI_HII_FONT_PROTOCOL.

3. If a platform includes graphical console devices, then the EFI_GRAPHICS_OUTPUT_PROTOCOL,
EFI_EDID_DISCOVERED_PROTOCOL, and EFI_EDID_ACTIVE_PROTOCOL must be
implemented. In order to support the EFI_GRAPHICS_OUTPUT_PROTOCOL, a platform must
contain a driver to consume EFI_GRAPHICS_OUTPUT_PROTOCOL and produce
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL even if the EFI_GRAPHICS_OUTPUT_PROTOCOL is
produced by an external driver.

4. If a platform includes a pointer device as part of its console support, the
EFI_SIMPLE_POINTER_PROTOCOL must be implemented.

5. If a platform includes the ability to boot from a disk device, then the EFI_BLOCK_IO_PROTOCOL, the
EFI_DISK_IO_PROTOCOL, the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, and the
EFI_UNICODE_COLLATION_PROTOCOL are required. In addition, partition support for MBR, GPT,
and El Torito must be implemented. For disk devices supporting the security commands of the SPC-4 or
ATA8-ACS command set, the EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is also
required._An external driver may produce the Block I/O Protocol and the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL. All other protocols required to boot from a disk
device must be carried as part of the platform.

6. If a platform includes the ability to perform a TFTP-based boot from a network device, then the
EFI_PXE_BASE_CODE_PROTOCOL is required. The platform must be prepared to produce this
protocol on any of EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL (UNDI),
EFI_SIMPLE_NETWORK_PROTOCOL, or the EFI_MANAGED_NETWORK_PROTOCOL If a platform
includes the ability to validate a boot image received through a network device, it is also required that
image verification be supported, including SetupMode equal zero and the boot image hash or a
verification certificate corresponding to the image exist in the 'db' variable and not in the 'dbx' variable.
An external driver may produce the UNDI interface. All other protocols required to boot from a network
device must be carried by the platform.

7. If a platform supports UEFI general purpose network applications, then the
EFI_MANAGED_NETWORK_PROTOCOL,
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL, EFI_ARP_PROTOCOL,
EFI_ARP_SERVICE_BINDING_PROTOCOL, EFI_DHCP4_PROTOCOL,
EFI_DHCP4_SERVICE_BINDING_PROTOCOL, EFI_TCP4_PROTOCOL,
EFI_TCP4_SERVICE_BINDING_PROTOCOL, EFI_IP4_PROTOCOL,
EFI_IP4_SERVICE_BINDING_PROTOCOL, EFI_IP4_CONFIG2_PROTOCOL,

EFI_DECOMPRESS_PROTOCOL Protocol interfaces to decompress an image that was compressed using
the EFI Compression Algorithm.

EFI_DEVICE_PATH_UTILITIES_
PROTOCOL

Protocol interfaces to create and manipulate UEFI device paths and
UEFI device path nodes.

Element Description
UEFI Forum, Inc. March 2019 62

UEFI Specification, Version 2.8 Overview
EFI_UDP4_PROTOCOL, and EFI_UDP4_SERVICE_BINDING_PROTOCOL are required. If
additional IPv6 support is needed for the platform, then EFI_DHCP6_PROTOCOL,
EFI_DHCP6_SERVICE_BINDING_PROTOCOL, EFI_TCP6_PROTOCOL,
EFI_TCP6_SERVICE_BINDING_PROTOCOL, EFI_IP6_PROTOCOL,
EFI_IP6_SERVICE_BINDING_PROTOCOL, EFI_IP6_CONFIG_PROTOCOL,
EFI_UDP6_PROTOCOL, and EFI_UDP6_SERVICE_BINDING_PROTOCOL are additionally
required. If the network application requires DNS capability,
EFI_DNS4_SERVICE_BINDING_PROTOCOL and EFI_DNS4_PROTOCOL are required for the IPv4
stack. EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL are required for
the IPv6 stack. If the network environment requires TLS feature,
EFI_TLS_SERVICE_BINDING_PROTOCOL,EFI_TLS_PROTOCOL and
EFI_TLS_CONFIGURATION_PROTOCOL are required. If the network environment requires IPSEC
feature, EFI_IPSEC_CONFIG_PROTOCOL and EFI_IPSEC2_PROTOCOL are required. If the
network environment requires VLAN features, EFI_VLAN_CONFIG_PROTOCOL is required.

8. If a platform includes a byte-stream device such as a UART, then the EFI_SERIAL_IO_PROTOCOL
must be implemented.

9. If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, the
EFI_PCI_IO_PROTOCOL, must be implemented.

10. If a platform includes USB bus support, then the EFI_USB2_HC_PROTOCOL and the
EFI_USB_IO_PROTOCOL must be implemented. An external device can support USB by producing a
USB Host Controller Protocol.

11. . If a platform includes an NVM Express controller, then the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL must be implemented.

12. If a platform supports booting from a block-oriented NVM Express controller, then the
EFI_BLOCK_IO_PROTOCOL must be implemented. An external driver may produce the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL. All other protocols required to boot from an NVM
Express subsystem must be carried by the platform.

13. If a platform includes an I/O subsystem that utilizes SCSI command packets, then the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be implemented.

14. If a platform supports booting from a block oriented SCSI peripheral, then the
EFI_SCSI_IO_PROTOCOL and EFI_BLOCK_IO_PROTOCOL must be implemented. An external
driver may produce the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. All other protocols required to
boot from a SCSI I/O subsystem must be carried by the platform.

15. If a platform supports booting from an iSCSI peripheral, then the
EFI_ISCSI_INITIATOR_NAME_PROTOCOL and the
EFI_AUTHENTICATION_INFO_PROTOCOL must be implemented.

16. If a platform includes debugging capabilities, then the EFI_DEBUG_SUPPORT_PROTOCOL, the
EFI_DEBUGPORT_PROTOCOL, and the EFI Image Info Table must be implemented.

17. If a platform includes the ability to override the default driver to the controller matching algorithm
provided by the UEFI Driver Model, then the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
must be implemented.

18. If a platform includes an I/O subsystem that utilizes ATA command packets, then the
EFI_ATA_PASS_THRU_PROTOCOL must be implemented

19. If a platform supports option ROMs from devices not permanently attached to the platform and it
supports the ability to authenticate those option ROMs, then it must support the option ROM validation
methods described in Network Protocols — UDP and MTFTP and the authenticated EFI variables
described in Section 8.1.1.

20. If a platform includes the ability to authenticate UEFI images and the platform potentially supports more
than one OS loader, it must support the methods described in Network Protocols — UDP and MTFTP and
the authenticated UEFI variables described in Section 8.1.1.

21. EBC support is no longer required as of UEFI Specification version 2.8. If an EBC interpreter is
implemented, then it must produce the EFI_EBC_PROTOCOL interface.
UEFI Forum, Inc. March 2019 63

UEFI Specification, Version 2.8 Overview
22. If a platform includes the ability to perform a HTTP-based boot from a network device, then the
EFI_HTTP_SERVICE_BINDING_PROTOCOL, EFI_HTTP_PROTOCOL and
EFI_HTTP_UTILITIES_PROTOCOL are required. If it includes the ability to perform a HTTPS-based
boot from network device, besides above protocols, EFI_TLS_SERVICE_BINDING_PROTOCOL,
EFI_TLS_PROTOCOL and EFI_TLS_CONFIGURATION_PROTOCOL are also required. If it includes
the ability to perform a HTTP(S)-based boot with DNS feature, then
EFI_DNS4_SERVICE_BINDING_PROTOCOL, EFI_DNS4_PROTOCOL are required for the IPv4
stack; EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL are required for
the IPv6 stack.

23. If a platform includes the ability to perform a wireless boot from a network device with EAP feature, and
if this platform provides a standalone wireless EAP driver, then EFI_EAP_PROTOCOL,
EFI_EAP_CONFIGURATION_PROTOCOL, and EFI_EAP_MANAGEMENT2_PROTOCOL are
required; if the platform provides a standalone wireless supplicant, then
EFI_SUPPLICANT_PROTOCOL and EFI_EAP_CONFIGURATION_PROTOCOL are required. If it
includes the ability to perform a wireless boot with TLS feature, then
EFI_TLS_SERVICE_BINDING_PROTOCOL, EFI_TLS_PROTOCOL and
EFI_TLS_CONFIGURATION_PROTOCOL are required.

24. If a platform supports classic Bluetooth, then EFI_BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_IO_PROTOCOL, and EFI_BLUETOOTH_CONFIG_PROTOCOL must be
implemented, and EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL may be implemented. If a platform
supports Bluetooth Smart (Bluetooth Low Energy), then EFI_BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL and EFI_BLUETOOTH_LE_CONFIG_PROTOCOL
must be implemented. If a platform supports both Bluetooth classic and BluetoothLE, then both above
requirements should be satisfied.

25. If a platform supports RESTful communication over HTTP or over an in-band path to a BMC, then the
EFI_REST_PROTOCOL or EFI_REST_EX_PROTOCOL must be implemented. If
EFI_REST_EX_PROTOCOL is implemented, EFI_REST_EX_SERVICE_BINDING_PROTOCOL must
be implemented as well. If a platform supports Redfish communication over HTTP or over an in-band
path to a BMC, the EFI_REDFISH_DISCOVER_PROTOCOL and
EFI_REST_JSON_STRUCTURE_PROTOCOL may be implemented.

26. If a platform includes the ability to use a hardware feature to create high quality random numbers, this
capability should be exposed by instance of EFI_RNG_PROTOCOL with at least one EFI RNG Algorithm
supported.

27. If a platform permits the installation of Load Option Variables, (Boot####, or Driver####, or
SysPrep####), the platform must support and recognize all defined values for Attributes within the
variable and report these capabilities in BootOptionSupport. If a platform supports installation of Load
Option Variables of type Driver####, all installed Driver#### variables must be processed and the
indicated driver loaded and initialized during every boot. And all installed SysPrep#### options must be
processed prior to processing Boot#### options.

28. If the platform supports UEFI secure boot as described in Secure Boot and Driver Signing , the platform
must provide the PKCS verification functions described in Section 37.4.

29. If a platform includes an I/O subsystem that utilizes SD or eMMC command packets, then the
EFI_SD_MMC_PASS_THRU_PROTOCOL must be implemented.

30. If a platform includes the ability to create/destroy a specified RAM disk, the
EFI_RAM_DISK_PROTOCOL must be implemented and only one instance of this protocol exists.

31. If a platform includes a mass storage device which supports hardware-based erase on a specified range,
then the EFI_ERASE_BLOCK_PROTOCOL must be implemented.

32. If a platform includes the ability to register for notifications when a call to ResetSystem is called, then
the EFI_RESET_NOTIFICATION_PROTOCOL must be implemented.

33. If a platform includes UFS devices, the EFI_UFS_DEVICE_CONFIG_PROTOCOL must be
implemented.

34. If a platform cannot support calls defined in EFI_RUNTIME_SERVICES after
ExitBootServices() is called, that platform may provide implementations of functions that return
EFI_UNSUPPORTED during runtime services. On such systems, before ExitBootServices() is
UEFI Forum, Inc. March 2019 64

UEFI Specification, Version 2.8 Overview
called, EFI_RUNTIME_SERVICES.GetVariable() must be capable of providing the
RuntimeServicesSupported variable.

Note: Some of the required protocol instances are created by the corresponding Service Binding
Protocol. For example, EFI_IP4_PROTOCOL is created by EFI_IP4_SERVICE_BINDING_PROTOCOL.
Please refer to the corresponding sections of Service Binding Protocol for the details.

2.6.3 Driver-Specific Elements

There are a number of UEFI elements that can be added or removed depending on the features that a
specific driver requires. Drivers can be implemented by platform firmware developers to support buses
and devices in a specific platform. Drivers can also be implemented by add-in card vendors for devices
that might be integrated into the platform hardware or added to a platform through an expansion slot.

 The following list includes possible driver features, and the UEFI elements that are required for each
feature type:

1. If a driver follows the driver model of this specification, the EFI_DRIVER_BINDING_PROTOCOL
must be implemented. It is strongly recommended that all drivers that follow the driver model of this
specification also implement the EFI_COMPONENT_NAME2_PROTOCOL.

2. If a driver requires configuration information, the driver must use the
EFI_HII_DATABASE_PROTOCOL. A driver should not otherwise display information to the user or
request information from the user.

3. If a driver requires diagnostics, the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL must be
implemented. In order to support low boot times, limit diagnostics during normal boots. Time
consuming diagnostics should be deferred until the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is
invoked.

4. If a bus supports devices that are able to provide containers for drivers (e.g. option ROMs), then the bus
driver for that bus type must implement the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.

5. If a driver is written for a console output device, then the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
must be implemented.

6. If a driver is written for a graphical console output device, then the
EFI_GRAPHICS_OUTPUT_PROTOCOL, EFI_EDID_DISCOVERED_PROTOCOL and
EFI_EDID_ACTIVE_PROTOCOL must be implemented.

7. If a driver is written for a console input device, then the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
and EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL must be implemented.

8. If a driver is written for a pointer device, then the EFI_SIMPLE_POINTER_PROTOCOL must be
implemented.

9. If a driver is written for a network device, then the
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL, EFI_SIMPLE_NETWORK_PROTOCOL
or EFI_MANAGED_NETWORK_PROTOCOL must be implemented. If VLAN is supported in hardware,
then driver for the network device may implement the EFI_VLAN_CONFIG_PROTOCOL. If a network
device chooses to only produce the EFI_MANAGED_NETWORK_PROTOCOL, then the driver for the
network device must implement the EFI_VLAN_CONFIG_PROTOCOL. If a driver is written for a
network device to supply wireless feature, besides above protocols,
EFI_ADAPTER_INFORMATION_PROTOCOL must be implemented. If the wireless driver does not
provide user configuration capability, EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL must
be implemented. If the wireless driver is written for a platform which provides a standalone wireless EAP
driver, EFI_EAP_PROTOCOL must be implemented.

10. If a driver is written for a disk device, then the EFI_BLOCK_IO_PROTOCOL and the
EFI_BLOCK_IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set. In addition, for devices that
UEFI Forum, Inc. March 2019 65

UEFI Specification, Version 2.8 Overview
support incline encryption in the host storage controller, the EFI_BLOCK_IO_CRYPTO_PROTOCOL
must be supported.

11. If a driver is written for a disk device, then the EFI_BLOCK_IO_PROTOCOL and the
EFI_BLOCK_IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set.

12. If a driver is written for a device that is not a block oriented device but one that can provide a file
system-like interface, then the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must be implemented.

13. If a driver is written for a PCI root bridge, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and
the EFI_PCI_IO_PROTOCOL must be implemented.

14. If a driver is written for an NVM Express controller, then the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL must be implemented.

15. If a driver is written for a USB host controller, then the EFI_USB2_HC_PROTOCOL and the
EFI_USB_IO_PROTOCOL must be implemented.If a driver is written for a USB host controller, then
the must be implemented.

16. If a driver is written for a SCSI controller, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL must
be implemented.

17. If a driver is digitally signed, it must embed the digital signature in the PE/COFF image as described in
“Embedded Signatures” on page 1705.

18. If a driver is written for a boot device that is not a block-oriented device, a file system-based device, or a
console device, then the EFI_LOAD_FILE2_PROTOCOL must be implemented.

19. If a driver follows the driver model of this specification, and the driver wants to produce warning or error
messages for the user, then the EFI_DRIVER_HEALTH_PROTOCOL must be used to produce those
messages. The Boot Manager may optionally display the messages to the user.

20. If a driver follows the driver model of this specification, and the driver needs to perform a repair
operation that is not part of the normal initialization sequence, and that repair operation requires an
extended period of time, then the EFI_DRIVER_HEALTH_PROTOCOL must be used to provide the
repair feature. If the Boot Manager detects a boot device that requires a repair operation, then the Boot
Manager must use the EFI_DRIVER_HEALTH_PROTOCOL to perform the repair operation. The Boot
Manager can optionally display progress indicators as the repair operation is performed by the driver.

21. If a driver follows the driver model of this specification, and the driver requires the user to make
software and/or hardware configuration changes before the boot devices that the driver manages can
be used, then the EFI_DRIVER_HEALTH_PROTOCOL must be produced. If the Boot Manager
detects a boot device that requires software and/or hardware configuration changes to make the boot
device usable, then the Boot Manager may optionally allow the user to make those configuration
changes.

22. If a driver is written for an ATA controller, then the EFI_ATA_PASS_THRU_PROTOCOL must be
implemented.

23. If a driver follows the driver model of this specification, and the driver wants to be used with higher
priority than the Bus Specific Driver Override Protocol when selecting the best driver for controller, then
the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL must be produced on the same handle as the
EFI_DRIVER_BINDING_PROTOCOL.

24. If a driver supports firmware management by an external agent or application, then the
EFI_FIRMWARE_MANAGEMENT_PROTOCOL must be used to support firmware management.

25. If a driver follows the driver model of this specification and a driver is a device driver as defined in
Section 2.5, it must perform bus transactions via the bus abstraction protocol produced by a parent bus
driver. Thus a driver for a device that conforms to the PCI specification must use
EFI_PCI_IO_PROTOCOL for all PCI memory space, PCI I/O, PCI configuration space, and DMA
operations.

26. If a driver is written for a classic Bluetooth controller, then EFI_BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_IO_PROTOCOL and EFI_BLUETOOTH_CONFIG_PROTOCOL must be
implemented, and EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL may be implemented. If a driver
written for a Bluetooth Smart (Bluetooth Low Energy) controller, then
UEFI Forum, Inc. March 2019 66

UEFI Specification, Version 2.8 Overview
EFI_BLUETOOTH_HC_PROTOCOL, EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL and
EFI_BLUETOOTH_LE_CONFIG_PROTOCOL must be implemented. If a driver supports both
Bluetooth classic and BluetoothLE, then both above requirements should be satisfied.

27. If a driver is written for an SD controller or eMMC controller, then the
EFI_SD_MMC_PASS_THRU_PROTOCOL must be implemented.

28. If a driver is written for a UFS device, then EFI_UFS_DEVICE_CONFIG_PROTOCOL must be
implemented.

2.6.4 Extensions to this Specification published elsewhere

This specification has been extended over time to include support for new devices and technologies. As
the name of the specification implies, the original intent in its definition was to create a baseline for
firmware interfaces that is extensible without the need to include extensions in the main body of this
specification.

Readers of this specification may find that a feature or type of device is not treated by the specification.
This does not necessarily mean that there is no agreed "standard" way to support the feature or device in
implementations that claim conformance to this Specification. On occasion, it may be more appropriate
for other standards organizations to publish their own extensions that are designed to be used in concert
with the definitions presented here. This may for example allow support for new features in a more
timely fashion than would be accomplished by waiting for a revision to this specification or perhaps that
such support is defined by a group with a specific expertise in the subject area. Readers looking for means
to access features or devices that are not treated in this document are therefore recommended to
inquire of appropriate standards groups to ascertain if appropriate extension publications already exist
before creating their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of extension publications
that are compatible with and designed for use with this specification. Such extensions include:

Developers Interface Guide for Itanium® Architecture Based Servers: published and
hosted by the DIG64 group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “Developers Interface Guide for Itanium® Architecture Based
Servers”). This document is a set of technical guidelines that define hardware,
firmware, and operating system compatibility for Itanium™-based servers;

TCG EFI Platform Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “TCG EFI Platform Specification”). This document is about the processes that
boot an EFI platform and boot an OS on that platform. Specifically, this specification
contains the requirements for measuring boot events into TPM PCRs and adding
boot event entries into the Event Log.

TCG EFI Protocol Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “TCG EFI Protocol Specification”). This document defines a standard
interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have been created
since the last revision of this document.
UEFI Forum, Inc. March 2019 67

UEFI Specification, Version 2.8
3 - Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying architecturally
defined global NVRAM variables. The boot manager will attempt to load UEFI drivers and UEFI
applications (including UEFI OS boot loaders) in an order defined by the global NVRAM variables. The
platform firmware must use the boot order specified in the global NVRAM variables for normal boot. The
platform firmware may add extra boot options or remove invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an exceptional
condition is discovered in the firmware boot process. One example of a value added feature would be not
loading a UEFI driver if booting failed the first time the driver was loaded. Another example would be
booting to an OEM-defined diagnostic environment if a critical error was discovered in the boot process.

The boot sequence for UEFI consists of the following:

• The boot order list is read from a globally defined NVRAM variable. Modifications to this
variable are only guaranteed to take effect after the next platform reset. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a name for the boot option that can be displayed to a user.

• The variable also contains a pointer to the hardware device and to a file on that hardware
device that contains the UEFI image to be loaded.

• The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by higher
level software when it writes to a global NVRAM variable to set the platform firmware boot policy. This
information could be used to define the location of the OS kernel if it was different than the location of
the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that determines which
drivers and applications should be explicitly loaded and when. Once compliant firmware is initialized, it
passes control to the boot manager. The boot manager is then responsible for determining what to load
and any interactions with the user that may be required to make such a decision.

The actions taken by the boot manager depend upon the system type and the policies set by the system
designer. For systems that allow the installation of new Boot Variables (Section 3.4), the Boot Manager
must automatically or upon the request of the loaded item, initialize at least one system console, as well
as perform all required initialization of the device indicated within the primary boot target. For such
systems, the Boot Manager is also required to honor the priorities set in BootOrder variable.

In particular, likely implementation options might include any console interface concerning boot,
integrated platform management of boot selections, and possible knowledge of other internal
applications or recovery drivers that may be integrated into the system through the boot manager.
UEFI Forum, Inc. March 2019 68

UEFI Specification, Version 2.8 Boot Manager
3.1.1 Boot Manager Programming

Programmatic interaction with the boot manager is accomplished through globally defined variables. On
initialization the boot manager reads the values which comprise all of the published load options among
the UEFI environment variables. By using the SetVariable() function the data that contain these
environment variables can be modified. Such modifications are guaranteed to take effect after the next
system boot commences. However, boot manager implementations may choose to improve on this
guarantee and have changes take immediate effect for all subsequent accesses to the variables that
affect boot manager behavior without requiring any form of system reset

Each load option entry resides in a Boot####, Driver####, SysPrep####, OsRecovery#### or
PlatformRecovery#### variable where #### is replaced by a unique option number in printable
hexadecimal representation using the digits 0–9, and the upper case versions of the characters A–F
(0000–FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load options are then
logically ordered by an array of option numbers listed in the desired order. There are two such option
ordering lists when booting normally. The first is DriverOrder that orders the Driver#### load option
variables into their load order. The second is BootOrder that orders the Boot#### load options
variables into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the option
number of the new Boot#### variable would be added to the BootOrder ordered list and the
BootOrder variable would be rewritten. To change boot option on an existing Boot####, only the
Boot#### variable would need to be rewritten. A similar operation would be done to add, remove, or
modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS, platform firmware supports boot
manager menu, and if firmware is configured to boot in an interactive mode, the boot manager will stop
processing the BootOrder variable and present a boot manager menu to the user. If any of the above-
mentioned conditions is not satisfied, the next Boot#### in the BootOrder variable will be tried until
all possibilities are exhausted. In this case, boot option recovery must be performed (see Section 3.4).

The boot manager may perform automatic maintenance of the database variables. For example, it may
remove unreferenced load option variables or any load option variables that cannot be parsed, and it
may rewrite any ordered list to remove any load options that do not have corresponding load option
variables. The boot manager can also, at its own discretion, provide an administrator with the ability to
invoke manual maintenance operations as well. Examples include choosing the order of any or all load
options, activating or deactivating load options, initiating OS-defined or platform-defined recovery, etc.
In addition, if a platform intends to create PlatformRecovery####, before attempting to load and
execute any DriverOrder or BootOrder entries, the firmware must create any and all
PlatformRecovery#### variables (see Section 3.4.2). The firmware should not, under normal
operation, automatically remove any correctly formed Boot#### variable currently referenced by the
BootOrder or BootNext variables. Such removal should be limited to scenarios where the firmware is
guided by direct user interaction.

The contents of PlatformRecovery#### represent the final recovery options the firmware would
have attempted had recovery been initiated during the current boot, and need not include entries to
reflect contingencies such as significant hardware reconfiguration, or entries corresponding to specific
hardware that the firmware is not yet aware of.
UEFI Forum, Inc. March 2019 69

UEFI Specification, Version 2.8 Boot Manager
The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, See Section 32.4.

3.1.2 Load Option Processing

The boot manager is required to process the Driver load option entries before the Boot load option
entries. If the EFI_OS_INDICATIONS_START_OS_RECOVERY bit has been set in OsIndications, the
firmware shall attempt OS-defined recovery (see Section 3.4.1) rather than normal boot processing. If the
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit has been set in OsIndications, the
firmware shall attempt platform-defined recovery (see Section 3.4.2) rather than normal boot processing or
handling of the EFI_OS_INDICATIONS_START_OS_RECOVERY bit. In either case, both bits should be
cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot option.
After the BootNext boot option is tried, the normal BootOrder list is used. To prevent loops, the boot
manager deletes BootNext before transferring control to the preselected boot option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the firmware has
been instructed to attempt boot order recovery, the firmware must attempt boot option recovery (see
Section 3.4).

The boot manager must call EFI_BOOT_SERVICES.LoadImage() which supports at least
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL and EFI_LOAD_FILE_PROTOCOL for resolving load options. If
LoadImage() succeeds, the boot manager must enable the watchdog timer for 5 minutes by using the
EFI_BOOT_SERVICES.SetWatchdogTimer() boot service prior to calling
EFI_BOOT_SERVICES.StartImage(). If a boot option returns control to the boot manager, the boot
manager must disable the watchdog timer with an additional call to the SetWatchdogTimer() boot
service.

If the boot image is not loaded via EFI_BOOT_SERVICES.LoadImage() the boot manager is required
to check for a default application to boot. Searching for a default application to boot happens on both
removable and fixed media types. This search occurs when the device path of the boot image listed in any
boot option points directly to an EFI_SIMPLE_FILE_SYSTEM_PROTOCOL device and does not specify
the exact file to load. The file discovery method is explained in Section 3.4. The default media boot case
of a protocol other than EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is handled by the
EFI_LOAD_FILE_PROTOCOL for the target device path and does not need to be handled by the boot
manager.

The UEFI boot manager must support booting from a short-form device path that starts with the first
element being a USB WWID (see Table 66) or a USB Class (see Table 68) device path. For USB WWID, the
boot manager must use the device vendor ID, device product id, and serial number, and must match any
USB device in the system that contains this information. If more than one device matches the USB WWID
device path, the boot manager will pick one arbitrarily. For USB Class, the boot manager must use the
vendor ID, Product ID, Device Class, Device Subclass, and Device Protocol, and must match any USB
device in the system that contains this information. If any of the ID, Product ID, Device Class, Device
Subclass, or Device Protocol contain all F's (0xFFFF or 0xFF), this element is skipped for the purpose of
matching. If more than one device matches the USB Class device path, the boot manager will pick one
arbitrarily.
UEFI Forum, Inc. March 2019 70

UEFI Specification, Version 2.8 Boot Manager
The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 92). The boot manager must use the GUID or
signature and partition number in the hard drive device path to match it to a device in the system. If the
drive supports the GPT partitioning scheme the GUID in the hard drive media device path is compared
with the UniquePartitionGuid field of the GUID Partition Entry (see Table 22). If the drive supports
the PC-AT MBR scheme the signature in the hard drive media device path is compared with the
UniqueMBRSignature in the Legacy Master Boot Record (see Table 17). If a signature match is made,
then the partition number must also be matched. The hard drive device path can be appended to the
matching hardware device path and normal boot behavior can then be used. If more than one device
matches the hard drive device path, the boot manager will pick one arbitrarily. Thus the operating system
must ensure the uniqueness of the signatures on hard drives to guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts with the first
element being a File Path Media Device Path (see Table 95). When the boot manager attempts to boot a
short-form File Path Media Device Path, it will enumerate all removable media devices, followed by all
fixed media devices, creating boot options for each device. The boot option FilePathList[0] is constructed
by appending short-form File Path Media Device Path to the device path of a media. The order within
each group is undefined. These new boot options must not be saved to non volatile storage, and may not
be added to BootOrder. The boot manager will then attempt to boot from each boot option. If a device
does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports the
EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service ConnectController must be called
for this device with DriverImageHandle and RemainingDevicePath set to NULL and the Recursive
flag is set to TRUE. The firmware will then attempt to boot from any child handles produced using the
algorithms outlined above.

The boot manager must also support booting from a short-form device path that starts with the first
element being a URI Device Path (see Table 83). When the boot manager attempts to boot a short-form
URI Device Path, it could attempt to connect any device which will produce a device path protocol
including a URI device path node until it matches a device, or fail to match any device. The boot manager
will enumerate all LoadFile protocol instances, and invoke LoadFile protocol with FilePath set to
the short-form device path during the matching process.

3.1.3 Load Options

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte packed buffer of
variable length fields.

typedef struct _EFI_LOAD_OPTION {

 UINT32 Attributes;

 UINT16 FilePathListLength;

 // CHAR16 Description[];

 // EFI_DEVICE_PATH_PROTOCOL FilePathList[];

 // UINT8 OptionalData[];
} EFI_LOAD_OPTION;

Parameters

Attributes The attributes for this load option entry. All unused bits must be zero
and are reserved by the UEFI specification for future growth. See
“Related Definitions.”
UEFI Forum, Inc. March 2019 71

UEFI Specification, Version 2.8 Boot Manager
FilePathListLengthLength in bytes of the FilePathList. OptionalData starts at
offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of the
EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null character.

FilePathList A packed array of UEFI device paths. The first element of the array is
a device path that describes the device and location of the Image for
this load option. The FilePathList[0] is specific to the device
type. Other device paths may optionally exist in the FilePathList,
but their usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure. Because the size
of Description is arbitrary, this data structure is not guaranteed
to be aligned on a natural boundary. This data structure may have to
be copied to an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary data
buffer that is passed to the loaded image. If the field is zero bytes
long, a NULL pointer is passed to the loaded image. The number of
bytes in OptionalData can be computed by subtracting the
starting offset of OptionalData from total size in bytes of the
EFI_LOAD_OPTION.

Related Definitions

//***

// Attributes

//***

#define LOAD_OPTION_ACTIVE 0x00000001

#define LOAD_OPTION_FORCE_RECONNECT 0x00000002

#define LOAD_OPTION_HIDDEN 0x00000008

#define LOAD_OPTION_CATEGORY 0x00001F00

#define LOAD_OPTION_CATEGORY_BOOT 0x00000000

#define LOAD_OPTION_CATEGORY_APP 0x00000100

// All values 0x00000200-0x00001F00 are reserved

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the size of the
DataSize argument to the SetVariable() call that created the variable. When creating a new load
option, all undefined attribute bits must be written as zero. When updating a load option, all undefined
attribute bits must be preserved.

If a load option is marked as LOAD_OPTION_ACTIVE, the boot manager will attempt to boot
automatically using the device path information in the load option. This provides an easy way to disable
or enable load options without needing to delete and re-add them.

If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all of the UEFI
drivers in the system will be disconnected and reconnected after the last Driver#### load option is
processed. This allows a UEFI driver loaded with a Driver#### load option to override a UEFI driver that
was loaded prior to the execution of the UEFI Boot Manager.
UEFI Forum, Inc. March 2019 72

UEFI Specification, Version 2.8 Boot Manager
The executable indicated by FilePathList[0] in Driver#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER or
EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER otherwise the indicated executable will not be
entered for initialization.

The executable indicated by FilePathList[0] in SysPrep###, Boot####, or OsRecovery#### load
option must be of type EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION, otherwise the indicated
executable will not be entered.

The LOAD_OPTION_CATEGORY is a sub-field of Attributes that provides details to the boot manager to
describe how it should group the Boot#### load options. This field is ignored for variables of the form
Driver####, SysPrep####,or OsRecovery####.

Boot#### load options with LOAD_OPTION_CATEGORY set to LOAD_OPTION_CATEGORY_BOOT are
meant to be part of the normal boot processing.

Boot#### load options with LOAD_OPTION_CATEGORY set to LOAD_OPTION_CATEGORY_APP are
executables which are not part of the normal boot processing but can be optionally chosen for execution
if boot menu is provided, or via Hot Keys. See Section 3.1.6 for details.

Boot options with reserved category values, will be ignored by the boot manager.

If any Boot#### load option is marked as LOAD_OPTION_HIDDEN, then the load option will not appear
in the menu (if any) provided by the boot manager for load option selection.

3.1.4 Boot Manager Capabilities

The boot manager can report its capabilities through the global variable BootOptionSupport. If the
global variable is not present, then an installer or application must act as if a value of 0 was returned.

#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001

#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002

#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010

#define EFI_BOOT_OPTION_SUPPORT_COUNT 0x00000300

If EFI_BOOT_OPTION_SUPPORT_KEY is set then the boot manager supports launching of Boot####
load options using key presses. If EFI_BOOT_OPTION_SUPPORT_APP is set then the boot manager
supports boot options with LOAD_OPTION_CATEGORY_APP. If
EFI_BOOT_OPTION_SUPPORT_SYSPREP is set then the boot manager supports boot options of form
SysPrep####.

The value specified in EFI_BOOT_OPTION_SUPPORT_COUNT describes the maximum number of key
presses which the boot manager supports in the EFI_KEY_OPTION.KeyData.InputKeyCount. This
value is only valid if EFI_BOOT_OPTION_SUPPORT_KEY is set. Key sequences with more keys specified
are ignored.

3.1.5 Launching Boot#### Applications

The boot manager may support a separate category of Boot#### load option for applications. The boot
manager indicates that it supports this separate category by setting the
EFI_BOOT_OPTION_SUPPORT_APP in the BootOptionSupport global variable.
UEFI Forum, Inc. March 2019 73

UEFI Specification, Version 2.8 Boot Manager
When an application’s Boot#### option is being added to the BootOrder, the installer should clear
LOAD_OPTION_ACTIVE so that the boot manager does not attempt to automatically “boot” the
application. If the boot manager indicates that it supports a separate application category, as described
above, the installer should set LOAD_OPTION_CATEGORY_APP. If not, it should set
LOAD_OPTION_CATEGORY_BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys

The boot manager may support launching a Boot#### load option using a special key press. If so, the boot
manager reports this capability by setting EFI_BOOT_OPTION_SUPPORT_KEY in the BootOptionSupport
global variable.

A boot manager which supports key press launch reads the current key information from the console.
Then, if there was a key press, it compares the key returned against zero or more Key#### global
variables. If it finds a match, it verifies that the Boot#### load option specified is valid and, if so,
attempts to launch it immediately. The #### in the Key#### is a printable hexadecimal number (‘0’-‘9’,
‘A’-‘F’) with leading zeroes. The order which the Key#### variables are checked is implementation-
specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap with those used
for internal boot manager functions. It is recommended that the boot manager delete these keys.

The Key#### variables have the following format:

Prototype

typedef struct _EFI_KEY_OPTION {

 EFI_BOOT_KEY_DATA KeyData;

 UINT32 BootOptionCrc;

 UINT16 BootOption;

// EFI_INPUT_KEY Keys[];
} EFI_KEY_OPTION;

Parameters

KeyData

Specifies options about how the key will be processed. Type EFI_BOOT_KEY_DATA
is defined in “Related Definitions” below.

BootOptionCrc

The CRC-32 which should match the CRC-32 of the entire EFI_LOAD_OPTION to
which BootOption refers. If the CRC-32s do not match this value, then this key
option is ignored.

BootOption

The Boot#### option which will be invoked if this key is pressed and the boot option
is active (LOAD_OPTION_ACTIVE is set).

Keys

The key codes to compare against those returned by the
EFI_SIMPLE_TEXT_INPUT and EFI_SIMPLE_TEXT_INPUT_EX protocols. The
UEFI Forum, Inc. March 2019 74

UEFI Specification, Version 2.8 Boot Manager
number of key codes (0-3) is specified by the EFI_KEY_CODE_COUNT field in
KeyOptions.

Related Definitions

typedef union {

 struct {

 UINT32 Revision : 8;

 UINT32 ShiftPressed : 1;

 UINT32 ControlPressed : 1;

 UINT32 AltPressed : 1;

 UINT32 LogoPressed : 1;

 UINT32 MenuPressed : 1;

 UINT32 SysReqPressed : 1;

 UINT32 Reserved : 16;

 UINT32 InputKeyCount : 2;
 } Options;

 UINT32 PackedValue;

} EFI_BOOT_KEY_DATA;

Revision

Indicates the revision of the EFI_KEY_OPTION structure. This revision level should
be 0.

ShiftPressed

Either the left or right Shift keys must be pressed (1) or must not be pressed (0).

ControlPressed

Either the left or right Control keys must be pressed (1) or must not be pressed (0).

AltPressed

Either the left or right Alt keys must be pressed (1) or must not be pressed (0).

LogoPressed

Either the left or right Logo keys must be pressed (1) or must not be pressed (0).

MenuPressed

The Menu key must be pressed (1) or must not be pressed (0).

SysReqPressed

The SysReq key must be pressed (1) or must not be pressed (0).

InputKeyCount

Specifies the actual number of entries in EFI_KEY_OPTION.Keys, from 0-3. If zero,
then only the shift state is considered. If more than one, then the boot option will
only be launched if all of the specified keys are pressed with the same shift state.

Example #1: ALT is the hot key. KeyData.PackedValue = 0x00000400.

Example #2: CTRL-ALT-P-R. KeyData.PackedValue = 0x80000600.
UEFI Forum, Inc. March 2019 75

UEFI Specification, Version 2.8 Boot Manager
Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications

A load option of the form SysPrep#### is intended to designate a UEFI application that is required to
execute in order to complete system preparation prior to processing of any Boot#### variables. The
execution order of SysPrep#### applications is determined by the contents of the variable
SysPrepOrder in a way directly analogous to the ordering of Boot#### options by BootOrder.

The platform is required to examine all SysPrep#### variables referenced in SysPrepOrder. If
Attributes bit LOAD_OPTION_ACTIVE is set, and the application referenced by FilePathList[0] is
present, the UEFI Applications thus identified must be loaded and launched in the order they appear in
SysPrepOrder and prior to the launch of any load options of type Boot####.

When launched, the platform is required to provide the application loaded by SysPrep####, with the
same services such as console and network as are normally provided at launch to applications referenced
by a Boot#### variable. SysPrep#### application must exit and may not call ExitBootServices().
Processing of any Error Code returned at exit is according to system policy and does not necessarily
change processing of following boot options. Any driver portion of the feature supported by
SysPrep#### boot option that is required to remain resident should be loaded by use of Driver####
variable.

The Attributes option LOAD_OPTION_FORCE_RECONNECT is ignored for SysPrep#### variables, and in
the event that an application so launched performs some action that adds to the available hardware or
drivers, the system preparation application shall itself utilize appropriate calls to
ConnectController() or DisconnectController() to revise connections between drivers and
hardware.

After all SysPrep#### variables have been launched and exited, the platform shall notify
EFI_EVENT_GROUP_READY_TO_BOOT event group and begin to evaluate Boot#### variables with
Attributes set to LOAD_OPTION_CATEGORY_BOOT according to the order defined by BootOrder. The
FilePathList of variables marked LOAD_OPTION_CATEGORY_BOOT shall not be evaluated prior to
the completion of EFI_EVENT_GROUP_READY_TO_BOOT event group processing.

3.2 Boot Manager Policy Protocol

EFI_BOOT_MANAGER_POLICY_PROTOCOL

Summary

This protocol is used by EFI Applications to request the UEFI Boot Manager to connect devices using
platform policy.
UEFI Forum, Inc. March 2019 76

UEFI Specification, Version 2.8 Boot Manager
GUID

#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_GUID \

 { 0xFEDF8E0C, 0xE147, 0x11E3,\

 { 0x99, 0x03, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

Protocol Interface Structure

typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL

 EFI_BOOT_MANAGER_POLICY_PROTOCOL;

struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL {

 UINT64 Revision;
EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH ConnectDevicePath;

 EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS ConnectDeviceClass;
};

ConnectDevicePath Connect a Device Path following the platforms EFI Boot Manager
policy.

ConnectDeviceClassConnect a class of devices, named by EFI_GUID, following the
platforms UEFI Boot Manager policy.

Description

The EFI_BOOT_MANAGER_PROTOCOL is produced by the platform firmware to expose Boot Manager
policy and platform specific EFI_BOOT_SERVICES.ConnectController() behavior.

Related Definitions

#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_REVISION 0x00010000

EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()

Summary

Connect a device path following the platform’s EFI Boot Manager policy.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH)(

 IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,

 IN EFI_DEVICE_PATH *DevicePath,

 IN BOOLEAN Recursive
);

Parameters

This A pointer to the EFI_BOOT_MANAGER_POLICY_PROTOCOL
instance. Type EFI_BOOT_MANAGER_POLICY_PROTOCOL defined
above.

DevicePath Points to the start of the EFI device path to connect. If DevicePath
is NULL then all the controllers in the system will be connected using
the platform’s EFI Boot Manager policy.
UEFI Forum, Inc. March 2019 77

UEFI Specification, Version 2.8 Boot Manager
Recursive If TRUE, then ConnectController() is called recursively until
the entire tree of controllers below the controller specified by
DevicePath have been created. If FALSE, then the tree of
controllers is only expanded one level. If DevicePath is NULL then
Recursive is ignored.

Description

The ConnectDevicePath() function allows the caller to connect a DevicePath using the same policy
as the EFI Boot Manager.

If Recursive is TRUE, then ConnectController() is called recursively until the entire tree of
controllers below the controller specified by DevicePath have been created. If Recursive is FALSE,
then the tree of controllers is only expanded one level. If DevicePath is NULL then Recursive is
ignored.

Status Codes Returned

EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

Summary

Connect a class of devices using the platform Boot Manager policy.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS)(

 IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,

 IN EFI_GUID *Class
);

Parameters

This A pointer to the EFI_BOOT_MANAGER_POLICY_PROTOCOL
instance. Type EFI_BOOT_MANAGER_POLICY_PROTOCOL is defined
above.

Class A pointer to an EFI_GUID that represents a class of devices that will
be connected using the Boot Manager’s platform policy.

Description

The ConnectDeviceClass() function allows the caller to request that the Boot Manager connect a
class of devices.

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the
DevicePath.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
UEFI Forum, Inc. March 2019 78

UEFI Specification, Version 2.8 Boot Manager
If Class is EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID then the Boot Manager will use platform
policy to connect consoles. Some platforms may restrict the number of consoles connected as they
attempt to fast boot, and calling ConnectDeviceClass() with a Class value of
EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID must connect the set of consoles that follow the Boot
Manager platform policy, and the EFI_SIMPLE_TEXT_INPUT_PROTOCOL,
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL, and the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL are
produced on the connected handles. The Boot Manager may restrict which consoles get connect due to
platform policy, for example a security policy may require that a given console is not connected.

If Class is EFI_BOOT_MANAGER_POLICY_NETWORK_GUID then the Boot Manager will connect the
protocols the platform supports for UEFI general purpose network applications on one or more handles.
The protocols associated with UEFI general purpose network applications are defined in Section 2.6.2, list
item number 7. If more than one network controller is available a platform will connect, one, many, or all
of the networks based on platform policy. Connecting UEFI networking protocols, like
EFI_DHCP4_PROTOCOL, does not establish connections on the network. The UEFI general purpose
network application that called ConnectDeviceClass() may need to use the published protocols to
establish the network connection. The Boot Manager can optionally have a policy to establish a network
connection.

If Class is EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID then the Boot Manager will connect all
UEFI drivers using the UEFI Boot Service EFI_BOOT_SERVICES.ConnectController(). If the Boot
Manager has policy associated with connect all UEFI drivers this policy will be used.

A platform can also define platform specific Class values as a properly generated EFI_GUID would
never conflict with this specification.

Related Definitions

#define EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID \

 { 0xCAB0E94C, 0xE15F, 0x11E3,\

 { 0x91, 0x8D, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

#define EFI_BOOT_MANAGER_POLICY_NETWORK_GUID \

 { 0xD04159DC, 0xE15F, 0x11E3,\

 { 0xB2, 0x61, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

#define EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID \

 { 0x113B2126, 0xFC8A, 0x11E3,\

 { 0xBD, 0x6C, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

Status Codes Returned

3.3 Globally Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when the

EFI_SUCCESS At least one devices of the Class was connected.

EFI_DEVICE_ERROR Devices were not connected due to an error.

EFI_NOT_FOUND The Class is not supported by the platform.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
UEFI Forum, Inc. March 2019 79

UEFI Specification, Version 2.8 Boot Manager
data variable may be accessed. The variables with an attribute of NV are nonvolatile. This means that
their values are persistent across resets and power cycles. The value of any environment variable that
does not have this attribute will be lost when power is removed from the system and the state of
firmware reserved memory is not otherwise preserved. The variables with an attribute of BS are only
available before EFI_BOOT_SERVICES.ExitBootServices() is called. This means that these
environment variables can only be retrieved or modified in the preboot environment. They are not visible
to an operating system. Environment variables with an attribute of RT are available before and after
ExitBootServices() is called. Environment variables of this type can be retrieved and modified in the
preboot environment, and from an operating system. The variables with an attribute of AT are variables
with a time-based authenticated write access defined in Section 8.2.1. All architecturally defined
variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \

{0x8BE4DF61,0x93CA,0x11d2,\

 {0xAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal firmware data
variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL_VARIABLE or any other GUID defined by the UEFI Specification. Implementations must
only permit the creation of variables with a UEFI Specification-defined VendorGuid when these
variables are documented in the UEFI Specification.

Table 14. Global Variables

Variable Name Attribute Description

AuditMode BS, RT Whether the system is operating in Audit Mode (1) or not (0).
All other values are reserved. Should be treated as read-only
except when DeployedMode is 0. Always becomes read-only
after ExitBootServices() is called.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x or h is
included in the hex value.

BootCurrent BS, RT The boot option that was selected for the current boot.

BootNext NV, BS, RT The boot option for the next boot only.

BootOrder NV, BS, RT The ordered boot option load list.

BootOptionSupport BS,RT, The types of boot options supported by the boot manager.
Should be treated as read-only.

ConIn NV, BS, RT The device path of the default input console.

ConInDev BS, RT The device path of all possible console input devices.

ConOut NV, BS, RT The device path of the default output console.

ConOutDev BS, RT The device path of all possible console output devices.

dbDefault BS, RT The OEM's default secure boot signature store. Should be
treated as read-only.

dbrDefault BS, RT The OEM's default OS Recovery signature store. Should be
treated as read-only.

dbtDefault BS, RT The OEM's default secure boot timestamp signature store.
Should be treated as read-only.

dbxDefault BS, RT The OEM's default secure boot blacklist signature store.
Should be treated as read-only.
UEFI Forum, Inc. March 2019 80

UEFI Specification, Version 2.8 Boot Manager
DeployedMode BS, RT Whether the system is operating in Deployed Mode (1) or not
(0). All other values are reserved. Should be treated as read-
only when its value is 1. Always becomes read-only after
ExitBootServices() is called.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

ErrOut NV, BS, RT The device path of the default error output device.

ErrOutDev BS, RT The device path of all possible error output devices.

HwErrRecSupport NV, BS, RT Identifies the level of hardware error record persistence
support implemented by the platform. This variable is only
modified by firmware and is read-only to the OS.

KEK NV, BS, RT,AT The Key Exchange Key Signature Database.

KEKDefault BS, RT The OEM's default Key Exchange Key Signature Database.
Should be treated as read-only.

Key#### NV, BS, RT Describes hot key relationship with a Boot#### load option.

Lang NV, BS, RT The language code that the system is configured for. This value
is deprecated.

LangCodes BS, RT The language codes that the firmware supports. This value is
deprecated.

OsIndications NV, BS, RT Allows the OS to request the firmware to enable certain
features and to take certain actions.

OsIndicationsSupported BS, RT Allows the firmware to indicate supported features and
actions to the OS.

OsRecoveryOrder BS,RT,NV,AT OS-specified recovery options.

PK NV, BS, RT,AT The public Platform Key.

PKDefault BS, RT The OEM's default public Platform Key. Should be treated as
read-only.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

PlatformRecovery#### BS, RT Platform-specified recovery options. These variables are only
modified by firmware and are read-only to the OS.

RuntimeServicesSupported BS, RT Bitmask of which calls are implemented by the firmware
during runtime services. RT access is required only if
GetVariable() is implemented by runtime services. See
Section 8.1. Should be treated as read-only.

SignatureSupport BS, RT Array of GUIDs representing the type of signatures supported
by the platform firmware. Should be treated as read-only.

SecureBoot BS, RT Whether the platform firmware is operating in Secure boot
mode (1) or not (0). All other values are reserved. Should be
treated as read-only.

SetupMode BS, RT Whether the system should require authentication on
SetVariable() requests to Secure Boot policy variables (0) or
not (1). Should be treated as read-only.
The system is in "Setup Mode" when SetupMode==1,
AuditMode==0, and DeployedMode==0.

Variable Name Attribute Description
UEFI Forum, Inc. March 2019 81

UEFI Specification, Version 2.8 Boot Manager
The PlatformLangCodes variable contains a null- terminated ASCII string representing the language
codes that the firmware can support. At initialization time the firmware computes the supported
languages and creates this data variable. Since the firmware creates this value on each initialization, its
contents are not stored in nonvolatile memory. This value is considered read-only.
PlatformLangCodes is specified in Native RFC 4646 format. See Appendix M. LangCodes is
deprecated and may be provided for backwards compatibility.

The PlatformLang variable contains a null- terminated ASCII string language code that the machine has
been configured for. This value may be changed to any value supported by PlatformLangCodes. If this
change is made in the preboot environment, then the change will take effect immediately. If this change
is made at OS runtime, then the change does not take effect until the next boot. If the language code is
set to an unsupported value, the firmware will choose a supported default at initialization and set
PlatformLang to a supported value. PlatformLang is specified in Native RFC 4646 array format. See
Appendix M. Lang is deprecated and may be provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any changes in the Lang
variable into PlatformLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any changes in the
Langcodes variable into PlatformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the firmware
will wait before initiating the original default boot selection. A value of 0 indicates that the default boot
selection is to be initiated immediately on boot. If the value is not present, or contains the value of
0xFFFF then firmware will wait for user input before booting. This means the default boot selection is not
automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH_PROTOCOL descriptor
that defines the default device to use on boot. Changes to these values made in the preboot environment
take effect immediately. Changes to these values at OS runtime do not take effect until the next boot. If
the firmware cannot resolve the device path, it is allowed to automatically replace the values, as needed,
to provide a console for the system. If the device path starts with a USB Class device path (see Table 68),
then any input or output device that matches the device path must be used as a console if it is supported
by the firmware.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an EFI_DEVICE_PATH_PROTOCOL
descriptor that defines all the possible default devices to use on boot. These variables are volatile, and
are set dynamically on every boot. ConIn, ConOut, and ErrOut are always proper subsets of
ConInDev, ConOutDev, and ErrOutDev.

SysPrep#### NV, BS, RT A System Prep application load option containing a
EFI_LOAD_OPTION descriptor. #### is a printed hex value.

SysPrepOrder NV, BS, RT The ordered System Prep Application load option list.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds, before
initiating the default boot selection.

VendorKeys BS, RT Whether the system is configured to use only vendor-provided
keys or not. Should be treated as read-only.

Variable Name Attribute Description
UEFI Forum, Inc. March 2019 82

UEFI Specification, Version 2.8 Boot Manager
Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the name “Boot”
appended with a unique four digit hexadecimal number. For example, Boot0001, Boot0002, Boot0A02,
etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID structure
specifies a namespace for variables containing OS-defined recovery entries (see Section 3.4.1). Write
access to this variable is controlled by the security key database dbr (see Section 8.2.1).

PlatformRecovery#### variables share the same structure as Boot#### variables. These variables are
processed when the system is performing recovery of boot options

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the Boot####
options. The first element in the array is the value for the first logical boot option, the second element is
the value for the second logical boot option, etc. The BootOrder order list is used by the firmware’s
boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried first on
the next boot. After the BootNext boot option is tried the normal BootOrder list is used. To prevent
loops, the boot manager deletes this variable before transferring control to the preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was selected on
the current boot.

The BootOptionSupport variable is a UINT32 that defines the types of boot options supported by the
boot manager.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is appended with
a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load option,
the second element is the value for the second logical driver load option, etc. The DriverOrder list is
used by the firmware’s boot manager as the default load order for UEFI drivers that it should explicitly
load.

The Key#### variable associates a key press with a single boot option. Each Key#### variable is the
name "Key" appended with a unique four digit hexadecimal number. For example, Key0001, Key0002,
Key00A0, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of support for
Hardware Error Record Persistence (see Section 8.2.4) that is implemented by the platform. If the value is
not present, then the platform implements no support for Hardware Error Record Persistence. A value of
zero indicates that the platform implements no support for Hardware Error Record Persistence. A value
of 1 indicates that the platform implements Hardware Error Record Persistence as defined in
Section 8.2.4. Firmware initializes this variable. All other values are reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is should require
authentication (0) or not (1) on SetVariable() requests to Secure Boot Policy Variables. Secure Boot
Policy Variables include:

• The global variables PK, KEK, and OsRecoveryOrder

• All variables named OsRecovery#### under all VendorGuids

• All variables with the VendorGuid EFI_IMAGE_SECURITY_DATABASE_GUID.
UEFI Forum, Inc. March 2019 83

UEFI Specification, Version 2.8 Boot Manager
Secure Boot Policy Variables must be created using the EFI_VARIABLE_AUTHENTICATION_2 structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is currently
operating in Audit Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system is currently
operating in Deployed Mode.

The KEK variable contains the current Key Exchange Key database.

The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security Boot Policy
Variables have been modified by anyone other than the platform vendor or a holder of the vendor-
provided keys. A value of 0 indicates that someone other than the platform vendor or a holder of the
vendor-provided keys has modified the Secure Boot Policy Variables Otherwise, the value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key database. This is
not used at runtime but is provided in order to allow the OS to recover the OEM's default key setup. The
contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION or
EFI_VARIABLE_AUTHENTICATION2 structure.

The PKDefault variable, if present, contains the platform-defined Platform Key. This is not used at
runtime but is provided in order to allow the OS to recover the OEM's default key setup. The contents of
this variable do not include an EFI_VARIABLE_AUTHENTICATION2 structure.

The dbDefault variable, if present, contains the platform-defined secure boot signature database. This
is not used at runtime but is provided in order to allow the OS to recover the OEM's default key setup.
The contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION2 structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized recovery
signature database. This is not used at runtime but is provided in order to allow the OS to recover the
OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2 structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp signature
database. This is not used at runtime but is provided in order to allow the OS to recover the OEM's
default key setup. The contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION2
structure.

The dbxDefault variable, if present, contains the platform-defined secure boot blacklist signature
database. This is not used at runtime but is provided in order to allow the OS to recover the OEM's
default key setup. The contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION2
structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a type of
signature which the platform firmware supports for images and other data. The different signature types
are described in "Signature Database".

The SecureBoot variable is an 8-bit unsigned integer that defines whether the platform firmware is
operating with Secure Boot enabled. A value of 1 indicates that platform firmware performs driver and
boot application signature verification as specified in UEFI Image Validation during the current boot. A
value of 0 indicates that driver and boot application signature verification is not active during the current
boot. The SecureBoot variable is initialized prior to Secure Boot image authentication and thereafter
UEFI Forum, Inc. March 2019 84

UEFI Specification, Version 2.8 Boot Manager
should be treated as read-only and immutable. Its initialization value is determined by platform policy
but must be 0 if the platform is in Setup Mode or Audit Mode during its initialization.

The OsIndicationsSupported variable indicates which of the OS indication features and actions that
the firmware supports. This variable is recreated by firmware every boot, and cannot be modified by the
OS (see SetVariable()Attributes usage rules once ExitBootServices() is performed).

The OsIndications variable is used to indicate which features the OS wants firmware to enable or
which actions the OS wants the firmware to take. The OS will supply this data with a SetVariable()
call. See Section 8.5.4 for the variable definition.

3.4 Boot Option Recovery

Boot option recovery consists of two independent parts, operating system-defined recovery and
platform-defined recovery. OS-defined recovery is an attempt to allow installed operating systems to
recover any needed boot options, or to launch full operating system recovery. Platform-defined recovery
includes any remedial actions performed by the platform as a last resort when no operating system is
found, such as the Default Boot Behavior (see Section 3.4.3). This could include behaviors such as
warranty service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first attempt OS-
defined recovery, re-attempt normal booting via Boot#### and BootOrder variables, and finally
attempt platform-defined recovery if no options have succeeded.

3.4.1 OS-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in OsIndications, or if processing of
BootOrder does not result in success, the platform must process OS-defined recovery options. In the
case where OS-defined recovery is entered due to OsIndications, SysPrepOrder and
SysPrep#### variables should not be processed. Note that in order to avoid ambiguity in intent, this bit
is ignored in OsIndications if EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set.

OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with vendor
specific VendorGuid values and a name following the pattern OsRecovery####. Each of these
variables must be an authenticated variable with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID structures in the
OsRecoveryOrder variable, and each GUID specified is treated as a VendorGuid associated with a
series of variable names. For each GUID, the firmware attempts to load and execute, in hexadecimal sort
order, every variable with that GUID and a name following the pattern OsRecovery####. These
variables have the same format as Boot#### variables, and the boot manager must verify that each
variable it attempts to load was created with a public key that is associated with a certificate chaining to
one listed in the authorized recovery signature database dbr and not in the forbidden signature
database, or is created by a key in the Key Exchange Key database KEK or the current Platform Key PK.

If the boot manager finishes processing OsRecovery#### options without
EFI_BOOT_SERVICES.ExitBootServices() or ResetSystem() having been called, it must
attempt to process BootOrder a second time. If booting does not succeed during that process, OS-
defined recovery has failed, and the boot manager must attempt platform-based recovery.
UEFI Forum, Inc. March 2019 85

UEFI Specification, Version 2.8 Boot Manager
If, while processing OsRecovery#### variables, the boot manager encounters an entry which cannot be
loaded or executed due to a security policy violation, it must ignore that variable.

3.4.2 Platform-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in OsIndications, or if OS-
defined recovery has failed, the system firmware must commence with platform-specific recovery by
iterating its PlatformRecovery#### variables in the same manner as OsRecovery####, but must
stop processing if any entry is successful. In the case where platform-specific recovery is entered due to
OsIndications, SysPrepOrder and SysPrep#### variables should not be processed.

3.4.3 Boot Option Variables Default Boot Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot options
require a standard default behavior in the exceptional case that valid boot options are not present on a
platform. The default behavior must be invoked any time the BootOrder variable does not exist or only
points to nonexistent boot options, or if no entry in BootOrder can successfully be executed.

If system firmware supports boot option recovery as described in Section 3.4, system firmware must
include a PlatformRecovery#### variable specifying a short-form File Path Media Device Path (see
Section 3.1.2) containing the platform default file path for removable media (see Table 15). It is
recommended for maximal compatibility with prior versions of this specification that this entry be the
first such variable, though it may be at any position within the list.

It is expected that this default boot will load an operating system or a maintenance utility. If this is an
operating system setup program it is then responsible for setting the requisite environment variables for
subsequent boots. The platform firmware may also decide to recover or set to a known set of boot
options.

3.5 Boot Mechanisms

EFI can boot from a device using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
must materialize a file system protocol for that device to be bootable. If a device does not wish to
support a complete file system it may produce an EFI_LOAD_FILE_PROTOCOL which allows it to
materialize an image directly. The Boot Manager will attempt to boot using the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that fails, then the EFI_LOAD_FILE_PROTOCOL will
be used.

3.5.1 Boot via the Simple File Protocol

When booting via the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the FilePath will start with a
device path that points to the device that implements the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or
the EFI_BLOCK_IO_PROTOCOL. The next part of the FilePath may point to the file name, including
subdirectories, which contain the bootable image. If the file name is a null device path, the file name
must be generated from the rules defined below.

If the FilePathList[0] device does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports
the EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service
EFI_BOOT_SERVICES.ConnectController() must be called for FilePathList[0] with
UEFI Forum, Inc. March 2019 86

UEFI Specification, Version 2.8 Boot Manager
DriverImageHandle and RemainingDevicePath set to NULL and the Recursive flag is set to
TRUE.The firmware will then attempt to boot from any child handles produced using the algorithms
outlined below.

The format of the file system specified is contained in Section 13.3. While the firmware must produce an
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file system, any file system can be
abstracted with the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.

3.5.1.1 Removable Media Boot Behavior

To generate a file name when none is present in the FilePath, the firmware must append a default file
name in the form \EFI\BOOT\BOOT{machine type short-name}.EFI where machine type short-name
defines a PE32+ image format architecture. Each file only contains one UEFI image type, and a system
may support booting from one or more images types. Table 15 lists the UEFI image types.

Table 15. UEFI Image Types

Media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type short-
name}.EFI file of each possible machine type.

3.5.2 Boot via the Load File Protocol

When booting via the EFI_LOAD_FILE_PROTOCOL protocol, the FilePath is a device path that points
to a device that “speaks” the EFI_LOAD_FILE_PROTOCOL. The image is loaded directly from the device
that supports the EFI_LOAD_FILE_PROTOCOL. The remainder of the FilePath will contain
information that is specific to the device. Firmware passes this device-specific data to the loaded image,
but does not use it to load the image. If the remainder of the FilePath is a null device path it is the
loaded image's responsibility to implement a policy to find the correct boot device.

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file systems. Network
devices commonly boot in this model where the image is materialized without the need of a file system.

3.5.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support Specification
that is part of the Wired for Management Baseline specification. PXE specifies UDP, DHCP, and TFTP
network protocols that a booting platform can use to interact with an intelligent system load server. UEFI
defines special interfaces that are used to implement PXE. These interfaces are contained in the
EFI_PXE_BASE_CODE_PROTOCOL (see Section 24.3).

File Name Convention PE Executable Machine Type *

32-bit BOOTIA32.EFI 0x14c

x64 BOOTx64.EFI 0x8664

Itanium architecture BOOTIA64.EFI 0x200

AArch32 architecture BOOTARM.EFI 0x01c2

AArch64 architecture BOOTAA64.EFI 0xAA64

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as defined in the
Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0
UEFI Forum, Inc. March 2019 87

UEFI Specification, Version 2.8 Boot Manager
3.5.2.2 Future Boot Media

Since UEFI defines an abstraction between the platform and the OS and its loader it should be possible to
add new types of boot media as technology evolves. The OS loader will not necessarily have to change to
support new types of boot. The implementation of the UEFI platform services may change, but the
interface will remain constant. The OS will require a driver to support the new type of boot media so that
it can make the transition from UEFI boot services to OS control of the boot media.
UEFI Forum, Inc. March 2019 88

UEFI Specification, Version 2.8
4 - EFI System Table

This section describes the entry point to a UEFI image and the parameters that are passed to that entry
point. There are three types of UEFI images that can be loaded and executed by firmware conforming to
this specification. These are UEFI applications (see Section 2.1.2), UEFI boot service drivers (see
Section 2.1.4), and UEFI runtime drivers (see Section 2.1.4). UEFI applications include UEFI OS loaders
(see Section 2.1.3). There are no differences in the entry point for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System Table. This pointer is
EFI_IMAGE_ENTRY_POINT (see definition immediately below), the main entry point for a UEFI Image.
The System Table contains pointers to the active console devices, a pointer to the Boot Services Table, a
pointer to the Runtime Services Table, and a pointer to the list of system configuration tables such as
ACPI, SMBIOS, and the SAL System Table. This section describes the System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary

This is the main entry point for a UEFI Image. This entry point is the same for UEFI applications and UEFI
drivers.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

 IN EFI_HANDLE ImageHandle,

 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle The firmware allocated handle for the UEFI image.

SystemTable A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system memory
by the EFI Boot Service EFI_BOOT_SERVICES.LoadImage(). An EFI image is invoked through the EFI
Boot Service EFI_BOOT_SERVICES.StartImage().

The first argument is the image’s image handle. The second argument is a pointer to the image’s system
table. The system table contains the standard output and input handles, plus pointers to the
EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the entry points
in the firmware for accessing the core EFI system functionality. The handles in the system table are used
to obtain basic access to the console. In addition, the System Table contains pointers to other standard
tables that a loaded image may use if the associated pointers are initialized to nonzero values. Examples
of such tables are ACPI, SMBIOS, SAL System Table, etc.
UEFI Forum, Inc. March 2019 89

UEFI Specification, Version 2.8 EFI System Table
The ImageHandle is a firmware-allocated handle that is used to identify the image on various functions.
The handle also supports one or more protocols that the image can use. All images support the
EFI_LOADED_IMAGE_PROTOCOL and the EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL that
returns the source location of the image, the memory location of the image, the load options for the
image, etc. The exact EFI_LOADED_IMAGE_PROTOCOL and
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL structures are defined in Section 9.

If the UEFI image is a UEFI application that is not a UEFI OS loader, then the application executes and
either returns or calls the EFI Boot Services EFI_BOOT_SERVICES.Exit(). A UEFI application is always
unloaded from memory when it exits, and its return status is returned to the component that started the
UEFI application.

If the UEFI image is a UEFI OS Loader, then the UEFI OS Loader executes and either returns, calls the EFI
Boot Service Exit(), or calls the EFI Boot Service EFI_BOOT_SERVICES.ExitBootServices(). If
the EFI OS Loader returns or calls Exit(), then the load of the OS has failed, and the EFI OS Loader is
unloaded from memory and control is returned to the component that attempted to boot the UEFI OS
Loader. If ExitBootServices() is called, then the UEFI OS Loader has taken control of the platform,
and EFI will not regain control of the system until the platform is reset. One method of resetting the
platform is through the EFI Runtime Service ResetSystem().

If the UEFI image is a UEFI Driver, then the UEFI driver executes and either returns or calls the Boot
Service Exit(). If the UEFI driver returns an error, then the driver is unloaded from memory. If the UEFI
driver returns EFI_SUCCESS, then it stays resident in memory. If the UEFI driver does not follow the
UEFI Driver Model, then it performs any required initialization and installs its protocol services before
returning. If the driver does follow the UEFI Driver Model, then the entry point is not allowed to touch
any device hardware. Instead, the entry point is required to create and install the
EFI_DRIVER_BINDING_PROTOCOL (see Section 11.1) on the ImageHandle of the UEFI driver. If this
process is completed, then EFI_SUCCESS is returned. If the resources are not available to complete the
UEFI driver initialization, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

4.2 EFI Table Header

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI table types.
It includes a signature that is unique for each table type, a revision of the table that may be updated as
extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an EFI table type can
validate the contents of the EFI table.

EFI_TABLE_HEADER

Summary

Data structure that precedes all of the standard EFI table types.

Related Definitions

typedef struct {

EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 90

UEFI Specification, Version 2.8 EFI System Table
 UINT64 Signature;

 UINT32 Revision;

 UINT32 HeaderSize;

 UINT32 CRC32;

 UINT32 Reserved;
} EFI_TABLE_HEADER;

Parameters

Signature A 64-bit signature that identifies the type of table that follows.
Unique signatures have been generated for the EFI System Table, the
EFI Boot Services Table, and the EFI Runtime Services Table.

Revision The revision of the EFI Specification to which this table conforms.
The upper 16 bits of this field contain the major revision value, and
the lower 16 bits contain the minor revision value. The minor
revision values are binary coded decimals and are limited to the
range of 00..99.

When printed or displayed UEFI spec revision is referred as (Major
revision).(Minor revision upper decimal).(Minor revision lower
decimal) or (Major revision).(Minor revision upper decimal) in case
Minor revision lower decimal is set to 0. For example:

A specification with the revision value ((2<<16) | (30)) would be
referred as 2.3;

A specification with the revision value ((2<<16) | (31)) would be
referred as 2.3.1

HeaderSize The size, in bytes, of the entire table including the
EFI_TABLE_HEADER.

CRC32 The 32-bit CRC for the entire table. This value is computed by setting
this field to 0, and computing the 32-bit CRC for HeaderSize bytes.

Reserved Reserved field that must be set to 0.

Note: The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE_HEADER. This header’s Revision
field is incremented when new capabilities and functions are added to the functions in the table.
When checking for capabilities, code should verify that Revision is greater than or equal to the
revision level of the table at the point when the capabilities were added to the UEFI specification.

Note: Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed polynomial
value of 0x04c11db7 for its CRC calculations.

Note: The size of the system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

4.3 EFI System Table

UEFI uses the EFI System Table, which contains pointers to the runtime and boot services tables. The
definition for this table is shown in the following code fragments. Except for the table header, all
elements in the service tables are pointers to functions as defined in Section 7 and Section 8. Prior to a
UEFI Forum, Inc. March 2019 91

UEFI Specification, Version 2.8 EFI System Table
call to EFI_BOOT_SERVICES.ExitBootServices(), all of the fields of the EFI System Table are valid.
After an operating system has taken control of the platform with a call to ExitBootServices(), only
the Hdr, FirmwareVendor, FirmwareRevision, RuntimeServices, NumberOfTableEntries,
and ConfigurationTable fields are valid.

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249

#define EFI_2_80_SYSTEM_TABLE_REVISION ((2<<16) | (80))

#define EFI_2_70_SYSTEM_TABLE_REVISION ((2<<16) | (70))

#define EFI_2_60_SYSTEM_TABLE_REVISION ((2<<16) | (60))

#define EFI_2_50_SYSTEM_TABLE_REVISION ((2<<16) | (50))

#define EFI_2_40_SYSTEM_TABLE_REVISION ((2<<16) | (40))

#define EFI_2_31_SYSTEM_TABLE_REVISION ((2<<16) | (31))

#define EFI_2_30_SYSTEM_TABLE_REVISION ((2<<16) | (30))

#define EFI_2_20_SYSTEM_TABLE_REVISION ((2<<16) | (20))

#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))

#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))

#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))

#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION

#define EFI_SYSTEM_TABLE_REVISION EFI_2_8_SYSTEM_TABLE_REVISION

typedef struct {

 EFI_TABLE_HEADER Hdr;

 CHAR16 *FirmwareVendor;

 UINT32 FirmwareRevision;

 EFI_HANDLE ConsoleInHandle;

 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;

 EFI_HANDLE ConsoleOutHandle;

 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;

 EFI_HANDLE StandardErrorHandle;

 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;

 EFI_RUNTIME_SERVICES *RuntimeServices;

 EFI_BOOT_SERVICES *BootServices;

 UINTN NumberOfTableEntries;

 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

Parameters

Hdr The table header for the EFI System Table. This header contains the
EFI_SYSTEM_TABLE_SIGNATURE and
UEFI Forum, Inc. March 2019 92

UEFI Specification, Version 2.8 EFI System Table
EFI_SYSTEM_TABLE_REVISION values along with the size of the
EFI_SYSTEM_TABLE structure and a 32-bit CRC to verify that the
contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated string that identifies the vendor that
produces the system firmware for the platform.

FirmwareRevision A firmware vendor specific value that identifies the revision of the
system firmware for the platform.

ConsoleInHandle The handle for the active console input device. This handle must
support EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

ConIn A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL interface
that is associated with ConsoleInHandle.

ConsoleOutHandle The handle for the active console output device. This handle must
support the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

ConOut A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL interface
that is associated with ConsoleOutHandle.

StandardErrorHandleThe handle for the active standard error console device. This
handle must support the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

StdErr A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL interface
that is associated with StandardErrorHandle.

RuntimeServices A pointer to the EFI Runtime Services Table. See Section 4.5.

BootServices A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntriesThe number of system configuration tables in the buffer
ConfigurationTable.

ConfigurationTableA pointer to the system configuration tables. The number of entries
in the table is NumberOfTableEntries.

4.4 EFI Boot Services Table

UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of the boot
services. The definition for this table is shown in the following code fragments. Except for the table
header, all elements in the EFI Boot Services Tables are prototypes of function pointers to functions as
defined in Section 7. The function pointers in this table are not valid after the operating system has taken
control of the platform with a call to EFI_BOOT_SERVICES.ExitBootServices().

EFI_BOOT_SERVICES

Summary

Contains a table header and pointers to all of the boot services.

Related Definitions

#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42

#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {
UEFI Forum, Inc. March 2019 93

UEFI Specification, Version 2.8 EFI System Table
 EFI_TABLE_HEADER Hdr;

 //

 // Task Priority Services

 //

 EFI_RAISE_TPL RaiseTPL; // EFI 1.0+

 EFI_RESTORE_TPL RestoreTPL; // EFI 1.0+

 //

 // Memory Services

 //

 EFI_ALLOCATE_PAGES AllocatePages; // EFI 1.0+

 EFI_FREE_PAGES FreePages; // EFI 1.0+

 EFI_GET_MEMORY_MAP GetMemoryMap; // EFI 1.0+

 EFI_ALLOCATE_POOL AllocatePool; // EFI 1.0+

 EFI_FREE_POOL FreePool; // EFI 1.0+

 //

 // Event & Timer Services

 //

 EFI_CREATE_EVENT CreateEvent; // EFI 1.0+

 EFI_SET_TIMER SetTimer; // EFI 1.0+

 EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+

 EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+

 EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+

 EFI_CHECK_EVENT CheckEvent; // EFI 1.0+

 //

 // Protocol Handler Services

 //

 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; // EFI 1.0+

 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; // EFI 1.0+

 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; // EFI 1.0+

 EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+

 VOID* Reserved; // EFI 1.0+

 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; // EFI 1.0+

 EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+

 EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+

 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI 1.0+

 //

 // Image Services

 //

 EFI_IMAGE_LOAD LoadImage; // EFI 1.0+

 EFI_IMAGE_START StartImage; // EFI 1.0+
UEFI Forum, Inc. March 2019 94

UEFI Specification, Version 2.8 EFI System Table
 EFI_EXIT Exit; // EFI 1.0+

 EFI_IMAGE_UNLOAD UnloadImage; // EFI 1.0+

 EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFI 1.0+

 //

 // Miscellaneous Services

 //

 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; // EFI 1.0+

 EFI_STALL Stall; // EFI 1.0+

 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; // EFI 1.0+

 //

 // DriverSupport Services

 //

 EFI_CONNECT_CONTROLLER ConnectController; // EFI 1.1

 EFI_DISCONNECT_CONTROLLER DisconnectController;// EFI 1.1+

 //

 // Open and Close Protocol Services

 //

 EFI_OPEN_PROTOCOL OpenProtocol; // EFI 1.1+

 EFI_CLOSE_PROTOCOL CloseProtocol; // EFI 1.1+

 EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation; // EFI 1.1+

 //

 // Library Services

 //

 EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; // EFI 1.1+

 EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; // EFI 1.1+

 EFI_LOCATE_PROTOCOL LocateProtocol; // EFI 1.1+
 EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES

 InstallMultipleProtocolInterfaces; // EFI 1.1+
 EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES

 UninstallMultipleProtocolInterfaces; // EFI 1.1+

 //

 // 32-bit CRC Services

 //

 EFI_CALCULATE_CRC32 CalculateCrc32; // EFI 1.1+

 //

 // Miscellaneous Services

 //

 EFI_COPY_MEM CopyMem; // EFI 1.1+

 EFI_SET_MEM SetMem; // EFI 1.1+
UEFI Forum, Inc. March 2019 95

UEFI Specification, Version 2.8 EFI System Table
 EFI_CREATE_EVENT_EX CreateEventEx; // UEFI 2.0+

 } EFI_BOOT_SERVICES;

Parameters

Hdr The table header for the EFI Boot Services Table. This header
contains the EFI_BOOT_SERVICES_SIGNATURE and
EFI_BOOT_SERVICES_REVISION values along with the size of the
EFI_BOOT_SERVICES structure and a 32-bit CRC to verify that the
contents of the EFI Boot Services Table are valid.

RaiseTPL Raises the task priority level.

RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

GetMemoryMap Returns the current boot services memory map and memory map
key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolInterface
Installs a protocol interface on a device handle.

ReinstallProtocolInterface
Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface
Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified protocol.

Reserved Reserved. Must be NULL.

RegisterProtocolNotify
Registers an event that is to be signaled whenever an interface is
installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified protocol.

LocateDevicePath Locates all devices on a device path that support a specified protocol
and returns the handle to the device that is closest to the path.

InstallConfigurationTable
Adds, updates, or removes a configuration table from the EFI System
Table.

LoadImage Loads an EFI image into memory.

StartImage Transfers control to a loaded image’s entry point.
UEFI Forum, Inc. March 2019 96

UEFI Specification, Version 2.8 EFI System Table
Exit Exits the image’s entry point.

UnloadImage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount
Returns a monotonically increasing count for the platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot services time.

ConnectController Uses a set of precedence rules to find the best set of drivers to
manage a controller.

DisconnectController
Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol interface.

CloseProtocol Removes elements from the list of agents consuming a protocol
interface.

OpenProtocolInformation
Retrieve the list of agents that are currently consuming a protocol
interface.

ProtocolsPerHandleRetrieves the list of protocols installed on a handle. The return
buffer is automatically allocated.

LocateHandleBufferRetrieves the list of handles from the handle database that meet the
search criteria. The return buffer is automatically allocated.

LocateProtocol Finds the first handle in the handle database the supports the
requested protocol.

InstallMultipleProtocolInterfaces
Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces
Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.

CopyMem Copies the contents of one buffer to another buffer.

SetMem Fills a buffer with a specified value.

CreateEventEx Creates an event structure as part of an event group.

4.5 EFI Runtime Services Table

UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to all of the runtime
services. The definition for this table is shown in the following code fragments. Except for the table
header, all elements in the EFI Runtime Services Tables are prototypes of function pointers to functions
as defined in Section 8. Unlike the EFI Boot Services Table, this table, and the function pointers it contains
are valid after the UEFI OS loader and OS have taken control of the platform with a call to
EFI_BOOT_SERVICES.ExitBootServices(). If a call to SetVirtualAddressMap() is made by the
OS, then the function pointers in this table are fixed up to point to the new virtually mapped entry points.
UEFI Forum, Inc. March 2019 97

UEFI Specification, Version 2.8 EFI System Table
EFI_RUNTIME_SERVICES

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions

#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552

#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {

 EFI_TABLE_HEADER Hdr;

 //

 // Time Services

 //

 EFI_GET_TIME GetTime;

 EFI_SET_TIME SetTime;

 EFI_GET_WAKEUP_TIME GetWakeupTime;

 EFI_SET_WAKEUP_TIME SetWakeupTime;

 //

 // Virtual Memory Services

 //

 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;

 EFI_CONVERT_POINTER ConvertPointer;

 //

 // Variable Services

 //

 EFI_GET_VARIABLE GetVariable;

 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;

 EFI_SET_VARIABLE SetVariable;

 //

 // Miscellaneous Services

 //

 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;

 EFI_RESET_SYSTEM ResetSystem;

 //

 // UEFI 2.0 Capsule Services

 //

 EFI_UPDATE_CAPSULE UpdateCapsule;

 EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;

 //
UEFI Forum, Inc. March 2019 98

UEFI Specification, Version 2.8 EFI System Table
 // Miscellaneous UEFI 2.0 Service

 //

 EFI_QUERY_VARIABLE_INFO QueryVariableInfo;
} EFI_RUNTIME_SERVICES;

Parameters

Hdr The table header for the EFI Runtime Services Table. This header
contains the EFI_RUNTIME_SERVICES_SIGNATURE and
EFI_RUNTIME_SERVICES_REVISION values along with the size of
the EFI_RUNTIME_SERVICES structure and a 32-bit CRC to verify
that the contents of the EFI Runtime Services Table are valid.

GetTime Returns the current time and date, and the time-keeping capabilities
of the platform.

SetTime Sets the current local time and date information.

GetWakeupTime Returns the current wakeup alarm clock setting.

SetWakeupTime Sets the system wakeup alarm clock time.

SetVirtualAddressMap
Used by a UEFI OS loader to convert from physical addressing to
virtual addressing.

ConvertPointer Used by EFI components to convert internal pointers when switching
to virtual addressing.

GetVariable Returns the value of a variable.

GetNextVariableNameEnumerates the current variable names.

SetVariable Sets the value of a variable.

GetNextHighMonotonicCount
Returns the next high 32 bits of the platform’s monotonic counter.

ResetSystem Resets the entire platform.

UpdateCapsule Passes capsules to the firmware with both virtual and physical
mapping.

QueryCapsuleCapabilities 
Returns if the capsule can be supported via UpdateCapsule().

QueryVariableInfo Returns information about the EFI variable store.

4.6 EFI Configuration Table & Properties Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This table
contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration tables is expected
to grow over time. This is why a GUID is used to identify the configuration table type. The EFI
Configuration Table may contain at most once instance of each table type.
UEFI Forum, Inc. March 2019 99

UEFI Specification, Version 2.8 EFI System Table
EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI System
Table.

Related Definitions

typedef struct{

 EFI_GUID VendorGuid;

 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

Parameters

The following list shows the GUIDs for tables defined in some of the industry standards. These industry
standards define tables accessed as UEFI Configuration Tables on UEFI-based systems. This list is not
exhaustive and does not show GUIDS for all possible UEFI Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.

VendorTable A pointer to the table associated with VendorGuid.Whether this
pointer is a physical address or a virtual address during runtime is
determined by the VendorGuid. The VendorGuid associated with
a given VendorTable pointer defines whether or not a particular
address reported in the table gets fixed up when a call to
SetVirtualAddressMap() is made. It is the responsibility of the
specification defining the VendorTable to specify whether to
convert the addresses reported in the table.

The following list shows the GUIDs for tables defined in some of the industry standards. These industry
standards define tables accessed as UEFI Configuration Tables on UEFI-based systems. All the addresses
reported in these table entries will be referenced as physical and will not be fixed up when transition
from preboot to runtime phase. This list is not exhaustive and does not show GUIDs for all possible UEFI
Configuration tables.
UEFI Forum, Inc. March 2019 100

UEFI Specification, Version 2.8 EFI System Table
#define EFI_ACPI_20_TABLE_GUID \

 {0x8868e871,0xe4f1,0x11d3,\

 {0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_TABLE_GUID \

 {0xeb9d2d30,0x2d88,0x11d3,\

 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SAL_SYSTEM_TABLE_GUID \

 {0xeb9d2d32,0x2d88,0x11d3,\

 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS_TABLE_GUID \

 {0xeb9d2d31,0x2d88,0x11d3,\

 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS3_TABLE_GUID \

 {0xf2fd1544, 0x9794, 0x4a2c,\

 {0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

#define MPS_TABLE_GUID \

 {0xeb9d2d2f,0x2d88,0x11d3,\

 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

//

// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID

//

#define EFI_ACPI_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,\
{0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define EFI_ACPI_20_TABLE_GUID EFI_ACPI_TABLE_GUID

#define ACPI_TABLE_GUID \
{0xeb9d2d30,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define ACPI_10_TABLE_GUID ACPI_TABLE_GUID

The following list shows the GUIDs for tables defined for reporting firmware configuration data to EFI
Configuration Tables and also for processing JSON payload capsule as defined in Section 23.5. The
address reported in the table entry identified by EFI_JSON_CAPSULE_DATA_TABLE_GUID will be
referenced as physical and will not be fixed up when transition from preboot to runtime phase. The
addresses reported in these table entries identified by EFI_JSON_CONFIG_DATA_TABLE_GUID and
EFI_JSON_CAPSULE_RESULT_TABLE_GUID will be referenced as virtual and will be fixed up when
transition from preboot to runtime phase.
UEFI Forum, Inc. March 2019 101

UEFI Specification, Version 2.8 EFI System Table
#define EFI_JSON_CONFIG_DATA_TABLE_GUID \
{0x87367f87, 0x1119, 0x41ce, \
{0xaa, 0xec, 0x8b, 0xe0, 0x11, 0x1f, 0x55, 0x8a }}

#define EFI_JSON_CAPSULE_DATA_TABLE_GUID \
{0x35e7a725, 0x8dd2, 0x4cac, \
{ 0x80, 0x11, 0x33, 0xcd, 0xa8, 0x10, 0x90, 0x56 }}

#define EFI_JSON_CAPSULE_RESULT_TABLE_GUID \
{0xdbc461c3, 0xb3de, 0x422a,\
{0xb9, 0xb4, 0x98, 0x86, 0xfd, 0x49, 0xa1, 0xe5 }}

EFI_PROPERTIES_TABLE
This table is published if the platform meets some of the construction requirements listed in the
MemoryProtectionAttributes.

typedef struct {

 UINT32 Version;

 UINT32 Length;

 UINT64 MemoryProtectionAttribute;

} EFI_PROPERTIES_TABLE;

Version This is revision of the table. Successive version may populate
additional bits and growth the table length. In the case of the latter,
the Length field will be adjusted appropriately

#define EFI_PROPERTIES_TABLE_VERSION 0x00010000

Length This is the size of the entire EFI_PROPERTIES_TABLE structure,
including the version. The initial version will be of length 16.

MemoryProtectionAttribute

This field is a bit mask. Any bits not defined shall be considered
reserved. A set bit means that the underlying firmware has been
constructed responsive to the given property.

//

// Memory attribute (Not defined bits are reserved)

//

#define EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA 0x1
\

 // BIT 0 – description – implies the runtime data is separated from the code

This bit implies that the UEFI runtime code and data sections of the executable image are separate and
must be aligned as specified in Section 2.3. This bit also implies that the data pages do not have any
executable code.

It is recommended not to use this attribute, especially for implementations that broke the runtime code
memory map descriptors into the underlying code and data sections within UEFI modules. This splitting
UEFI Forum, Inc. March 2019 102

UEFI Specification, Version 2.8 EFI System Table
causes interoperability issues with operating systems that invoke SetVirtualAddress() without
realizing that there is a relationship between these runtime descriptors.

EFI_MEMORY_ATTRIBUTES_TABLE

Summary

 When published by the system firmware, the EFI_MEMORY_ATTRIBUTES_TABLE provides additional
information about regions within the run-time memory blocks defined in the
EFI_MEMORY_DESCRIPTOR entries returned from EFI_BOOT_SERVICES.GetMemoryMap() function.
The Memory Attributes Table is currently used to describe memory protections that may be applied to
the EFI Runtime code and data by an operating system or hypervisor. Consumers of this table must
currently ignore entries containing any values for Type except for EfiRuntimeServicesData and
EfiRuntimeServicesCode to ensure compatibility with future uses of this table. The Memory
Attributes Table may define multiple entries to describe sub-regions that comprise a single entry
returned by GetMemoryMap() however the sub-regions must total to completely describe the larger
region and may not cross boundaries between entries reported by GetMemoryMap(). If a run-time
region returned in GetMemoryMap() entry is not described within the Memory Attributes Table, this
region is assumed to not be compatible with any memory protections.

Only entire EFI_MEMORY_DESCRIPTOR entries as returned by GetMemoryMap() may be passed to
SetVirtualAddressMap().

Prototype

#define EFI_MEMORY_ATTRIBUTES_TABLE_GUID \

{ 0xdcfa911d, 0x26eb, 0x469f, \

 {0xa2, 0x20, 0x38, 0xb7, 0xdc, 0x46, 0x12, 0x20}}

With the following data structure

/**

/* EFI_MEMORY_ATTRIBUTES_TABLE
/**

typedef struct {

 UINT32 Version ;

 UINT32 NumberOfEntries ;

 UINT32 DescriptorSize ;

 UINT32 Reserved;

 // EFI_MEMORY_DESCRIPTOR Entry [1];
} EFI_MEMORY_ATTRIBUTES_TABLE;

Version The version of this table. Present version is 0x00000001

NumberOfEntries Count of EFI_MEMORY_DESCRIPTOR entries provided. This is
typically the total number of PE/COFF sections within all UEFI
modules that comprise the UEFI Runtime and all UEFI Runtime Data
regions (e.g. runtime heap).

Entry Array of Entries of type EFI_MEMORY_DESCRIPTOR.
UEFI Forum, Inc. March 2019 103

UEFI Specification, Version 2.8 EFI System Table
DescriptorSize Size of the memory descriptor.

Reserved Reserved bytes.

Description

For each array entry, the EFI_MEMORY_DESCRIPTOR.Attribute field can inform a
runtime agency, such as operating system or hypervisor, as to what class of
protection settings can be made in the memory management unit for the
memory defined by this entry. The only valid bits for Attribute field currently
are EFI_MEMORY_RO, EFI_MEMORY_XP, plus EFI_MEMORY_RUNTIME. Irrespective of
the memory protections implied by Attribute, the
EFI_MEMORY_DESCRIPTOR.Type field should match the type of the memory in
enclosing SetMemoryMap() entry. PhysicalStart must be aligned as specified
in Section 2.3. The list must be sorted by physical start address in ascending
order. VirtualStart field must be zero and ignored by the OS since it has no
purpose for this table. NumPages must cover the entire memory region for the
protection mapping. Each Descriptor in the EFI_MEMORY_ATTRIBUTES_TABLE
with attribute EFI_MEMORY_RUNTIME must not overlap any other Descriptor in
the EFI_MEMORY_ATTRIBUTES_TABLE with attribute EFI_MEMORY_RUNTIME.
Additionally, every memory region described by a Descriptor in
EFI_MEMORY_ATTRIBUTES_TABLE must be a sub-region of, or equal to, a
descriptor in the table produced by GetMemoryMap().

Table 16. Usage of Memory Attribute Definitions

4.7 Image Entry Point Examples

The examples in the following sections show how the various table examples are presented in the UEFI
environment.

4.7.1 Image Entry Point Examples

The following example shows the image entry point for a UEFI Application. This application makes use of
the EFI System Table, the EFI Boot Services Table, and the EFI Runtime Services Table.

EFI_MEMORY_RO EFI_MEMORY_XP EFI_MEMORY_RUNTIME

No memory access
protection is possible for
Entry

0 0 1

Write-protected Code 1 0 1

Read/Write Data 0 1 1

Read-only Data 1 1 1
UEFI Forum, Inc. March 2019 104

UEFI Specification, Version 2.8 EFI System Table
EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiApplicationEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_TIME *Time;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Use EFI System Table to print “Hello World” to the active console output
 // device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use EFI Boot Services Table to allocate a buffer to store the current time
 // and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the EFI Runtime Services Table to get the current time and date.
 //
 Status = gRT->GetTime (Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

The following example shows the UEFI image entry point for a driver that does not follow the UEFI Driver
Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after it exits.

EFI_SYSTEM_TABLE *gST;
UEFI Forum, Inc. March 2019 105

UEFI Specification, Version 2.8 EFI System Table
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

The following example shows the UEFI image entry point for a driver that also does not follow the UEFI
Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay resident in memory after it
exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_DEVICE_ERROR;
}

4.7.2 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine for the ABC
device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL and the function
prototypes for AbcSupported(), AbcStart(), and AbcStop() are defined in Section 11.1.This
function saves the driver’s image handle and a pointer to the EFI boot services table in global variables, so
the other functions in the same driver can have access to these values. It then creates an instance of the
EFI_DRIVER_BINDING_PROTOCOL and installs it onto the driver's image handle.
UEFI Forum, Inc. March 2019 106

UEFI Specification, Version 2.8 EFI System Table
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.7.3 UEFI Driver Model Example (Unloadable)

The following is the same UEFI Driver Model example as above, except it also includes the code required
to allow the driver to be unloaded through the boot service Unload(). Any protocols installed or
memory allocated in AbcEntryPoint() must be uninstalled or freed in the AbcUnload().

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);
UEFI Forum, Inc. March 2019 107

UEFI Specification, Version 2.8 EFI System Table
AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }
 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

UEFI Forum, Inc. March 2019 108

UEFI Specification, Version 2.8 EFI System Table
4.7.4 EFI Driver Model Example (Multiple Instances)

The following is the same as the first UEFI Driver Model example, except it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s image handle.
The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
UEFI Forum, Inc. March 2019 109

UEFI Specification, Version 2.8 EFI System Table
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
UEFI Forum, Inc. March 2019 110

UEFI Specification, Version 2.8
5 - GUID Partition Table (GPT) Disk Layout

5.1 GPT and MBR disk layout comparison

This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning scheme). The
following list outlines the advantages of using the GPT disk layout over the legacy Master Boot Record
(MBR) disk layout:

• Logical Block Addresses (LBAs) are 64 bits (rather than 32 bits).

• Supports many partitions (rather than just four primary partitions).

• Provides both a primary and backup partition table for redundancy.

• Uses version number and size fields for future expansion.

• Uses CRC32 fields for improved data integrity.

• Defines a GUID for uniquely identifying each partition.

• Uses a GUID and attributes to define partition content type.

• Each partition contains a 36 character human readable name.

5.2 LBA 0 Format

LBA 0 (i.e., the first logical block) of the hard disk contains either

• a legacy Master Boot Record (MBR) (see Section 5.2.1)

• or a protective MBR (see Section 5.2.3).

5.2.1 Legacy Master Boot Record (MBR)

A legacy MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is not using the GPT disk
layout (i.e., if it is using the MBR disk layout). The boot code on the MBR is not executed by UEFI
firmware.

Table 17. Legacy MBR


Mnemonic

Byte
Offset

Byte
Length


Description

BootCode 0 424 x86 code used on a non-UEFI system to select an
MBR partition record and load the first logical block
of that partition . This code shall not be executed
on UEFI systems.

UniqueMBRDiskSignature 440 4 Unique Disk Signature This may be used by the OS
to identify the disk from other disks in the system.
This value is always written by the OS and is never
written by EFI firmware.

Unknown 444 2 Unknown. This field shall not be used by UEFI
firmware.

PartitionRecord 446 16*4 Array of four legacy MBR partition records (see
Table 18).
UEFI Forum, Inc. March 2019 111

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
The MBR contains four partition records (see Table 11) that each define the beginning and ending LBAs
that a partition consumes on a disk.

Table 18. Legacy MBR Partition Record

 If an MBR partition has an OSType field of 0xEF (i.e., UEFI System Partition), then the firmware must add
the UEFI System Partition GUID to the handle for the MBR partition using
InstallProtocolInterface(). This allows drivers and applications, including OS loaders, to easily
search for handles that represent UEFI System Partitions.

The following test must be performed to determine if a legacy MBR is valid:

• The Signature must be 0xaa55.

• A Partition Record that contains an OSType value of zero or a SizeInLBA value of zero may
be ignored.

Otherwise:

• The partition defined by each MBR Partition Record must physically reside on the disk (i.e., not
exceed the capacity of the disk).

• Each partition must not overlap with other partitions.

Figure 16 shows an example of an MBR disk layout with four partitions.

Signature 510 2 Set to 0xAA55 (i.e., byte 510 contains 0x55 and
byte 5 11 contains 0xAA).

Reserved 512 Logical BlockSize
- 512

The rest of the logical block, if any, is reserved.


Mnemonic

Byte
Offset

Byte
Length


Description

BootIndicator 0 1 0x80 indicates that this is the bootable legacy partition. Other
values indicate that this is not a bootable legacy partition. This
field shall not be used by UEFI firmware.

StartingCHS 1 3 Start of partition in CHS address format. This field shall not be
used by UEFI firmware.

OSType 4 1 Type of partition. See Section 5.2.2.

EndingCHS 5 3 End of partition in CHS address format. This field shall not be used
by UEFI firmware.

StartingLBA 8 4 Starting LBA of the partition on the disk. This field is used by UEFI
firmware to determine the start of the partition.

SizeInLBA 12 4 Size of the partition in LBA units of logical blocks. This field is used
by UEFI firmware to determine the size of the partition.
UEFI Forum, Inc. March 2019 112

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
Figure 16. MBRDisk Layout with legacy MBR example

Related Definitions:

#pragma pack(1)
///
/// MBR Partition Entry
///
typedef struct {
 UINT8 BootIndicator;
 UINT8 StartHead;
 UINT8 StartSector;
 UINT8 StartTrack;
 UINT8 OSIndicator;
 UINT8 EndHead;
 UINT8 EndSector;
 UINT8 EndTrack;
 UINT8 StartingLBA[4];
 UINT8 SizeInLBA[4];
} MBR_PARTITION_RECORD;

///
/// MBR Partition Table
///
typedef struct {
 UINT8 BootStrapCode[440];
 UINT8 UniqueMbrSignature[4];
 UINT8 Unknown[2];
 MBR_PARTITION_RECORD Partition[4];
 UINT16 Signature;
} MASTER_BOOT_RECORD;

#pragma pack()

 Partition Legacy
MBR

Partition Partition Partition

LBA 0 LBA z
UEFI Forum, Inc. March 2019 113

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
5.2.2 OS Types

Unique types defined by this specification (other values are not defined by this specification):

• 0xEF (i.e., UEFI System Partition) defines a UEFI system partition.

• 0xEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake partition
covering the entire disk.

Other values are used by legacy operating systems, and are allocated independently of the UEFI
specification.

Note: “Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “OS Type values used in the MBR disk layout”.

5.2.3 Protective MBR

For a bootable disk, a Protective MBR must be located at LBA 0 (i.e., the first logical block) of the disk if it
is using the GPT disk layout. The Protective MBR precedes the GUID Partition Table Header to maintain
compatibility with existing tools that do not understand GPT partition structures.

Table 19. Protective MBR

One of the Partition Records shall be as defined in table 12, reserving the entire space on the disk after
the Protective MBR itself for the GPT disk layout.

Table 20. Protective MBR Partition Record protecting the entire disk

Mnemonic Byte
Offset

Byte
Length

Contents

Boot Code 0 440 Unused by UEFI systems.

Unique MBR Disk
Signature

440 4 Unused. Set to zero.

Unknown 444 2 Unused. Set to zero.

Partition Record 446 16*4 Array of four MBR partition records. Contains:
• one partition record as defined Table 20; and

• three partition records each set to zero.

Signature 510 2 Set to 0xAA55 (i.e., byte 510 contains 0x55 and byte 511 contains
0xAA).

Reserved 512 Logical
Block Size -
512

The rest of the logical block, if any, is reserved. Set to zero.


Mnemonic

Byte
Offset

Byte
Length


Description

BootIndicator 0 1 Set to 0x00 to indicate a non-bootable partition. If set to any
value other than 0x00 the behavior of this flag on non-UEFI
systems is undefined. Must be ignored by UEFI
implementations.

StartingCHS 1 3 Set to 0x000200, corresponding to the Starting LBA field.
UEFI Forum, Inc. March 2019 114

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
The remaining Partition Records shall each be set to zeros.

Figure 17 shows an example of a GPT disk layout with four partitions with a protective MBR.

Figure 17. GPT disk layout with protective MBR example

Figure 18 shows an example of a GPT disk layout with four partitions with a protective MBR, where the
disk capacity exceeds LBA 0xFFFFFFFF.

OSType 4 1 Set to 0xEE (i.e., GPT Protective)

EndingCHS 5 3 Set to the CHS address of the last logical block on the disk. Set
to 0xFFFFFF if it is not possible to represent the value in this
field.

StartingLBA 8 4 Set to 0x00000001 (i.e., the LBA of the GPT Partition Header).

SizeInLBA 12 4 Set to the size of the disk minus one. Set to 0xFFFFFFFF if the
size of the disk is too large to be represented in this field.

 Partition Backup GPT

MBR view:

Partition Partition Primary
GPT

UEFI
system

partition

LBA 0 LBA z

GPT Protective partition

Protective
MBR

 Partition Backup
GPT

MBR view:

Partition Partition Primary
GPT

UEFI
system

partition

LBA 0 LBA z

GPT Protective partition

Protective
MBR

LBA 0xFFFFFFFF
UEFI Forum, Inc. March 2019 115

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA 0xFFFFFFFF example.

5.2.4 Partition Information

Install an EFI_PARTITION_INFO protocol on each of the device handles that logical
EFI_BLOCK_IO_PROTOTOLs are installed.

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview

The GPT partitioning scheme is depicted in Figure 19. The GPT Header (see Section 5.3.2) includes a
signature and a revision number that specifies the format of the data bytes in the partition header. The
GUID Partition Table Header contains a header size field that is used in calculating the CRC32 that
confirms the integrity of the GPT Header. While the GPT Header’s size may increase in the future it
cannot span more than one logical block on the device.

LBA 0 (i.e., the first logical block) contains a protective MBR (see Section 5.2.3).

Two GPT Header structures are stored on the device: the primary and the backup. The primary GPT
Header must be located in LBA 1 (i.e., the second logical block), and the backup GPT Header must be
located in the last LBA of the device. Within the GPT Header the My LBA field contains the LBA of the GPT
Header itself, and the Alternate LBA field contains the LBA of the other GPT Header. For example, the
primary GPT Header's My LBA value would be 1 and its Alternate LBA would be the value for the last
LBA of the device. The backup GPT Header's fields would be reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This range is defined
to be inclusive of First Usable LBA through Last Usable LBA on the logical device. All data
stored on the volume must be stored between the First Usable LBA through Last Usable LBA,
and only the data structures defined by UEFI to manage partitions may reside outside of the usable
space. The value of Disk GUID is a GUID that uniquely identifies the entire GPT Header and all its
associated storage. This value can be used to uniquely identify the disk. The start of the GPT Partition
Entry Array is located at the LBA indicated by the Partition Entry LBA field. The size of a GUID
Partition Entry element is defined in the Size Of Partition Entry field. There is a 32-bit CRC of the
GPT Partition Entry Array that is stored in the GPT Header in Partition Entry Array CRC32 field.
The size of the GPT Partition Entry Array is Size Of Partition Entry multiplied by Number Of
Partition Entries. If the size of the GUID Partition Entry Array is not an even multiple of the logical
block size, then any space left over in the last logical block is Reserved and not covered by the
Partition Entry Array CRC32 field. When a GUID Partition Entry is updated, the Partition
Entry Array CRC32 must be updated. When the Partition Entry Array CRC32 is updated, the
GPT Header CRC must also be updated, since the Partition Entry Array CRC32 is stored in the GPT
Header.
UEFI Forum, Inc. March 2019 116

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
Figure 19. GUID Partition Table (GPT) example

The primary GPT Partition Entry Array must be located after the primary GPT Header and end before the
First Usable LBA. The backup GPT Partition Entry Array must be located after the Last Usable
LBA and end before the backup GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate locations on the disk.
Each GPT Partition Entry defines a partition that is contained in a range that is within the usable space
declared by the GPT Header. Zero or more GPT Partition Entries may be in use in the GPT Partition Entry
Array. Each defined partition must not overlap with any other defined partition. If all the fields of a GUID
Partition Entry are zero, the entry is not in use. A minimum of 16,384 bytes of space must be reserved for
the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing 1 block for
the Protective MBR, 1 block for the Partition Table Header, and 32 blocks for the GPT Partition Entry
Array); if the logical block size is 4096, the First Useable LBA must be greater than or equal to 6
(allowing 1 block for the Protective MBR, 1 block for the GPT Header, and 4 blocks for the GPT Partition
Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is called the Long
Logical Sector feature set; an ATA device reports support for this feature set in IDENTIFY DEVICE data
word 106 bit 12 and reports the number of words (i.e., 2 bytes) per logical sector in IDENTIFY DEVICE data
words 117-118 (see ATA8-ACS). A SCSI device reports its logical block size in the READ CAPACITY
parameter data Block Length In Bytes field (see SBC-3).

The device may present a logical block size that is smaller than the physical block size (e.g., present a
logical block size of 512 bytes but implement a physical block size of 4,096 bytes). In ATA, this is called the
Long Physical Sector feature set; an ATA device reports support for this feature set in IDENTIFY DEVICE
data word 106 bit 13 and reports the Physical Sector Size/Logical Sector Size exponential ratio in
IDENTIFY DEVICE data word 106 bits 3-0 (See ATA8-ACS). A SCSI device reports its logical block size/
physical block exponential ratio in the READ CAPACITY (16) parameter data Logical Blocks Per Physical

Partition 1

Start partition

OM13160

P
M

B
R

P
artition

T
able H

D
R

LBA0 LBA1

First useable block

P
artition

T
able H

D
R

Last useable block

LBAn

0 1 n

End partition

Primary Partition
Table

Backup Partition
Table

Start partition
End partition

0 1 n
UEFI Forum, Inc. March 2019 117

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
Block Exponent field (see SBC-3).These fields return 2x logical sectors per physical sector (e.g., 3 means

23=8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not aligned to the
underlying physical block boundaries. An ATA device reports the alignment of logical blocks within a
physical block in IDENTIFY DEVICE data word 209 (see ATA8-ACS). A SCSI device reports its alignment in
the READ CAPACITY (16) parameter data Lowest Aligned Logical Block Address field (see SBC-3). Note that
the ATA and SCSI fields are defined differently (e.g., to make LBA 63 aligned, ATA returns a value of 1
while SCSI returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see SBC-3) may also
report a granularity that is important for alignment purposes (e.g., RAID controllers may return their RAID
stripe depth in that field)

GPT partitions should be aligned to the larger of:

a the physical block boundary, if any
b the optimal transfer length granularity, if any.

For example

a If the logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512
bytes x 8 logical blocks), there is no optimal transfer length granularity, and logical
block 0 is aligned to a physical block boundary, then each GPT partition should
start at an LBA that is a multiple of 8.

b If the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512
bytes x 16 logical blocks), the optimal transfer length granularity is 65,536 bytes
(i.e., 512 bytes x 128 logical blocks), and logical block 0 is aligned to a physical
block boundary, then each GPT partition should start at an LBA that is a multiple
of 128.

To avoid the need to determine the physical block size and the optimal transfer length granularity,
software may align GPT partitions at significantly larger boundaries. For example, assuming logical block
0 is aligned, it may use LBAs that are multiples of 2,048 to align to 1,048,576 byte (1 MiB) boundaries,
which supports most common physical block sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS). By
the INCITS T13 technical committee. (See “Links to UEFI-Related Documents” (http://uefi.org/uefi under
the headings “InterNational Committee on Information Technology Standards (INCITS)” and “INCITs T13
technical committee”).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from www.incits.org. By the
INCITS T10 technical committee (See “Links to UEFI-Related Documents” (http://uefi.org/uefi under the
headings “InterNational Committee on Information Technology Standards (INCITS)” and “SCSI Block
Commands”).

5.3.2 GPT Header

Table 21 defines the GPT Header.
UEFI Forum, Inc. March 2019 118

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
Table 21. GPT Header


Mnemonic

Byte
Offset

Byte
Length


Description

Signature 0 8 Identifies EFI-compatible partition table header.
This value must contain the ASCII string “EFI
PART”, encoded as the 64-bit constant
0x5452415020494645.

Revision 8 4 The revision number for this header. This revision
value is not related to the UEFI Specification
version. This header is version 1.0, so the correct
value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GPT Header. The

HeaderSize must be greater than or equal to

92 and must be less than or equal to the logical
block size.

HeaderCRC32 16 4 CRC32 checksum for the GPT Header structure.
This value is computed by
setting this field to 0, and computing the 32-bit

CRC for HeaderSize bytes.

Reserved 20 4 Must be zero.

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GPT Header.

FirstUsableLBA 40 8 The first usable logical block that may be used by a
partition described by a GUID Partition Entry.

LastUsableLBA 48 8 The last usable logical block that may be used by a
partition described by a GUID Partition Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry array.

NumberOfPartitionEntries 80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition Entry
structures in the GUID Partition Entry array. This

field shall be set to a value of 128 x 2n where n is
an integer greater than or equal to zero (e.g., 128,
256, 512, etc.).
NOTE: Previous versions of this specification
allowed any multiple of 8..

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.

Starts at PartitionEntryLBA and is

computed over a byte length of

NumberOfPartitionEntries *
SizeOfPartitionEntry.

Reserved 92 BlockSiz
e – 92

The rest of the block is reserved by UEFI and must
be zero.
UEFI Forum, Inc. March 2019 119

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
The following test must be performed to determine if a GPT is valid:

• Check the Signature

• Check the Header CRC

• Check that the MyLBA entry points to the LBA that contains the GUID Partition Table

• Check the CRC of the GUID Partition Entry Array

If the GPT is the primary table, stored at LBA 1:

• Check the AlternateLBA to see if it is a valid GPT

If the primary GPT is corrupt, software must check the last LBA of the device to see if it has a valid GPT
Header and point to a valid GPT Partition Entry Array. If it points to a valid GPT Partition Entry Array, then
software should restore the primary GPT if allowed by platform policy settings (e.g. a platform may
require a user to provide confirmation before restoring the table, or may allow the table to be restored
automatically). Software must report whenever it restores a GPT.

Software should ask a user for confirmation before restoring the primary GPT and must report whenever
it does modify the media to restore a GPT. If a GPT formatted disk is reformatted to the legacy MBR
format by legacy software, the last logical block might not be overwritten and might still contain a stale
GPT. If GPT-cognizant software then accesses the disk and honors the stale GPT, it will misinterpret the
contents of the disk. Software may detect this scenario if the legacy MBR contains valid partitions rather
than a protective MBR (see Section 5.2.1).

Any software that updates the primary GPT must also update the backup GPT. Software may update the
GPT Header and GPT Partition Entry Array in any order, since all the CRCs are stored in the GPT Header.
Software must update the backup GPT before the primary GPT, so if the size of device has changed (e.g.
volume expansion) and the update is interrupted, the backup GPT is in the proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last logical block on
the disk. If the backup GPT is valid it must be used to restore the primary GPT. If the primary GPT is valid
and the backup GPT is invalid software must restore the backup GPT. If both the primary and backup
GPTs are corrupted this block device is defined as not having a valid GUID Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the size of a physical
volume. This is due to the GPT recovery scheme depending on locating the backup GPT at the end of the
device. A volume may grow in size when disks are added to a RAID device. As soon as the volume size is
increased the backup GPT must be moved to the end of the volume and the primary and backup GPT
Headers must be updated to reflect the new volume size.

5.3.3 GPT Partition Entry Array

The GPT Partition Entry Array contains an array of GPT Partition Entries. Table 22 defines the GPT
Partition Entry.

Table 22. GPT Partition Entry


Mnemonic

Byte
Offset

Byte
Length


Description
UEFI Forum, Inc. March 2019 120

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID Partition Entry.
Each partition entry contains a Unique Partition GUID value that uniquely identifies every partition
that will ever be created. Any time a new partition entry is created a new GUID must be generated for
that partition, and every partition is guaranteed to have a unique GUID. The partition is defined as all the
logical blocks inclusive of the StartingLBA and EndingLBA.

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to the OS
Type field in the MBR. Each filesystem must publish its unique GUID. The Attributes field can be used
by utilities to make broad inferences about the usage of a partition and is defined in Table 23.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition using
EFI_BOOT_SERVICES.InstallProtocolInterface(). This will allow drivers and applications,
including OS loaders, to easily search for handles that represent EFI System Partitions or vendor specific
partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new Disk
GUID values in the GPT Headers and new Unique Partition GUID values in each GPT Partition Entry.
If GPT-cognizant software encounters two disks or partitions with identical GUIDs, results will be
indeterminate.

Table 23. Defined GPT Partition Entry - Partition Type GUIDs

PartitionTypeGUID 0 16 Unique ID that defines the purpose and
type of this Partition. A value of zero
defines that this partition entry is not
being used.

UniquePartitionGUID 16 16 GUID that is unique for every partition
entry. Every partition ever created will
have a unique GUID. This GUID must
be assigned when the GPT Partition
Entry is created. The GPT Partition
Entry is created whenever the

NumberOfPartitionEntrie
s in the GPT Header is increased to

include a larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition defined by
this entry.

EndingLBA 40 8 Ending LBA of the partition defined by
this entry.

Attributes 48 8 Attribute bits, all bits reserved by UEFI
(see Table 24).

PartitionName 56 72 Null-terminated string containing a
human-readable name of the partition.

Reserved 128 SizeOfPartitio
nEntry - 128

The rest of the GPT Partition Entry, if
any, is reserved by UEFI and must be
zero.

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000
UEFI Forum, Inc. March 2019 121

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
OS vendors need to generate their own Partition Type GUIDs to identify their partition types.

Table 24. Defined GPT Partition Entry - Attributes

Related Definitions:

#pragma pack(1)
///
/// GPT Partition Entry.
///
typedef struct {
 EFI_GUID PartitionTypeGUID;
 EFI_GUID UniquePartitionGUID;
 EFI_LBA StartingLBA;
 EFI_LBA EndingLBA;
 UINT64 Attributes;
 CHAR16 PartitionName[36];

EFI System Partition C12A7328-F81F-11D2-BA4B-00A0C93EC93B

Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

Bits Name Description

Bit 0 Required
Partition

If this bit is set, the partition is required for the platform to function. The owner/
creator of the partition indicates that deletion or modification of the contents can
result in loss of platform features or failure for the platform to boot or operate. The
system cannot function normally if this partition is removed, and it should be
considered part of the hardware of the system. Actions such as running diagnostics,
system recovery, or even OS install or boot could potentially stop working if this
partition is removed. Unless OS software or firmware recognizes this partition, it
should never be removed or modified as the UEFI firmware or platform hardware
may become non-functional.

Bit 1 No Block IO
Protocol

If this bit is set, then firmware must not produce an

EFI_BLOCK_IO_PROTOCOL device for this partition. See Section 13.3.2 for

more details. By not producing an EFI_BLOCK_IO_PROTOCOL partition, file

system mappings will not be created for this partition in UEFI.

Bit 2 Legacy BIOS
Bootable

This bit is set aside by this specification to let systems with traditional PC-AT BIOS
firmware implementations inform certain limited, special-purpose software running
on these systems that a GPT partition may be bootable. For systems with firmware
implementations conforming to this specification, the UEFI boot manager (see
chapter 3) must ignore this bit when selecting a UEFI-compliant application, e.g., an
OS loader (see 2.1.3). Therefore there is no need for this specification to define the
exact meaning of this bit.

Bits 3-47 Undefined and must be zero. Reserved for expansion by future versions of the UEFI
specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on the

PartitionTypeGUID. Only the owner of the PartitionTypeGUID is

allowed to modify these bits. They must be preserved if Bits 0–47 are modified.

Description GUID Value
UEFI Forum, Inc. March 2019 122

UEFI Specification, Version 2.8 GUID Partition Table (GPT) Disk Layout
} EFI_PARTITION_ENTRY;
#pragma pack()
UEFI Forum, Inc. March 2019 123

UEFI Specification, Version 2.8
6 - Block Translation Table (BTT) Layout

This specification defines the Block Translation Table (BTT) metadata layout. The following sub-sections
outline the BTT format that is utilized on the media, the data structures involved, and a detailed
description of how SW is to interpret the BTT layout.

6.1 Block Translation Table (BTT) Background

A namespace defines a contiguously-addressed range of Non-Volatile Memory conceptually similar to a
SCSI Logical Unit (LUN) or a NVM Express namespace.

Any namespace being utilized for block storage may contain a Block Translation Table (BTT), which is a
layout and set of rules for doing block I/O that provide powerfail write atomicity of a single block.
Traditional block storage, including hard disks and SSDs, usually protect against torn sectors, which are
sectors partially written when interrupted by power failure. Existing software, mostly file systems,
depend on this behavior, often without the authors realizing it. To enable such software to work correctly
on namespaces supporting block storage access, the BTT layout defined by this document sub-divides a
namespace into one or more BTT Arenas, which are large sections of the namespace that contain the
metadata required to provide the desired write atomicity. Each of these BTT Arenas contains a metadata
layout as shown in Figure 20 and Figure 21.

Figure 20. The BTT Layout in a BTT Arena

Each arena contains the layout shown in Figure: The BTT Layout in a BTT Arena, the primary info block,
data area, map, flog, and a backup info block. Each of these areas is described in the following sections.
When the namespace is larger than 512 GiB, multiple arenas are required by the BTT layout, as shown in
Figure 21. Each namespace using a BTT is divided into as many 512 GiB arenas as shall fit, followed by a
smaller arena to contain any remaining space as appropriate. The smallest arena size is 16MiB so the last
arena size shall be between 16MiB and 512GiBs. Any remaining space less than 16MiB is unused. Because

UEFI Forum, Inc. March 2019 124

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
of these rules for arena placement, software can locate every primary Info block and every backup Info
block without reading any metadata, based solely on the namespace size.

Figure 21. A BTT With Multiple Arenas in a Large Namespace

6.2 Block Translation Table (BTT) Data Structures

The following sub-sections outline the data structures associated with the BTT Layout.

6.2.1 BTT Info Block

// Alignment of all BTT structures
#define EFI_BTT_ALIGNMENT 4096
#define EFI_BTT_INFO_UNUSED_LEN 3968
 
#define EFI_BTT_INFO_BLOCK_SIG_LEN 16

// Constants for Flags field

#define EFI_BTT_INFO_BLOCK_FLAGS_ERROR 0x00000001

// Constants for Major and Minor version fields
#define EFI_BTT_INFO_BLOCK_MAJOR_VERSION 2
#define EFI_BTT_INFO_BLOCK_MINOR_VERSION 0

typdef struct _EFI_BTT_INFO_BLOCK {

 CHAR8 Sig[EFI_BTT_INFO_BLOCK_SIG_LEN];

 EFI_GUID Uuid;

 EFI_GUID ParentUuid;

 UINT32 Flags;

 UINT16 Major;

 UINT16 Minor;

 UINT32 ExternalLbaSize;

UEFI Forum, Inc. March 2019 125

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
 UINT32 ExternalNLba;

 UINT32 InternalLbaSize;

 UINT32 InternalNLba;

 UINT32 NFree;

 UINT32 InfoSize;

 UINT64 NextOff;

 UINT64 DataOff;

 UINT64 MapOff;

 UINT64 FlogOff;

 UINT64 InfoOff;

 CHAR8 Unused[EFI_BTT_INFO_UNUSED_LEN];

 UINT64 Checksum;

} EFI_BTT_INFO_BLOCK

Sig

Signature of the BTT Index Block data structure. Shall be “BTT_ARENA_INFO\0\0”.

Uuid

UUID identifying this BTT instance. A new UUID is created each time the initial BTT Arenas are written.
This value shall be identical across all BTT Info Blocks within all arenas within a namespace.

ParentUuid

UUID of containing namespace, used when validating the BTT Info Block to ensure this instance of the
BTT layout is intended for the current surrounding namespace, and not left over from a previous
namespace that used the same area of the media. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.

Flags

Boolean attributes of this BTT Info Block. See the additional description below on the use of the flags. The
following values are defined:

EFI_BTT_INFO_BLOCK_FLAGS_ERROR – The BTT Arena is in the error state. When a BTT implementation
discovers issues such as inconsistent metadata or lost metadata due to unrecoverable media errors, the
error bit for the associated arena shall be set. See the BTT Theory of Operation section regarding
handling of EFI_BTT_INFO_BLOCK_FLAGS_ERROR.

Major

Major version number. Currently at version 2. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.

Minor

Minor version number. Currently at version 0. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.
UEFI Forum, Inc. March 2019 126

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
ExternalLbaSize

Advertised LBA size in bytes. I/O requests shall be in this size chunk. This value shall be identical across all
BTT Info Blocks within all arenas within a namespace.

ExternalNLba

Advertised number of LBAs in this arena. The sum of this field, across all BTT Arenas, is the total number
of available LBAs in the namespace.

InternalLbaSize

Internal LBA size shall be greater than or equal to ExternalLbaSize and shall not be smaller than 512 bytes.
Each block in the arena data area is this size in bytes and contains exactly one block of data. Optionally,
this may be larger than the ExternalLbaSize due to alignment padding between LBAs. This value shall be
identical across all BTT Info Blocks within all arenas within a namespace.

InternalNLba

Number of internal blocks in the arena data area. This shall be equal to ExternalNLba + NFree because
each internal lba is either mapped to an external lba or shown as free in the flog.

NFree

Number of free blocks maintained for writes to this arena. NFree shall be equal to InternalNLba –
ExternalNLba. This value shall be identical across all BTT Info Blocks within all arenas within a namespace.

InfoSize

The size of this info block in bytes. This value shall be identical across all BTT Info Blocks within all arenas
within a namespace.

NextOff

Offset of next arena, relative to the beginning of this arena. An offset of 0 indicates that no arenas follow
the current arena. This field is provided for convience as the start of each arena can be calculated from
the size of the namespace as described in the Theory of Operation – Validating BTT Arenas at start-up
description. This value shall be identical in the primary and backup BTT Info Blocks within an arena.

DataOff

Offset of the data area for this arena, relative to the beginning of this arena. The internal-LBA number
zero lives at this offset. This value shall be identical in the primary and backup BTT Info Blocks within an
arena.

MapOff

Offset of the map for this arena, relative to the beginning of this arena. This value shall be identical in the
primary and backup BTT Info Blocks within an arena.

FlogOff

Offset of the flog for this arena, relative to the beginning of this arena. This value shall be identical in the
primary and backup BTT Info Blocks within an arena.
UEFI Forum, Inc. March 2019 127

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
InfoOff

Offset of the backup copy of this arena’s info block, relative to the beginning of this arena. This value shall
be identical in the primary and backup BTT Info Blocks within an arena.

Reserved

Shall be zero.

Checksum

64-bit Fletcher64 checksum of all fields. This field is considered as containing zero when the checksum is
computed.

BTT Info Block Description

The existence of a valid BTT Info Block is used to determine whether a namespace is used as a BTT block
device.

Each BTT Arena contains two BTT Info Blocks, a primary copy at the beginning of the BTT Arena, at
address offset 0 , and ends with an identical backup BTT Info Block, in the highest block available in the
arena aligned on a EFI_BTT_ALIGNMENT boundary. When writing the BTT layout, implementations shall
write out the info blocks from the highest arena to the lowest, writing the backup info block and other
BTT data structures before writing the primary info block. Writing the layout in this manner shall ensure
that a valid BTT layout is only detected after the entire layout has been written.

6.2.2 BTT Map Entry

typedef struct _EFI_BTT_MAP_ENTRY {
 UINT32 PostMapLba : 30;
 UINT32 Error : 1;
 UINT32 Zero : 1;
} EFI_BTT_MAP_ENTRY;

PostMapLba

Post-map LBA number (block number in this arena’s data area)

Error

When set and Zero is not set, reads on this block return an error. Writes to this block clear this flag.

Zero

When set and Error is not set, reads on this block return a full block of zeros. Writes to this block clear this
flag.

BTT Map Description

The BTT Map area maps an LBA that indexes into the arena, to its actual location. The BTT Map is located
as high as possible in the arena, after room for the backup info block and flog (and any required
alignment) has been taken into account.The terminology pre-map LBA and post-map LBA is used to
describe the input and output values of this mapping.

The BTT Map area is indexed by the pre-map LBA and each entry in the map contains the 30 bit post-map
LBA and bits to indicate if there is an error or if LBA contains zeroes (see EFI_BTT_MAP_ENTRY).
UEFI Forum, Inc. March 2019 128

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout

The Error and Zero bits indicate conditions that cannot both be true at the same time, so that
combination is used to indicate a normal map entry, where no error or zeroed block is indicated. The
error condition is indicated only when the Error bit is set and the Zero bit is clear, with similar logic for the
zero block condition. When neither condition is indicated, both Error and Zero are set to indicate a map
entry in its normal, non-error state. This leaves the case where both Error and Zero are bits are zero,
which is the initial state of all map entries when the BTT layout is first written. Both bits zero means that
the map entry contains the initial identity mapping where the pre-map LBA is mapped to the same post-
map LBA. Defining the map this way allows an implementation to leverage the case where the initial
contents of the namespace is known to be zero, requiring no writes to the map when writing the layout.
This can greatly improve the layout time since the map is the largest BTT data structure written during
layout.

6.2.3 BTT Flog

// Alignment of each flog structure
#define EFI_BTT_FLOG_ENTRY_ALIGNMENT 64

typedef struct _EFI_BTT_FLOG {
 UINT32 Lba0;
 UINT32 OldMap0;
 UINT32 NewMap0;
 UINT32 Seq0;
 UINT32 Lba1;
 UINT32 OldMap1;
 UINT32 NewMap1;
 UINT32 Seq1;
} EFI_BTT_FLOG

Lba0

Last pre-map LBA written using this flog entry. This value is used as an index into the BTT Map when
updating it to complete the transaction.

OldMap0

Old post-map LBA. This is the old entry in the map when the last write using this flog entry occurred. If
the transaction is complete, this LBA is now the free block associated with this flog entry.

NewMap0

New post-map LBA. This is the block allocated when the last write using this flog entry occurred. By
definition, a write transaction is complete if the BTT Map entry contains this value.

Seq0

The Seq0 field in each flog entry is used to determine which set of fields is newer between the two sets
(Lba0, OldMap0, NewMpa0, Seq0 vs Lba1, Oldmap1, NewMap1, Seq1). Updates to a flog entry shall
always be made to the older set of fields and shall be implemented carefully so that the Seq0 bits are only
written after the other fields are known to be committed to persistence. The figure below shows the
progression of the Seq0 bits over time, where the newer entry is indicated by a value that is clockwise of
the older value.
UEFI Forum, Inc. March 2019 129

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
Figure 22. Cyclic Sequence Numbers for Flog Entries

Lba1

Alternate lba entry

OldMap1

Alternate old entry

NewMap1

Alternate new entry

Seq1

Alternate Seq entry

BTT Flog Description

The BTT Flog is so named to illustrate that it is both a free list and a log, rolled into one data structure.
The Flog size is determined by the NFree field in the BTT Info Block which determines how many of these
flog entries there are. The flog location is the highest address in the arena after space for the backup info
block and alignment requirements have been taken in account.

6.2.4 BTT Data Area

Starting from the low address to high, the BTT Data Area starts immediately after the BTT Info Block and
extends to the beginning of the BTT Map data structure. The number of internal data blocks that can be
stored in an arena is calculated by first calculating the necessary space required for the BTT Info Blocks,
map, and flog (plus any alignment required), subtracting that amount from the total arena size, and then
calculating how many blocks fit into the resulting space.

6.2.5 NVDIMM Label Protocol Address Abstraction Guid

This version of the BTT layout and behavior is collectively described by the AddressAbstractionGuid in the
UEFI NVDIMM Label protocol section utilizing this GUID:

UEFI Forum, Inc. March 2019 130

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
#define EFI_BTT_ABSTRACTION_GUID \
 {0x18633bfc,0x1735,0x4217, 
 {0x8a,0xc9,0x17,0x23,0x92,0x82,0xd3,0xf8}

6.3 BTT Theory of Operation

This section outlines the theory of operation for the BTT and describes the responsibilities that any
software implementation shall follow.

A specific instance of the BTT layout depends on the size of the namespace and three administrative
choices made at the time the initial layout is created:

• ExternalLbaSize: the desired block size

• InternalLbaSize: the block size with any internal padding

• NFree: the number of concurrent writes supported by the layout

The BTT data structures do not support an InternalLbaSize smaller than 512 bytes, so if ExternalLbaSize is
smaller than 512 bytes, the InternalLbaSize shall be rounded up to 512. For performance, the
InternalLbaSize may also include some padding bytes. For example, a BTT layout supporting 520-byte
blocks may use 576-byte blocks internally in order to round up the size to a multiple of a 64-byte cache
line size. In this example, the ExternalLbaSize, visible to software above the BTT software, would be 520
bytes, but the InternalLbaSize would be 576 bytes.

Once these administrative choices above are determined, the namespace is divided up into arenas, as
described in the BTT Arenas section, where each arena uses the same values for ExternalLbaSize,
InternalLbaSize, and Nfree.

6.3.1 BTT Arenas

In order to reduce the size of BTT metadata and increase the possibility of concurrent updates, the BTT
layout in a namespace is divided into arenas. An arena cannot be larger than 512GiB or smaller than
16MiB. A namespace is divided into as many 512GiB arenas that shall fit, starting from offset zero and
packed together without padding, followed by one arena smaller than 512GiB if the remaining space is at
least 16MiB. The smaller area size is rounded down to be a multiple of EFI_BTT_ALIGNMENT if necessary.
Because of these rules, the location and size of every BTT Arena in a namespace can be determined from
the namespace size.

Within an arena, the amount of space used for the Flog is NFree times the amount of space required for
each Flog entry. Flog entries shall be aligned on 64-byte boundaries. In addition, the full BTT Flog table
shall be aligned on a EFI_BTT_ALIGNMENT boundary and have a size that is padded to be multiple of
EFI_BTT_ALIGNMENT. In summary, the space in an arena taken by the Flog is:

FlogSize = roundup(NFree * roundup(sizeof(EFI_BTT_FLOG),
EFI_BTT_FLOG_ENTRY_ALIGNMENT), EFI_BTT_ALIGNMENT)

Within an arena, the amount of space available for data blocks and the associated Map is the arena size
minus the space used for the BTT Info Blocks and the Flog:
UEFI Forum, Inc. March 2019 131

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
DataAndMapSize = ArenaSize – 2 * sizeof(EFI_BTT_INFO_BLOCK) - FlogSize

Within an arena, the number of data blocks is calculated by dividing the available space,
DataAndMapSize, by the InternalLbaSize plus the map overhead required for each block, and rounding
down the result to ensure the data area is aligned on a EFI_BTT_ALIGNMENT boundary:

InternalNLba = (DataAndMapSize – EFI_BTT_ALIGNMENT) / (InternalLbaSize +
sizeof(EFI_BTT_MAP_ENTRY)

With the InternalNLba value known, the calculation for the number of external LBAs subtracts off NFree
for the pool of unadvertised free blocks:

ExternalNLba = InternalNLba – Nfree

Within an arena, the number of bytes required for the BTT Map is one entry for each external LBA, plus
any alignment required to maintain an alignment of EFI_BTT_ALIGNMENT for the entire map:

MapSize = roundup(ExternalNLba * sizeof(EFI_BTT_MAP_ENTRY),
EFI_BTT_ALIGNMENT)

The number of concurrent writes allowed for an arena is based on the NFree value chosen at BTT layout
time. For example, choosing NFree of 256 means the BTT Arena shall have 256 free blocks to use for in-
flight write operations. Since BTT Arenas each have NFree free blocks, the number of concurrent writes
allowed in a namespace may be larger when there are multiple arenas and the writes are spread out
between multiple arenas.

6.3.2 Atomicity of Data Blocks in an Arena

The primary reason for the BTT is to provide failure atomicity when writing data blocks, so that any write
of a single block cannot be torn by interruptions such as power loss. The BTT provides this by maintaining
a pool of free blocks which are not part of the capacity advertised to software layers above the BTT
software. The BTT Data Area is large enough to hold the advertised capacity as well as the pool of free
blocks. The BTT software manages the blocks in the BTT Data Area as a list of internal LBAs, which are
block numbers only visible internally to the BTT software. The block numbers that make up the
advertised capacity are known as external LBAs, and at any given point in time, each one of those
external LBAs is mapped by the BTT Map to one of the blocks in the BTT Data Area. Each block write done
by the BTT software starts by allocating one of the free blocks, writing the data to it, and only when that
block is fully persistent (including any flushes required), are steps taken to make that block active, as
outlined in the BTT Theory of Operations – Write Path section.

The BTT Flog (a combination of a free list and a log) is at the heart of the atomic updates when writing
blocks. The “quiet” state of a BTT Flog, when no in-flight writes are happening and no recovery steps are
outstanding, is that the NFree free blocks currently available for writes are contained in the OldMap
fields in the Flog entries. A write shall use one of those Flog entries to find a free block to write to, and
then the Lba and NewMap fields in the Flog are used as a write-ahead-log for the BTT Map update when
the data portion of the write is complete, as described in the Validating the Flog at start-up section.

It is up to run-time logic in the BTT software to ensure that only one Flog entry is in use at a time, and that
any reads still executing on the block indicated by the OldMap entry have finished before starting a write
using that block.
UEFI Forum, Inc. March 2019 132

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
6.3.3 Atomicity of BTT Data Structures

Byte-addressable persistent media may not support atomic updates larger than 8-bytes, so any data
structure larger than 8-bytes in the BTT uses software-implemented atomicity for updates. Note that 8-
byte write atomicity, meaning an 8-byte store to the persistent media cannot be torn by interruptions
such as power failures, is a minimal requirement for using the BTT described in this document.

There are four types of data structures in the BTT:

• The BTT Info Blocks

• The BTT Map

• The BTT Flog

• The BTT Data Area

The BTT Map entries are 4-bytes in size, and so can be updated atomically with a single store instruction.
All other data structures are updated by following the rules described in this document, which update an
inactive version of the data structure first, followed by steps to make it active atomically.

For the BTT Info Blocks, atomicity is provided by always writing the backup Info block first, and only after
that update is fully persistent (the block checksums correctly), is the primary BTT Info Block updated as
described in the Writing the initial BTT layout section. Recovery from an interrupted update is provided
by checking the primary Info block’s checksum on start-up, and if it is bad, copying the backup Info block
to the primary to complete the interrupted update as described in the Validating BTT Arenas at start-up
section.

For the BTT Flog, each entry is double-sized, with two complete copies of every field (Lba, OldMap,
NewMap, Seq). The active entry has the higher Seq number, so updates always write to the inactive
fields, and once those fields are fully persistent, the Seq field for the inactive entry is updated to make it
become the active entry atomically. This is described in the Validating the Flog at start-up section.

For the BTT Data Area, all block writes can be thought of as allocating writes, where an inactive block is
chosen from the free list maintained by the Flog, and only after the new data written to that block is fully
persistent, that block is made active atomically by updating the Flog and Map entries as described in the
Write Path section.

6.3.4 Writing the Initial BTT layout

The overall layout of the BTT relies on the fact that all arenas shall be 512GiB in size, except the last arena
which is a minimum of 16MiB. Initializing the BTT on-media structures only happens once in the lifetime
of a BTT, when it is created. This sequence assumes that software has determined that new BTT layout
needs to be created and the total raw size of the namespace is known.

Immediately before creating a new BTT layout, the UUID of the surrounding namespace may be updated
to a newly-generated UUID. This optional step, depending on the needs of a BTT software
implementation, has the effect of invalidating any previous BTT Info Blocks in the namespace and
ensuring the detection of an invalid layout if the BTT layout creation process is interrupted. This
detection works because the parent UUID field

The on-media structures in the BTT layout may be written out in any order except for the BTT Info Blocks,
which shall be written out as the last step of the layout, starting from the last arena (highest offset in the
namespace) to the first arena (lowest offset in the namespace), writing the backup BTT Info Block in each
UEFI Forum, Inc. March 2019 133

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
arena first, then writing the primary BTT Info block for that arena second. This allows the detection of an
incomplete BTT layout when the algorithm in the Validating BTT Arenas at start-up section is executed.

Since the number of internal LBAs for an arena exceeds the number of external LBAs by NFree, there are
enough internal LBA numbers to fully initialize the BTT Map as well as the BTT Flog, where the BTT Flog is
initialized with the NFree highest internal LBA numbers, and the rest are used in the BTT Map.

The BTT Map in each arena is initialized to zeros. Zero entries in the map indicate the identity mapping of
all pre-map LBAs to the corresponding post-map LBAs. This uses all but NFree of the internal LBAs,
leaving Nfree of them for the BTT Flog.

The BTT Flog in each arena is initialized by starting with all zeros for the entire flog area, setting the Lba0
field in each flog entry to unique pre-map LBAs, zero through NFree – 1, and both OldMap0 and
NewMap0 fields in each flog entry are set to one of the remaining internal LBAs. For example, flog entry
zero would have Lba0 set to 0, and OldMap0 and NewMap0 both set to the first internal LBA not
represented in the map (since there are ExternalNLba entries in the map, the next available internal LBA
is equal to ExternalNLba).

6.3.5 Validating BTT Arenas at start-up

When software prepares to access the BTT layout in a namespace, the first step is to check the BTT
Arenas for consistency. Reading and validating BTT Arenas relies on the fact that all arenas shall be
512GiB in size, except the last arena which is a minimum of 16MiB.

The following tests shall pass before software considers the BTT layout to be valid:

• For each BTT Arena:

•ReadAndVerifyPrimaryBttInfoBlock

•If the read of the primary BTT Info Block fails, goto ReadAndVerifyBackupBttInfoBlock

•If the primary BTT Info Block contains an incorrect Sig field it is invalid, goto
ReadAndVerifyBackupBttInfoBlock

•If the primary BTT Info Block ParentUuid field does not match the UUID of the
surrounding namespace, goto ReadAndVerifyBackupBttInfoBlock

•If the primary BTT Info Block contains an incorrect Checksum it is invalid, goto
ReadAndVerifyBackupBttInfoBlock

•The primary BTT Info Block is valid. Use the NextOff field to find the start of the next
arena and continue BTT Info Block validation, goto
ReadAndVerifyPrimaryBttInfoBlock

•ReadAndVerifyBackupBttInfoBlock

•Determine the location of the backup BTT Info Block:

1.All of the arenas shall be the full 512GiB data area size except the last arena which
is at least 16MiB.

2.The backup BTT Info Block is the last EFI_BTT_ALIGNMENT aligned block in the
arena.

•If the read of the backup BTT Info Block at the high address of the BTT Arena fails,
neither copy could be read, and software shall assume that there is no valid BTT
metadata layout for the namespace
UEFI Forum, Inc. March 2019 134

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
•If the backup BTT Info Block contains an incorrect Sig field it is invalid, and software
shall assume that there is no valid BTT metadata layout for the namespace

•If the backup BTT Info Block ParentUuid field does not match the UUID of the
surrounding namespace it is invalid, and software shall assume that there is no valid
BTT metadata layout for the namespace

•If the backup BTT Info Block contains an incorrect Checksum it is invalid, and software
shall assume that there is no valid BTT metadata layout for the namespace

•The backup BTT Info Block is valid. Since the primary copy is bad, software shall copy the
contents of the valid backup BTT Info Block down to the primary BTT Info Block
before validation of all of the BTT Info Blocks in all of the arenas can complete
successfully.

6.3.6 Validating the Flog entries at start-up

After validating the BTT Info Blocks as described in the Validating BTT Arenas at start-up section, the
next step software shall take is to validate the BTT Flog entries. When blocks of data are being written, as
described in the Write Path section below, the persistent Flog and Map states are not updated until the
free block is written with new data. This ensures a power failure at any point during the data transfer is
harmless, leaving the partially written data in a free block that remains free. Once the Flog is updated
(made atomic by the Seq bits in the Flog entry), the write algorithm is committed to the update and a
power failure from this point in the write flow onwards shall be handled by completing the update to the
BTT Map on recovery. The Flog contains all the information required to complete the Map entry update.

Note that the Flog entry recovery outlined here is intended to happen single-threaded, on an inactive BTT
(before the BTT block namespace is allowed to accept I/O requests). The maximum amount of time
required for recovery is determined by NFree, but is only a few loads and a single store (and the
corresponding cache flushes) for each incomplete write discovered.

The following steps are executed for each flog entry in each arena, to recover any interrupted writes and
to verify the flog entries are consistent at start up. Any consistency issues found during these steps
results in setting the error state (EFI_BTT_INFO_BLOCK_FLAGS_ERROR) for the arena and terminates the
flog validation process for this arena.

1. The Seq0 and Seq1 fields are examined for the flog entry. If both fields are zero, or both fields
are equal to each other, the flog entry is inconsistent. Otherwise, the higher Seq field indicates
which set of flog fields to use for the next steps (Lba0, OldMap0, NewMap0, versus Lba1,
OldMap1, NewMap1). From this point on in this section, the chosen fields are referenced as
Lba, OldMap, and NewMap.

2. If OldMap and NewMap are equal, this is a flog entry that was never used since the initial
layout of the BTT was created.

3. The Lba field is checked to ensure it is a valid pre-map LBA (in the range zero to ExternalNLba –
1). If the check fails, the flog entry is inconsistent.

4. The BTT Map entry corresponding to the Flog entry Lba field is fetched. Since the Map can
contain special zero entries to indicate identity mappings, the fetched entry is adjusted to the
corresponding internal LBA when a zero is encountered (by interpreting the entry as the same
LBA as the Flog entry Lba field).

5. If the adjusted map entry from the previous step does not match the NewMap field in the Flog
entry, and it matches the OldMap field, then an interrupted BTT Map update has been
UEFI Forum, Inc. March 2019 135

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
detected. The recovery step is to write the NewMap field to the BTT Map entry indexed by the
Flog entry Lba field.

6.3.7 Read Path

The following high level sequence describes the steps to read a single block of data while utilizing the BTT
as is illustrated in the Figure: BTT Read Path Overview below:

1. If EFI_BTT_INFO_BLOCK_FLAGS_ERROR is set in the arena’s BTT Info Block, the BTT software
may return an error for the read, or an implementation may choose to continue to provide
read-only access and continue these steps.

2. Use the external LBA provided with the read operation to determine which BTT Arena to
access. Starting from the first arena (lowest offset in the namespace), and looping through the
arena in order, the ExternalNLba field in the BTT Info Block describes how many exernal LBAs
are in that area. Once the correct arena is identified, the external LBAs contained in the lower,
skipped, arenas are subtracted from the provided LBA to obtain the pre-map LBA for the
selected arena.

3. Use the pre-map LBA to index into the arena’s BTT Map and fetch the map entry.

4. If both the Zero and Error bits are set in the map entry, this indicates a normal entry. The
PostMapLba field in the Map entry is used to index into the arena Data Area by multiplying it by
the InternalLbaSize and adding the result to the DataOff field from the arena’s BTT Info Block.
This provides the location of the data in the arena and software then copies ExternalLbaSize
bytes into the provided buffer to satisfy the read request.

5. Otherwise, if only the Error bit is set in the map entry, a read error is returned.

6. Otherwise, if only the Zero bit is set in the map entry, a block of ExternalLbaSize bytes of zeros
is copied into the provided buffer to satisfy the read request.

7. Finally, if both Zero and Error bits are clear, this indicates the initial identity mapping and the
pre-map LBA is used to index into the arena Data Area by multiplying it by the InternalLbaSize
and adding the result to the DataOff field from the arena’s BTT Info Block. This provides the
location of the data in the arena and software then copies ExternalLbaSize bytes into the
provided buffer to satisfy the read request.
UEFI Forum, Inc. March 2019 136

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
Figure 23. BTT Read Path Overview

6.3.8 Write Path

The following high level sequence describes the steps to write a single block of data while utilizing the
BTT as is illustrated in the Figure: BTT Write Path Overview below:

1. If EFI_BTT_INFO_BLOCK_FLAGS_ERROR is set in the arena’s BTT Info Block, the BTT software
shall return an error for the write.

2. Use the external LBA provided with the write operation to determine which BTT Arena to
access. Starting from the first arena (lowest offset in the namespace), and looping through the
arena in order, the ExternalNLba field in the BTT Info Block describes how many exernal LBAs
are in that area. Once the correct arena is identified, the external LBAs contained in the lower,
skipped, arenas are subtracted from the provided LBA to obtain the pre-map LBA for the
selected arena.

3. The BTT software allocates one of the Flog entries in the arena to be used for this write. The
Flog entry shall not be shared by multiple concurrent writes. The exact method for managing
the exclusive use of the Flog entries is BTT software implementation-dependent. There’s no
on-media indication of whether a Flog entry is currently allocated to a write request or not.
Note that the free block tracked by the Flog entry in the OldMap field, may still have reads
from relatively slow threads operating on it. The BTT software implementation shall ensure any
such reads have completed before moving to the next step.

4. Lock out access to the BTT Map area associated with the pre-map LBA for the next three steps.
The granularity of the locking is implementation-dependent; an implementation may choose to
lock individual Map entries, lock the entire BTT Map, or something in-between.

5. Use the pre-map LBA to index into the arena’s BTT Map and fetch the old map entry.

6. Update the Flog entry by writing the inactive set of Flog fields (the lower Seq number). First,
update the Lba, OldMap, and NewMap fields with the pre-map LBA, old Map entry, and the

UEFI Forum, Inc. March 2019 137

UEFI Specification, Version 2.8 Block Translation Table (BTT) Layout
free block chosen above, respectively. Once those fields are fully persistent (with any required
flushes completed), the Seq field is updated to make the new fields active. This update of the
Seq field commits the write – before this update, the write shall not take place if the operation
is interrupted. After the Seq field is updated, the write shall take place even if the operation is
interrupted because the Map update in the next step shall take place during the BTT recovery
that happens on start-up.

7. Update the Map entry with the free block chosen above.

8. Drop the map lock acquired in step 4 above. The write request is now satisfied.

Figure 24. BTT Write Path Overview

UEFI Forum, Inc. March 2019 138

UEFI Specification, Version 2.8
7 - Services — Boot Services

This section discusses the fundamental boot services that are present in a UEFI compliant system. The
services are defined by interface functions that may be used by code running in the UEFI environment.
Such code may include protocols that manage device access or extend platform capability, as well as
applications running in the preboot environment, and OS loaders.

Two types of services apply in an compliant system:

Boot Services Functions that are available before a successful call to
EFI_BOOT_SERVICES.ExitBootServices(). These functions
are described in this section.

Runtime Services Functions that are available before and after any call to
ExitBootServices(). These functions are described in Section 8.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms (since all
platforms support all system services). The term “handle-based” means that the function accesses a
specific device or device functionality and may not be available on some platforms (since some devices
are not available on some platforms). Protocols are created dynamically. This section discusses the
“global” functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an Image is provided a pointer to a system table which contains the Boot
Services dispatch table and the default handles for accessing the console. All boot services functionality is
available until a UEFI OS loader loads enough of its own environment to take control of the system’s
continued operation and then terminates boot services with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to indicate that
its loader is ready to assume control of the platform and all platform resource management. Thus boot
services are available up to this point to assist the UEFI OS loader in preparing to boot the operating
system. Once the UEFI OS loader takes control of the system and completes the operating system boot
process, only runtime services may be called. Code other than the UEFI OS loader, however, may or may
not choose to call ExitBootServices(). This choice may in part depend upon whether or not such
code is designed to make continued use of boot services or the boot services environment.

The rest of this section discusses individual functions. Global boot services functions fall into these
categories:

• Event, Timer, and Task Priority Services (Section 7.1)

• Memory Allocation Services (Section 7.2)

• Protocol Handler Services (Section 7.3)

• Image Services (Section 7.4)

• Miscellaneous Services (Section 7.5)
UEFI Forum, Inc. March 2019 139

UEFI Specification, Version 2.8 Services — Boot Services
7.1 Event, Timer, and Task Priority Services

The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels. See
Table 25.

Table 25. Event, Timer, and Task Priority Functions

Execution in the boot services environment occurs at different task priority levels, or TPLs. The boot
services environment exposes only three of these levels to UEFI applications and drivers:

• TPL_APPLICATION, the lowest priority level

• TPL_CALLBACK, an intermediate priority level

• TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority level. For
example, tasks that run at the TPL_NOTIFY level may interrupt tasks that run at the TPL_APPLICATION
or TPL_CALLBACK level. While TPL_NOTIFY is the highest level exposed to the boot services
applications, the firmware may have higher task priority items it deals with. For example, the firmware
may have to deal with tasks of higher priority like timer ticks and internal devices. Consequently, there is
a fourth TPL, TPL_HIGH_LEVEL, designed for use exclusively by the firmware.

The intended usage of the priority levels is shown in Table 26 from the lowest level (TPL_APPLICATION)
to the highest level (TPL_HIGH_LEVEL). As the level increases, the duration of the code and the amount
of blocking allowed decrease. Execution generally occurs at the TPL_APPLICATION level. Execution
occurs at other levels as a direct result of the triggering of an event notification function(this is typically
caused by the signaling of an event). During timer interrupts, firmware signals timer events when an
event’s “trigger time” has expired. This allows event notification functions to interrupt lower priority
code to check devices (for example). The notification function can signal other events as required. After
all pending event notification functions execute, execution continues at the TPL_APPLICATION level.

Table 26. TPL Usage

Name Type Description

CreateEvent Boot Creates a general-purpose event structure

CreateEventEx Boot Creates an event structure as part of an event group

CloseEvent Boot Closes and frees an event structure

SignalEvent Boot Signals an event

WaitForEvent Boot Stops execution until an event is signaled

CheckEvent Boot Checks whether an event is in the signaled state

SetTimer Boot Sets an event to be signaled at a particular time

RaiseTPL Boot Raises the task priority level

RestoreTPL Boot Restores/lowers the task priority level

Task Priority Level Usage
UEFI Forum, Inc. March 2019 140

UEFI Specification, Version 2.8 Services — Boot Services
Executing code can temporarily raise its priority level by calling the EFI_BOOT_SERVICES.RaiseTPL()
function. Doing this masks event notifications from code running at equal or lower priority levels until the
EFI_BOOT_SERVICES.RestoreTPL() function is called to reduce the priority to a level below that of
the pending event notifications. There are restrictions on the TPL levels at which many UEFI service
functions and protocol interface functions can execute. Table 27 summarizes the restrictions.

Table 27. TPL Restrictions

TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when no event
notifications are pending and which interacts with the user. User I/O (and blocking on
User I/O) can be performed at this level. The boot manager executes at this level and
passes control to other UEFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level

Long term operations (such as file system operations and disk I/O) can occur at this
level.

TPL_NOTIFY Interrupts code executing below TPL_NOTIFY level

Blocking is not allowed at this level. Code executes to completion and returns. If code
requires more processing, it needs to signal an event to wait to obtain control again at
whatever level it requires. This level is typically used to process low level IO to or from
a device.

(Firmware Interrupts) This level is internal to the firmware
It is the level at which internal interrupts occur. Code running at this level interrupts

code running at the TPL_NOTIFY level (or lower levels). If the interrupt requires

extended time to complete, firmware signals another event (or events) to perform the
longer term operations so that other interrupts can occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL
This is the highest priority level. It is not interruptible (interrupts are disabled) and is
used sparingly by firmware to synchronize operations that need to be accessible from
any priority level. For example, it must be possible to signal events while executing at
any priority level. Therefore, firmware manipulates the internal event structure while
at this priority level.

Name Restrictions Task Priority Level

ACPI Table Protocol < TPL_NOTIFY

ARP <= TPL_CALLBACK

ARP Service Binding <= TPL_CALLBACK

Authentication Info <= TPL_NOTIFY

Block I/O Protocol <= TPL_CALLBACK

Block I/O 2 Protocol <= TPL_CALLBACK

Bluetooth Host Controller <= TPL_CALLBACK

Bluetooth IO Service Binding <= TPL_CALLBACK

Bluetooth IO <= TPL_CALLBACK

Bluetooth Attribute <= TPL_CALLBACK

Bluetooth Configuration <= TPL_CALLBACK

BluetoorhLE Configuration <= TPL_CALLBACK
UEFI Forum, Inc. March 2019 141

UEFI Specification, Version 2.8 Services — Boot Services
CheckEvent() < TPL_HIGH_LEVEL

CloseEvent() < TPL_HIGH_LEVEL

CreateEvent() < TPL_HIGH_LEVEL

Deferred Image Load Protocol <= TPL_NOTIFY

Device Path Utilities <= TPL_NOTIFY

Device Path From Text <= TPL_NOTIFY

DHCP4 Service Binding <= TPL_CALLBACK

DHCP4 <= TPL_CALLBACK

DHCP6 <= TPL_CALLBACK

DHCP6 Service Binding <= TPL_CALLBACK

Disk I/O Protocol <= TPL_CALLBACK

Disk I/O 2 Protocol <= TPL_CALLBACK

DNS4 Service Binding <= TPL_CALLBACK

DNS4 <= TPL_CALLBACK

DNS6 Service Binding <= TPL_CALLBACK

DNS6 <= TPL_CALLBACK

Driver Health <= TPL_NOTIFY

EAP <= TPL_CALLBACK

EAP Configuration <= TPL_CALLBACK

EAP Management <= TPL_CALLBACK

EAP Management2 <= TPL_CALLBACK

EDID Active <= TPL_NOTIFY

EDID Discovered <= TPL_NOTIFY

EFI_SIMPLE_TEXT_INPUT_PROTOCOL <= TPL_CALLBACK

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Rea
dKeyStroke

<= TPL_APPLICATION

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Res
et

<= TPL_APPLICATION

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL <= TPL_CALLBACK

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
ReadKeyStrokeEx

<= TPL_APPLICATION

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
Reset

<= TPL_APPLICATION

Event Notification Levels >

<=

TPL_APPLICATION

TPL_HIGH_LEVEL

Exit() <= TPL_CALLBACK

ExitBootServices() = TPL_APPLICATION

Form Browser2 Protocol/SendForm = TPL_APPLICATION

Name Restrictions Task Priority Level
UEFI Forum, Inc. March 2019 142

UEFI Specification, Version 2.8 Services — Boot Services
FTP <= TPL_CALLBACK

Graphics Output EDID Override <= TPL_NOTIFY

HII Protocols <= TPL_NOTIFY

HTTP Service Binding <= TPL_CALLBACK

HTTP <= TPL_CALLBACK

HTTP Utilities <= TPL_CALLBACK

IP4 Service Binding <= TPL_CALLBACK

IP4 <= TPL_CALLBACK

IP4 Config <= TPL_CALLBACK

IP4 Config2 <= TPL_CALLBACK

IP6 <= TPL_CALLBACK

IP6 Config <= TPL_CALLBACK

IPSec Configuration <= TPL_CALLBACK

iSCSI Initiator Name <= TPL_NOTIFY

LoadImage() < TPL_CALLBACK

Managed Network Service Binding <= TPL_CALLBACK

Memory Allocation Services <= TPL_NOTIFY

MTFTP4 Service Binding <= TPL_CALLBACK

MTFTP4 <= TPL_CALLBACK

MTFTP6 <= TPL_CALLBACK

MTFTP6 Service Binding <= TPL_CALLBACK

PXE Base Code Protocol <= TPL_CALLBACK

Protocol Handler Services <= TPL_NOTIFY

REST <= TPL_CALLBACK

Serial I/O Protocol <= TPL_CALLBACK

SetTimer() < TPL_HIGH_LEVEL

SignalEvent() <= TPL_HIGH_LEVEL

Simple File System Protocol <= TPL_CALLBACK

Simple Network Protocol <= TPL_CALLBACK

Simple Text Output Protocol <= TPL_NOTIFY

Stall() <= TPL_HIGH_LEVEL

StartImage() < TPL_CALLBACK

Supplicant <= TPL_CALLBACK

Tape IO <= TPL_NOTIFY

TCP4 Service Binding <= TPL_CALLBACK

TCP4 <= TPL_CALLBACK

TCP6 <= TPL_CALLBACK

Name Restrictions Task Priority Level
UEFI Forum, Inc. March 2019 143

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.CreateEvent()

Summary

Creates an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREATE_EVENT) (

 IN UINT32 Type,

 IN EFI_TPL NotifyTpl,

 IN EFI_EVENT_NOTIFY NotifyFunction, OPTIONAL

 IN VOID *NotifyContext, OPTIONAL

 OUT EFI_EVENT *Event
);

Parameters

Type The type of event to create and its mode and attributes. The
#define statements in “Related Definitions” can be used to specify
an event’s mode and attributes.

TCP6 Service Binding <= TPL_CALLBACK

Time Services <= TPL_CALLBACK

TLS Service Binding <= TPL_CALLBACK

TLS <= TPL_CALLBACK

TLS Configuration <= TPL_CALLBACK

UDP4 Service Binding <= TPL_CALLBACK

UDP4 <= TPL_CALLBACK

UDP6 <= TPL_CALLBACK

UDP6 Service Binding <= TPL_CALLBACK

UnloadImage() <= TPL_CALLBACK

User Manager Protocol <= TPL_NOTIFY

User Manager Protocol/Identify() = TPL_APPLICATION

User Credential Protocol <= TPL_NOTIFY

User Info Protocol <= TPL_NOTIFY

Variable Services <= TPL_CALLBACK

VLAN Configuration <= TPL_CALLBACK

WaitForEvent() = TPL_APPLICATION

Wireless MAC Connection <= TPL_CALLBACK

Other protocols and services, if not listed
above

<= TPL_NOTIFY

Name Restrictions Task Priority Level
UEFI Forum, Inc. March 2019 144

UEFI Specification, Version 2.8 Services — Boot Services
NotifyTpl The task priority level of event notifications, if needed. See
EFI_BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any. See “Related
Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Related Definitions

//***

// EFI_EVENT

//***

typedef VOID *EFI_EVENT

//***

// Event Types

//***

// These types can be “ORed” together as needed – for example, 
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or 
// EVT_NOTIFY_SIGNAL.

#define EVT_TIMER 0x80000000

#define EVT_RUNTIME 0x40000000

#define EVT_NOTIFY_WAIT 0x00000100

#define EVT_NOTIFY_SIGNAL 0x00000200

#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201

#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER The event is a timer event and may be passed to
EFI_BOOT_SERVICES.SetTimer(). Note that timers only
function during boot services time.

EVT_RUNTIME The event is allocated from runtime memory. If an event is to be
signaled after the call to
EFI_BOOT_SERVICES.ExitBootServices(), the event’s data
structure and notification function need to be allocated from
runtime memory. For more information, see
SetVirtualAddressMap().

EVT_NOTIFY_WAIT If an event of this type is not already in the signaled state, then the
event’s NotificationFunction will be queued at the event’s
NotifyTpl whenever the event is being waited on via
EFI_BOOT_SERVICES.WaitForEvent() or
EFI_BOOT_SERVICES.CheckEvent().

EVT_NOTIFY_SIGNAL The event’s NotifyFunction is queued whenever the event is
signaled.
UEFI Forum, Inc. March 2019 145

UEFI Specification, Version 2.8 Services — Boot Services
EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This event is of type
EVT_NOTIFY_SIGNAL and should not be combined with any other
event types. The notification function for this event is not allowed to
use the Memory Allocation Services, or call any functions that use
the Memory Allocation Services and must only call functions that are
known not to use Memory Allocation Services, because these
services modify the current memory map.The notification function
must not depend on timer events since timer services will be
deactivated before any notification functions are called.

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This event type is a
composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME, and
EVT_RUNTIME_CONTEXT and should not be combined with any
other event types.

//***

// EFI_EVENT_NOTIFY

//***

typedef

VOID

(EFIAPI *EFI_EVENT_NOTIFY) (

 IN EFI_EVENT Event,

 IN VOID *Context
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in EFI_BOOT_SERVICES.CreateEventEx().

Description

The CreateEvent() function creates a new event of type Type and returns it in the location referenced
by Event. The event’s notification function, context, and task priority level are specified by
NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts it in
the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO queue. There is a
queue for each of the “basic” task priority levels defined in Section 7.1 (TPL_CALLBACK, and
TPL_NOTIFY). The functions in these queues are invoked in FIFO order, starting with the highest priority
level queue and proceeding to the lowest priority queue that is unmasked by the current TPL. If the
current TPL is equal to or greater than the queued notification, it will wait until the TPL is lowered via
EFI_BOOT_SERVICES.RestoreTPL().
UEFI Forum, Inc. March 2019 146

UEFI Specification, Version 2.8 Services — Boot Services
In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of program
execution. This capability is typically used with device drivers. For example, a network device driver that
needs to poll for the presence of new packets could create an event whose type includes EVT_TIMER
and then call the EFI_BOOT_SERVICES.SetTimer() function. When the timer expires, the firmware
signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the cleanup
that needs to be performed in response to a call to the EFI_BOOT_SERVICES.ExitBootServices()
function. ExitBootServices() can clean up the firmware since it understands firmware internals, but
it cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do that
themselves by creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and whose
notification function is a function within the driver itself. Then, when ExitBootServices() has
finished its cleanup, it signals each event of type EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressMap().

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is specified, the
caller does not require any notification concerning the event and the NotifyTpl, NotifyFunction,
and NotifyContext parameters are ignored. If EVT_NOTIFY_WAIT is specified and the event is not in
the signaled state, then the EVT_NOTIFY_WAIT notify function is queued whenever a consumer of the
event is waiting for the event (via EFI_BOOT_SERVICES.WaitForEvent() or
EFI_BOOT_SERVICES.CheckEvent()). If the EVT_NOTIFY_SIGNAL flag is specified then the event’s
notify function is queued whenever the event is signaled.

Note: Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned

EFI_BOOT_SERVICES.CreateEventEx()

Summary

Creates an event in a group.

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
NotifyFunction is NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
NotifyTpl is not a supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.
UEFI Forum, Inc. March 2019 147

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_CREATE_EVENT_EX) (
 IN UINT32 Type,
 IN EFI_TPL NotifyTpl,
 IN EFI_EVENT_NOTIFY NotifyFunction OPTIONAL,
 IN CONST VOID *NotifyContext OPTIONAL,
 IN CONST EFI_GUID *EventGroup OPTIONAL,
 OUT EFI_EVENT *Event
);

Parameters

Type The type of event to create and its mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
EFI_BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any.

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

EventGroup Pointer to the unique identifier of the group to which this event
belongs. If this is NULL, then the function behaves as if the
parameters were passed to CreateEvent.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Description

The CreateEventEx function creates a new event of type Type and returns it in the specified location
indicated by Event. The event’s notification function, context and task priority are specified by
NotifyFunction, NotifyContext, and NotifyTpl, respectively. The event will be added to the
group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same parameters had been
passed to CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one member event is
signaled, all other events are signaled and their individual notification actions are taken (as described in
CreateEvent). All events are guaranteed to be signaled before the first notification action is taken. All
notification functions will be executed in the order specified by their NotifyTpl.

A single event can only be part of a single event group. An event may be removed from an event group by
using CloseEvent.

The Type of an event uses the same values as defined in CreateEvent except that
EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE are not valid.

If Type has EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT, then NotifyFunction must be non-
NULL and NotifyTpl must be a valid task priority level. Otherwise these parameters are ignored.
UEFI Forum, Inc. March 2019 148

UEFI Specification, Version 2.8 Services — Boot Services
More than one event of type EVT_TIMER may be part of a single event group. However, there is no
mechanism for determining which of the timers was signaled.

Configuration Table Groups

The GUID for a configuration table also defines a corresponding event group GUID with the same value .
If the data represented by a configuration table is changed, InstallConfigurationTable() should
be called. When InstallConfigurationTable() is called, the corresponding event is signaled.
When this event is signaled, any components that cache information from the configuration table can
optionally update their cached state.

For example, EFI_ACPI_TABLE_GUID defines a configuration table for ACPI data. When ACPI data is
changed, InstallConfigurationTable() is called. During the execution of
InstallConfigurationTable(), a corresponding event group with EFI_ACPI_TABLE_GUID is
signaled, allowing an application to invalidate any cached ACPI data.

Pre-Defined Event Groups

This section describes the pre-defined event groups used by the UEFI specification.

EFI_EVENT_GROUP_EXIT_BOOT_SERVICES

This event group is notified by the system when ExitBootServices() is invoked.
The notification function for this event is not allowed to use the Memory Allocation
Services, or call any functions that use the Memory Allocation Services, because
these services modify the current memory map. The notification function must not
depend on timer events since timer services will be deactivated before any
notification functions are called. This is functionally equivalent to the
EVT_SIGNAL_EXIT_BOOT_SERVICES flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE

This event group is notified by the system when SetVirtualAddressMap() is
invoked. This is functionally equivalent to the
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_MEMORY_MAP_CHANGE

This event group is notified by the system when the memory map has changed. The
notification function for this event should not use Memory Allocation Services to
avoid reentrancy complications.

EFI_EVENT_GROUP_READY_TO_BOOT

This event group is notified by the system when the Boot Manager is about to load
and execute a boot option.

EFI_EVENT_GROUP_RESET_SYSTEM

This event group is notified by the system when ResetSystem() is invoked and the
system is about to be reset. The event group is only notified prior to
ExitBootServices() invocation.
UEFI Forum, Inc. March 2019 149

UEFI Specification, Version 2.8 Services — Boot Services
Related Definitions

EFI_EVENT is defined in CreateEvent.

EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE are defined in
CreateEvent.

#define EFI_EVENT_GROUP_EXIT_BOOT_SERVICES \

 {0x27abf055, 0xb1b8, 0x4c26, 0x80, 0x48, 0x74, 0x8f, 0x37,\

 0xba, 0xa2, 0xdf}}

#define EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE \

 {0x13fa7698, 0xc831, 0x49c7, 0x87, 0xea, 0x8f, 0x43, 0xfc,\

 0xc2, 0x51, 0x96}

#define EFI_EVENT_GROUP_MEMORY_MAP_CHANGE \

 {0x78bee926, 0x692f, 0x48fd, 0x9e, 0xdb, 0x1, 0x42, 0x2e, \

 0xf0, 0xd7, 0xab}

#define EFI_EVENT_GROUP_READY_TO_BOOT \

 {0x7ce88fb3, 0x4bd7, 0x4679, 0x87, 0xa8, 0xa8, 0xd8, 0xde,\

 0xe5,0xd, 0x2b}

#define EFI_EVENT_GROUP_RESET_SYSTEM \
{ 0x62da6a56, 0x13fb, 0x485a, { 0xa8, 0xda, 0xa3, 0xdd, 0x79, 0x12, 0xcb, 0x6b
} }
UEFI Forum, Inc. March 2019 150

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.CloseEvent()

Summary

Closes an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CLOSE_EVENT) (

 IN EFI_EVENT Event
);

Parameters

Event The event to close. Type EFI_EVENT is defined in the
CreateEvent() function description.

Description

The CloseEvent() function removes the caller’s reference to the event, removes it from any event
group to which it belongs, and closes it. Once the event is closed, the event is no longer valid and may not
be used on any subsequent function calls. If Event was registered with RegisterProtocolNotify()
then CloseEvent() will remove the corresponding registration. It is safe to call CloseEvent() within
the corresponding notify function.

Status Codes Returned

EFI_BOOT_SERVICES.SignalEvent()

Summary

Signals an event.

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set

and NotifyFunction is NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set

and NotifyTpl is not a supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.

EFI_SUCCESS The event has been closed.
UEFI Forum, Inc. March 2019 151

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIGNAL_EVENT) (

 IN EFI_EVENT Event
);

Parameters

Event The event to signal. Type EFI_EVENT is defined in the
EFI_BOOT_SERVICES.CheckEvent() function description.

Description

The supplied Event is placed in the signaled state. If Event is already in the signaled state, then
EFI_SUCCESS is returned. If Event is of type EVT_NOTIFY_SIGNAL, then the event’s notification
function is scheduled to be invoked at the event’s notification task priority level. SignalEvent() may
be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group are also
signaled and their notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and then close the
event to remove it from the group. For example:

EFI_EVENT Event;

EFI_GUID gMyEventGroupGuid = EFI_MY_EVENT_GROUP_GUID;

gBS->CreateEventEx (

 0,

 0,

 NULL,

 NULL,

 &gMyEventGroupGuid,

 &Event

);

gBS->SignalEvent (Event);

gBS->CloseEvent (Event);

Status Codes Returned

EFI_BOOT_SERVICES.WaitForEvent()

Summary

Stops execution until an event is signaled.

Prototype

typedef

EFI_SUCCESS The event was signaled.
UEFI Forum, Inc. March 2019 152

UEFI Specification, Version 2.8 Services — Boot Services
EFI_STATUS

(EFIAPI *EFI_WAIT_FOR_EVENT) (

 IN UINTN NumberOfEvents,

 IN EFI_EVENT *Event,

 OUT UINTN *Index
);

Parameters

NumberOfEvents The number of events in the Event array.

Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent() function description.

Index Pointer to the index of the event which satisfied the wait condition.

Description

This function must be called at priority level TPL_APPLICATION. If an attempt is made to call it at any
other priority level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this evaluation is
repeated until an event is signaled or an error is detected. The following checks are performed on each
event in the Event array.

• If an event is of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned and
Index indicates the event that caused the failure.

• If an event is in the signaled state, the signaled state is cleared and EFI_SUCCESS is returned,
and Index indicates the event that was signaled.

• If an event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the event’s
notification function causes the event to be signaled, then the signaled state is cleared,
EFI_SUCCESS is returned, and Index indicates the event that was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as the last event in
the list being checked, or the CheckEvent() interface may be used.

Status Codes Returned

EFI_BOOT_SERVICES.CheckEvent()

Summary

Checks whether an event is in the signaled state.

EFI_SUCCESS The event indicated by Index was signaled.

EFI_INVALID_PARAMETER NumberOfEvents is 0.

EFI_INVALID_PARAMETER The event indicated by Index is of type EVT_NOTIFY_SIGNAL.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
UEFI Forum, Inc. March 2019 153

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CHECK_EVENT) (

 IN EFI_EVENT Event
);

Parameters

Event The event to check. Type EFI_EVENT is defined in the
CreateEvent() function description.

Description

The CheckEvent() function checks to see whether Event is in the signaled state. If Event is of type
EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. Otherwise, there are three
possibilities:

• If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

• If Event is not in the signaled state and has no notification function, EFI_NOT_READY is
returned.

• If Event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the
notification function causes Event to be signaled, then the signaled state is cleared and
EFI_SUCCESS is returned; if the Event is not signaled, then EFI_NOT_READY is returned.

Status Codes Returned

EFI_BOOT_SERVICES.SetTimer()

Summary

Sets the type of timer and the trigger time for a timer event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SET_TIMER) (

 IN EFI_EVENT Event,

 IN EFI_TIMER_DELAY Type,

 IN UINT64 TriggerTime
);

EFI_SUCCESS The event is in the signaled state.

EFI_NOT_READY The event is not in the signaled state.

EFI_INVALID_PARAMETER Event is of type EVT_NOTIFY_SIGNAL.
UEFI Forum, Inc. March 2019 154

UEFI Specification, Version 2.8 Services — Boot Services
Parameters

Event The timer event that is to be signaled at the specified time. Type
EFI_EVENT is defined in the CreateEvent() function description.

Type The type of time that is specified in TriggerTime. See the timer
delay types in “Related Definitions.”

TriggerTime The number of 100ns units until the timer expires. A TriggerTime
of 0 is legal. If Type is TimerRelative and TriggerTime is 0,
then the timer event will be signaled on the next timer tick. If Type
is TimerPeriodic and TriggerTime is 0, then the timer event
will be signaled on every timer tick.
UEFI Forum, Inc. March 2019 155

UEFI Specification, Version 2.8 Services — Boot Services
Related Definitions

//***

//EFI_TIMER_DELAY

//***

typedef enum {

 TimerCancel,

 TimerPeriodic,

 TimerRelative

} EFI_TIMER_DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is to
be set. TriggerTime is ignored when canceling a timer.

TimerPeriodic The event is to be signaled periodically at TriggerTime intervals
from the current time. This is the only timer trigger Type for which
the event timer does not need to be reset for each notification. All
other timer trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Description

The SetTimer() function cancels any previous time trigger setting for the event, and sets the new
trigger time for the event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned

EFI_BOOT_SERVICES.RaiseTPL()

Summary

Raises a task’s priority level and returns its previous level.

Prototype

typedef

EFI_TPL

(EFIAPI *EFI_RAISE_TPL) (

 IN EFI_TPL NewTpl
);

Parameters

NewTpl The new task priority level. It must be greater than or equal to the
current task priority level. See “Related Definitions.”

Related Definitions

//***

EFI_SUCCESS The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER Event or Type is not valid.
UEFI Forum, Inc. March 2019 156

UEFI Specification, Version 2.8 Services — Boot Services
// EFI_TPL

//***

typedef UINTN EFI_TPL

//***

// Task Priority Levels

//***

#define TPL_APPLICATION 4

#define TPL_CALLBACK 8

#define TPL_NOTIFY 16

#define TPL_HIGH_LEVEL 31

Description

The EFI_BOOT_SERVICES.RaiseTPL() function raises the priority of the currently executing task and
returns its previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services execution. The
first is TPL_APPLICATION where all normal execution occurs. That level may be interrupted to perform
various asynchronous interrupt style notifications, which occur at the TPL_CALLBACK or TPL_NOTIFY
level. By raising the task priority level to TPL_NOTIFY such notifications are masked until the task
priority level is restored, thereby synchronizing execution with such notifications. Synchronous blocking
I/O functions execute at TPL_NOTIFY. TPL_CALLBACK is the typically used for application level
notification functions. Device drivers will typically use TPL_CALLBACK or TPL_NOTIFY for their
notification functions. Applications and drivers may also use TPL_NOTIFY to protect data structures in
critical sections of code.

The caller must restore the task priority level with EFI_BOOT_SERVICES.RestoreTPL() to the
previous level before returning.

Note: If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be used.
All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL
levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned

Unlike other UEFI interface functions, EFI_BOOT_SERVICES.RaiseTPL() does not return a status
code. Instead, it returns the previous task priority level, which is to be restored later with a matching call
to RestoreTPL().

EFI_BOOT_SERVICES.RestoreTPL()

Summary

Restores a task’s priority level to its previous value.

Prototype
UEFI Forum, Inc. March 2019 157

UEFI Specification, Version 2.8 Services — Boot Services
typedef

VOID

(EFIAPI *EFI_RESTORE_TPL) (

 IN EFI_TPL OldTpl
)

Parameters

OldTpl The previous task priority level to restore (the value from a previous,
matching call to EFI_BOOT_SERVICES.RaiseTPL()). Type
EFI_TPL is defined in the RaiseTPL() function description.

Description

The RestoreTPL() function restores a task’s priority level to its previous value. Calls to RestoreTPL()
are matched with calls to RaiseTPL().

Note: If OldTpl is above the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be used.
All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL
levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned

None.

7.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to allocate and free
memory, and to obtain the system’s memory map. See Table 28.

Table 28. Memory Allocation Functions

The way in which these functions are used is directly related to an important feature of UEFI memory
design. This feature, which stipulates that EFI firmware owns the system’s memory map during preboot,
has three major consequences:

• During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
EFI_BOOT_SERVICES.AllocatePages(), EFI_BOOT_SERVICES.AllocatePool(),

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.
UEFI Forum, Inc. March 2019 158

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.FreePages(), and EFI_BOOT_SERVICES.FreePool(). The
firmware dynamically maintains the memory map as these functions are called.

• During preboot, an executing EFI Image must only use the memory it has allocated.

• Before an executing EFI image exits and returns control to the firmware, it must free all
resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware
when the image is unloaded.

When memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE (see the
description for EFI_BOOT_SERVICES.AllocatePages()). Some of the types have a different usage
before EFI_BOOT_SERVICES.ExitBootServices() is called than they do afterwards. Table 29 lists
each type and its usage before the call; Table 30 lists each type and its usage after the call. The system
firmware must follow the processor-specific rules outlined in Section 2.3.2 and Section 2.3.4 in the layout
of the EFI memory map to enable the OS to make the required virtual mappings.

Table 29. Memory Type Usage before ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not usable.

EfiLoaderCode The code portions of a loaded UEFI application.

EfiLoaderData The data portions of a loaded UEFI application and the default data allocation
type used by a UEFI application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded UEFI Boot Service Driver.

EfiBootServicesData The data portions of a loaded UEFI Boot Serve Driver, and the default data
allocation type used by a UEFI Boot Service Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded UEFI Runtime Driver.

EfiRuntimeServicesData The data portions of a loaded UEFI Runtime Driver and the default data
allocation type used by a UEFI Runtime Driver to allocate pool memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region be
mapped by the OS to a virtual address so it can be accessed by EFI runtime
services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory cycles to
IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the processor.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory. However, it
happens to also support byte-addressable non-volatility.
UEFI Forum, Inc. March 2019 159

UEFI Specification, Version 2.8 Services — Boot Services
Note: There is only one region of type EfiMemoryMappedIoPortSpace defined in the architecture
for Itanium-based platforms. As a result, there should be one and only one region of type
EfiMemoryMappedIoPortSpace in the EFI memory map of an Itanium-based platform.

Table 30. Memory Type Usage after ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not usable.

EfiLoaderCode The UEFI OS Loader and/or OS may use this memory as they see fit. Note: the
UEFI OS loader that called

EFI_BOOT_SERVICES.ExitBootServices() is utilizing one or

more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the OS
loader that called ExitBootServices() is utilizing one or more
EfiLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the UEFI OS loader and OS in
the working and ACPI S1–S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the UEFI OS l loader and OS in
the working and ACPI S1–S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the UEFI OS loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available for
general use.

EfiACPIMemoryNVS This memory is to be preserved by the UEFI OS loader and OS in the working
and ACPI S1–S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped IO port space
information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the UEFI OS loader and OS in the working
and ACPI S1–S4 states. This memory may also have other attributes that are
defined by the processor implementation.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory. However, it
happens to also support byte-addressable non-volatility.
UEFI Forum, Inc. March 2019 160

UEFI Specification, Version 2.8 Services — Boot Services
Note: An image that calls ExitBootServices() (i.e., a UEFI OS Loader) first calls
EFI_BOOT_SERVICES.GetMemoryMap() to obtain the current memory map. Following the
ExitBootServices() call, the image implicitly owns all unused memory in the map. This
includes memory types EfiLoaderCode, EfiLoaderData, EfiBootServicesCode,
EfiBootServicesData, and EfiConventionalMemory. A UEFI OS Loader and OS must
preserve the memory marked as EfiRuntimeServicesCode and
EfiRuntimeServicesData.

EFI_BOOT_SERVICES.AllocatePages()

Summary

Allocates memory pages from the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ALLOCATE_PAGES) (

IN EFI_ALLOCATE_TYPE Type,

IN EFI_MEMORY_TYPE MemoryType,

IN UINTN Pages,

IN OUT EFI_PHYSICAL_ADDRESS *Memory
);

Parameters

Type The type of allocation to perform. See “Related Definitions.”

MemoryType The type of memory to allocate. The type EFI_MEMORY_TYPE is
defined in “Related Definitions” below. These memory types are also
described in more detail in Table 29 and Table 30. Normal
allocations (that is, allocations by any UEFI application) are of type
EfiLoaderData. MemoryType values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use. MemoryType
values in the range 0x80000000..0xFFFFFFFF are reserved for use by
UEFI OS loaders that are provided by operating system vendors.

Pages The number of contiguous 4 KiB pages to allocate.

Memory Pointer to a physical address. On input, the way in which the address
is used depends on the value of Type. See “Description” for more
information. On output the address is set to the base of the page
range that was allocated. See “Related Definitions.”

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of types
EfiReservedMemoryType and EfiMemoryMappedIO.

Related Definitions

//***

//EFI_ALLOCATE_TYPE

//***

// These types are discussed in the “Description” section below.
UEFI Forum, Inc. March 2019 161

UEFI Specification, Version 2.8 Services — Boot Services
typedef enum {

AllocateAnyPages,

AllocateMaxAddress,

AllocateAddress,

MaxAllocateType

 } EFI_ALLOCATE_TYPE;

//***

//EFI_MEMORY_TYPE

//***

// These type values are discussed in Table 29 and Table 30.
typedef enum {

 EfiReservedMemoryType,

 EfiLoaderCode,

 EfiLoaderData,

 EfiBootServicesCode,

 EfiBootServicesData,

 EfiRuntimeServicesCode,

 EfiRuntimeServicesData,

 EfiConventionalMemory,

 EfiUnusableMemory,

 EfiACPIReclaimMemory,

 EfiACPIMemoryNVS,

 EfiMemoryMappedIO,

 EfiMemoryMappedIOPortSpace,

 EfiPalCode,

 EfiPersistentMemory,

 EfiMaxMemoryType

} EFI_MEMORY_TYPE;

//***

//EFI_PHYSICAL_ADDRESS

//***

typedef UINT64 EFI_PHYSICAL_ADDRESS;

Description

The AllocatePages() function allocates the requested number of pages and returns a pointer to the
base address of the page range in the location referenced by Memory. The function scans the memory
map to locate free pages. When it finds a physically contiguous block of pages that is large enough and
also satisfies the allocation requirements of Type, it changes the memory map to indicate that the pages
are now of type MemoryType.

In general, UEFI OS loaders and UEFI applications should allocate memory (and pool) of type
EfiLoaderData. UEFI boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. UREFI runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services time).
UEFI Forum, Inc. March 2019 162

UEFI Specification, Version 2.8 Services — Boot Services
Allocation requests of Type AllocateAnyPages allocate any available range of pages that satisfies the
request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages whose
uppermost address is less than or equal to the address pointed to by Memory on input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by Memory on
input.

Note: UEFI drivers and UEFI applications that are not targeted for a specific implementation must
perform memory allocations for the following runtime types using AllocateAnyPages address
mode:

EfiACPIReclaimMemory,

EfiACPIMemoryNVS,

EfiRuntimeServicesCode,

EfiRuntimeServicesData,

EfiReservedMemoryType.

Status Codes Returned

EFI_BOOT_SERVICES.FreePages()

Summary

Frees memory pages.

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or AllocateMaxAddress or
AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range EfiMaxMemoryType..0x6FFFFFFF.

EFI_INVALID_PARAMETER MemoryType is EfiPersistentMemory.

EFI_INVALID_PARAMETER Memory is NULL.

EFI_NOT_FOUND The requested pages could not be found.
UEFI Forum, Inc. March 2019 163

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE_PAGES) (

IN EFI_PHYSICAL_ADDRESS Memory,

IN UINTN Pages
);

Parameters

Memory The base physical address of the pages to be freed. Type
EFI_PHYSICAL_ADDRESS is defined in the
EFI_BOOT_SERVICES.AllocatePages() function description.

Pages The number of contiguous 4 KiB pages to free.

Description

The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFI_BOOT_SERVICES.GetMemoryMap()

Summary

Returns the current memory map.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GET_MEMORY_MAP) (

 IN OUT UINTN *MemoryMapSize,

 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,

 OUT UINTN *MapKey,

 OUT UINTN *DescriptorSize,

 OUT UINT32 *DescriptorVersion
);

Parameters

MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input,
this is the size of the buffer allocated by the caller. On output, it is
the size of the buffer returned by the firmware if the buffer was
large enough, or the size of the buffer needed to contain the map if
the buffer was too small.

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with

AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.
UEFI Forum, Inc. March 2019 164

UEFI Specification, Version 2.8 Services — Boot Services
MemoryMap A pointer to the buffer in which firmware places the current memory
map. The map is an array of EFI_MEMORY_DESCRIPTORs. See
“Related Definitions.”

MapKey A pointer to the location in which firmware returns the key for the
current memory map.

DescriptorSize A pointer to the location in which firmware returns the size, in bytes,
of an individual EFI_MEMORY_DESCRIPTOR.

DescriptorVersion A pointer to the location in which firmware returns the version
number associated with the EFI_MEMORY_DESCRIPTOR. See
“Related Definitions.”

Related Definitions

//***

//EFI_MEMORY_DESCRIPTOR

//***

typedef struct {

 UINT32 Type;

 EFI_PHYSICAL_ADDRESS PhysicalStart;

 EFI_VIRTUAL_ADDRESS VirtualStart;

 UINT64 NumberOfPages;

 UINT64 Attribute;
} EFI_MEMORY_DESCRIPTOR;

Type Type of the memory region. 
Type EFI_MEMORY_TYPE is defined in the AllocatePages()
function description.

PhysicalStart Physical address of the first byte in the memory region.
PhysicalStart must be aligned on a 4 KiB boundary, and must
not be above 0xfffffffffffff000. Type EFI_PHYSICAL_ADDRESS is
defined in the AllocatePages() function description.

VirtualStart Virtual address of the first byte in the memory region.
VirtualStart must be aligned on a 4 KiB boundary, and must not
be above 0xfffffffffffff000. 
Type EFI_VIRTUAL_ADDRESS is defined in “Related Definitions.”

NumberOfPages Number of 4 KiB pages in the memory region. 
NumberOfPages must not be 0, and must not be any value that
would represent a memory page with a start address, either physical
or virtual, above 0xfffffffffffff000

Attribute Attributes of the memory region that describe the bit mask of
capabilities for that memory region, and not necessarily the current
settings for that memory region. See the following “Memory
Attribute Definitions.”
UEFI Forum, Inc. March 2019 165

UEFI Specification, Version 2.8 Services — Boot Services
//***

// Memory Attribute Definitions

//***

// These types can be “ORed” together as needed.

#define EFI_MEMORY_UC 0x0000000000000001

#define EFI_MEMORY_WC 0x0000000000000002

#define EFI_MEMORY_WT 0x0000000000000004

#define EFI_MEMORY_WB 0x0000000000000008

#define EFI_MEMORY_UCE 0x0000000000000010

#define EFI_MEMORY_WP 0x0000000000001000

#define EFI_MEMORY_RP 0x0000000000002000

#define EFI_MEMORY_XP 0x0000000000004000

#define EFI_MEMORY_NV 0x0000000000008000

#define EFI_MEMORY_MORE_RELIABLE 0x0000000000010000

#define EFI_MEMORY_RO 0x0000000000020000

#define EFI_MEMORY_SP 0x0000000000040000

EFI_MEMORY_CPU_CRYPTO 0x0000000000080000

#define EFI_MEMORY_RUNTIME 0x8000000000000000

EFI_MEMORY_UC Memory cacheability attribute: The memory region supports being
configured as not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: The memory region supports being
configured as write combining.

EFI_MEMORY_WT Memory cacheability attribute: The memory region supports being
configured as cacheable with a “write through” policy. Writes that
hit in the cache will also be written to main memory.

EFI_MEMORY_WB Memory cacheability attribute: The memory region supports being
configured as cacheable with a “write back” policy. Reads and writes
that hit in the cache do not propagate to main memory. Dirty data is
written back to main memory when a new cache line is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: The memory region supports being
configured as not cacheable, exported, and supports the “fetch and
add” semaphore mechanism.

EFI_MEMORY_WP Physical memory protection attribute: The memory region supports
being configured as write-protected by system hardware. This is
typically used as a cacheability attribute today. The memory region
supports being configured as cacheable with a "write protected"
policy. Reads come from cache lines when possible, and read misses
cause cache fills. Writes are propagated to the system bus and cause
corresponding cache lines on all processors on the bus to be
invalidated.

EFI_MEMORY_SP Specific-purpose memory (SPM). The memory is earmarked for
specific purposes such as for specific device drivers or applications.
The SPM attribute serves as a hint to the OS to avoid allocating this
memory for core OS data or code that can not be relocated.
Prolonged use of this memory for purposes other than the intended
purpose may result in suboptimal platform performance.
UEFI Forum, Inc. March 2019 166

UEFI Specification, Version 2.8 Services — Boot Services
EFI_MEMORY_CPU_CRYPTO If this flag is set, the memory region is capable of being
protected with the CPU’s memory cryptographic
capabilities. If this flag is clear, the memory region is not
capable of being protected with the CPU’s memory
cryptographic capabilities or the CPU does not support CPU
memory cryptographic capabilities.

Note: UEFI spec 2.5 and following: use EFI_MEMORY_RO as write-protected physical memory
protection attribute. Also, EFI_MEMORY_WP means cacheability attribute.

EFI_MEMORY_RP Physical memory protection attribute: The memory region supports
being configured as read-protected by system hardware.

EFI_MEMORY_XP Physical memory protection attribute: The memory region supports
being configured so it is protected by system hardware from
executing code.

EFI_MEMORY_NV Runtime memory attribute: The memory region refers to persistent
memory

EFI_MEMORY_MORE_RELIABLE

The memory region provides higher reliability relative to other
memory in the system. If all memory has the same reliability, then
this bit is not used.

EFI_MEMORY_RO Physical memory protection attribute: The memory region supports
making this memory range read-only by system hardware.

EFI_MEMORY_RUNTIMERuntime memory attribute: The memory region needs to be given a
virtual mapping by the operating system when
SetVirtualAddressMap() is called (described in Section 8.4).

//***

//EFI_VIRTUAL_ADDRESS

//***

typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***

// Memory Descriptor Version Number

//***

#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Description

The GetMemoryMap() function returns a copy of the current memory map. The map is an array of
memory descriptors, each of which describes a contiguous block of memory. The map describes all of
memory, no matter how it is being used. That is, it includes blocks allocated by
EFI_BOOT_SERVICES.AllocatePages() and EFI_BOOT_SERVICES.AllocatePool(), as well as
blocks that the firmware is using for its own purposes. The memory map is only used to describe memory
that is present in the system. The firmware does not return a range description for address space regions
that are not backed by physical hardware. Regions that are backed by physical hardware, but are not
supposed to be accessed by the OS, must be returned as EfiReservedMemoryType. The OS may use
addresses of memory ranges that are not described in the memory map at its own discretion.
UEFI Forum, Inc. March 2019 167

UEFI Specification, Version 2.8 Services — Boot Services
Until EFI_BOOT_SERVICES.ExitBootServices() is called, the memory map is owned by the
firmware and the currently executing UEFI Image should only use memory pages it has explicitly
allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and the
MemoryMapSize value contains the size of the buffer needed to contain the current memory map. The
actual size of the buffer allocated for the consequent call to GetMemoryMap() should be bigger then the
value returned in MemoryMapSize, since allocation of the new buffer may potentially increase memory
map size.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is changed
every time something in the memory map changes. In order to successfully invoke
EFI_BOOT_SERVICES.ExitBootServices() the caller must provide the current memory map key.

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned to allow for
future expansion of the EFI_MEMORY_DESCRIPTOR in response to hardware innovation. The structure
of the EFI_MEMORY_DESCRIPTOR may be extended in the future but it will remain backwards
compatible with the current definition. Thus OS software must use the DescriptorSize to find the start of
each EFI_MEMORY_DESCRIPTOR in the MemoryMap array.

Status Codes Returned

EFI_BOOT_SERVICES.AllocatePool()

Summary

Allocates pool memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ALLOCATE_POOL) (

 IN EFI_MEMORY_TYPE PoolType,

 IN UINTN Size,

 OUT VOID **Buffer

);

Parameters

PoolType The type of pool to allocate. Type EFI_MEMORY_TYPE is defined in
the EFI_BOOT_SERVICES.AllocatePages() function
description. PoolType values in the range 0x70000000..0x7FFFFFFF

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size needed to
hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER The MemoryMap buffer is not too small and MemoryMap is NULL.
UEFI Forum, Inc. March 2019 168

UEFI Specification, Version 2.8 Services — Boot Services
are reserved for OEM use. PoolType values in the range
0x80000000..0xFFFFFFFF are reserved for use by UEFI OS loaders
that are provided by operating system vendors.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Note: UEFI applications and UEFI drivers must not allocate memory of type
EfiReservedMemoryType.

Description

The AllocatePool() function allocates a memory region of Size bytes from memory of type PoolType
and returns the address of the allocated memory in the location referenced by Buffer. This function
allocates pages from EfiConventionalMemory as needed to grow the requested pool type. All
allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the
EFI_BOOT_SERVICES.FreePool() function.

Status Codes Returned

EFI_BOOT_SERVICES.FreePool()

Summary

Returns pool memory to the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE_POOL) (

IN VOID *Buffer
);

Parameters

Buffer Pointer to the buffer to free.

Description

The FreePool() function returns the memory specified by Buffer to the system. On return, the
memory’s type is EfiConventionalMemory. The Buffer that is freed must have been allocated by
AllocatePool().

EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.

EFI_INVALID_PARAMETER PoolType is EfiPersistentMemory.

EFI_INVALID_PARAMETER Buffer is NULL.
UEFI Forum, Inc. March 2019 169

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

7.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol Interface
structure. The structure contains the functions and instance data that are used to access a device. The
functions that make up Protocol Handler Services allow applications to install a protocol on a handle,
identify the handles that support a given protocol, determine whether a handle supports a given
protocol, and so forth. See Table 31.

Table 31. Protocol Interface Functions

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an interface
is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest to
the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of drivers to
manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The return
buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database that
meet the search criteria. The return buffer is automatically
allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports the
requested protocol.

InstallMultipleProtocolInterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Boot Uninstalls one or more protocol interfaces from a handle.
UEFI Forum, Inc. March 2019 170

UEFI Specification, Version 2.8 Services — Boot Services
The Protocol Handler boot services have been modified to take advantage of the information that is now
being tracked with the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services. Since the usage of protocol interfaces is
being tracked with these new boot services, it is now possible to safely uninstall and reinstall protocol
interfaces that are being consumed by UEFI drivers.

As depicted in Figure 25, the firmware is responsible for maintaining a “data base” that shows which
protocols are attached to each device handle. (The figure depicts the “data base” as a linked list, but the
choice of data structure is implementation-dependent.) The “data base” is built dynamically by calling the
EFI_BOOT_SERVICES.InstallProtocolInterface() function. Protocols can only be installed by
UEFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE) refers to a list of one or
more registered protocol interfaces for that handle. The first handle in the system has four attached
protocols, and the second handle has two attached protocols. Each attached protocol is represented as a
GUID/Interface pointer pair. The GUID is the name of the protocol, and Interface points to a protocol
instance. This data structure will typically contain a list of interface functions, and some amount of
instance data.

Access to devices is initiated by calling the EFI_BOOT_SERVICES.HandleProtocol() function, which
determines whether a handle supports a given protocol. If it does, a pointer to the matching Protocol
Interface structure is returned.

When a protocol is added to the system, it may either be added to an existing device handle or it may be
added to create a new device handle. Figure 25 shows that protocol handlers are listed for each device
handle and that each protocol handler is logically a UEFI driver.
UEFI Forum, Inc. March 2019 171

UEFI Specification, Version 2.8 Services — Boot Services
Figure 25. Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces provides
great flexibility. Layering makes it possible to add a new protocol that builds on a device’s basic protocols.
An example of this might be to layer on a EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL support that would
build on the handle’s underlying EFI_SERIAL_IO_PROTOCOL.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL protocol
onto multiple underlying device handles.

Driver Model Boot Services

Following is a detailed description of the new UEFI boot services that are required by the UEFI Driver
Model. These boot services are being added to reduce the size and complexity of the bus drivers and
device drivers. This, in turn, will reduce the amount of ROM space required by drivers that are
programmed into ROMs on adapters or into system FLASH, and reduce the development and testing time
required by driver writers.

These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database. The
handle database consists of a list of handles, and on each handle there is a list of one or more protocol
interfaces. The boot services EFI_BOOT_SERVICES.InstallProtocolInterface(),
EFI_BOOT_SERVICES.UninstallProtocolInterface(), and

OM13155

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

First Handle
UEFI Forum, Inc. March 2019 172

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.ReinstallProtocolInterface() are used to add, remove, and replace
protocol interfaces in the handle database. The boot service
EFI_BOOT_SERVICES.HandleProtocol() is used to look up a protocol interface in the handle
database. However, agents that call HandleProtocol() are not tracked, so it is not safe to call
UninstallProtocolInterface() or ReinstallProtocolInterface() because an agent may be
using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish this,
each protocol interface includes a list of agents that are consuming the protocol interface. Figure 26
shows an example handle database with these new agent lists. An agent consists of an image handle, a
controller handle, and some attributes. The image handle identifies the driver or application that is
consuming the protocol interface. The controller handle identifies the controller that is consuming the
protocol interface. Since a driver may manage more than one controller, the combination of a driver's
image handle and a controller's controller handle uniquely identifies the agent that is consuming the
protocol interface. The attributes show how the protocol interface is being used.

Figure 26. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required. These
are EFI_BOOT_SERVICES.OpenProtocol(), EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolInformation(). OpenProtocol() adds elements to the list
of agents consuming a protocol interface. CloseProtocol() removes elements from the list of agents

OM13156

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

Image Handle
Controller Handle
Attributes

First Handle

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes
UEFI Forum, Inc. March 2019 173

UEFI Specification, Version 2.8 Services — Boot Services
consuming a protocol interface, and EFI_BOOT_SERVICES.OpenProtocolInformation() retrieves
the entire list of agents that are currently using a protocol interface.

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are EFI_BOOT_SERVICES.ConnectController()) and
EFI_BOOT_SERVICES.DisconnectController(). These services take advantage of the new
features of the handle database along with the new protocols described in this document to manage the
drivers and controllers present in the system. ConnectController() uses a set of strict precedence
rules to find the best set of drivers for a controller. This provides a deterministic matching of drivers to
controllers with extensibility mechanisms for OEMs, IBVs, and IHVs. DisconnectController() allows
drivers to be disconnected from controllers in a controlled manner, and by using the new features of the
handle database it is possible to fail a disconnect request because a protocol interface cannot be released
at the time of the disconnect request.

The third group of boot services is designed to help simplify the implementation of drivers, and produce
drivers with smaller executable footprints. The EFI_BOOT_SERVICES.LocateHandleBuffer() is a
new version of EFI_BOOT_SERVICES.LocateHandle() that allocates the required buffer for the
caller. This eliminates two calls to LocateHandle() and a call to
EFI_BOOT_SERVICES.AllocatePool() from the caller's code.
EFI_BOOT_SERVICES.LocateProtocol() searches the handle database for the first protocol
instance that matches the search criteria. The
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces() and
EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces() are very useful to driver
writers. These boot services allow one or more protocol interfaces to be added or removed from a
handle. In addition, InstallMultipleProtocolInterfaces() guarantees that a duplicate device
path is never added to the handle database. This is very useful to bus drivers that can create one child
handle at a time, because it guarantees that the bus driver will not inadvertently create two instances of
the same child handle.

EFI_BOOT_SERVICES.InstallProtocolInterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added to the
list of handles in the system. InstallMultipleProtocolInterfaces() performs more error
checking than InstallProtocolInterface(), so it is recommended that
InstallMultipleProtocolInterfaces() be used in place of InstallProtocolInterface()

Prototype
UEFI Forum, Inc. March 2019 174

UEFI Specification, Version 2.8 Services — Boot Services
typedef

EFI_STATUS

(EFIAPI *EFI_INSTALL_PROTOCOL_INTERFACE) (

 IN OUT EFI_HANDLE *Handle,

 IN EFI_GUID *Protocol,

 IN EFI_INTERFACE_TYPE InterfaceType,

 IN VOID *Interface
);

Parameters

Handle A pointer to the EFI_HANDLE on which the interface is to be
installed. If *Handle is NULL on input, a new handle is created and
returned on output. If *Handle is not NULL on input, the protocol is
added to the handle, and the handle is returned unmodified. The
type EFI_HANDLE is defined in “Related Definitions.” If *Handle is
not a valid handle, then EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type EFI_GUID is
defined in “Related Definitions.” It is the caller’s responsibility to
pass in a valid GUID. See “Wired For Management Baseline” for a
description of valid GUID values.

InterfaceType Indicates whether Interface is supplied in native form. This value
indicates the original execution environment of the request. See
“Related Definitions.”

Interface A pointer to the protocol interface. The Interface must adhere to the
structure defined by Protocol. NULL can be used if a structure is not
associated with Protocol.

Related Definitions
UEFI Forum, Inc. March 2019 175

UEFI Specification, Version 2.8 Services — Boot Services
//***

//EFI_HANDLE

//***

typedef VOID *EFI_HANDLE;

//***

//EFI_GUID

//***

typedef struct {

 UINT32 Data1;

 UINT16 Data2;

 UINT16 Data3;

 UINT8 Data4[8];
} EFI_GUID;

//***

//EFI_INTERFACE_TYPE

//***

typedef enum {

 EFI_NATIVE_INTERFACE

} EFI_INTERFACE_TYPE;

Description

The InstallProtocolInterface() function installs a protocol interface (a GUID/Protocol Interface
structure pair) on a device handle. The same GUID cannot be installed more than once onto the same
handle. If installation of a duplicate GUID on a handle is attempted, an EFI_INVALID_PARAMETER will

result.

Installing a protocol interface allows other components to locate the Handle, and the interfaces installed
on it.

When a protocol interface is installed, the firmware calls all notification functions that have registered to
wait for the installation of Protocol. For more information, see the
EFI_BOOT_SERVICES.RegisterProtocolNotify() function description.
UEFI Forum, Inc. March 2019 176

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.UninstallProtocolInterface()

Summary

Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolInterfaces() be used in place of
UninstallProtocolInterface().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UNINSTALL_PROTOCOL_INTERFACE) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 IN VOID *Interface
);

Parameters

Handle The handle on which the interface was installed. If Handle is not a
valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass
in a valid GUID. See “Wired For Management Baseline” for a
description of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description

The UninstallProtocolInterface() function removes a protocol interface from the handle on
which it was previously installed. The Protocol and Interface values define the protocol interface to
remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been
removed. In some cases, outstanding reference information is not available in the protocol, so the

EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by
Handle.
UEFI Forum, Inc. March 2019 177

UEFI Specification, Version 2.8 Services — Boot Services
protocol, once added, cannot be removed. Examples include Console I/O, Block I/O, Disk I/O, and (in
general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There may
be some drivers that are currently consuming the protocol interface that needs to be uninstalled, so it
may be dangerous to just blindly remove a protocol interface from the system. Since the usage of
protocol interfaces is now being tracked for components that use the
EFI_BOOT_SERVICES.OpenProtocol() and EFI_BOOT_SERVICES.CloseProtocol() boot
services, a safe version of this function can be implemented. Before the protocol interface is removed, an
attempt is made to force all the drivers that are consuming the protocol interface to stop consuming that
protocol interface. This is done by calling the boot service
EFI_BOOT_SERVICES.DisconnectController() for the driver that currently have the protocol
interface open with an attribute of EFI_OPEN_PROTOCOL_BY_DRIVER or
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

If the disconnect succeeds, then those agents will have called the boot service
EFI_BOOT_SERVICES.CloseProtocol() to release the protocol interface. Lastly, all of the agents
that have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL, EFI_OPEN_PROTOCOL_GET_PROTOCOL, or
EFI_OPEN_PROTOCOL_TEST_PROTOCOL are closed. If there are any agents remaining that still have the
protocol interface open, the protocol interface is not removed from the handle and
EFI_ACCESS_DENIED is returned. In addition, all of the drivers that were disconnected with the boot
service DisconnectController() earlier, are reconnected with the boot service
EFI_BOOT_SERVICES.ConnectController(). If there are no agents remaining that are consuming
the protocol interface, then the protocol interface is removed from the handle as described above.

Status Codes Returned

EFI_BOOT_SERVICES.ReinstallProtocolInterface()

Summary

Reinstalls a protocol interface on a device handle.

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface is still
being used by a driver.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.
UEFI Forum, Inc. March 2019 178

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REINSTALL_PROTOCOL_INTERFACE) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 IN VOID *OldInterface,

 IN VOID *NewInterface
);

Parameters

Handle Handle on which the interface is to be reinstalled. If Handle is not a
valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass
in a valid GUID. See “Wired For Management Baseline” for a
description of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

OldInterface A pointer to the old interface. NULL can be used if a structure is not
associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is not
associated with Protocol.

Description

The ReinstallProtocolInterface() function reinstalls a protocol interface on a device handle. The
OldInterface for Protocol is replaced by the NewInterface. NewInterface may be the same as OldInterface.
If it is, the registered protocol notifies occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface(), any process that has registered to wait for the installation of
the interface is notified.

The caller is responsible for ensuring that there are no references to the OldInterface that is being
removed.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There may
be some number of drivers currently consuming the protocol interface that is being reinstalled. In this
case, it may be dangerous to replace a protocol interface in the system. It could result in an unstable
state, because a driver may attempt to use the old protocol interface after a new one has been
reinstalled. Since the usage of protocol interfaces is now being tracked for components that use the
EFI_BOOT_SERVICES.OpenProtocol() and EFI_BOOT_SERVICES.CloseProtocol() boot
services, a safe version of this function can be implemented.

When this function is called, a call is first made to the boot service UninstallProtocolInterface().
This will guarantee that all of the agents are currently consuming the protocol interface OldInterface will
stop using OldInterface. If UninstallProtocolInterface() returns EFI_ACCESS_DENIED, then
UEFI Forum, Inc. March 2019 179

UEFI Specification, Version 2.8 Services — Boot Services
this function returns EFI_ACCESS_DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

If UninstallProtocolInterface() succeeds, then a call is made to the boot service
EFI_BOOT_SERVICES.InstallProtocolInterface() to put the NewInterface onto Handle.

Finally, the boot service EFI_BOOT_SERVICES.ConnectController() is called so all agents that
were forced to release OldInterface with UninstallProtocolInterface() can now consume the
protocol interface NewInterface that was installed with InstallProtocolInterface(). After
OldInterface has been replaced with NewInterface, any process that has registered to wait for the
installation of the interface is notified.

Status Codes Returned

EFI_BOOT_SERVICES.RegisterProtocolNotify()

Summary

Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REGISTER_PROTOCOL_NOTIFY) (

 IN EFI_GUID *Protocol,

 IN EFI_EVENT Event,

 OUT VOID **Registration
);

Parameters

Protocol The numeric ID of the protocol for which the event is to be
registered. Type EFI_GUID is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

Event Event that is to be signaled whenever a protocol interface is
registered for Protocol. The type EFI_EVENT is defined in the
CreateEvent() function description. The same EFI_EVENT may
be used for multiple protocol notify registrations.

Registration A pointer to a memory location to receive the registration value. This
value must be saved and used by the notification function of Event
to retrieve the list of handles that have added a protocol interface of
type Protocol.

EFI_SUCCESS The protocol interface was reinstalled.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_ACCESS_DENIED The protocol interface could not be reinstalled, because OldInterface is
still being used by a driver that will not release it.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.
UEFI Forum, Inc. March 2019 180

UEFI Specification, Version 2.8 Services — Boot Services
Description

The RegisterProtocolNotify() function creates an event that is to be signaled whenever a protocol
interface is installed for Protocol by InstallProtocolInterface() or
EFI_BOOT_SERVICES.ReinstallProtocolInterface().

Once Event has been signaled, the EFI_BOOT_SERVICES.LocateHandle() function can be called to
identify the newly installed, or reinstalled, handles that support Protocol. The Registration parameter
in EFI_BOOT_SERVICES.RegisterProtocolNotify() corresponds to the SearchKey parameter in
LocateHandle(). Note that the same handle may be returned multiple times if the handle reinstalls
the target protocol ID multiple times. This is typical for removable media devices, because when such a
device reappears, it will reinstall the Block I/O protocol to indicate that the device needs to be checked
again. In response, layered Disk I/O and Simple File System protocols may then reinstall their protocols to
indicate that they can be re-checked, and so forth.

Events that have been registered for protocol interface notification can be unregistered by calling
CloseEvent().

Status Codes Returned

EFI_BOOT_SERVICES.LocateHandle()

Summary

Returns an array of handles that support a specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_HANDLE) (

 IN EFI_LOCATE_SEARCH_TYPE SearchType,

 IN EFI_GUID *Protocol OPTIONAL,

 IN VOID *SearchKey OPTIONAL,

 IN OUT UINTN *BufferSize,

 OUT EFI_HANDLE *Buffer
);

Parameters

SearchType Specifies which handle(s) are to be returned. Type
EFI_LOCATE_SEARCH_TYPE is defined in “Related Definitions.”

Protocol Specifies the protocol to search by. This parameter is only valid if
SearchType is ByProtocol. Type EFI_GUID is defined in the

EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Registration is NULL.
UEFI Forum, Inc. March 2019 181

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

SearchKey Specifies the search key. This parameter is ignored if SearchType is
AllHandles or ByProtocol. If SearchType is
ByRegisterNotify, the parameter must be the Registration value
returned by function
EFI_BOOT_SERVICES.RegisterProtocolNotify().

BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of
the array returned in Buffer (if the buffer was large enough) or the
size, in bytes, of the buffer needed to obtain the array (if the buffer
was not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Related Definitions

//***

// EFI_LOCATE_SEARCH_TYPE

//***

typedef enum {

 AllHandles,

 ByRegisterNotify,

 ByProtocol

} EFI_LOCATE_SEARCH_TYPE;

AllHandles Protocol and SearchKey are ignored and the function returns an
array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
EFI_BOOT_SERVICES.RegisterProtocolNotify(). The
function returns the next handle that is new for the registration.
Only one handle is returned at a time, starting with the first, and the
caller must loop until no more handles are returned. Protocol is
ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey is ignored
for this search type.

Description

The LocateHandle() function returns an array of handles that match the SearchType request. If the
input value of BufferSize is too small, the function returns EFI_BUFFER_TOO_SMALL and updates
BufferSize to the size of the buffer needed to obtain the array.
UEFI Forum, Inc. March 2019 182

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.HandleProtocol()

Summary

Queries a handle to determine if it supports a specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HANDLE_PROTOCOL) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 OUT VOID **Interface
);

Parameters

Handle The handle being queried. If Handle isNULL, then
EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE is
defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interface if a
structure is not associated with Protocol.

Description

The HandleProtocol() function queries Handle to determine if it supports Protocol. If it does, then
on return Interface points to a pointer to the corresponding Protocol Interface. Interface can then be
passed to any protocol service to identify the context of the request.

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and SearchKey is NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Buffer is NULL.
UEFI Forum, Inc. March 2019 183

UEFI Specification, Version 2.8 Services — Boot Services
EFI 1.10 Extension

The HandleProtocol() function is still available for use by old EFI applications and drivers. However,
all new applications and drivers should use EFI_BOOT_SERVICES.OpenProtocol() in place of
HandleProtocol(). The following code fragment shows a possible implementation of
HandleProtocol() using OpenProtocol(). The variable EfiCoreImageHandle is the image
handle of the EFI core.

EFI_STATUS

HandleProtocol (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 OUT VOID **Interface
)

{

 return OpenProtocol (

 Handle,

 Protocol,

 Interface,

 EfiCoreImageHandle,

 NULL,

 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL

);

}

Status Codes Returned

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is NULL..

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.
UEFI Forum, Inc. March 2019 184

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.LocateDevicePath()

Summary

Locates the handle to a device on the device path that supports the specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_DEVICE_PATH) (

 IN EFI_GUID *Protocol,

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath,

 OUT EFI_HANDLE *Device

);

Parameters

Protocol The protocol to search for. Type EFI_GUID is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

DevicePath On input, a pointer to a pointer to the device path. On output, the
device path pointer is modified to point to the remaining part of the
device path—that is, when the function finds the closest handle, it
splits the device path into two parts, stripping off the front part, and
returning the remaining portion. EFI_DEVICE_PATH_PROTOCOL is
defined in Section 10.2.

 Device A pointer to the returned device handle. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Description

The LocateDevicePath() function locates all devices on DevicePath that support Protocol and returns
the handle to the device that is closest to DevicePath. DevicePath is advanced over the device path nodes
that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical parent
device driver. For example, a target device driver may issue the request with its own device path and
locate the interfaces to perform I/O on its bus. It can also be used with a device path that contains a file
path to strip off the file system portion of the device path, leaving the file path and handle to the file
system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is advanced
to the device path terminator node. If DevicePath is a multi-instance device path, the function will
operate on the first instance.
UEFI Forum, Inc. March 2019 185

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.OpenProtocol()

Summary

Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the
handle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI boot
service EFI_BOOT_SERVICES.HandleProtocol().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_OPEN_PROTOCOL) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 OUT VOID **Interface OPTIONAL,

 IN EFI_HANDLE AgentHandle,

 IN EFI_HANDLE ControllerHandle,

 IN UINT32 Attributes
);

Parameters

Handle The handle for the protocol interface that is being opened.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interface if a
structure is not associated with Protocol. This parameter is optional,
and will be ignored if Attributes is
EFI_OPEN_PROTOCOL_TEST_PROTOCOL.

AgentHandle The handle of the agent that is opening the protocol interface
specified by Protocol and Interface. For agents that follow the UEFI
Driver Model, this parameter is the handle that contains the
EFI_DRIVER_BINDING_PROTOCOL instance that is produced by
the UEFI driver that is opening the protocol interface. For UEFI
applications, this is the image handle of the UEFI application that is
opening the protocol interface. For applications that use
HandleProtocol() to open a protocol interface, this parameter is
the image handle of the EFI firmware.

EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER Protocol is NULL

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER A handle matched the search and Device is NULL.
UEFI Forum, Inc. March 2019 186

UEFI Specification, Version 2.8 Services — Boot Services
ControllerHandle If the agent that is opening a protocol is a driver that follows the
UEFI Driver Model, then this parameter is the controller handle that
requires the protocol interface. If the agent does not follow the UEFI
Driver Model, then this parameter is optional and may be NULL.

Attributes The open mode of the protocol interface specified by Handle and
Protocol. See "Related Definitions" for the list of legal attributes.

Description

This function opens a protocol interface on the handle specified by Handle for the protocol specified by
Protocol. The first three parameters are the same as EFI_BOOT_SERVICES.HandleProtocol(). The
only difference is that the agent that is opening a protocol interface is tracked in an EFI's internal handle
database. The tracking is used by the UEFI Driver Model, and also used to determine if it is safe to
uninstall or reinstall a protocol interface.

The agent that is opening the protocol interface is specified by AgentHandle, ControllerHandle, and
Attributes. If the protocol interface can be opened, then AgentHandle, ControllerHandle, and Attributes
are added to the list of agents that are consuming the protocol interface specified by Handle and
Protocol. In addition, the protocol interface is returned in Interface, and EFI_SUCCESS is returned. If
Attributes is TEST_PROTOCOL, then Interface is optional, and can be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then
AgentHandle, ControllerHandle, and Attributes are not added to the list of agents consuming the protocol
interface specified by Handle and Protocol. Interface is returned unmodified for all error conditions
except EFI_UNSUPPORTED and EFI_ALREADY_STARTED, NULL will be returned in *Interface when
EFI_UNSUPPORTED and Attributes is not EFI_OPEN_PROTOCOL_TEST_PROTOCOL, the protocol
interface will be returned in *Interface when EFI_ALREADY_STARTED.

The following is the list of conditions that must be checked before this function can return
EFI_SUCCESS:

• If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

• If Interface is NULL and Attributes is not TEST_PROTOCOL, then EFI_INVALID_PARAMETER is
returned.

• If Handle is NULL, then EFI_INVALID_PARAMETER is returned.

• If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

• If Attributes is not a legal value, then EFI_INVALID_PARAMETER is returned. The legal values
are listed in “Related Definitions.”

• If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, EXCLUSIVE, or
BY_DRIVER|EXCULSIVE, and AgentHandle is NULL, then EFI_INVALID_PARAMETER is
returned.

• If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, or BY_DRIVER|EXCULSIVE, and
ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned.

• If Attributes is BY_CHILD_CONTROLLER and Handle is identical to ControllerHandle, then
EFI_INVALID_PARAMETER is returned.

• If Attributes is BY_DRIVER , BY_DRIVER|EXCLUSIVE, or EXCLUSIVE, and there are any items
on the open list of the protocol interface with an attribute of EXCLUSIVE or
BY_DRIVER|EXCLUSIVE, then EFI_ACCESS_DENIED is returned.
UEFI Forum, Inc. March 2019 187

UEFI Specification, Version 2.8 Services — Boot Services
• If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is the same agent handle in the open list
item, then EFI_ALREADY_STARTED is returned.

• If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is different than the agent handle in the
open list item, then EFI_ACCESS_DENIED is returned.

• If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is the same
agent handle in the open list item, then EFI_ALREADY_STARTED is returned.

• If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is different
than the agent handle in the open list item, then EFI_ACCESS_DENIED is returned.

• If Attributes is BY_DRIVER|EXCLUSIVE or EXCLUSIVE, and there is an item on the open list
of the protocol interface with an attribute of BY_DRIVER, then the boot service
EFI_BOOT_SERVICES.DisconnectController() is called for the driver on the open list.
If there is an item in the open list of the protocol interface with an attribute of BY_DRIVER
remaining after the DisconnectController() call has been made, EFI_ACCESS_DENIED
is returned.

Related Definitions

#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001

#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002

#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004

#define EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008

#define EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010

#define EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020

The following is the list of legal values for the Attributes parameter, and how each value is used.

BY_HANDLE_PROTOCOLUsed in the implementation of
EFI_BOOT_SERVICES.HandleProtocol(). Since
EFI_BOOT_SERVICES.OpenProtocol() performs the same
function as HandleProtocol() with additional functionality,
HandleProtocol() can simply call OpenProtocol() with this
Attributes value.

GET_PROTOCOL Used by a driver to get a protocol interface from a handle. Care must
be taken when using this open mode because the driver that opens a
protocol interface in this manner will not be informed if the protocol
interface is uninstalled or reinstalled. The caller is also not required
to close the protocol interface with
EFI_BOOT_SERVICES.CloseProtocol().

TEST_PROTOCOL Used by a driver to test for the existence of a protocol interface on a
handle. Interface is optional for this attribute value, so it is ignored,
and the caller should only use the return status code. The caller is
also not required to close the protocol interface with
CloseProtocol().
UEFI Forum, Inc. March 2019 188

UEFI Specification, Version 2.8 Services — Boot Services
BY_CHILD_CONTROLLERUsed by bus drivers to show that a protocol interface is being used
by one of the child controllers of a bus. This information is used by
the boot service EFI_BOOT_SERVICES.ConnectController()
to recursively connect all child controllers and by the boot service
EFI_BOOT_SERVICES.DisconnectController() to get the list
of child controllers that a bus driver created.

BY_DRIVER Used by a driver to gain access to a protocol interface. When this
mode is used, the driver’s Stop() function will be called by
EFI_BOOT_SERVICES.DisconnectController() if the
protocol interface is reinstalled or uninstalled. Once a protocol
interface is opened by a driver with this attribute, no other drivers
will be allowed to open the same protocol interface with the
BY_DRIVER attribute.

BY_DRIVER|EXCLUSIVEUsed by a driver to gain exclusive access to a protocol interface. If
any other drivers have the protocol interface opened with an
attribute of BY_DRIVER, then an attempt will be made to remove
them with DisconnectController().

EXCLUSIVE Used by applications to gain exclusive access to a protocol interface.
If any drivers have the protocol interface opened with an attribute of
BY_DRIVER, then an attempt will be made to remove them by
calling the driver’s Stop() function.

Status Codes Returned

EFI_SUCCESS An item was added to the open list for the protocol interface, and the protocol
interface was returned in Interface.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL, and Attributes is not TEST_PROTOCOL.

EFI_INVALID_PARAMETER Handle is NULL..

EFI_UNSUPPORTED Handle does not support Protocol.

EFI_INVALID_PARAMETER Attributes is not a legal value.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and AgentHandle is NULL..

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and AgentHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and AgentHandle is NULL.

EFI_INVALID_PARAMETER Attributes is EXCLUSIVE and AgentHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and ControllerHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and ControllerHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and ControllerHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and Handle is identical to
ControllerHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list with an
attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on the open list
with an attribute of EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is EXCLUSIVE and there is an item on the open list with an
attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.
UEFI Forum, Inc. March 2019 189

UEFI Specification, Version 2.8 Services — Boot Services
Examples

EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_XYZ_IO_PROTOCOL *XyzIo;
EFI_STATUS Status;

//
// EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The application that is opening the protocol is identified by ImageHandle
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_GET_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//

EFI_ALREADY_STARTED Attributes is BY_DRIVER and there is an item on the open list with an
attribute of BY_DRIVER whose agent handle is the same as AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list with an
attribute of BY_DRIVER whose agent handle is different than AgentHandle.

EFI_ALREADY_STARTED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE whose agent handle is the same as
AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE whose agent handle is different
than AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLSUIVE or EXCLUSIVE and there are items in
the open list with an attribute of BY_DRIVER that could not be removed when

EFI_BOOT_SERVICES.DisconnectController() was called for

that open item.
UEFI Forum, Inc. March 2019 190

UEFI Specification, Version 2.8 Services — Boot Services
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_TEST_PROTOCOL example
// Tests to see if the XYZ I/O Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 NULL,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
UEFI Forum, Inc. March 2019 191

UEFI Specification, Version 2.8 Services — Boot Services
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo. If //
a different driver had the XYZ I/O Protocol opened
// BY_DRIVER, then that driver was disconnected to
// allow this driver to open the XYZ I/O Protocol.
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver that //
already has the protocol opened with an EXCLUSIVE // attribute.
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE
);

EFI_BOOT_SERVICES.CloseProtocol()

Summary

Closes a protocol on a handle that was opened using EFI_BOOT_SERVICES.OpenProtocol().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CLOSE_PROTOCOL) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 IN EFI_HANDLE AgentHandle,

 IN EFI_HANDLE ControllerHandle
);

Parameters

Handle The handle for the protocol interface that was previously opened
with OpenProtocol(), and is now being closed.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values.

AgentHandle The handle of the agent that is closing the protocol interface. For
agents that follow the UEFI Driver Model, this parameter is the
handle that contains the EFI_DRIVER_BINDING_PROTOCOL
instance that is produced by the UEFI driver that is opening the
protocol interface. For UEFI applications, this is the image handle of
the UEFI application. For applications that used
UEFI Forum, Inc. March 2019 192

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.HandleProtocol() to open the protocol
interface, this will be the image handle of the EFI firmware.

ControllerHandle If the agent that opened a protocol is a driver that follows the UEFI
Driver Model, then this parameter is the controller handle that
required the protocol interface. If the agent does not follow the UEFI
Driver Model, then this parameter is optional and may be NULL.

Description

This function updates the handle database to show that the protocol instance specified by Handle and
Protocol is no longer required by the agent and controller specified AgentHandle and ControllerHandle.

If Handle or AgentHandle is NULL, then EFI_INVALID_PARAMETER is returned. If ControllerHandle is
not NULL, and ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned. If Protocol is
NULL, then EFI_INVALID_PARAMETER is returned.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a check is made
to see if the protocol instance specified by Protocol and Handle was opened by AgentHandle and
ControllerHandle with EFI_BOOT_SERVICES.OpenProtocol(). If the protocol instance was not
opened by AgentHandle and ControllerHandle, then EFI_NOT_FOUND is returned. If the protocol
instance was opened by AgentHandle and ControllerHandle, then all of those references are removed
from the handle database, and EFI_SUCCESS is returned.

Status Codes Returned

Examples

EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//
// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//

EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER AgentHandle is NULL.

EFI_INVALID_PARAMETER ControllerHandle is not NULL and

ControllerHandle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is not

currently open by AgentHandle and ControllerHandle.
UEFI Forum, Inc. March 2019 193

UEFI Specification, Version 2.8 Services — Boot Services
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

//
// Close the XYZ I/O Protocol that was opened with BY_HANDLE_PROTOCOL
//
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 ImageHandle,
 NULL
);

EFI_BOOT_SERVICES.OpenProtocolInformation()

Summary

Retrieves the list of agents that currently have a protocol interface opened.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_OPEN_PROTOCOL_INFORMATION) (

 IN EFI_HANDLE Handle,

 IN EFI_GUID *Protocol,

 OUT EFI_OPEN_PROTOCOL_INFORMATION_ENTRY **EntryBuffer,

 OUT UINTN *EntryCount
);

Parameters

Handle The handle for the protocol interface that is being queried.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values.

EntryBuffer A pointer to a buffer of open protocol information in the form of
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures. See
"Related Definitions" for the declaration of this type. The buffer is
allocated by this service, and it is the caller's responsibility to free
this buffer when the caller no longer requires the buffer's contents.

EntryCount A pointer to the number of entries in EntryBuffer.
UEFI Forum, Inc. March 2019 194

UEFI Specification, Version 2.8 Services — Boot Services
Related Definitions

typedef struct {

 EFI_HANDLE AgentHandle;

 EFI_HANDLE ControllerHandle;

 UINT32 Attributes;

 UINT32 OpenCount;
} EFI_OPEN_PROTOCOL_INFORMATION_ENTRY;

Description

This function allocates and returns a buffer of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures.
The buffer is returned in EntryBuffer, and the number of entries is returned in EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then EntryBuffer is
allocated with the boot service EFI_BOOT_SERVICES.AllocatePool(), and EntryCount is set to the
number of entries in EntryBuffer. Each entry of EntryBuffer is filled in with the image handle, controller
handle, and attributes that were passed to EFI_BOOT_SERVICES.OpenProtocol() when the
protocol interface was opened. The field OpenCount shows the number of times that the protocol
interface has been opened by the agent specified by ImageHandle, ControllerHandle, and
Attributes. After the contents of EntryBuffer have been filled in, EFI_SUCCESS is returned. It is the
caller’s responsibility to call EFI_BOOT_SERVICES.FreePool() on EntryBuffer when the caller no
longer required the contents of EntryBuffer.

If there are not enough resources available to allocate EntryBuffer, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

Examples

See example in the EFI_BOOT_SERVICES.LocateHandleBuffer() function description for an
example on how LocateHandleBuffer(), EFI_BOOT_SERVICES.ProtocolsPerHandle(),
OpenProtocol(), and EFI_BOOT_SERVICES.OpenProtocolInformation() can be used to
traverse the entire handle database.

EFI_BOOT_SERVICES.ConnectController()

Summary

Connects one or more drivers to a controller.

Prototype

typedef

EFI_SUCCESS The open protocol information was returned in EntryBuffer, and the
number of entries was returned EntryCount.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate EntryBuffer.
UEFI Forum, Inc. March 2019 195

UEFI Specification, Version 2.8 Services — Boot Services
EFI_STATUS

(EFIAPI *EFI_CONNECT_CONTROLLER) (

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE *DriverImageHandle OPTIONAL,

 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,

 IN BOOLEAN Recursive

);

Parameters

ControllerHandle The handle of the controller to which driver(s) are to be connected.

DriverImageHandle A pointer to an ordered list handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The list is terminated by a
NULL handle value. These handles are candidates for the Driver
Binding Protocol(s) that will manage the controller specified by
ControllerHandle. This is an optional parameter that may be NULL.
This parameter is typically used to debug new drivers.

RemainingDevicePath A pointer to the device path that specifies a child of the controller
specified by ControllerHandle. This is an optional parameter that
may be NULL. If it is NULL, then handles for all the children of
ControllerHandle will be created. This parameter is passed
unchanged to the Supported() and Start() services of the
EFI_DRIVER_BINDING_PROTOCOL attached to ControllerHandle.

Recursive If TRUE, then ConnectController() is called recursively until the
entire tree of controllers below the controller specified by
ControllerHandle have been created. If FALSE, then the tree of
controllers is only expanded one level.

Description

This function connects one or more drivers to the controller specified by ControllerHandle. If
ControllerHandle isNULL, then EFI_INVALID_PARAMETER is returned. If there are no
EFI_DRIVER_BINDING_PROTOCOL instances present in the system, then return EFI_NOT_FOUND. If
there are not enough resources available to complete this function, then EFI_OUT_OF_RESOURCES is
returned.

If the platform supports user authentication, as specified in Section 36, the device path associated with
ControllerHandle is checked against the connect permissions in the current user profile. If forbidden,
then EFI_SECURITY_VIOLATION is returned. Then, before connecting any of the
DriverImageHandles, the device path associated with the handle is checked against the connect
permissions in the current user profile.

If Recursive is FALSE, then this function returns after all drivers have been connected to
ControllerHandle. If Recursive is TRUE, then ConnectController() is called recursively on all of the
child controllers of ControllerHandle. The child controllers can be identified by searching the handle
database for all the controllers that have opened ControllerHandle with an attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

This functions uses five precedence rules when deciding the order that drivers are tested against
controllers. These five rules from highest precedence to lowest precedence are as follows:
UEFI Forum, Inc. March 2019 196

UEFI Specification, Version 2.8 Services — Boot Services
1. Context Override : DriverImageHandle is an ordered list of handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The highest priority image handle is the first element of
the list, and the lowest priority image handle is the last element of the list. The list is
terminated with a NULL image handle.

2. Platform Driver Override : If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL instance is
present in the system, then the GetDriver() service of this protocol is used to retrieve an
ordered list of image handles for ControllerHandle. From this list, the image handles found
in rule (1) above are removed. The first image handle returned from GetDriver() has the
highest precedence, and the last image handle returned from GetDriver() has the lowest
precedence. The ordered list is terminated when GetDriver() returns EFI_NOT_FOUND. It is
legal for no image handles to be returned by GetDriver(). There can be at most a single
instance in the system of the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. If there is
more than one, then the system behavior is not deterministic.

3. Driver Family Override Search : The list of available driver image handles can be found by using
the boot service EFI_BOOT_SERVICES.LocateHandle()with a SearchType of
ByProtocol for the GUID of the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL. From this
list, the image handles found in rules (1), and (2) above are removed. The remaining image
handles are sorted from highest to lowest based on the value returned from the
GetVersion() function of the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL associated
with each image handle.

4. Bus Specific Driver Override : If there is an instance of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL attached to ControllerHandle,
then the GetDriver() service of this protocol is used to retrieve an ordered list of image
handle for ControllerHandle. From this list, the image handles found in rules (1), (2), and
(3) above are removed. The first image handle returned from GetDriver() has the highest
precedence, and the last image handle returned from GetDriver() has the lowest
precedence. The ordered list is terminated when GetDriver() returns EFI_NOT_FOUND. It is
legal for no image handles to be returned by GetDriver().

5. Driver Binding Search : The list of available driver image handles can be found by using the boot
service EFI_BOOT_SERVICES.LocateHandle() with a SearchType of ByProtocol for
the GUID of the EFI_DRIVER_BINDING_PROTOCOL. From this list, the image handles found in
rules (1), (2), (3), and (4) above are removed. The remaining image handles are sorted from
highest to lowest based on the Version field of the EFI_DRIVER_BINDING_PROTOCOL
instance associated with each image handle.

Each of the five groups of image handles listed above is tested against ControllerHandle in order by using
the EFI_DRIVER_BINDING_PROTOCOL service Supported(). RemainingDevicePath is passed into
Supported() unmodified. The first image handle whose Supported() service returns EFI_SUCCESS
is marked so the image handle will not be tried again during this call to ConnectController(). Then,
the Start() service of the EFI_DRIVER_BINDING_PROTOCOL is called for ControllerHandle. Once
again, RemainingDevicePath is passed in unmodified. Every time Supported() returns EFI_SUCCESS,
the search for drivers restarts with the highest precedence image handle. This process is repeated until
no image handles pass the Supported() check.

If at least one image handle returned EFI_SUCCESS from its Start() service, then EFI_SUCCESS is
returned.

If no image handles returned EFI_SUCCESS from their Start() service then EFI_NOT_FOUND is
returned unless RemainingDevicePath is not NULL, and RemainingDevicePath is an End Node. In this
UEFI Forum, Inc. March 2019 197

UEFI Specification, Version 2.8 Services — Boot Services
special case, EFI_SUCCESS is returned because it is not an error to fail to start a child controller that is
specified by an End Device Path Node.

Status Codes Returned

Examples

//
// Connect All Handles Example
// The following example recursively connects all controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->ConnectController (
 HandleBuffer[HandleIndex],
 NULL,
 NULL,
 TRUE
);
 }
 gBS->FreePool(HandleBuffer);
}

//

EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI_SUCCESS No drivers were connected to ControllerHandle, but
RemainingDevicePath is not NULL, and it is an End Device Path
Node.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_NOT_FOUND There are no EFI_DRIVER_BINDING_PROTOCOL instances present in
the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the device path
associated with the ControllerHandle or specified by the
RemainingDevicePath.
UEFI Forum, Inc. March 2019 198

UEFI Specification, Version 2.8 Services — Boot Services
// Connect Device Path Example
// The following example walks the device path nodes of a device path, and
// connects only the drivers required to force a handle with that device path
// to be present in the handle database. This algorithms guarantees that
// only the minimum number of devices and drivers are initialized.
//

EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE Handle;

do {
 //
 // Find the handle that best matches the Device Path. If it is only a
 // partial match the remaining part of the device path is returned in
 // RemainingDevicePath.
 //
 RemainingDevicePath = DevicePath;
 Status = gBS->LocateDevicePath (
 &gEfiDevicePathProtocolGuid,
 &RemainingDevicePath,
 &Handle
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }

 //
 // Connect all drivers that apply to Handle and RemainingDevicePath
 // If no drivers are connected Handle, then return EFI_NOT_FOUND
 // The Recursive flag is FALSE so only one level will be expanded.
 //
 Status = gBS->ConnectController (
 Handle,
 NULL,
 RemainingDevicePath,
 FALSE
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }

 //
 // Loop until RemainingDevicePath is an empty device path
 //
} while (!IsDevicePathEnd (RemainingDevicePath));

//
// A handle with DevicePath exists in the handle database
//
return EFI_SUCCESS;
UEFI Forum, Inc. March 2019 199

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.DisconnectController()

Summary

Disconnects one or more drivers from a controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISCONNECT_CONTROLLER) (

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE DriverImageHandle OPTIONAL,

 IN EFI_HANDLE ChildHandle OPTIONAL

);

Parameters

ControllerHandle The handle of the controller from which driver(s) are to be
disconnected.

DriverImageHandle The driver to disconnect from ControllerHandle. If
DriverImageHandle is NULL, then all the drivers currently managing
ControllerHandle are disconnected from ControllerHandle.

ChildHandle The handle of the child to destroy. If ChildHandle is NULL, then all
the children of ControllerHandle are destroyed before the drivers are
disconnected from ControllerHandle.

Description

This function disconnects one or more drivers from the controller specified by ControllerHandle. If
DriverImageHandle is NULL, then all of the drivers currently managing ControllerHandle are disconnected
from ControllerHandle. If DriverImageHandle is not NULL, then only the driver specified by
DriverImageHandle is disconnected from ControllerHandle. If ChildHandle is NULL, then all of the children
of ControllerHandle are destroyed before the drivers are disconnected from ControllerHandle. If
ChildHandle is not NULL, then only the child controller specified by ChildHandle is destroyed. If
ChildHandle is the only child of ControllerHandle, then the driver specified by DriverImageHandle will be
disconnected from ControllerHandle. A driver is disconnected from a controller by calling the Stop()
service of the EFI_DRIVER_BINDING_PROTOCOL. The EFI_DRIVER_BINDING_PROTOCOL is on the
driver image handle, and the handle of the controller is passed into the Stop() service. The list of drivers
managing a controller, and the list of children for a specific controller can be retrieved from the handle
database with the boot service EFI_BOOT_SERVICES.OpenProtocolInformation(). If all the
required drivers are disconnected from ControllerHandle, then EFI_SUCCESS is returned.

If ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned. If no drivers are managing
ControllerHandle, then EFI_SUCCESS is returned. If DriverImageHandle is not NULL, and
DriverImageHandle is NULL, then EFI_INVALID_PARAMETER is returned. If DriverImageHandle is not
NULL, and DriverImageHandle is not currently managing ControllerHandle, then EFI_SUCCESS is
returned. If ChildHandle is not NULL, and ChildHandle is NULL, then EFI_INVALID_PARAMETER is
returned. If there are not enough resources available to disconnect drivers from ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned.
UEFI Forum, Inc. March 2019 200

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

Examples

//
// Disconnect All Handles Example
// The following example recursively disconnects all drivers from all
// controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->DisconnectController (
 HandleBuffer[HandleIndex],
 NULL,
 NULL
);
 }
 gBS->FreePool(HandleBuffer);

EFI_SUCCESS One or more drivers were disconnected from the controller.

EFI_SUCCESS On entry, no drivers are managing ControllerHandle.

EFI_SUCCESS DriverImageHandle is not NULL, and on entry DriverImageHandle is not
managing ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER DriverImageHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers from
ControllerHandle.

EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.

EFI_INVALID_PARAMETER DriverImageHandle does not support the
EFI_DRIVER_BINDING_PROTOCOL.
UEFI Forum, Inc. March 2019 201

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.ProtocolsPerHandle()

Summary

Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated from
pool.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PROTOCOLS_PER_HANDLE) (

 IN EFI_HANDLE Handle,

 OUT EFI_GUID ***ProtocolBuffer,

 OUT UINTN *ProtocolBufferCount
);

Parameters

Handle The handle from which to retrieve the list of protocol interface
GUIDs.

ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are
installed on Handle. This buffer is allocated with a call to the Boot
Service EFI_BOOT_SERVICES.AllocatePool(). It is the caller's
responsibility to call the Boot Service
EFI_BOOT_SERVICES.FreePool() when the caller no longer
requires the contents of ProtocolBuffer.

ProtocolBufferCountA pointer to the number of GUID pointers present in
ProtocolBuffer.

Description

The ProtocolsPerHandle() function retrieves the list of protocol interface GUIDs that are installed
on Handle. The list is returned in ProtocolBuffer, and the number of GUID pointers in ProtocolBuffer is
returned in ProtocolBufferCount.

If Handle is NULL or Handle is NULL, then EFI_INVALID_PARAMETER is returned.

If ProtocolBuffer is NULL, then EFI_INVALID_PAREMETER is returned.

If ProtocolBufferCount is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuffer, then EFI_OUT_OF_RESOURCES is
returned.
UEFI Forum, Inc. March 2019 202

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

Examples

See example in the EFI_BOOT_SERVICES.LocateHandleBuffer() function description for an
example on how LocateHandleBuffer(), EFI_BOOT_SERVICES.ProtocolsPerHandle(),
EFI_BOOT_SERVICES.OpenProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolInformation() can be used to traverse the entire handle
database.

EFI_BOOT_SERVICES.LocateHandleBuffer()

Summary

Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_HANDLE_BUFFER) (

 IN EFI_LOCATE_SEARCH_TYPE SearchType,

 IN EFI_GUID *Protocol OPTIONAL,

 IN VOID *SearchKey OPTIONAL,

 IN OUT UINTN *NoHandles,

 OUT EFI_HANDLE **Buffer
);

Parameters

SearchType Specifies which handle(s) are to be returned.

Protocol Provides the protocol to search by. This parameter is only valid for a
SearchType of ByProtocol.

SearchKey Supplies the search key depending on the SearchType.

NoHandles The number of handles returned in Buffer.

Buffer A pointer to the buffer to return the requested array of handles that
support Protocol. This buffer is allocated with a call to the Boot
Service EFI_BOOT_SERVICES.AllocatePool(). It is the caller's
responsibility to call the Boot Service
EFI_BOOT_SERVICES.FreePool() when the caller no longer
requires the contents of Buffer.

EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was returned in
ProtocolBuffer. The number of protocol interface GUIDs was
returned in ProtocolBufferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER ProtocolBuffer is NULL.

EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.
UEFI Forum, Inc. March 2019 203

UEFI Specification, Version 2.8 Services — Boot Services
Description

The LocateHandleBuffer() function returns one or more handles that match the SearchType
request. Buffer is allocated from pool, and the number of entries in Buffer is returned in NoHandles. Each
SearchType is described below:

AllHandles Protocol and SearchKey are ignored and the function returns an
array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration returned by
EFI_BOOT_SERVICES.RegisterProtocolNotify(). The
function returns the next handle that is new for the Registration.
Only one handle is returned at a time, and the caller must loop until
no more handles are returned. Protocol is ignored for this search
type.

ByProtocol All handles that support Protocol are returned. SearchKey is ignored
for this search type.

If NoHandles is NULL, then EFI_INVALID_PARAMETER is returned.

If Buffer is NULL, then EFI_INVALID_PARAMETER is returned.

If there are no handles in the handle database that match the search criteria, then EFI_NOT_FOUND is
returned.

If there are not enough resources available to allocate Buffer, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

Examples

//
// The following example traverses the entire handle database. First all of
// the handles in the handle database are retrieved by using
// LocateHandleBuffer(). Then it uses ProtocolsPerHandle() to retrieve the
// list of protocol GUIDs attached to each handle. Then it uses OpenProtocol()
// to get the protocol instance associated with each protocol GUID on the
// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of
// agents that have opened the protocol on the handle. The caller of these
// functions must make sure that they free the return buffers with FreePool()
// when they are done.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;

EFI_SUCCESS The array of handles was returned in Buffer, and the number of
handles in Buffer was returned in NoHandles.

EFI_INVALID_PARAMETER NoHandles is NULL

EFI_INVALID_PARAMETER Buffer is NULL

EFI_NOT_FOUND No handles match the search.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
UEFI Forum, Inc. March 2019 204

UEFI Specification, Version 2.8 Services — Boot Services
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 //
 // Retrieve the list of all the protocols on each handle
 //
 Status = gBS->ProtocolsPerHandle (
 HandleBuffer[HandleIndex],
 &ProtocolGuidArray,
 &ArrayCount
);
 if (!EFI_ERROR (Status)) {
 for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {
 //
 // Retrieve the protocol instance for each protocol
 //
 Status = gBS->OpenProtocol (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &Instance,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

 //
 // Retrieve the list of agents that have opened each protocol
 //
 Status = gBS->OpenProtocolInformation (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &OpenInfo,
 &OpenInfoCount
);
 if (!EFI_ERROR (Status)) {
 for (OpenInfoIndex=0;OpenInfoIndex<OpenInfoCount;OpenInfoIndex++) {
UEFI Forum, Inc. March 2019 205

UEFI Specification, Version 2.8 Services — Boot Services
 //
 // HandleBuffer[HandleIndex] is the handle
 // ProtocolGuidArray[ProtocolIndex] is the protocol GUID
 // Instance is the protocol instance for the protocol
 // OpenInfo[OpenInfoIndex] is an agent that has opened a protocol
 //
 }
 if (OpenInfo != NULL) {
 gBS->FreePool(OpenInfo);
 }
 }
 }
 if (ProtocolGuidArray != NULL) {
 gBS->FreePool(ProtocolGuidArray);
 }
 }
 }
 if (HandleBuffer != NULL) {
 gBS->FreePool (HandleBuffer);
 }
}

EFI_BOOT_SERVICES.LocateProtocol()

Summary

Returns the first protocol instance that matches the given protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_PROTOCOL) (

 IN EFI_GUID *Protocol,

 IN VOID *Registration OPTIONAL,

 OUT VOID **Interface
);

Parameters

Protocol Provides the protocol to search for.

Registration Optional registration key returned from
EFI_BOOT_SERVICES.RegisterProtocolNotify(). If
Registration is NULL, then it is ignored.

Interface On return, a pointer to the first interface that matches Protocol
and Registration.

Description

The LocateProtocol() function finds the first device handle that support Protocol, and returns a
pointer to the protocol interface from that handle in Interface. If no protocol instances are found, then
Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.
UEFI Forum, Inc. March 2019 206

UEFI Specification, Version 2.8 Services — Boot Services
If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support Protocol, then
EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then EFI_NOT_FOUND is
returned.

Status Codes Returned

EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces()

Summary

Installs one or more protocol interfaces into the boot services environment.

Prototype

typedef

EFI_STATUS

EFIAPI *EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES) (
 IN OUT EFI_HANDLE *Handle,

 ...

);

Parameters

Handle The pointer to a handle to install the new protocol
interfaces on, or a pointer to NULL if a new handle is to be
allocated.

...A variable argument list containing pairs of protocol GUIDs and
protocol interfaces.

Description

This function installs a set of protocol interfaces into the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the protocol’s
GUID, and the second item is always a pointer to the protocol’s interface. These pairs are used to call the
boot service EFI_BOOT_SERVICES.InstallProtocolInterface() to add a protocol interface to
Handle. If Handle is NULL on entry, then a new handle will be allocated. The pairs of arguments are
removed in order from the variable argument list until a NULL protocol GUID value is found. If any errors
are generated while the protocol interfaces are being installed, then all the protocols installed prior to
the error will be uninstalled with the boot service

EFI_SUCCESS A protocol instance matching Protocol was found and returned in

Interface.

EFI_INVALID_PARAMETER Interface is NULL.

Protocol is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol and
Registration.
UEFI Forum, Inc. March 2019 207

UEFI Specification, Version 2.8 Services — Boot Services
EFI_BOOT_SERVICES.UninstallProtocolInterface() before the error is returned. The same
GUID cannot be installed more than once onto the same handle.

It is illegal to have two handles in the handle database with identical device paths. This service performs a
test to guarantee a duplicate device path is not inadvertently installed on two different handles. Before
any protocol interfaces are installed onto Handle, the list of GUID/pointer pair parameters are searched
to see if a Device Path Protocol instance is being installed. If a Device Path Protocol instance is going to be
installed onto Handle, then a check is made to see if a handle is already present in the handle database
with an identical Device Path Protocol instance. If an identical Device Path Protocol instance is already
present in the handle database, then no protocols are installed onto Handle, and
EFI_ALREADY_STARTED is returned.

Status Codes Returned

EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces()

Summary

Removes one or more protocol interfaces into the boot services environment.

Prototype

typedef

EFI_STATUS

EFIAPI *EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES) (
 IN EFI_HANDLE Handle,

 ...

);

Parameters

Handle The handle to remove the protocol interfaces from.

...A variable argument list containing pairs of protocol GUIDs and
protocol interfaces.

Description

This function removes a set of protocol interfaces from the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the protocol’s
GUID, and the second item is always a pointer to the protocol’s interface. These pairs are used to call the
boot service EFI_BOOT_SERVICES.UninstallProtocolInterface() to remove a protocol
interface from Handle. The pairs of arguments are removed in order from the variable argument list until
a NULL protocol GUID value is found. If all of the protocols are uninstalled from Handle, then

EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in
the handle database.

EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by Handle.
UEFI Forum, Inc. March 2019 208

UEFI Specification, Version 2.8 Services — Boot Services
EFI_SUCCESS is returned. If any errors are generated while the protocol interfaces are being
uninstalled, then the protocols uninstalled prior to the error will be reinstalled with the boot service
EFI_BOOT_SERVICES.InstallProtocolInterface() and the status code
EFI_INVALID_PARAMETER is returned.

Status Codes Returned

7.4 Image Services

Three types of images can be loaded: UEFI applications written (see Section 2.1.2), UEFI boot services
drivers (see Section 2.1.4), and EFI runtime drivers (see Section 2.1.4). A UEFI OS Loader (see
Section 2.1.3) is a type of UEFI application. The most significant difference between these image types is
the type of memory into which they are loaded by the firmware’s loader. Table 32 summarizes the
differences between images.

Table 32. Image Type Differences Summary

EFI_SUCCESS All the protocol interfaces were removed.

EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on

Handle.

UEFI Application UEFI Boot Service Driver UEFI Runtime Driver

Description A transient application that
is loaded during boot
services time. UEFI
applications are either
unloaded when they
complete (see
Section 2.1.2), or they take
responsibility for the
continued operation of the
system via
ExitBootServices()(se
e Section 2.1.3) .
The UEFI applications are
loaded in sequential order
by the boot manager, but
one UEFI application may
dynamically load another.

A program that is loaded into
boot services memory and stays
resident until boot services
terminate .See Section 2.1.4.

A program that is loaded into
runtime services memory and
stays resident during runtime. The
memory required for a UEFI
runtime services driver must be
performed in a single memory
allocation, and marked as
EfiRuntimeServicesData.
(Note that the memory only stays
resident when booting an EFI-
compatible operating system.
Legacy operating systems will
reuse the memory.) See
Section 2.1.4.

Loaded into
memory
type

EfiLoaderCode,
EfiLoaderData

EfiBootServicesCode,
EfiBootServicesData

EfiRuntimeServicesCode,
EfiRuntimeServicesData

Default pool
allocations
from
memory
type

EfiLoaderData EfiBootServicesData EfiRuntimeServicesData
UEFI Forum, Inc. March 2019 209

UEFI Specification, Version 2.8 Services — Boot Services
Most UEFI images are loaded by the boot manager. When a UEFI application or UEFI driver is installed,
the installation procedure registers itself with the boot manager for loading. However, in some cases a
UEFI application or UEFI driver may want to programmatically load and start another UEFI image. This can
be done with the EFI_BOOT_SERVICES.LoadImage() and EFI_BOOT_SERVICES.StartImage()
interfaces. UEFI drivers may only load UEFI applications during the UEFI driver’s initialization entry point.
Table 33 lists the functions that make up Image Services.

Table 33. Image Functions

The Image boot services have been modified to take advantage of the information that is now being
tracked with the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services. Since the usage of protocol interfaces is
being tracked with these new boot services, it is now possible to automatically close protocol interfaces
when a UEFI application or a UEFI driver is unloaded or exited.

EFI_BOOT_SERVICES.LoadImage()

Summary

Loads an EFI image into memory.

Prototype

Exit behavior When an application exits,
firmware frees the memory
used to hold its image.

When a UEFI boot service driver
exits with an error code, firmware
frees the memory used to hold its
image.
When a UEFI boot service driver’s
entry point completes with
EFI_SUCCESS, the image is
retained in memory.

When a UEFI runtime driver exits
with an error code, firmware frees
the memory used to hold its
image.
When a UEFI runtime services
driver’s entry point completes
with EFI_SUCCESS, the image is
retained in memory.

Notes This type of image would
not install any protocol
interfaces or handles.

This type of image would typically
use
InstallProtocolInterface(
).

A UEFI runtime driver can only
allocate runtime memory during
boot services time. Due to the
complexity of performing a virtual
relocation for a runtime image,
this driver type is discouraged
unless it is absolutely required.

Name Type Description

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

UEFI Application UEFI Boot Service Driver UEFI Runtime Driver
UEFI Forum, Inc. March 2019 210

UEFI Specification, Version 2.8 Services — Boot Services
typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_LOAD) (

 IN BOOLEAN BootPolicy,

 IN EFI_HANDLE ParentImageHandle,

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN VOID *SourceBuffer OPTIONAL,

 IN UINTN SourceSize,

 OUT EFI_HANDLE *ImageHandle
);

Parameters

BootPolicy If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load
DevicePath as a boot selection. Ignored if SourceBuffer is not NULL.

ParentImageHandle The caller’s image handle. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description. This field is used to initialize the ParentHandle field of
the EFI_LOADED_IMAGE_PROTOCOL for the image that is being
loaded.

DevicePath The DeviceHandle specific file path from which the image is loaded.
EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

SourceBuffer If not NULL, a pointer to the memory location containing a copy of
the image to be loaded.

SourceSize The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.

ImageHandle Pointer to the returned image handle that is created when the image
is successfully loaded. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description.

Related Definitions

#define EFI_HII_PACKAGE_LIST_PROTOCOL_GUID \

 { 0x6a1ee763, 0xd47a, 0x43b4, \

 { 0xaa, 0xbe, 0xef, 0x1d, 0xe2, 0xab, 0x56, 0xfc } }

typedef EFI_HII_PACKAGE_LIST_HEADER *EFI_HII_PACKAGE_LIST_PROTOCOL;

Description

The LoadImage() function loads an EFI image into memory and returns a handle to the image. The
image is loaded in one of two ways.

• If SourceBuffer is not NULL, the function is a memory-to-memory load in which SourceBuffer
points to the image to be loaded and SourceSize indicates the image’s size in bytes. In this case,
the caller has copied the image into SourceBuffer and can free the buffer once loading is
complete.

• If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.
UEFI Forum, Inc. March 2019 211

UEFI Specification, Version 2.8 Services — Boot Services
If there is no instance of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL associated with file path, then this
function will attempt to use EFI_LOAD_FILE_PROTOCOL (BootPolicy is TRUE) or
EFI_LOAD_FILE2_PROTOCOL, and then EFI_LOAD_FILE_PROTOCOL (BootPolicy is FALSE).

In all cases, this function will use the instance of these protocols associated with the handle that most
closely matches DevicePath will be used. See the boot service description for more information on how
the closest handle is located.

• In the case of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the path name from the File Path
Media Device Path node(s) of DevicePath is used.

• In the case of EFI_LOAD_FILE_PROTOCOL, the remaining device path nodes of DevicePath
and the BootPolicy flag are passed to the EFI_LOAD_FILE_PROTOCOL.LoadFile()
function. The default image responsible for booting is loaded when DevicePath specifies only
the device (and there are no further device nodes). For more information see the discussion of
the EFI_LOAD_FILE_PROTOCOL in Section 13.1.

• In the case of EFI_LOAD_FILE2_PROTOCOL, the behavior is the same as above, except that it
is only used if BootOption is FALSE. For more information, see the discussion of the
EFI_LOAD_FILE2_PROTOCOL.

• If the platform supports driver signing, as specified in Section 32.4.2, and the image signature is
not valid, then information about the image is recorded (see Image Execution Information
Table in Section 32.4.2) and EFI_SECURITY_VIOLATION is returned.

• If the platform supports user authentication, as described in Section 36, and loading of images
on the specified FilePath is forbidden in the current user profile, then the information about
the image is recorded (see Deferred Execution in Section 36.1.5) and
EFI_SECURITY_VIOLATION is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image and
supports EFI_LOADED_IMAGE_PROTOCOL and the EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL.
The caller may fill in the image’s “load options” data, or add additional protocol support to the handle
before passing control to the newly loaded image by calling EFI_BOOT_SERVICES.StartImage().
Also, once the image is loaded, the caller either starts it by calling StartImage() or unloads it by calling
EFI_BOOT_SERVICES.UnloadImage().

Once the image is loaded, LoadImage() installs EFI_HII_PACKAGE_LIST_PROTOCOL on the handle if
the image contains a custom PE/COFF resource with the type 'HII'. The protocol's interface pointer points
to the HII package list which is contained in the resource's data. The format of this is in Section 33.3.1.
UEFI Forum, Inc. March 2019 212

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.StartImage()

Summary

Transfers control to a loaded image’s entry point.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_START) (

 IN EFI_HANDLE ImageHandle,

 OUT UINTN *ExitDataSize,

 OUT CHAR16 **ExitData OPTIONAL

);

Parameters

ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

ExitDataSize Pointer to the size, in bytes, of ExitData. If ExitData is NULL, then this
parameter is ignored and the contents of ExitDataSize are not
modified.

ExitData Pointer to a pointer to a data buffer that includes a Null-terminated
string, optionally followed by additional binary data. The string is a
description that the caller may use to further indicate the reason for
the image’s exit.

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND Both SourceBuffer and DevicePath are NULL.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_UNSUPPORTED The image type is not supported.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

EFI_ACCESS_DENIED Image was not loaded because the platform policy prohibits the image
from being loaded. NULL is returned in *ImageHandle.

EFI_SECURITY_VIOLATION Image was loaded and an ImageHandle was created with a valid
EFI_LOADED_IMAGE_PROTOCOL.. However, the current platform policy
specifies that the image should not be started.
UEFI Forum, Inc. March 2019 213

UEFI Specification, Version 2.8 Services — Boot Services
Description

The StartImage() function transfers control to the entry point of an image that was loaded by
EFI_BOOT_SERVICES.LoadImage(). The image may only be started one time.

Control returns from StartImage() when the loaded image’s EFI_IMAGE_ENTRY_POINT returns or
when the loaded image calls EFI_BOOT_SERVICES.Exit(). When that call is made, the ExitData
buffer and ExitDataSize from Exit() are passed back through the ExitData buffer and ExitDataSize in
this function. The caller of this function is responsible for returning the ExitData buffer to the pool by
calling EFI_BOOT_SERVICES.FreePool() when the buffer is no longer needed. Using Exit() is
similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that Exit() may also return
additional ExitData. Exit() function description defines clean up procedure performed by the
firmware once loaded image returns control.

EFI 1.10 Extension

To maintain compatibility with UEFI drivers that are written to the EFI 1.02 Specification, StartImage()
must monitor the handle database before and after each image is started. If any handles are created or
modified when an image is started, then EFI_BOOT_SERVICES.ConnectController() must be
called with the Recursive parameter set to TRUE for each of the newly created or modified handles
before StartImage() returns.

Status Codes Returned

EFI_BOOT_SERVICES.UnloadImage()

Summary

Unloads an image.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_UNLOAD) (

 IN EFI_HANDLE ImageHandle
);

Parameters

ImageHandle Handle that identifies the image to be unloaded.

Description

The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the image and
returns EFI_SUCCESS.

EFI_INVALID_PARAMETER ImageHandle is either an invalid image handle or the image has
already been initialized with StartImage

Exit code from image Exit code from image.

EFI_SECURITY_VIOLATION The current platform policy specifies that the image should not be
started.
UEFI Forum, Inc. March 2019 214

UEFI Specification, Version 2.8 Services — Boot Services
If the image has been started and has an Unload() entry point, control is passed to that entry point. If
the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise, the error returned
by the image’s unload function is returned to the caller. The image unload function is responsible for
freeing all allocated memory and ensuring that there are no references to any freed memory, or to the
image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns
EFI_UNSUPPORTED.

EFI 1.10 Extension

All of the protocols that were opened by ImageHandle using the boot service
EFI_BOOT_SERVICES.OpenProtocol() are automatically closed with the boot service
EFI_BOOT_SERVICES.CloseProtocol(). If all of the open protocols are closed, then EFI_SUCCESS
is returned. If any call to CloseProtocol() fails, then the error code from CloseProtocol() is
returned.

Status Codes Returned

EFI_IMAGE_ENTRY_POINT

Summary

This is the declaration of an EFI image entry point. This can be the entry point to an application written to
this specification, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

 IN EFI_HANDLE ImageHandle,

 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is
defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

SystemTable System Table for this image. Type EFI_SYSTEM_TABLE is defined in
Section 4.

EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.

EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from the image’s unload function.
UEFI Forum, Inc. March 2019 215

UEFI Specification, Version 2.8 Services — Boot Services
Description

An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image into
memory, control is passed to the image’s entry point. The entry point is responsible for initializing the
image. The image’s ImageHandle is passed to the image. The ImageHandle provides the image with all
the binding and data information it needs. This information is available through protocol interfaces.
However, to access the protocol interfaces on ImageHandle requires access to boot services functions.
Therefore, EFI_BOOT_SERVICES.LoadImage() passes to the EFI_IMAGE_ENTRY_POINT a
SystemTable that is inherited from the current scope of LoadImage().

All image handles support the EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL . These protocol can be used to obtain information
about the loaded image’s state—for example, the device from which the image was loaded and the
image’s load options. In addition, the ImageHandle may support other protocols provided by the parent
image.

If the image supports dynamic unloading, it must supply an unload function in the
EFI_LOADED_IMAGE_PROTOCOL structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling
EFI_BOOT_SERVICES.Exit() or by returning control from its entry point. If the image returns control
from its entry point, the firmware passes control to Exit() using the return code as the ExitStatus
parameter to Exit().

See Exit() below for entry point exit conditions.

EFI_BOOT_SERVICES.Exit()

Summary

Terminates a loaded EFI image and returns control to boot services.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EXIT) (

 IN EFI_HANDLE ImageHandle,

 IN EFI_STATUS ExitStatus,

 IN UINTN ExitDataSize,

 IN CHAR16 *ExitData OPTIONAL
);

Parameters

ImageHandle Handle that identifies the image. This parameter is passed to the
image on entry.

ExitStatus The image’s exit code.

ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated string,
optionally followed by additional binary data. The string is a
UEFI Forum, Inc. March 2019 216

UEFI Specification, Version 2.8 Services — Boot Services
description that the caller may use to further indicate the reason for
the image’s exit. ExitData is only valid if ExitStatus is something
other than EFI_SUCCESS. The ExitData buffer must be allocated by
calling EFI_BOOT_SERVICES.AllocatePool().

Description

The Exit() function terminates the image referenced by ImageHandle and returns control to boot
services. This function may not be called if the image has already returned from its entry point
(EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all child images
must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that Exit()
may also return additional ExitData.

When an application exits a compliant system, firmware frees the memory used to hold the image. The
firmware also frees its references to the ImageHandle and the handle itself. Before exiting, the
application is responsible for freeing any resources it allocated. This includes memory (pages and/or
pool), open file system handles, and so forth. The only exception to this rule is the ExitData buffer, which
must be freed by the caller of EFI_BOOT_SERVICES.StartImage(). (If the buffer is needed, firmware
must allocate it by calling EFI_BOOT_SERVICES.AllocatePool() and must return a pointer to it to
the caller of StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if the
ExitStatus is an error code; otherwise the image stays resident in memory. The driver must not return an
error code if it has installed any protocol handlers or other active callbacks into the system that have not
(or cannot) be cleaned up. If the driver exits with an error code, it is responsible for freeing all resources
before exiting. This includes any allocated memory (pages and/or pool), open file system handles, and so
forth.

It is valid to call Exit() or UnloadImage() for an image that was loaded by
EFI_BOOT_SERVICES.LoadImage() before calling EFI_BOOT_SERVICES.StartImage(). This will
free the image from memory without having started it.

EFI 1.10 Extension

If ImageHandle is a UEFI application, then all of the protocols that were opened by ImageHandle using
the boot service EFI_BOOT_SERVICES.OpenProtocol() are automatically closed with the boot
service EFI_BOOT_SERVICES.CloseProtocol(). If ImageHandle is a UEFI boot service driver or UEFI
runtime service driver, and ExitStatus is an error code, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol() are automatically closed with the boot service
CloseProtocol(). If ImageHandle is a UEFI boot service driver or UEFI runtime service driver, and
ExitStatus is not an error code, then no protocols are automatically closed by this service.
UEFI Forum, Inc. March 2019 217

UEFI Specification, Version 2.8 Services — Boot Services
Status Codes Returned

EFI_BOOT_SERVICES.ExitBootServices()

Summary

Terminates all boot services.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EXIT_BOOT_SERVICES) (

 IN EFI_HANDLE ImageHandle,

 IN UINTN MapKey
);

Parameters

ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is
defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface() function
description.

MapKey Key to the latest memory map.

Description

The ExitBootServices() function is called by the currently executing UEFI OS loader image to
terminate all boot services. On success, the UEFI OSloader becomes responsible for the continued
operation of the system. All events of type EVT_SIGNAL_EXIT_BOOT_SERVICES must be signaled
before ExitBootServices() returns EFI_SUCCESS. The events are only signaled once even if
ExitBootServices() is called multiple times.

A UEFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices(). This is done by passing in the current memory map’s MapKey value as returned
by EFI_BOOT_SERVICES.GetMemoryMap(). Care must be taken to ensure that the memory map does
not change between these two calls. It is suggested that GetMemoryMap()be called immediately before
calling ExitBootServices(). If MapKey value is incorrect, ExitBootServices() returns
EFI_INVALID_PARAMETER and GetMemoryMap() with ExitBootServices() must be called again.
Firmware implementation may choose to do a partial shutdown of the boot services during the first call
to ExitBootServices(). A UEFI OS loader should not make calls to any boot service function other
than GetMemoryMap() after the first call to ExitBootServices().

(Does not return.) Image exit. Control is returned to the StartImage() call that invoked the
image specified by ImageHandle.

EFI_SUCCESS The image specified by ImageHandle was unloaded. This condition only
occurs for images that have been loaded with LoadImage() but have not
been started with StartImage().

EFI_INVALID_PARAMETER The image specified by ImageHandle has been loaded and started with
LoadImage() and StartImage(), but the image is not the currently
executing image.
UEFI Forum, Inc. March 2019 218

UEFI Specification, Version 2.8 Services — Boot Services
On success, the UEFI OS loader owns all available memory in the system. In addition, the UEFI OS loader
can treat all memory in the map marked as EfiBootServicesCode and EfiBootServicesData as
available free memory. No further calls to boot service functions or EFI device-handle-based protocols
may be used, and the boot services watchdog timer is disabled. On success, several fields of the EFI
System Table should be set to NULL. These include ConsoleInHandle, ConIn, ConsoleOutHandle, ConOut,
StandardErrorHandle, StdErr, and BootServicesTable. In addition, since fields of the EFI System Table are
being modified, the 32-bit CRC for the EFI System Table must be recomputed.

Firmware must ensure that timer event activity is stopped before any of the EXIT_BOOT_SERVICES
handlers are called within UEFI drivers. UEFI Drivers must not rely on timer event functionality in order to
accomplish ExitBootServices handling since timer events will be disabled.

Status Codes Returned

7.5 Miscellaneous Boot Services

This section contains the remaining function definitions for boot services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 34 lists the Miscellaneous
Boot Services Functions.

Table 34. Miscellaneous Boot Services Functions

The EFI_BOOT_SERVICES.CalculateCrc32() service was added because there are several places in
EFI that 32-bit CRCs are used. These include the EFI System Table, the EFI Boot Services Table, the EFI
Runtime Services Table, and the GUID Partition Table (GPT) structures. The CalculateCrc32() service
allows new 32-bit CRCs to be computed, and existing 32-bit CRCs to be validated.

EFI_BOOT_SERVICES.SetWatchdogTimer()

Summary

Sets the system’s watchdog timer.

Prototype

EFI_SUCCESS Boot services have been terminated.

EFI_INVALID_PARAMETER MapKey is incorrect.

Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI System
Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.
UEFI Forum, Inc. March 2019 219

UEFI Specification, Version 2.8 Services — Boot Services
typedef

EFI_STATUS

(EFIAPI *EFI_SET_WATCHDOG_TIMER) ((

 IN UINTN Timeout,

 IN UINT64 WatchdogCode,

 IN UINTN DataSize,

 IN CHAR16 *WatchdogData OPTIONAL

);

Parameters

Timeout The number of seconds to set the watchdog timer to. A value of zero
disables the timer.

WatchdogCode The numeric code to log on a watchdog timer timeout event. The
firmware reserves codes 0x0000 to 0xFFFF. Loaders and operating
systems may use other timeout codes.

DataSize The size, in bytes, of WatchdogData.

WatchdogData A data buffer that includes a Null-terminated string, optionally
followed by additional binary data. The string is a description that
the call may use to further indicate the reason to be logged with a
watchdog event.

Description

The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either reset with
the Runtime Service ResetSystem(), or perform a platform specific action that must eventually cause
the platform to be reset. The watchdog timer is armed before the firmware's boot manager invokes an
EFI boot option. The watchdog must be set to a period of 5 minutes. The EFI Image may reset or disable
the watchdog timer as needed. If control is returned to the firmware's boot manager, the watchdog
timer must be disabled.

The watchdog timer is only used during boot services. On successful completion of
EFI_BOOT_SERVICES.ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

Status Codes Returned

EFI_BOOT_SERVICES.Stall()

Summary

Induces a fine-grained stall.

EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.

EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware error.
UEFI Forum, Inc. March 2019 220

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_STALL) (

 IN UINTN Microseconds
)

Parameters

Microseconds The number of microseconds to stall execution.

Description

The Stall() function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.

Status Codes Returned

EFI_BOOT_SERVICES.CopyMem()

Summary

The CopyMem() function copies the contents of one buffer to another buffer.

Prototype

typedef

VOID

(EFIAPI *EFI_COPY_MEM) (

 IN VOID *Destination,

 IN VOID *Source,

 IN UINTN Length
);

Parameters

DestinationPointer to the destination buffer of the memory copy.

SourcePointer to the source buffer of the memory copy.

LengthNumber of bytes to copy from Source to Destination.

Description

The CopyMem() function copies Length bytes from the buffer Source to the buffer Destination.

The implementation of CopyMem() must be reentrant, and it must handle overlapping Source and
Destination buffers. This means that the implementation of CopyMem() must choose the correct
direction of the copy operation based on the type of overlap that exists between the Source and
Destination buffers. If either the Source buffer or the Destination buffer crosses the top of the processor’s
address space, then the result of the copy operation is unpredictable.

EFI_SUCCESS Execution was stalled at least the requested number of Microseconds.
UEFI Forum, Inc. March 2019 221

UEFI Specification, Version 2.8 Services — Boot Services
The contents of the Destination buffer on exit from this service must match the contents of the Source
buffer on entry to this service. Due to potential overlaps, the contents of the Source buffer may be
modified by this service. The following rules can be used to guarantee the correct behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination > Source and Destination < (Source + Length), then the data should be copied
from the Source buffer to the Destination buffer starting from the end of the buffers and
working toward the beginning of the buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer starting
from the beginning of the buffers and working toward the end of the buffers.

Status Codes Returned

None.

EFI_BOOT_SERVICES.SetMem()

Summary

The SetMem() function fills a buffer with a specified value.

Prototype

typedef

VOID

EFIAPI *EFI_SET_MEM) (

 IN VOID *Buffer,

 IN UINTN Size,

 IN UINT8 Value
);

Parameters

Buffer Pointer to the buffer to fill.

Size Number of bytes in Buffer to fill.

Value Value to fill Buffer with.

Description

This function fills Size bytes of Buffer with Value. The implementation of SetMem() must be reentrant. If
Buffer crosses the top of the processor’s address space, the result of the SetMem() operation is
unpredictable.

Status Codes Returned

None.

EFI_BOOT_SERVICES.GetNextMonotonicCount()

Summary

Returns a monotonically increasing count for the platform.
UEFI Forum, Inc. March 2019 222

UEFI Specification, Version 2.8 Services — Boot Services
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GET_NEXT_MONOTONIC_COUNT) (

 OUT UINT64 *Count
);

Parameters

Count Pointer to returned value.

Description

The GetNextMonotonicCount() function returns a 64-bit value that is numerically larger then the last
time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits. The low
32-bit value is volatile and is reset to zero on every system reset. It is increased by 1 on every call to
GetNextMonotonicCount(). The high 32-bit value is nonvolatile and is increased by one on whenever
the system resets or the low 32-bit counter overflows.

Status Codes Returned

EFI_BOOT_SERVICES.InstallConfigurationTable()

Summary

Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INSTALL_CONFIGURATION_TABLE) (

 IN EFI_GUID *Guid,

 IN VOID *Table
);

Parameters

Guid A pointer to the GUID for the entry to add, update, or remove.

Table A pointer to the configuration table for the entry to add, update, or
remove. May be NULL.

EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER Count is NULL.
UEFI Forum, Inc. March 2019 223

UEFI Specification, Version 2.8 Services — Boot Services
Description

The InstallConfigurationTable() function is used to maintain the list of configuration tables that
are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer) pairs. The list must be
allocated from pool memory with PoolType set to EfiRuntimeServicesData.

If Guid is NULL, EFI_INVALID_PARAMETER is returned. If Guid is valid, there are four possibilities:

• If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table) pair is
added to the System Table. See Note below.

• If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND
is returned.

• If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair is
updated with the new Table value.

• If Guid is present in the System Table, and Table is NULL, then the entry associated with Guid is
removed from the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

Note: If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_BOOT_SERVICES.CalculateCrc32()

Summary

Computes and returns a 32-bit CRC for a data buffer.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CALCULATE_CRC32)

 IN VOID *Data,

 IN UINTN DataSize,

 OUT UINT32 *Crc32
);

Parameters

Data A pointer to the buffer on which the 32-bit CRC is to be computed.

DataSize The number of bytes in the buffer Data.

Crc32 The 32-bit CRC that was computed for the data buffer specified by
Data and DataSize.

EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is NULL.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.
UEFI Forum, Inc. March 2019 224

UEFI Specification, Version 2.8 Services — Boot Services
Description

This function computes the 32-bit CRC for the data buffer specified by Data and DataSize. If the 32-bit
CRC is computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Data is NULL, then EFI_INVALID_PARAMETER is returned.

If Crc32 is NULL, then EFI_INVALID_PARAMETER is returned.

If DataSize is 0, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in
Crc32.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER Crc32 is NULL.

EFI_INVALID_PARAMETER DataSize is 0.
UEFI Forum, Inc. March 2019 225

UEFI Specification, Version 2.8
8 - Services — Runtime Services

This section discusses the fundamental services that are present in a compliant system. The services are
defined by interface functions that may be used by code running in the EFI environment. Such code may
include protocols that manage device access or extend platform capability, as well as applications
running in the preboot environment and EFI OS loaders.

Two types of services are described here:

• Boot Services. Functions that are available before a successful call to
EFI_BOOT_SERVICES.ExitBootServices(). These functions are described in Section 7.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in this section.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms (since all
platforms support all system services). The term “handle-based” means that the function accesses a
specific device or device functionality and may not be available on some platforms (since some devices
are not available on some platforms). Protocols are created dynamically. This section discusses the
“global” functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an image is provided a pointer to a system table which contains the Boot
Services dispatch table and the default handles for accessing the console. All boot services functionality is
available until a UEFI OS loader loads enough of its own environment to take control of the system’s
continued operation and then terminates boot services with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to indicate that
its loader is ready to assume control of the platform and all platform resource management. Thus boot
services are available up to this point to assist the UEFI OS loader in preparing to boot the operating
system. Once the UEFI OS loader takes control of the system and completes the operating system boot
process, only runtime services may be called. Code other than the UEFI OS loader, however, may or may
not choose to call ExitBootServices(). This choice may in part depend upon whether or not such
code is designed to make continued use of EFI boot services or the boot services environment.

The rest of this section discusses individual functions. Runtime Services fall into these categories:

• Runtime Rules and Restrictions (Section 8.1)

• Variable Services (Section 8.1.1)

• Time Services (Section 8.3)

• Virtual Memory Services (Section 8.4)

• Miscellaneous Services (Section 8.5)

8.1 Runtime Services Rules and Restrictions

All of the Runtime Services may be called with interrupts enabled if desired. The Runtime Service
functions will internally disable interrupts when it is required to protect access to hardware resources.
UEFI Forum, Inc. March 2019 226

UEFI Specification, Version 2.8 Services — Runtime Services
The interrupt enable control bit will be returned to its entry state after the access to the critical hardware
resources is complete.

All callers of Runtime Services are restricted from calling the same or certain other Runtime Service
functions prior to the completion and return of a previous Runtime Service call. These restrictions apply
to:

• Runtime Services that have been interrupted

• Runtime Services that are active on another processor.

Callers are prohibited from using certain other services from another processor or on the same processor
following an interrupt as specified in Table 35. For this table ‘Busy’ is defined as the state when a Runtime
Service has been entered and has not returned to the caller.

The consequence of a caller violating these restrictions is undefined except for certain special cases
described below.

Table 35. Rules for Reentry Into Runtime Services

If previous call is busy in Forbidden to call

Any SetVirtualAddressMap()

ConvertPointer() ConvertPointer()

SetVariable(),
UpdateCapsule(),
SetTime()
SetWakeupTime(),
GetNextHighMonotonicCount()

ResetSystem()

GetVariable()
GetNextVariableName()
SetVariable()
QueryVariableInfo()
UpdateCapsule()
QueryCapsuleCapabilities()
GetNextHighMonotonicCount()

GetVariable(),
GetNextVariableName(),
SetVariable(),
QueryVariableInfo(),
UpdateCapsule(),
QueryCapsuleCapabilities(),
GetNextHighMonotonicCount()

GetTime()
SetTime()
GetWakeupTime()
SetWakeupTime()

GetTime()
SetTime()
GetWakeupTime()
SetWakeupTime()
UEFI Forum, Inc. March 2019 227

UEFI Specification, Version 2.8 Services — Runtime Services
If any EFI_RUNTIME_SERVICES calls are not supported for use by the OS during runtime services, the
RuntimeServicesSupported variable must be present during boot services, and must contain a
bitmask of which calls are or are not supported (see related definitions), where a bit set to 1 indicates
that the call is supported, and 0 indicates that it is not. If this variable is not set, that indicates that all
runtime services calls are present. If this variable is set, but is smaller than the expected number of bits,
the value should be presumed to correctly reflect the low-order bits, and all other bits should be
presumed to be 0.

8.1.1 Related Definitions

 #define EFI_RT_SUPPORTED_GET_TIME 0x0001
 #define EFI_RT_SUPPORTED_SET_TIME 0x0002
 #define EFI_RT_SUPPORTED_GET_WAKEUP_TIME 0x0004
 #define EFI_RT_SUPPORTED_SET_WAKEUP_TIME 0x0008
 #define EFI_RT_SUPPORTED_GET_VARIABLE 0x0010
 #define EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME 0x0020
 #define EFI_RT_SUPPORTED_SET_VARIABLE 0x0040
 #define EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP 0x0080
 #define EFI_RT_SUPPORTED_CONVERT_POINTER 0x0100
 #define EFI_RT_SUPPORTED_GET_NEXT_HIGH_MONOTONIC_COUNT 0x0200
 #define EFI_RT_SUPPORTED_RESET_SYSTEM 0x0400
 #define EFI_RT_SUPPORTED_UPDATE_CAPSULE 0x0800
 #define EFI_RT_SUPPORTED_QUERY_CAPSULE_CAPABILITIES 0x1000
 #define EFI_RT_SUPPORTED_QUERY_VARIABLE_INFO 0x2000

8.1.2 Exception for Machine Check, INIT, and NMI

Certain asynchronous events (e.g., NMI on IA-32 and x64 systems, Machine Check and INIT on Itanium
systems) can not be masked and may occur with any setting of interrupt enabled. These events also may
require OS level handler's involvement that may involve the invocation of some of the runtime services
(see below).

If SetVirtualAddressMap() has been called, all calls to runtime services after Machine Check, INIT, or
NMI, must be made using the virtual address map set by that call.

A Machine Check may have interrupted a runtime service (see below). If the OS determines that the
Machine Check is recoverable, the OS level handler must follow the normal restrictions in Table 35.

If the OS determines that the Machine Check is non-recoverable, the OS level handler may ignore the
normal restrictions and may invoke the runtime services described in Table 36 even in the case where a
previous call was busy. The system firmware will honor the new runtime service call(s) and the operation
of the previous interrupted call is not guaranteed. Any interrupted runtime functions will not be
restarted.

The INIT and NMI events follow the same restrictions.

Note: On Itanium systems, the OS Machine Check Handler must not call ResetSystem(). If a reset is
required, the OS Machine Check Handler may request SAL to reset upon return to SAL_CHECK.

The platform implementations are required to clear any runtime services in progress in order to enable
the OS handler to invoke these runtime services even in the case where a previous call was busy. In this
case, the proper operation of the original interrupted call is not guaranteed.
UEFI Forum, Inc. March 2019 228

UEFI Specification, Version 2.8 Services — Runtime Services
Table 36. Functions that may be called after Machine Check ,INIT and NMI

8.2 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the key)
and arbitrary data (the value). Variables are intended for use as a means to store data that is passed
between the EFI environment implemented in the platform and EFI OS loaders and other applications
that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must be
persistent in most cases. This implies that the EFI implementation on a platform must arrange it so that
variables passed in for storage are retained and available for use each time the system boots, at least
until they are explicitly deleted or overwritten. Provision of this type of nonvolatile storage may be very
limited on some platforms, so variables should be used sparingly in cases where other means of
communicating information cannot be used.

Table 37 lists the variable services functions described in this section:

Table 37. Variable Services Functions

GetVariable()

Summary

Returns the value of a variable.

Prototype

Function Called after Machine Check, INIT and NMI

GetTime() Yes, even if previously busy

GetVariable() Yes, even if previously busy

GetNextVariableName() Yes, even if previously busy

QueryVariableInfo() Yes, even if previously busy

SetVariable() Yes, even if previously busy

UpdateCapsule() Yes, even if previously busy

QueryCapsuleCapabilities() Yes, even if previously busy

ResetSystem() Yes, even if previously busy

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

QueryVariableInfo Runtime Returns information about the EFI variables
UEFI Forum, Inc. March 2019 229

UEFI Specification, Version 2.8 Services — Runtime Services
typedef

EFI_STATUS

GetVariable (

 IN CHAR16 *VariableName,

 IN EFI_GUID *VendorGuid,

 OUT UINT32 *Attributes OPTIONAL,

 IN OUT UINTN *DataSize,

 OUT VOID *Data OPTIONAL

);

Parameters

VariableName A Null-terminated string that is the name of the vendor’s
variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the EFI_BOOT_SERVICES.InstallProtocolInterface()
function description.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions.”
If not NULL, then Attributes is set on output both when
EFI_SUCCESS and when EFI_BUFFER_TOO_SMALL is returned.

DataSize On input, the size in bytes of the return Data buffer. 
On output the size of data returned in Data.

Data The buffer to return the contents of the variable. May be NULL
with a zero DataSize in order to determine the size buffer
needed.
UEFI Forum, Inc. March 2019 230

UEFI Specification, Version 2.8 Services — Runtime Services
Related Definitions

//***

// Variable Attributes

//***

#define EFI_VARIABLE_NON_VOLATILE 0x00000001

#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x00000002

#define EFI_VARIABLE_RUNTIME_ACCESS 0x00000004

#define EFI_VARIABLE_HARDWARE_ERROR_RECORD 0x00000008 \

//This attribute is identified by the mnemonic 'HR' elsewhere

//in this specification.

#define EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS 0x00000010

//NOTE: EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is deprecated

//and should be considered reserved.

#define EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS \ 0x00000020

#define EFI_VARIABLE_APPEND_WRITE 0x00000040

#define EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS 0x00000080

//This attribute indicates that the variable payload begins

//with an EFI_VARIABLE_AUTHENTICATION_3 structure, and

//potentially more structures as indicated by fields of this

//structure. See definition below and in SetVariable().

Description

Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the data variable
should be stored and maintained by the system. The attributes affect when the variable may be accessed
and volatility of the data. If EFI_BOOT_SERVICES.ExitBootServices() has already been executed,
data variables without the EFI_VARIABLE_RUNTIME_ACCESS attribute set will not be visible to
GetVariable() and will return an EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is
returned and DataSize is set to the required buffer size to obtain the data.

The EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS and the EFI_VARIABLE_
AUTHENTICATED_WRITE_ACCESS attributes may both be set in the returned Attributes bitmask
parameter of a GetVariable() call, though it should be noted that the EFI_VARIABLE_
AUTHENTICATED_WRITE_ACCESS attribute is deprecated and should no longer be used. The
EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned Attributes bitmask
parameter.

Variables stored with the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute set will return
metadata in addition to variable data when GetVariable() is called. If a GetVariable() call indicates that
this attribute is set, the GetVariable() payload must be interpreted according to the metadata headers. In
addition to the headers described in SetVariable(), the following header is used to indicate what
certificate may be currently associated with a variable.
UEFI Forum, Inc. March 2019 231

UEFI Specification, Version 2.8 Services — Runtime Services
//

// EFI_VARIABLE_AUTHENTICATION_3_CERT_ID descriptor

//

// An extensible structure to identify a unique x509 cert

// associated with a given variable

//

#define EFI_VARIABLE_AUTHENTICATION_3_CERT_ID_SHA256 1

typedef struct {

 UINT8 Type;

 UINT32 IdSize;

 // UINT8 Id[IdSize];

} EFI_VARIABLE_AUTHENTICATION_3_CERT_ID;

Type

Identifies the type of ID that is returned and how the ID should be interpreted.

IdSize

Indicates the size of the Id buffer that follows this field in the structure.

Id (Not a formal structure member)

This is a unique identifier for the associated certificate as defined by the Type field. For CERT_ID_SHA256,
the buffer will be a SHA-256 digest of the tbsCertificate (To Be Signed Certificate data defined in x509)
data for the cert.

When the attribute EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS is set, the Data buffer shall
be interpreted as follows:

// NOTE: “||” indicates concatenation.

// Example: EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE

EFI_VARIABLE_AUTHENTICATION_3 || EFI_TIME || EFI_VARIABLE_AUTHENTICATION_3_CERT_ID ||
Data

// Example: EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE

EFI_VARIABLE_AUTHENTICATION_3 || EFI_VARIABLE_AUTHENTICATION_3_NONCE ||
EFI_VARIABLE_AUTHENTICATION_3_CERT_ID || Data

NOTE: The MetadataSize field of the EFI_VARIABLE_AUTHENTICATION_3 structure in each of these
examples does not include any WIN_CERTIFICATE_UEFI_GUID structures. These structures are used in
the SetVariable() interface, not GetVariable(), as described in the above examples.
UEFI Forum, Inc. March 2019 232

UEFI Specification, Version 2.8 Services — Runtime Services
Status Codes Returned

GetNextVariableName()

Summary

Enumerates the current variable names.

Prototype

typedef

EFI_STATUS

GetNextVariableName (

 IN OUT UINTN *VariableNameSize,

 IN OUT CHAR16 *VariableName,

 IN OUT EFI_GUID *VendorGuid
);

Parameters

VariableNameSize The size of the VariableName buffer. The size must be large
enough to fit input string supplied in VariableName buffer.

VariableName On input, supplies the last VariableName that was returned by
GetNextVariableName(). On output, returns the Null-
terminated string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the VendorGuid
of the current variable. Type EFI_GUID is defined in the

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has been
updated with the size needed to complete the request. If
Attributes is not NULL, then the attributes bitmask for the
variable has been stored to the memory location pointed-to by
Attributes.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

EFI_SECURITY_VIOLATION The variable could not be retrieved due to an authentication
failure.

EFI_UNSUPPORTED After ExitBootServices() has been called, this return code may be
returned if no variable storage is supported. The platform must
correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 233

UEFI Specification, Version 2.8 Services — Runtime Services
EFI_BOOT_SERVICES.InstallProtocolInterface()
function description.

Description

GetNextVariableName() is called multiple times to retrieve the VariableName and VendorGuid of all
variables currently available in the system. On each call to GetNextVariableName() the previous
results are passed into the interface, and on output the interface returns the next variable name data.
When the entire variable list has been returned, the error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small for the next
variable. When such an error occurs, the VariableNameSize is updated to reflect the size of buffer
needed. In all cases when calling GetNextVariableName() the VariableNameSize must not exceed the
actual buffer size that was allocated for VariableName. The VariableNameSize must not be smaller the size

of the variable name string passed to GetNextVariableName() on input in the VariableName buffer.

To start the search, a Null-terminated string is passed in VariableName; that is, VariableName is a pointer
to a Null character. This is always done on the initial call to GetNextVariableName(). When
VariableName is a pointer to a Null character, VendorGuid is ignored. GetNextVariableName()
cannot be used as a filter to return variable names with a specific GUID. Instead, the entire list of
variables must be retrieved, and the caller may act as a filter if it chooses. Calls to SetVariable()
between calls to GetNextVariableName() may produce unpredictable results. If a VariableName
buffer on input is not a Null-terminated string, EFI_INVALID_PARAMETER is returned. If input values of
VariableName and VendorGuid are not a name and GUID of an existing variable, EFI_INVALID_PARAMETER is
returned.

Once EFI_BOOT_SERVICES.ExitBootServices() is performed, variables that are only visible during
boot services will no longer be returned. To obtain the data contents or attribute for a variable returned
by GetNextVariableName(), the GetVariable() interface is used.
UEFI Forum, Inc. March 2019 234

UEFI Specification, Version 2.8 Services — Runtime Services
Status Codes Returned

SetVariable()

Summary

Sets the value of a variable.

Prototype

typedef

EFI_STATUS

SetVariable (

 IN CHAR16 *VariableName,

 IN EFI_GUID *VendorGuid,

 IN UINT32 Attributes,

 IN UINTN DataSize,

 IN VOID *Data
);

Parameters

VariableName A Null-terminated string that is the name of the vendor’s
variable. Each VariableName is unique for each VendorGuid.
VariableName must contain 1 or more characters. If
VariableName is an empty string, then
EFI_INVALID_PARAMETER is returned.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the EFI_BOOT_SERVICES.InstallProtocolInterface()
function description.

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
VariableNameSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER VariableNameSize is NULL.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name
and GUID of an existing variable.

EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of the
input VariableName buffer.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.

EFI_UNSUPPORTED After ExitBootServices() has been called, this return code may be
returned if no variable storage is supported. The platform must
correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 235

UEFI Specification, Version 2.8 Services — Runtime Services
Attributes Attributes bitmask to set for the variable. Refer to the
GetVariable() function description.

DataSize The size in bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS,
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS
attribute is set, a size of zero causes the variable to be deleted.
When the EFI_VARIABLE_APPEND_WRITE attribute is set, then
a SetVariable() call with a DataSize of zero will not cause
any change to the variable value (the timestamp associated
with the variable may be updated however, even if no new
data value is provided;see the description of the
EFI_VARIABLE_AUTHENTICATION_2 descriptor below). In this
case the DataSize will not be zero since the
EFI_VARIABLE_AUTHENTICATION_2 descriptor will be
populated).

Data The contents for the variable.

Related Definitions

//***

// Variable Attributes

//***

// NOTE: This interface is deprecated and should no longer be used!

//

// EFI_VARIABLE_AUTHENTICATION descriptor

//

// A counter-based authentication method descriptor template

//

typedef struct {

 UINT64 MonotonicCount;

 WIN_CERTIFICATE_UEFI_GUID AuthInfo;

} EFI_VARIABLE_AUTHENTICATION;

MonotonicCount

Included in the signature of AuthInfo. Used to ensure freshness/no replay.
Incremented during each "Write" access.

AuthInfo

Provides the authorization for the variable access. It is a signature across the variable
data and the Monotonic Count value. Caller uses Private key that is associated with a
public key that has been provisioned via the key exchange.
UEFI Forum, Inc. March 2019 236

UEFI Specification, Version 2.8 Services — Runtime Services
//

// EFI_VARIABLE_AUTHENTICATION_2 descriptor

//

// A time-based authentication method descriptor template

//

typedef struct {

 EFI_TIME TimeStamp;
 WIN_CERTIFICATE_UEFI_GUID AuthInfo;
 } EFI_VARIABLE_AUTHENTICATION_2;

TimeStamp

Time associated with the authentication descriptor. For the TimeStamp value,
components Pad1, Nanosecond, TimeZone, Daylight and Pad2 shall be set to 0.
This means that the time shall always be expressed in GMT.

AuthInfo

Provides the authorization for the variable access. Only a CertType of
EFI_CERT_TYPE_PKCS7_GUID is accepted.

//

// EFI_VARIABLE_AUTHENTICATION_3 descriptor

//

// An extensible implementation of the Variable Authentication

// structure.

//

#define EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE 1

#define EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE 2

typedef struct {

 UINT8 Version;

 UINT8 Type;

 UINT32 MetadataSize;

 UINT32 Flags;

} EFI_VARIABLE_AUTHENTICATION_3;

Version

This field is used in case the EFI_VARIABLE_AUTHENTICATION_3 structure itself ever requires
updating. For now, it is hardcoded to “0x1”.

Type

Declares what structure immediately follows this structure in the Variable Data payload. For
EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE, it will be an instance of EFI_TIME (for the
TimeStamp). For EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE the structure will be an instance
of EFI_VARIABLE_AUTHENTICATION_3_NONCE. This structure is defined below. Note that none of
these structures contains a WIN_CERTIFICATE_UEFI_GUID structure. See Section 8.2.1 for an
explanation of structure sequencing.
UEFI Forum, Inc. March 2019 237

UEFI Specification, Version 2.8 Services — Runtime Services
MetadataSize

Declares the size of all variable authentication metadata (data related to the authentication of the
variable that is not variable data itself), including this header structure, and type-specific structures (eg.
EFI_VARIABLE_AUTHENTICATION_3_NONCE), and any WIN_CERTIFICATE_UEFI_GUID structures.

Flags

Bitfield indicating any optional configuration for this call. Currently, the only defined value is:

#define EFI_VARIABLE_ENHANCED_AUTH_FLAG_UPDATE_CERT 0x00000001

The presence of this flag on SetVariable() indicates that there are two instances of the
WIN_CERTIFICATE_UEFI_GUID structure following the type-specific structures. The first instance
describes the new cert to be set as the authority for the variable. The second is the signed data to
authorize the current updated.

NOTE: All other bits are currently Reserved on SetVariable().

NOTE: All flags are reserved on GetVariable().

//

// EFI_VARIABLE_AUTHENTICATION_3_NONCE descriptor

//

// A nonce-based authentication method descriptor template. This

// structure will always be followed by a

// WIN_CERTIFICATE_UEFI_GUID structure.

//

typedef struct {

 UINT32 NonceSize;

 // UINT8 Nonce[NonceSize];

} EFI_VARIABLE_AUTHENTICATION_3_NONCE;

NonceSize

Indicates the size of the Nonce buffer that follows this field in the structure. Must not be 0.

Nonce (Not a formal structure member)

Unique, random value that guarantees a signed payload cannot be shared between multiple machines or
machine families. On SetVariable(), if the Nonce field is all 0’s, the host machine will try to use an
internally generated random number. Will return EFI_UNSUPPORTED if not possible. Also, on
SetVariable() if the variable already exists and the nonce is identical to the current nonce, will return
EFI_INVALID_PARAMETER.

Description

Variables are stored by the firmware and may maintain their values across power cycles. Each vendor
may create and manage its own variables without the risk of name conflicts by using a unique
VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value. If the
EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in normal memory
UEFI Forum, Inc. March 2019 238

UEFI Specification, Version 2.8 Services — Runtime Services
and it is not maintained across a power cycle. Such variables are used to pass information from one
component to another. An example of this is the firmware’s language code support variable. It is created
at firmware initialization time for access by EFI components that may need the information, but does not
need to be backed up to nonvolatile storage.

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited storage
capacity; sometimes a severely limited capacity. Software should only use a nonvolatile variable when
absolutely necessary. In addition, if software uses a nonvolatile variable it should use a variable that is
only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Unless the EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute is set (see below), using
SetVariable() with a DataSize of zero will cause the entire variable to be deleted. The space
consumed by the deleted variable may not be available until the next power cycle.

The Attributes have the following usage rules:

• If a preexisting variable is rewritten with different attributes, SetVariable()shall not modify
the variable and shall return EFI_INVALID_PARAMETER. The only exception to this is when
the only attribute differing is EFI_VARIABLE_APPEND_WRITE. In such cases the call's
successful outcome or not is determined by the actual value being written. There are two
exceptions to this rule:

— If a preexisting variable is rewritten with no access attributes specified, the variable will be
deleted.

— EFI_VARIABLE_APPEND_WRITE attribute presents a special case. It is acceptable to
rewrite the variable with or without EFI_VARIABLE_APPEND_WRITE attribute.

• Setting a data variable with no access attributes causes it to be deleted.

• EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is deprecated and should not be used.
Platforms should return EFI_UNSUPPORTED if a caller to SetVariable() specifies this
attribute.

• Unless the EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_WRITE_ACCESS attribute is set, setting a data
variable with zero DataSize specified, causes it to be deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have
EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is responsible for following this rule.

• Once EFI_BOOT_SERVICES.ExitBootServices() is performed, data variables that did
not have EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to GetVariable().

• Once ExitBootServices() is performed, only variables that have
EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be set with
SetVariable(). Variables that have runtime access but that are not nonvolatile are read-
only data variables once ExitBootServices() is performed.
When the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute is set in a
SetVariable() call, the authentication shall use the EFI_VARIABLE_AUTHENTICATION_3
descriptor, which will be followed by any descriptors indicated in the Type and Flags fields.
UEFI Forum, Inc. March 2019 239

UEFI Specification, Version 2.8 Services — Runtime Services
• When the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set
in a SetVariable() call, the authentication shall use the
EFI_VARIABLE_AUTHENTICATION_2 descriptor.

• If both the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS and the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute are set in a
SetVariable() call, then the firmware must return EFI_INVALID_PARAMETER.

• If the EFI_VARIABLE_APPEND_WRITE attribute is set in a SetVariable() call, then any
existing variable value shall be appended with the value of the Data parameter. If the
firmware does not support the append operation, then the SetVariable() call shall return
EFI_INVALID_PARAMETER.

• If the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set in a
SetVariable() call, and firmware does not support signature type of the certificate included
in the EFI_VARIABLE_AUTHENTICATION_2 descriptor, then the SetVariable() call shall
return EFI_INVALID_PARAMETER. The list of signature types supported by the firmware is
defined by the SignatureSupport variable. Signature type of the certificate is defined by its
digest and encryption algorithms.

• If the EFI_VARIABLE_HARDWARE_ERROR_RECORD attribute is set, VariableName and
VendorGuid must comply with the rules stated in Section 8.2.4.2 and Appendix P. Otherwise,
the SetVariable() call shall return EFI_INVALID_PARAMETER.

• Globally Defined Variables must be created with the attributes defined in Table 14 of the Boot
Manager chapter. If a globally defined variable is created with the wrong attributes, the result
is indeterminate and may vary between implementations.

• If using the EFI_VARIABLE_ENHANCED_AUTHETICATED_ACCESS interface to update the
cert authority for a given variable, it is valid for the Data region of the payload to be empty.
This would update the cert without modifying the data itself. If the Data region is empty AND
no NewCert is specified, the variable will be deleted (assuming all authorizations are verified).

• Secure Boot Policy Variable must be created with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set, and the
authentication shall use the EFI_VARIABLE_AUTHENTICATION_2 descriptor. If the
appropriate attribute bit is not set, then the firmware shall return EFI_INVALID_PARAMETER.

The only rules the firmware must implement when saving a nonvolatile variable is that it has actually
been saved to nonvolatile storage before returning EFI_SUCCESS, and that a partial save is not
performed. If power fails during a call to SetVariable() the variable may contain its previous value, or
its new value. In addition there is no read, write, or delete security protection.

To delete a variable created with the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS
attribute, SetVariable must be used with attributes matching the existing variable and the DataSize
set to the size of the AuthInfo descriptor. The Data buffer must contain an instance of the AuthInfo
descriptor which will be validated according to the steps in the appropriate section above referring to
updates of Authenticated variables. An attempt to delete a variable created with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute for which the prescribed
AuthInfo validation fails or when called using DataSize of zero will fail with an
EFI_SECURITY_VIOLATION status.
UEFI Forum, Inc. March 2019 240

UEFI Specification, Version 2.8 Services — Runtime Services
To delete a variable created with the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute,
SetVariable must be used with attributes matching the existing variable and the DataSize set to the
size of the entire payload including all descriptors and certificates. The Data buffer must contain an
instance of the EFI_VARIABLE_AUTHENTICATION_3 descriptor which will indicate how to validate the
payload according to the description in Section 8.2.1. An attempt to delete a variable created with the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute for which the prescribed validation
fails or when called using DataSize of zero will fail with an EFI_SECURITY_VIOLATION status.

Status Codes Returned

8.2.1 Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor

When the attribute EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS is set, the payload buffer
(passed into SetVariable() as “Data”) shall be constructed as follows:

// NOTE: “||” indicates concatenation.

// NOTE: “[]” indicates an optional element.

// Example: EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE

EFI_VARIABLE_AUTHENTICATION_3 || EFI_TIME || [NewCert] || SigningCert || Data

// Example: EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE

EFI_VARIABLE_AUTHENTICATION_3 || EFI_VARIABLE_AUTHENTICATION_3_NONCE || [NewCert] ||
SigningCert || Data

EFI_SUCCESS The firmware has successfully stored the variable and its data as defined
by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits, name, and GUID was supplied,
or the DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

EFI_WRITE_PROTECTED The variable in question is read-only.

EFI_WRITE_PROTECTED The variable in question cannot be deleted.

EFI_SECURITY_VIOLATION The variable could not be written due to
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACESS
being set, but the payload does NOT pass the validation check carried out
by the firmware.

EFI_NOT_FOUND The variable trying to be updated or deleted was not found.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 241

UEFI Specification, Version 2.8 Services — Runtime Services
In this example, NewCert and SigningCert are both instances of WIN_CERTIFICATE_UEFI_GUID. The
presence of NewCert is indicated by the EFI_VARIABLE_AUTHENTICATION_3.Flags field (see
Definition in SetVariable()). If provided – and assuming the payload passes all integrity and security
verifications – this cert will be set as the new authority for the underlying variable, even if the variable is
being newly created.

The NewCert element must have a CertType of EFI_CERT_TYPE_PKCS7_GUID and the CertData must
be a DER-encoded PKCS#7 version 1.5 SignedData structure. When creating the SignedData structure, the
following steps shall be followed:

1. Create a WIN_CERTIFICATE_UEFI_GUID structure where CertType is set to
EFI_CERT_TYPE_PKCS7_GUID.

2. Use the x509 cert being added as the new authority to sign its own tbsCertificate data.

3. Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) with the signed
content as follows:

a SignedData.version shall be set to 1.

b SignedData.digestAlgorithms shall contain the digest algorithm used when preparing the
signature. Only a digest algorithm of SHA-256 is accepted.

c SignedData.contentInfo.contentType shall be set to id-data.

d SignedData.contentInfo.content shall be the tbsCertificate data that was signed for the
new x509 cert.

e SignedData.certificates shall contain, at a minimum, the signer’s DER-encoded X.509
certificate.

f SignedData.crls is optional.

g SignedData.signerInfos shall be constructed as:

•SignerInfo.version shall be set to 1.

•SignerInfo.issuerAndSerial shall be present and as in the signer’s certificate.

•SignerInfo.authenticatedAttributes shall not be present.

•SignerInfo.digestEncryptionAlgorithm shall be set to the algorithm used to sign the
data. Only a digest encryption algorithm of RSA with PKCS #1 v1.5 padding
(RSASSA_PKCS1v1_5). is accepted.

•SignerInfo.encryptedDigest shall be present.

•SignerInfo.unauthenticatedAttributes shall not be present.

4. Set the CertData field to the DER-encoded PKCS#7 SignedData value.

A caller to SetVariable() attempting to create, update, or delete a variable with the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS set shall perform the following steps to create
the SignedData structure for SigningCert:

1. Create an EFI_VARIABLE_AUTHENTICATION_3 Primary Descriptor with the following values:

a Version shall be set appropriate to the version of metadata headers being used (currently
1).
UEFI Forum, Inc. March 2019 242

UEFI Specification, Version 2.8 Services — Runtime Services
b Type should be set based on caller specifications (see
EFI_VARIABLE_AUTHENTICATION_3 descriptor under SetVariable()).

c MetadataSize can be ignored for now, and will be updated when constructing the final
payload.

d Flags shall be set based on caller specifications.

2. A Secondary Descriptor may need to be created based on the Type.

a For EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE type, this will be an
instance of EFI_TIME set to the current time.

b For EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE type, this will be an instance of
EFI_VARIABLE_AUTHENTICATION_3_NONCE updated with NonceSize set based on
caller specifications (must not be zero), and Nonce (informal structure member) set to:

•All zeros to request that the platform create a random nonce.

•Caller specified value for a pre-generated nonce.

3. Hash a serialization of the payload. Serialization shall contain the following elements in this
order:

a VariableName, VendorGuid, Attributes, and the Secondary Descriptor if it exists for this
Type.

b Variable’s new value (ie. the Data parameter’s new variable content).

c If this is an update to or deletion of a variable with type
EFI_VARIABLE_AUTHENTICATION_3_NONCE, serialize the current nonce. The current
nonce is the one currently associated with this variable, not the one in the Secondary
Descriptor. Serialize only the nonce buffer contents, not the size or any additional data. If
this is an attempt to create a new variable (ie. there is no current nonce), skip this step.

d If the authority cert for this variable is being updated and the
EFI_VARIABLE_AUTHENTICATION_3.Flags field indicates the presence of a NewCert
structure, serialize the entire NewCert structure (described at the beginning of this
section).

4. Sign the resulting digest.

5. Create a WIN_CERTIFICATE_UEFI_GUID structure where CertType is set to
EFI_CERT_TYPE_PKCS7_GUID.

6. Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) following the steps
described for NewCert (step 3), above, with the following exception:

a SignedData.contentInfo.content shall be absent (the content is provided in the Data
parameter to the SetVariable() call)

7. Construct the final payload for SetVariable() according to the descriptions for “payload buffer”
at the beginning of this section.

8. Update the EFI_VARIABLE_AUTHENTICATION_3.MetadataSize field to include all parts
of the final payload except “Data”.

Firmware that implements the SetVariable() services and supports the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute shall do the following in response to
being called:
UEFI Forum, Inc. March 2019 243

UEFI Specification, Version 2.8 Services — Runtime Services
1. Read the EFI_VARIABLE_AUTHENTICATION_3 descriptor to determine what type of
authentication is being performed and how to parse the rest of the payload.

2. Verify that SigningCert.CertType is EFI_CERT_TYPE_PKCS7_GUID.

a If EFI_VARIABLE_AUTHENTICATION_3.Flags field indicates presence of a NewCert,
verify that NewCert.CertType is EFI_CERT_TYPE_PKCS7_GUID.

b If either fails, return EFI_INVALID_PARAMETER.

3. If the variable already exists, verify that the incoming type matches the existing type.

4. Verify that any EFI_TIME structures have Pad1, Nanosecond, TimeZone, Daylight, and Pad2
fields set to zero.

5. If EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE:

a Verify that NonceSize is greater than zero. If zero, return EFI_INVALID_PARAMETER.

b If incoming nonce is all zeros, confirm that platform supports generating random nonce. If
unsupported, return EFI_UNSUPPORTED.

c If nonce is specified and variable already exists, verify that incoming nonce does not match
existing nonce. If identical, return EFI_INVALID_PARAMETER.

6. If EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE and variable already exists,
verify that new timestamp is chronologically greater than current timestamp.

7. Verify the payload signature by:

a Parsing entire payload according to descriptors.

b Using descriptor contents (and, if necessary, metadata from existing variable) to construct
the serialization described previously in this section (step 3 of the SetVariable()
instructions).

c Compute the digest and compare with the result of applying the SigningCert’s public key to
the signature.

8. If the variable already exists, verify that the SigningCert authority is the same as the authority
already associated with the variable.

9. If NewCert is provided, verify the NewCert signature by:

a Parsing entire payload according to descriptors.

b Compute a digest of the tbsCertificate of x509 certificate in NewCert and compare with the
result of applying NewCert’s public key to the signature.

c If this fails, return EFI_SECURITY_VIOLATION.

8.2.2 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor

When the attribute EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS is set, then the
Data buffer shall begin with an instance of a complete (and serialized)

EFI_VARIABLE_AUTHENTICATION_2 descriptor. The descriptor shall be followed by the new variable
value and DataSize shall reflect the combined size of the descriptor and the new variable value. The
authentication descriptor is not part of the variable data and is not returned by subsequent calls to
GetVariable().
UEFI Forum, Inc. March 2019 244

UEFI Specification, Version 2.8 Services — Runtime Services
A caller that invokes the SetVariable() service with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set shall do the following
prior to invoking the service:

1. Create a descriptor

Create an EFI_VARIABLE_AUTHENTICATION_2 descriptor where:

•TimeStamp is set to the current time.

Note: In certain environments a reliable time source may not be available. In this case,
an implementation may still add values to an authenticated variable since the
EFI_VARIABLE_APPEND_WRITE attribute, when set, disables timestamp
verification (see below). In these instances, the special time value where every
component of the EFI_TIME struct including the Day and Month is set to 0 shall
be used.

•AuthInfo.CertType is set to EFI_CERT_TYPE_PKCS7_GUID.

2. Hash the serialization of the values of the VariableName, VendorGuid and Attributes
parameters of the SetVariable() call and the TimeStamp component of the
EFI_VARIABLE_AUTHENTICATION_2 descriptor followed by the variable’s new value (i.e.
the Data parameter’s new variable content). That is, digest = hash (VariableName, VendorGuid,
Attributes, TimeStamp, DataNew_variable_content). The NULL character terminating the
VariableName value shall not be included in the hash computation.

3. Sign the resulting digest using a selected signature scheme (e.g. PKCS #1 v1.5)

4. Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) with the signed
content as follows:

a SignedData.version shall be set to 1

b SignedData.digestAlgorithms shall contain the digest algorithm used when preparing the
signature. Only a digest algorithm of SHA-256 is accepted.

c SignedData.contentInfo.contentType shall be set to id-data

d SignedData.contentInfo.content shall be absent (the content is provided in the Data
parameter to the SetVariable() call)

e SignedData.certificates shall contain, at a minimum, the signer’s DER-encoded X.509
certificate

f SignedData.crls is optional.

g SignedData.signerInfos shall be constructed as:

— SignerInfo.version shall be set to 1

— SignerInfo.issuerAndSerial shall be present and as in the signer’s certificate —
SignerInfo.authenticatedAttributes shall not be present.

— SignerInfo.digestEncryptionAlgorithm shall be set to the algorithm used to sign the data.
Only a digest encryption algorithm of RSA with PKCS #1 v1.5 padding (RSASSA_PKCS1v1_5).
is accepted.

— SiginerInfo.encryptedDigest shall be present

— SignerInfo.unauthenticatedAttributes shall not be present.

5. Set AuthInfo.CertData to the DER-encoded PKCS #7 SignedData value.
UEFI Forum, Inc. March 2019 245

UEFI Specification, Version 2.8 Services — Runtime Services
6. Construct Data parameter: Construct the SetVariable()’s Data parameter by concatenating the
complete, serialized EFI_VARIABLE_AUTHENTICATION_2 descriptor with the new value of the
variable (DataNew_variable_content).

Firmware that implements the SetVariable() service and supports the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute shall do the following in
response to being called:

1. Verify that the correct AuthInfo.CertType (EFI_CERT_TYPE_PKCS7_GUID) has been used and
that the AuthInfo.CertData value parses correctly as a PKCS #7 SignedData value

2. Verify that Pad1, Nanosecond, TimeZone, Daylight and Pad2 components of the TimeStamp
value are set to zero. Unless the EFI_VARIABLE_APPEND_WRITE attribute is set, verify that the
TimeStamp value is later than the current timestamp value associated with the variable.

3. If the variable SetupMode==1, and the variable is a secure boot policy variable, then the
firmware implementation shall consider the checks in the following steps 4 and 5 to have
passed, and proceed with updating the variable value as outlined below.

4. Verify the signature by:

— extracting the EFI_VARIABLE_AUTHENTICATION_2 descriptor from the Data buffer;

— using the descriptor contents and other parameters to (a) construct the input to the
digest algorithm; (b) computing the digest; and (c) comparing the digest with the result of
applying the signer’s public key to the signature.

5. If the variable is the global PK variable or the global KEK variable, verify that the signature has
been made with the current Platform Key.

• If the variable is the “db”, “dbt”, “dbr”, or “dbx” variable mentioned in step 3, verify that
the signer’s certificate chains to a certificate in the Key Exchange Key database (or that the
signature was made with the current Platform Key).

• If the variable is the "OsRecoveryOrder" or "OsRecovery####" variable mentioned in step
3, verify that the signer's certificate chains to a certificate in the "dbr" database or the Key
Exchange Key database, or that the signature was made with the current Platform Key.

• Otherwise, if the variable is none of the above, it shall be designated a Private
Authenticated Variable. If the Private Authenticated Variable does not exist, then the CN of
the signing certificate's Subject and the hash of the tbsCertificate of the top-level issuer
certificate (or the signing certificate itself if no other certificates are present or the
certificate chain is of length 1) in SignedData.certificates is registered for use in subsequent
verifications of this variable. Implementations may store just a single hash of these two
elements to reduce storage requirements. If the Private Authenticated variable previously
existed, that the signer's certificate chains to the information previously associated with
the variable. Observe that because no revocation list exists for them, if any member of the
certificate chain is compromised, the only method to revoke trust in a certificate for a
Private Authenticated Variable is to delete the variable, re-issue all certificate authorities in
the chain, and re-create the variable using the new certificate chain. As such, the remaining
benefits may be strong identification of the originator, or compliance with some certificate
authority policy. Further note that the PKCS7 bundle for the authenticated variable update
must contain the signing certificate chain, through and including the full certificate of the
desired trust anchor. The trust anchor might be a mid-level certificate or root, though
many roots may be unsuitable trust anchors due to the number of CAs they issue for
UEFI Forum, Inc. March 2019 246

UEFI Specification, Version 2.8 Services — Runtime Services
different purposes. Some tools require non-default parameters to include the trust anchor
certificate.

The driver shall update the value of the variable only if all of these checks pass. If any of the checks fails,
firmware must return EFI_SECURITY_VIOLATION.

The firmware shall perform an append to an existing variable value only if the
EFI_VARIABLE_APPEND_WRITE attribute is set.

For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID (i.e. where the data buffer is
formatted as EFI_SIGNATURE_LIST), the driver shall not perform an append of
EFI_SIGNATURE_DATA values that are already part of the existing variable value.

Note: This situation is not considered an error, and shall in itself not cause a status code other than
EFI_SUCCESS to be returned or the timestamp associated with the variable not to be updated.

The firmware shall associate the new timestamp with the updated value (in the case when the
EFI_VARIABLE_APPEND_WRITE attribute is set, this only applies if the new TimeStamp value is later
than the current timestamp associated with the variable).

If the variable did not previously exist, and is not one of the variables listed in step 3 above, then
firmware shall associate the signer's public key with the variable for future verification purposes.

8.2.3 Using the EFI_VARIABLE_AUTHENTICATION descriptor

Note: This interface is deprecated and should no longer be used! It will be removed from future versions
of the spec.

When the attribute EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set, but the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS is not set (i.e. when the
EFI_VARIABLE_AUTHENTICATION descriptor is used), then the Data buffer shall begin with an
instance of the authentication descriptor AuthInfo prior to the data payload and DataSize should
reflect the data and descriptor size. The authentication descriptor is not part of the variable data and is
not returned by the subsequent calls to GetVariable. The caller shall digest the Monotonic Count value
and the associated data for the variable update using the SHA-256 1-way hash algorithm. The ensuing the
32-byte digest will be signed using the private key associated w/ the public 2048-bit RSA key PublicKey
described in the EFI_CERT_BLOCK_RSA_2048_SHA256 structure.

The WIN_CERTIFICATE shall be used to describe the signature of the Variable data *Data. In addition,
the signature will also include the MonotonicCount value to guard against replay attacks. The
MonotonicCount value must be increased by the caller prior to an update of the *Data when the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set.

From the EFI_CERT_BLOCK_RSA_2048_SHA256, the HashType will be EFI_SHA256_HASH and the
ANYSIZE_ARRAY of Signature will be 256.The WIN_CERTIFICATE_PKCS1_15 could have been used
but was not for the following reason: There are possibly various different principals to create
authenticated variables, so the public key corresponding to a given principal is added to the
EFI_CERT_BLOCK_RSA_2048_SHA256 within the WIN_CERTIFICATE. This does not lend
cryptographic value so much as it provides something akin to a handle for the platform firmware to use
during its verification operation.
UEFI Forum, Inc. March 2019 247

UEFI Specification, Version 2.8 Services — Runtime Services
The MonotonicCount value must be strictly greater for each successive variable update operation. This
allows for ensuring freshness of the update operation and defense against replay attacks (i.e., if someone
had the value of a former AuthInfo, such as a Man-in-the-Middle they could not re-invoke that same
update session). For maintenance, the party who initially provisioned the variable (i.e., caller of
SetVariable) and set the monotonic count will have to pass the credential (key-pair and monotonic count)
to any party who is delegated to make successive updates to the variable with the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. This 3-tuple of {public key, private key,
monotonic count} becomes part of the management metadata for these access-controlled items.

The responsibility of the caller that invokes the SetVariable() service with the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute will do the following prior to invoking the
service:

• Update the Monotonic Count value.

• Hash the variable contents (Data, Size, Monotonic count) using the HashType in the
AuthInfo structure.

• Sign the resultant hash of above step using a caller private key and create the digital signature
Signature. Ensure that the public key associated with signing private key is in the AuthInfo
structure.

• Invoke SetVariables with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute set.

The responsibility of the firmware that implements the SetVariable() service and supports the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute will do the following in response to being
called:

• The first time it uses SetVariable with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS
attribute set. Use the public key in the AuthInfo structure for subsequent verification.

• Hash the variable contents (Data, Size, Monotonic count) using the HashType in the
AuthInfo structure.

• Compare the public key in the AuthInfo structure with the public key passed in on the first
invocation.

• Verify the digital signature Signature of the signed hash using the stored public key
associated with the variable.

• Compare the verification of the signature with the instance generated by the caller

• If comparison fails, return EFI_SECURITY_VIOLATION.

• Compare the new monotonic count and ensure that it is greater than the last SetVariable
operation with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute set.

• If new monotonic count is not strictly greater, then return EFI_SECURITY_VIOLATION.

NOTE: Special processing by SetVariable() for Secure Boot Mode variables and the Platform Key is defined
in Section 32.3.

QueryVariableInfo()

Summary

Returns information about the EFI variables.
UEFI Forum, Inc. March 2019 248

UEFI Specification, Version 2.8 Services — Runtime Services
Prototype

typedef

EFI_STATUS

QueryVariableInfo (

 IN UINT32 Attributes,

 OUT UINT64 *MaximumVariableStorageSize,

 OUT UINT64 *RemainingVariableStorageSize,

 OUT UINT64 *MaximumVariableSize

);

Attributes Attributes bitmask to specify the type of variables on which to
return information. Refer to the GetVariable() function
description. The EFI_VARIABLE_APPEND_WRITE attribute, if
set in the attributes bitmask, will be ignored.

MaximumVariableStorageSize
On output the maximum size of the storage space available
for the EFI variables associated with the attributes specified.

RemainingVariableStorageSize
Returns the remaining size of the storage space available for
EFI variables associated with the attributes specified.

MaximumVariableSize
Returns the maximum size of an individual EFI variable
associated with the attributes specified.

Description

The QueryVariableInfo() function allows a caller to obtain the information about the maximum size
of the storage space available for the EFI variables, the remaining size of the storage space available for
the EFI variables and the maximum size of each individual EFI variable, associated with the attributes
specified.

The MaximumVariableSize value will reflect the overhead associated with the saving of a single EFI
variable with the exception of the overhead associated with the length of the string name of the EFI
variable.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize
information may change immediately after the call based on other runtime activities including
asynchronous error events. Also, these values associated with different attributes are not additive in
nature.

After the system has transitioned into runtime (after ExitBootServices() is called), an
implementation may not be able to accurately return information about the Boot Services variable store.
In such cases, EFI_INVALID_PARAMETER should be returned.
UEFI Forum, Inc. March 2019 249

UEFI Specification, Version 2.8 Services — Runtime Services
Status Codes Returned

8.2.4 Hardware Error Record Persistence

This section defines how Hardware Error Record Persistence is to be implemented. By implementing
support for Hardware Error Record Persistence, the platform enables the OS to utilize the EFI Variable
Services to save hardware error records so they are persistent and remain available across OS sessions
until they are explicitly cleared or overwritten by their creator.

8.2.4.1 Hardware Error Record Non-Volatile Store

 A platform which implements support hardware error record persistence is required to guarantee some
amount of NVR is available to the OS for saving hardware error records. The platform communicates the
amount of space allocated for error records via the QueryVariableInfo routine as described in
Appendix P.

8.2.4.2 Hardware Error Record Variables

This section defines a set of Hardware Error Record variables that have architecturally defined meanings.
In addition to the defined data content, each such variable has an architecturally defined attribute that
indicates when the data variable may be accessed. The variables with an attribute of HR are stored in the
portion of NVR allocated for error records. NV, BS and RT have the meanings defined in section 3.2. All
hardware error record variables use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid:

#define EFI_HARDWARE_ERROR_VARIABLE\
{0x414E6BDD,0xE47B,0x47cc,{0xB2,0x44,0xBB,0x61,0x02,0x0C,0xF5,0x16}}

Table 38. Hardware Error Record Persistence Variables

The HwErrRec#### variable contains a hardware error record. Each HwErrRec#### variable is the name
"HwErrRec" appended with a unique 4-digit hexadecimal number. For example, HwErrRec0001,
HwErrRec0002, HwErrRecF31A, etc. The HR attribute indicates that this variable is to be stored in the
portion of NVR allocated for error records.

EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied

EFI_UNSUPPORTED The attribute is not supported on this platform, and the
MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize are undefined.

Variable Name Attribute Description

HwErrRec#### NV, BS, RT, HR A hardware error record. #### is a printed hex value. No 0x or
h is included in the hex value
UEFI Forum, Inc. March 2019 250

UEFI Specification, Version 2.8 Services — Runtime Services
8.2.4.3 Common Platform Error Record Format

Error record variables persisted using this interface are encoded in the Common Platform Error Record
format, which is described in appendix N of the UEFI Specification. Because error records persisted using
this interface conform to this standardized format, the error information may be used by entities other
than the OS.

8.3 Time Services

This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction for
hardware time devices, thereby relieving the need to access legacy hardware devices directly. There is
also a stalling function for use in the preboot environment. Table 39 lists the time services functions
described in this section:

Table 39. Time Services Functions

GetTime()

Summary

Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype

typedef

EFI_STATUS

GetTime (

 OUT EFI_TIME *Time,

 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL

);

Parameters

Time A pointer to storage to receive a snapshot of the current time.
Type EFI_TIME is defined in “Related Definitions.”

Capabilities An optional pointer to a buffer to receive the real time clock
device’s capabilities. Type EFI_TIME_CAPABILITIES is
defined in “Related Definitions.”

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.
UEFI Forum, Inc. March 2019 251

UEFI Specification, Version 2.8 Services — Runtime Services
Related Definitions

//***

//EFI_TIME

//***

// This represents the current time information

typedef struct {

 UINT16 Year; // 1900 – 9999

 UINT8 Month; // 1 – 12

 UINT8 Day; // 1 – 31

 UINT8 Hour; // 0 – 23

 UINT8 Minute; // 0 – 59

 UINT8 Second; // 0 – 59

 UINT8 Pad1;

 UINT32 Nanosecond; // 0 – 999,999,999

 INT16 TimeZone; // -1440 to 1440 or 2047

 UINT8 Daylight;

 UINT8 Pad2;

} EFI_TIME;

//***

// Bit Definitions for EFI_TIME.Daylight. See below.

//***

#define EFI_TIME_ADJUST_DAYLIGHT 0x01

#define EFI_TIME_IN_DAYLIGHT 0x02

//***

// Value Definition for EFI_TIME.TimeZone. See below.

//***

#define EFI_UNSPECIFIED_TIMEZONE 0x07FF

Year, Month, Day The current local date.
Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current
fraction of a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock device
maintains the date and time.

TimeZone The time's offset in minutes from UTC. If the value is
EFI_UNSPECIFIED_TIMEZONE, then the time is interpreted as a
local time. The TimeZone is the number of minutes that the
local time is relative to UTC. To calculate the TimeZone value,
follow this equation: Localtime = UTC - TimeZone.


To further illustrate this, an example is given below:


UEFI Forum, Inc. March 2019 252

UEFI Specification, Version 2.8 Services — Runtime Services
PST (Pacific Standard Time is 12PM) = UTC (8PM) - 8 hours
(480 minutes)

In this case, the value for Timezone would be 480 if
referencing PST.

Daylight A bitmask containing the daylight savings time information for
the time.
The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time is
affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the
EFI_TIME enters daylight savings time.
If EFI_TIME_IN_DAYLIGHT is set, the time has been adjusted
for daylight savings time.
All other bits must be zero.
When entering daylight saving time, if the time is affected, but
hasn't been adjusted (DST = 1), use the new calculation:
1. The date/time should be increased by the appropriate
amount.
2. The TimeZone should be decreased by the appropriate
amount (EX: +480 changes to +420 when moving from PST to
PDT).
3. The Daylight value changes to 3.

When exiting daylight saving time, if the time is affected and
has been adjusted (DST = 3), use the new calculation:.
1. The date/time should be decreased by the appropriate
amount.
2. The TimeZone should be increased by the appropriate
amount.
3. The Daylight value changes to 1.

//***

// EFI_TIME_CAPABILITIES

//***

// This provides the capabilities of the

// real time clock device as exposed through the EFI interfaces.

typedef struct {

 UINT32 Resolution;

 UINT32 Accuracy;

 BOOLEAN SetsToZero;

} EFI_TIME_CAPABILITIES;
UEFI Forum, Inc. March 2019 253

UEFI Specification, Version 2.8 Services — Runtime Services
Resolution Provides the reporting resolution of the real-time clock device
in counts per second. For a normal PC-AT CMOS RTC device,
this value would be 1 Hz, or 1, to indicate that the device only
reports the time to the resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an
error rate of 1E-6 parts per million. For a clock with an
accuracy of 50 parts per million, the value in this field would
be 50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s
time below the Resolution reporting level. A FALSE indicates
that the state below the Resolution level of the device is not
cleared when the time is set. Normal PC-AT CMOS RTC
devices set this value to FALSE.

Description

The GetTime() function returns a time that was valid sometime during the call to the function. While
the returned EFI_TIME structure contains TimeZone and Daylight savings time information, the actual
clock does not maintain these values. The current time zone and daylight saving time information
returned by GetTime() are the values that were last set via SetTime().

The GetTime() function should take approximately the same amount of time to read the time each time
it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to
the device before calling GetTime().

Status Codes Returned

SetTime()

Summary

Sets the current local time and date information.

Prototype

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 254

UEFI Specification, Version 2.8 Services — Runtime Services
typedef

EFI_STATUS

SetTime (

 IN EFI_TIME *Time
);

Parameters

Time A pointer to the current time. Type EFI_TIME is defined in the
GetTime() function description. Full error checking is
performed on the different fields of the EFI_TIME structure
(refer to the EFI_TIME definition in the GetTime() function
description for full details), and EFI_INVALID_PARAMETER is
returned if any field is out of range.

Description

The SetTime() function sets the real time clock device to the supplied time, and records the current
time zone and daylight savings time information. The SetTime() function is not allowed to loop based
on the current time. For example, if the device does not support a hardware reset for the sub-resolution
time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to
the device before calling SetTime().

Status Codes Returned

GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 255

UEFI Specification, Version 2.8 Services — Runtime Services
Prototype

typedef

EFI_STATUS

GetWakeupTime (

 OUT BOOLEAN *Enabled,

 OUT BOOLEAN *Pending,

 OUT EFI_TIME *Time
);

Parameters

Enabled Indicates if the alarm is currently enabled or disabled.
Pending Indicates if the alarm signal is pending and requires

acknowledgement.
Time The current alarm setting. Type EFI_TIME is defined in the

GetTime() function description.

Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of the
alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to
the device before calling GetWakeupTime().

Status Codes Returned

SetWakeupTime()

Summary

Sets the system wakeup alarm clock time.

Prototype

typedef

EFI_STATUS

SetWakeupTime (

 IN BOOLEAN Enable,

 IN EFI_TIME *Time OPTIONAL

EFI_SUCCESS The alarm settings were returned.

EFI_INVALID_PARAMETER Enabled is NULL.

EFI_INVALID_PARAMETER Pending is NULL.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 256

UEFI Specification, Version 2.8 Services — Runtime Services
);

Parameters

Enable Enable or disable the wakeup alarm.
Time If Enable is TRUE, the time to set the wakeup alarm for. Type

EFI_TIME is defined in the GetTime() function description. If
Enable is FALSE, then this parameter is optional, and may be
NULL.

Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until it is acknowledged by calling SetWakeupTime() to disable
the alarm. If the alarm fires before the system is put into a sleeping or off state, since the alarm signal is
latched the system will immediately wake up. If the alarm fires while the system is off and there is
insufficient power to power on the system, the system is powered on when power is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm for the
desired wakeup time. The operating system still controls the wakeup event as it normally would through
the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to
the device before calling SetWakeupTime().

Status Codes Returned

8.4 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally used by
an operating system at runtime. If an operating system chooses to make EFI runtime service calls in a
virtual addressing mode instead of the flat physical mode, then the operating system must use the
services in this section to switch the EFI runtime services from flat physical addressing to virtual
addressing. Table 40 lists the virtual memory service functions described in this section. The system
firmware must follow the processor-specific rules outlined in Section 2.3.2 through Section 2.3.6 in the
layout of the EFI memory map to enable the OS to make the required virtual mappings.

EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If Enable is
FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 257

UEFI Specification, Version 2.8 Services — Runtime Services
Table 40. Virtual Memory Functions

SetVirtualAddressMap()

Summary

Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

typedef

EFI_STATUS

SetVirtualAddressMap (

 IN UINTN MemoryMapSize,

 IN UINTN DescriptorSize,

 IN UINT32 DescriptorVersion,

 IN EFI_MEMORY_DESCRIPTOR *VirtualMap
);

Parameters

MemoryMapSize The size in bytes of VirtualMap.
DescriptorSize The size in bytes of an entry in the VirtualMap.
DescriptorVersion The version of the structure entries in VirtualMap.
VirtualMap An array of memory descriptors which contain new virtual

address mapping information for all runtime ranges. Type
EFI_MEMORY_DESCRIPTOR is defined in the
EFI_BOOT_SERVICES.GetMemoryMap() function description.

Description

The SetVirtualAddressMap() function is used by the OS loader. The function can only be called at
runtime, and is called by the owner of the system’s memory map: i.e., the component which called
EFI_BOOT_SERVICES.ExitBootServices(). All events of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE must be signaled before SetVirtualAddressMap()
returns.

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual address for
every entry in the memory map at ExitBootServices() that is marked as being needed for runtime
usage. All of the virtual address fields in the VirtualMap must be aligned on 4 KiB boundaries.

The call to SetVirtualAddressMap() must be done with the physical mappings. On successful return
from this function, the system must then make any future calls with the newly assigned virtual mappings.

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when switching to
virtual addressing.
UEFI Forum, Inc. March 2019 258

UEFI Specification, Version 2.8 Services — Runtime Services
All address space mappings must be done in accordance to the cacheability flags as specified in the
original address map.

When this function is called, all events that were registered to be signaled on an address map change are
notified. Each component that is notified must update any internal pointers for their new addresses. This
can be done with the ConvertPointer() function. Once all events have been notified, the EFI
firmware reapplies image “fix-up” information to virtually relocate all runtime images to their new
addresses. In addition, all of the fields of the EFI Runtime Services Table except SetVirtualAddressMap
and ConvertPointer must be converted from physical pointers to virtual pointers using the
ConvertPointer() service. The SetVirtualAddressMap() and ConvertPointer() services are
only callable in physical mode, so they do not need to be converted from physical pointers to virtual
pointers. Several fields of the EFI System Table must be converted from physical pointers to virtual
pointers using the ConvertPointer() service. These fields include FirmwareVendor, RuntimeServices,
and ConfigurationTable. Because contents of both the EFI Runtime Services Table and the EFI System
Table are modified by this service, the 32-bit CRC for the EFI Runtime Services Table and the EFI System
Table must be recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode, calls to
this function return EFI_UNSUPPORTED.

Status Codes Returned

ConvertPointer()

Summary

Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

typedef

EFI_STATUS

ConvertPointer (

 IN UINTN DebugDisposition,

 IN VOID **Address
);

EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in virtual
address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory map
that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found in the
memory map.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 259

UEFI Specification, Version 2.8 Services — Runtime Services
Parameters

DebugDisposition Supplies type information for the pointer being converted.
See “Related Definitions.”

Address A pointer to a pointer that is to be fixed to be the value
needed for the new virtual address mappings being applied.

Related Definitions

//***

// EFI_OPTIONAL_PTR

//***

#define EFI_OPTIONAL_PTR 0x00000001

Description

The ConvertPointer() function is used by an EFI component during the SetVirtualAddressMap()
operation. ConvertPointer()must be called using physical address pointers during the execution of
SetVirtualAddressMap().

The ConvertPointer() function updates the current pointer pointed to by Address to be the proper
value for the new address map. Only runtime components need to perform this operation. The
EFI_BOOT_SERVICES.CreateEvent() function is used to create an event that is to be notified when
the address map is changing. All pointers the component has allocated or assigned must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.

Status Codes Returned

8.5 Miscellaneous Runtime Services

This section contains the remaining function definitions for runtime services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 41 lists the Miscellaneous
Runtime Services.

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part of the

current memory map. This is normally fatal.

EFI_INVALID_PARAMETER Address is NULL.

EFI_INVALID_PARAMETER *Address is NULL and DebugDisposition does not have the

EFI_OPTIONAL_PTR bit set.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 260

UEFI Specification, Version 2.8 Services — Runtime Services
Table 41. Miscellaneous Runtime Services

8.5.1 Reset System

This section describes the reset system runtime service and its associated data structures.

ResetSystem()

Summary

Resets the entire platform. If the platform supports EFI_RESET_NOTIFICATION_PROTOCOL, then prior
to completing the reset of the platform, all of the pending notifications must be called.

Prototype

typedef

VOID

(EFIAPI *EFI_RESET_SYSTEM) (

IN EFI_RESET_TYPE ResetType,

IN EFI_STATUS ResetStatus,

IN UINTN DataSize,

IN VOID *ResetData OPTIONAL
);

Parameters

ResetType The type of reset to perform. Type EFI_RESET_TYPE is
defined in “Related Definitions” below.

ResetStatus The status code for the reset. If the system reset is part of a
normal operation, the status code would be EFI_SUCCESS. If
the system reset is due to some type of failure the most
appropriate EFI Status code would be used.

DataSize The size, in bytes, of ResetData.
ResetData For a ResetType of EfiResetCold, EfiResetWarm, or

EfiResetShutdown the data buffer starts with a Null-
terminated string, optionally followed by additional binary
data. The string is a description that the caller may use to
further indicate the reason for the system reset. For a
ResetType of EfiResetPlatformSpecific the data buffer
also starts with a Null-terminated string that is followed by an
EFI_GUID that describes the specific type of reset to perform.

Name Type Description

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic counter.

ResetSystem Runtime Resets the entire platform.

UpdateCapsule Runtime Pass capsules to the firmware. The firmware may process the capsules

immediately or return a value to be passed into ResetSystem()

that will cause the capsule to be processed by the firmware as part of
the reset process.

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via UpdateCapsule()
UEFI Forum, Inc. March 2019 261

UEFI Specification, Version 2.8 Services — Runtime Services
Related Definitions

//***

// EFI_RESET_TYPE

//***

typedef enum {

 EfiResetCold,

 EfiResetWarm,

 EfiResetShutdown

 EfiResetPlatformSpecific

} EFI_RESET_TYPE;

Description

The ResetSystem()function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets all circuitry
within the system to its initial state. This type of reset is asynchronous to system operation and operates
without regard to cycle boundaries. EfiResetCold is tantamount to a system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization. The
processors are set to their initial state, and pending cycles are not corrupted. If the system does not
support this reset type, then an EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a power state
equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset type, then when the
system is rebooted, it should exhibit the EfiResetCold attributes.

Calling this interface with ResetType of EfiResetPlatformSpecific causes a system-wide reset.
The exact type of the reset is defined by the EFI_GUID that follows the Null-terminated Unicode string
passed into ResetData. If the platform does not recognize the EFI_GUID in ResetData the platform
must pick a supported reset type to perform.The platform may optionally log the parameters from any
non-normal reset that occurs.

The ResetSystem() function does not return.

8.5.2 Get Next High Monotonic Count

This section describes the GetNextHighMonotonicCount runtime service and its associated data
structures.

GetNextHighMonotonicCount()

Summary

Returns the next high 32 bits of the platform’s monotonic counter.
UEFI Forum, Inc. March 2019 262

UEFI Specification, Version 2.8 Services — Runtime Services
Prototype

typedef

EFI_STATUS

GetNextHighMonotonicCount (

 OUT UINT32 *HighCount
);

Parameters

HighCount Pointer to returned value.

Description

The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the low 32
bits. During boot service time the low 32-bit value is volatile: it is reset to zero on every system reset and
is increased by 1 on every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile and
is increased by 1 whenever the system resets, whenever GetNextHighMonotonicCount() is called, or
whenever the low 32-bit count (returned by GetNextMonoticCount()) overflows.

The EFI_BOOT_SERVICES.GetNextMonotonicCount() function is only available at boot services
time. If the operating system wishes to extend the platform monotonic counter to runtime, it may do so
by utilizing GetNextHighMonotonicCount(). To do this, before calling
EFI_BOOT_SERVICES.ExitBootServices() the operating system would call
GetNextMonotonicCount() to obtain the current platform monotonic count. The operating system
would then provide an interface that returns the next count by:

• Adding 1 to the last count.

• Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount(). This
will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count by 1.

This function may only be called at Runtime.

Status Codes Returned

8.5.3 Update Capsule

This runtime function allows a caller to pass information to the firmware. Update Capsule is commonly
used to update the firmware FLASH or for an operating system to have information persist across a
system reset.

EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER HighCount is NULL.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 263

UEFI Specification, Version 2.8 Services — Runtime Services
UpdateCapsule()

Summary

Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended
consumption, the firmware may process the capsule immediately. If the payload should persist across a
system reset, the reset value returned from EFI_QueryCapsuleCapabilities must be passed into
ResetSystem() and will cause the capsule to be processed by the firmware as part of the reset process.

Prototype

typedef

EFI_STATUS

UpdateCapsule (

 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,

 IN UINTN CapsuleCount,

 IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
);

Parameters

CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules
being passed into update capsule. Each capsules is assumed
to stored in contiguous virtual memory. The capsules in the
CapsuleHeaderArray must be the same capsules as the
ScatterGatherList. The CapsuleHeaderArray must have the
capsules in the same order as the ScatterGatherList.

CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in
CapsuleHeaderArray.

ScatterGatherList Physical pointer to a set of EFI_CAPSULE_BLOCK_DESCRIPTOR
that describes the location in physical memory of a set of
capsules. See "Related Definitions" for an explanation of how
more than one capsule is passed via this interface. The
capsules in the ScatterGatherList must be in the same order
as the CapsuleHeaderArray. This parameter is only referenced
if the capsules are defined to persist across system reset.

Related Definitions

typedef struct {

 UINT64 Length;

 union {

 EFI_PHYSICAL_ADDRESS DataBlock;

 EFI_PHYSICAL_ADDRESS ContinuationPointer;

 }Union;

} EFI_CAPSULE_BLOCK_DESCRIPTOR;

Length Length in bytes of the data pointed to by DataBlock/
ContinuationPointer.

DataBlock Physical address of the data block. This member of the union
is used if Length is not equal to zero.
UEFI Forum, Inc. March 2019 264

UEFI Specification, Version 2.8 Services — Runtime Services
ContinuationPointer Physical address of another block of
EFI_CAPSULE_BLOCK_DESCRIPTOR structures. This member of
the union is used if Length is equal to zero. If
ContinuationPointer is zero this entry represents the end of
the list.

This data structure defines the ScatterGatherList list the OS passes to the firmware.
ScatterGatherList represents an array of structures and is terminated with a structure member
whose Length is 0 and DataBlock physical address is 0. If Length is 0 and DataBlock physical
address is not 0, the specified physical address is known as a “continuation pointer” and it points to a
further list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures. A continuation pointer is used to allow
the scatter gather list to be contained in physical memory that is not contiguous. It also is used to allow
more than a single capsule to be passed at one time.

typedef struct {

 EFI_GUID CapsuleGuid;

 UINT32 HeaderSize;

 UINT32 Flags;

 UINT32 CapsuleImageSize;

} EFI_CAPSULE_HEADER;

CapsuleGuid A GUID that defines the contents of a capsule.
HeaderSize The size of the capsule header. This may be larger than the

size of the EFI_CAPSULE_HEADER since CapsuleGuid may
imply extended header entries.

Flags Bit-mapped list describing the capsule attributes. The Flag
values of 0x0000 – 0xFFFF are defined by CapsuleGuid. Flag
values of 0x10000 – 0xFFFFFFFF are defined by this
specification

CapsuleImageSize Size in bytes of the capsule (including capsule header).

#define CAPSULE_FLAGS_PERSIST_ACROSS_RESET 0x00010000

#define CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE 0x00020000

#define CAPSULE_FLAGS_INITIATE_RESET 0x00040000

Note: A capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag must have
CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that encounters
a capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag set in its header will initiate a
reset of the platform which is compatible with the passed-in capsule request and will not return
back to the caller.

typedef struct {

 UINT32 CapsuleArrayNumber;

 VOID* CapsulePtr[1];

} EFI_CAPSULE_TABLE;

CapsuleArrayNumber The number of entries in the array of capsules.
UEFI Forum, Inc. March 2019 265

UEFI Specification, Version 2.8 Services — Runtime Services
CapsulePtr A pointer to an array of capsules that contain the same
CapsuleGuid value. Each CapsulePtr points to an instance
of an EFI_CAPSULE_HEADER, with the capsule data
concatenated on its end.

Description

The UpdateCapsule()function allows the operating system to pass information to firmware. The
UpdateCapsule() function supports passing capsules in operating system virtual memory back to
firmware. Each capsule is contained in a contiguous virtual memory range in the operating system, but
both a virtual and physical mapping for the capsules are passed to the firmware.

If a capsule has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET Flag set in its header, the firmware will
process the capsules after system reset. The caller must ensure to reset the system using the required
reset value obtained from QueryCapsuleCapabilities. If this flag is not set, the firmware will process the
capsules immediately.

A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag must have
CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that processes a
capsule that has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag set in its header will coalesce
the contents of the capsule from the ScatterGatherList into a contiguous buffer and must then place a
pointer to this coalesced capsule in the EFI System Table after the system has been reset. Agents
searching for this capsule will look in the EFI_CONFIGURATION_TABLE and search for the capsule’s
GUID and associated pointer to retrieve the data after the reset.

Table 42. Flag Firmware Behavior

Flags Firmware Behavior

No Specification defined flags Firmware attempts to immediately processes or launch
the capsule. If capsule is not recognized, can expect an
error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET Firmware will attempt to process or launch the capsule
across a reset. If capsule is not recognized, can expect an
error. If the processing requires a reset which is
unsupported by the platform, expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

Firmware will coalesce the capsule from the
ScatterGatherList into a contiguous buffer and place a
pointer to the coalesced capsule in the EFI System Table.
Platform recognition of the capsule type is not required. If
the action requires a reset which is unsupported by the
platform, expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_INITIATE_RESET

Firmware will attempt to process or launch the capsule
across a reset. The firmware will initiate a reset which is
compatible with the passed-in capsule request and will
not return back to the caller. If the capsule is not
recognized, can expect an error. If the processing requires
a reset which is unsupported by the platform, expect an
error.
UEFI Forum, Inc. March 2019 266

UEFI Specification, Version 2.8 Services — Runtime Services
The EFI System Table entry must use the GUID from the CapsuleGuid field of the
EFI_CAPSULE_HEADER. The EFI System Table entry must point to an array of capsules that contain the
same CapsuleGuid value. The array must be prefixed by a UINT32 that represents the size of the array
of capsules.

The set of capsules is pointed to by ScatterGatherList and CapsuleHeaderArray so the
firmware will know both the physical and virtual addresses of the operating system allocated buffers. The
scatter-gather list supports the situation where the virtual address range of a capsule is contiguous, but
the physical addresses are not.

If any of the capsules that are passed into this function encounter an error, the entire set of capsules will
not be processed and the error encountered will be returned to the caller.

Status Codes Returned

8.5.3.1 Capsule Definition

A capsule is simply a contiguous set of data that starts with an EFI_CAPSULE_HEADER. The CapsuleGuid
field in the header defines the format of the capsule.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_INITIATE_RESET +
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

The firmware will initiate a reset which is compatible with
the passed-in capsule request and not return back to the
caller. Upon resetting, the firmware will coalesce the
capsule from the ScatterGatherList into a contiguous
buffer and place a pointer to the coalesced capsule in the
EFI System Table. Platform recognition of the capsule type
is not required. If the action requires a reset which is
unsupported by the platform, expect an error.

EFI_SUCCESS Valid capsule was passed. If
CAPSULE_FLAGS_PERSIST_ACROSS_RESET is not set, the capsule has
been successfully processed by the firmware.

EFI_INVALID_PARAMETER CapsuleSize , or an incompatible set of flags were set in the
capsule header.

EFI_INVALID_PARAMETER CapsuleCount is 0

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.

EFI_UNSUPPORTED The capsule type is not supported on this platform.

EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error
indicates the capsule is compatible with this platform but is not
capable of being submitted or processed in runtime. The caller may
resubmit the capsule prior to ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices()has not been previously called then
this error indicates the capsule is compatible with this platform but
there are insufficient resources to process.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.

Flags Firmware Behavior
UEFI Forum, Inc. March 2019 267

UEFI Specification, Version 2.8 Services — Runtime Services
The capsule contents are designed to be communicated from an OS-present environment to the system
firmware. To allow capsules to persist across system reset, a level of indirection is required for the
description of a capsule, since the OS primarily uses virtual memory and the firmware at boot time uses
physical memory. This level of abstraction is accomplished via the EFI_CAPSULE_BLOCK_DESCRIPTOR.
The EFI_CAPSULE_BLOCK_DESCRIPTOR allows the OS to allocate contiguous virtual address space and
describe this address space to the firmware as a discontinuous set of physical address ranges. The
firmware is passed both physical and virtual addresses and pointers to describe the capsule so the
firmware can process the capsule immediately or defer processing of the capsule until after a system
reset.

In most instruction sets and OS architecture, allocation of physical memory is possible only on a “page”
granularity (which can range for 4 KiB to at least 1 MiB). The EFI_CAPSULE_BLOCK_DESCRIPTOR must
have the following properties to ensure the safe and well defined transition of the data:

• Each new capsule must start on a new page of memory.

• All pages except for the last must be completely filled by the capsule.

— It is legal to pad the header to make it consume an entire page of data to enable the
passing of page aligned data structures via a capsule. The last page must have at least one
byte of capsule in it.

• Pages must be naturally aligned

• Pages may not overlap on another

• Firmware may never make an assumption about the page sizes the operating system is using.

Multiple capsules can be concatenated together and passed via a single call to UpdateCapsule().The
physical address description of capsules are concatenated by converting the terminating

EFI_CAPSULE_BLOCK_DESCRIPTOR entry of the 1st capsule into a continuation pointer by making it point

to the EFI_CAPSULE_BLOCK_DESCRIPTOR that represents the start of the 2nd capsule. There is only a
single terminating EFI_CAPSULE_BLOCK_DESCRIPTOR entry and it is at the end of the last capsule in the
chain.

The following algorithm must be used to find multiple capsules in a single scatter gather list:

• Look at the capsule header to determine the size of the capsule

— The first Capsule header is always pointed to by the first
EFI_CAPSULE_BLOCK_DESCRIPTOR entry

• Walk the EFI_CAPSULE_BLOCK_DESCRIPTOR list keeping a running count of the size each
entry represents.

• If the EFI_CAPSULE_BLOCK_DESCRIPTOR entry is a continuation pointer and the running
current capsule size count is greater than or equal to the size of the current capsule this is the
start of the next capsule.

• Make the new capsules the current capsule and repeat the algorithm.

Figure 27 shows a Scatter-Gather list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures that describes two
capsules. The left side of the figure shows OS view of the capsules as two separate contiguous virtual
memory buffers. The center of the figure shows the layout of the data in system memory. The right hand
UEFI Forum, Inc. March 2019 268

UEFI Specification, Version 2.8 Services — Runtime Services
side of the figure shows the ScatterGatherList list passed into the firmware. Since there are two capsules
two independent EFI_CAPSULE_BLOCK_DESCRIPTOR lists exist that were joined together via a
continuation pointer in the first list.

Figure 27. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures

Page N

Page M+1

Page M

System Memory

Capsule A header

Capsule B header

Capsule Body

Capsule Body

Capsule BodyPage N+1

Page N+2

Capsule Block Descriptor
ScatterGather

OS view of Capsules
FW view of Capsules

Page X

Page Y

NULL
UEFI Forum, Inc. March 2019 269

UEFI Specification, Version 2.8 Services — Runtime Services
EFI_MEMORY_RANGE_CAPSULE_GUID
This capsule structure definition provides a means by which a third-party component (e.g. OS) can
describe to firmware what regions in memory should be left untouched across the next reset.

Support for this capsule is optional. For platforms that support this capsule, they must advertise
EFI_MEMORY_RANGE_CAPSULE in the EFI Configuration table using the
EFI_MEMORY_RANGE_CAPSULE_GUID as the GUID in the GUID/pointer pair.

// {0DE9F0EC-88B6-428F-977A-258F1D0E5E72}
#define EFI_MEMORY_RANGE_CAPSULE_GUID \

 { 0xde9f0ec, 0x88b6, 0x428f, \
 { 0x97, 0x7a, 0x25, 0x8f, 0x1d, 0xe, 0x5e, 0x72 } };

A memory range descriptor.

typedef struct 
 EFI_PHYSICAL_ADDRESS Address;

 UINT64 Length;

} EFI_MEMORY_RANGE;

Address

Physical address of memory location being described.

Length

Length in bytes.

The capsule descriptor that describes the memory ranges a platform firmware should leave untouched.

typedef struct {
 EFI_CAPSULE_HEADERHeader;

 EFI_MEMORY_TYPE OsRequestedMemoryType;

 UINT64 NumberOfMemoryRanges;

 EFI_MEMORY_RANGE MemoryRanges[];

} EFI_MEMORY_RANGE_CAPSULE;

Header

Header.CapsuleGuid = EFI_MEMORY_RANGE_CAPSULE_GUID 
Header.Flags = CAPSULE_FLAGS_PERSIST_ACROSS_RESET |
 CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

OsRequestedMemoryType

Must be in the 0x80000000-0xFFFFFFFF range
When UEFI Firmware processes the capsule, contents described in MemoryRanges[] will
show up as OsRequestedMemoryType values in the EFI Memory Map.

NumberofMemoryRanges

Number of MemoryRanges[] entries. Must be a value of 1 or greater.

MemoryRanges[]

An array of memory ranges. Equivalent to MemoryRanges[NumberOfMemoryRanges].
UEFI Forum, Inc. March 2019 270

UEFI Specification, Version 2.8 Services — Runtime Services
For a platform that intends to support the EFI_MEMORY_RANGE_CAPSULE, it should advertise the
following structure in the EFI Configuration table using the EFI_MEMORY_RANGE_CAPSULE_GUID as the
GUID in the GUID/pointer pair.

typedef struct {

 UINT64 FirmwareMemoryRequirement;

 UINT64 NumberOfMemoryRanges[];

} EFI_MEMORY_RANGE_CAPSULE;

FirmwareMemoryRequirement

The maximum amount of memory in bytes that the UEFI firmware requires to initialize.

NumberofMemoryRanges

Will be 0 if no EFI_MEMORY_RANGE_CAPSULE has been processed.
If a EFI_MEMORY_RANGE_CAPSULE was processed, this number will be identical to the
EFI_MEMORY_RANGE_CAPSULE.NumberOfMemoryRanges value.

QueryCapsuleCapabilities()

Summary

Returns if the capsule can be supported via UpdateCapsule().

Prototype

typedef

EFI_STATUS

QueryCapsuleCapabilities (

 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,

 IN UINTN CapsuleCount,

 OUT UINT64 *MaximumCapsuleSize,

 OUT EFI_RESET_TYPE *ResetType

);

CapsuleHeaderArray

Virtual pointer to an array of virtual pointers to the capsules being passed into
update capsule. The capsules are assumed to stored in contiguous virtual memory.

CapsuleCount
Number of pointers to EFI_CAPSULE_HEADER in CapsuleHeaderArray.

MaximumCapsuleSize

On output the maximum size in bytes that UpdateCapsule() can support as an
argument to UpdateCapsule() via CapsuleHeaderArray and ScatterGatherList.
Undefined on input.

ResetType

Returns the type of reset required for the capsule update. Undefined on input.
UEFI Forum, Inc. March 2019 271

UEFI Specification, Version 2.8 Services — Runtime Services
Description

The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or capsules can
be updated via UpdateCapsule(). The Flags values in the capsule header and size of the entire capsule
is checked.

If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be
constructed where CapsuleImageSize is equal to HeaderSize that is equal to sizeof
(EFI_CAPSULE_HEADER). To determine reset requirements,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the
EFI_CAPSULE_HEADER.

Status Codes Returned

8.5.4 Exchanging information between the OS and Firmware

The firmware and an Operating System may exchange information through the
OsIndicationsSupported and the OSIndications variables as follows:

• The OsIndications variable returns a UINT64 bitmask owned by the OS and is used to
indicate which features the OS wants firmware to enable or which actions the OS wants the
firmware to take. The OS will supply this data with a SetVariable()call.

• The OsIndicationsSupported variable returns a UINT64 bitmask owned by the firmware
and indicates which of the OS indication features and actions that the firmware supports. This
variable is recreated by firmware every boot, and cannot be modified by the OS .

The EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set in the OsIndicationsSupported
variable by the firmware, if the firmware supports OS requests to stop at a firmware user interface. The
EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set by the OS in the OsIndications variable, if
the OS desires for the firmware to stop at a firmware user interface on the next boot. Once the firmware
consumes this bit in the OsIndications variable and stops at the firmware user interface, the firmware
should clear the bit from the OsIndications variable in order to acknowledge to the OS that the
information was consumed and, more importantly, to prevent the firmware user interface from showing
again on subsequent boots.

EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL.

EFI_UNSUPPORTED The capsule type is not supported on this platform, and
MaximumCapsuleSize and ResetType are undefined.

EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error
indicates the capsule is compatible with this platform but is not
capable of being submitted or processed in runtime. The caller may
resubmit the capsule prior to ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices()has not been previously called then
this error indicates the capsule is compatible with this platform but
there are insufficient resources to process.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 272

UEFI Specification, Version 2.8 Services — Runtime Services
The EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION bit can be set in the
OSIndicationsSupported variable by the firmware, if the firmware supports timestamp based
revocation and the "dbt" authorized timestamp database variable.

The EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit is set in OsIndicationsSupported
variable if platform supports processing of Firmware Management Protocol update capsule as defined in
Section 23.2. If set in OsIndications variable, the
EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit has no function and is cleared on the next
reboot.

The EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in
OsIndicationsSupported variable is set if platform supports processing of file capsules per
Section 8.5.5.

When submitting capsule via the Mass Storage Device method of Section 8.5.5, the bit
EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED in OsIndications variable must
be set by submitter to trigger processing of submitted capsule on next reboot. This bit will be cleared
from OsIndications by system firmware in all cases during processing following reboot.

The EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED bit is set in
OsIndicationsSupported variable if platform supports reporting of deferred capsule processing by
creation of result variable as defined in Section 8.5.6. This bit has no function if set in OsIndications.

The EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in the OsIndicationsSupported
variable if the platform supports both the ability for an OS to indicate that OS-defined recovery should
commence upon reboot, as well as support for the short-form File Path Media Device Path (see
Section 3.1.2). If this bit is set in OsIndications, the platform firmware must bypass processing of the
BootOrder variable during boot, and skip directly to OS-defined recovery (see Section 3.4.1) followed by
Platform-defined recovery (see Section 3.4.2). System firmware must clear this bit in OsIndications
when it starts OS-defined recovery.

The EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in the
OsIndicationsSupported variable if the platform supports both the ability for an OS to indicate that
Platform-defined recovery should commence upon reboot, as well as support for the short-form File Path
Media Device Path (see Section 3.1.2). If this bit is set in OsIndications, the platform firmware must
bypass processing of the BootOrder variable during boot, and skip directly to platform-defined recovery
(see Section 3.4.2). System firmware must clear this bit in OsIndications when it starts Platform-
defined recovery.

In all cases, if either of EFI_OS_INDICATIONS_START_OS_RECOVERY or
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set in OsIndicationsSupported, both
must be set and supported.

The EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH bit is set in the OsIndications variable
by submitter to trigger collecting current configuration and reporting the refreshed data to EFI System
Configuration Table on next boot. If not set, platform will not collect current configuration but report the
cached configuration data to EFI System Configuration Table. The configuration data shall be installed to
EFI System Configuration Table using the format of EFI_JSON_CAPSULE_CONFIG_DATA defined in
Section 23.5.2. This bit will be cleared from OsIndications by system firmware once the refreshed
data is reported.
UEFI Forum, Inc. March 2019 273

UEFI Specification, Version 2.8 Services — Runtime Services
If set in the OsIndicationsSupported variable, the
EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH bit has no function and is cleared on the next
reboot.

Related Definitions

#define EFI_OS_INDICATIONS_BOOT_TO_FW_UI 0x0000000000000001

#define EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION \ 0x0000000000000002

#define EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED

 0x0000000000000004

#define EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED \ 0x0000000000000008

#define EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED 0x0000000000000010

#define EFI_OS_INDICATIONS_START_OS_RECOVERY 0x0000000000000020

#define EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY \ 0x0000000000000040

#define EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH \ 0x0000000000000080

8.5.5 Delivery of Capsules via file on Mass Storage device

As an alternative to the UpdateCapsule() runtime API, capsules of any type supported by platform
may also be delivered to firmware via a file within the EFI system partition on the mass storage device
targeted for boot. Capsules staged using this method are processed on the next system restart. This
method is only available when booting from mass storage devices which are formatted with GPT
(Section 5.3) and contain an EFI System Partition in the device image. System firmware will search for
capsule when EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in
OsIndications is set as described in Section 8.5.4.

The directory \EFI\UpdateCapsule (letter case ignored) within the active EFI System Partition is
defined for delivery of capsule to firmware. The binary structure of a capsule file on mass storage device
is identical to the contents of capsule delivered via the EFI RunTime API except that fragmentation using
EFI_CAPSULE_BLOCK_DESCRIPTOR is not supported and the single capsule must be stored in
contiguous bytes within the file starting with EFI_CAPSULE_HEADER. The size of the file must equal
EFI_CAPSULE_HEADER.CapsuleImageSize or error will be generated and the capsule ignored. Only
a single capsule with a single EFI_CAPSULE_HEADER may be submitted within a file but more than one
file each containing a capsule may be submitted during a single restart.

The file name of the capsule shall be chosen by submitter using 8-bit ASCII characters appropriate to the
file system of the EFI system partition (Section 13.3.1). After examination and processing of a file placed
in this directory the file will (if possible) be deleted by firmware. The deletion is performed in case of
successful processing and also in the case of error but failure to successfully delete is not itself a
reportable error.

More than one capsule file each containing a single capsule image may be stored in the specified
directory. In case of multiple files, the system firmware shall process files in alphabetical order using sort
based on CHAR16 numerical value of file name characters, compared left to right. Lower case letter
UEFI Forum, Inc. March 2019 274

UEFI Specification, Version 2.8 Services — Runtime Services
characters will be converted to upper case before compare. When comparing file names of unequal
length, the space character shall be used to pad shorter file names. In case of file name containing one or
more period characters (.), the right-most period, and the text to the right of the right-most period in the
file name, will be removed before compare. In case of any file names with identical text after excluding
any text after the right-most period, the order of processing shall be determined by sorting of any text
found to right of the right-most period in file name string.

If a capsule processing is terminated by error any remaining additional capsule files will be processed
normally.

The directory \EFI\UpdateCapsule is checked for capsules only within the EFI system partition on the
device specified in the active boot option determine by reference to BootNext variable or BootOrder
variable processing. The active Boot Variable is the variable with highest priority BootNext or within
BootOrder that refers to a device found to be present. Boot variables in BootOrder but referring to
devices not present are ignored when determining active boot variable.

The device to be checked for \EFI\UpdateCapsule is identified by reference to FilePathList field
within the selected active Boot#### variable. The system firmware is not required to check mass
storage devices that do not contain boot target that is highest priority for boot nor to check a second EFI
system partition not the target of the active boot variable.

In all cases that a capsule is identified for processing the system is restarted after capsule processing is
completed. In case where BootNext variable was set, this variable is cleared when capsule processing is
performed without actual boot of the variable indicated.

8.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of
capsules after restart

In cases where the processing of capsules is (1) delivered by call to UpdateCapsule() API but deferred to
next restart, or (2) when capsules are delivered via mass storage device, a UEFI variable is created by
firmware to indicate to capsule provider the status of the capsule processing. In the case were multiple
capsules are delivered in calls to UpdateCapsule(), or multiple files on disk as described in
Section 8.5.5, or when a capsule contains multiple payloads as described in Section 23.2, a separate
result variable will be created for each capsule payload processed. The firmware will over-write result
variables when calculated variable name already exists. However, to avoid unnecessarily consuming
system variable store the result variable should be deleted by capsule provider after result status is
examined.

UEFI variable reports will not be used when the entirety of capsule processing occurs within the call to
UpdateCapsule() function.

The reporting variable attributes will be EFI_VARIABLE_NON_VOLATILE +
EFI_VARIABLE_BOOTSERVICE_ACCESS + EFI_VARIABLE_RUNTIME_ACCESS.

The Vendor GUID of the reporting variable will be EFI_CAPSULE_REPORT_GUID. The name of the
reporting variable will be CapsuleNNNN where NNNN is 4-digit hex number chosen by the firmware. The
values of NNNN will be incremented by firmware starting at Capsule0000 and continuing up to the
platform-defined maximum.

The platform will publish the platform maximum in a read-only variable named
EFI_CAPSULE_REPORT_GUID:CapsuleMax. The contents of CapsuleMax will be the string
"CapsuleNNNN" where NNNN is the highest value used by platform before rolling over to
UEFI Forum, Inc. March 2019 275

UEFI Specification, Version 2.8 Services — Runtime Services
Capsule0000.The platform will also publish the name of the last variable created in
EFI_CAPSULE_REPORT_GUID:CapsuleLast.

When creating a new result variable, any previous variable with the same name will be overwritten. In
case where variable storage is limited system firmware may optionally delete oldest report variables to
create free space. If sufficient variable space cannot be freed the variable is not created.

Table 43. Variables Using EFI_CAPSULE_REPORT_GUID

EFI_CAPSULE_REPORT_GUID

// {39B68C46-F7FB-441B-B6EC-16B0F69821F3}

#define EFI_CAPSULE_REPORT_GUID \

 { 0x39b68c46, 0xf7fb, 0x441b, \

 {0xb6, 0xec, 0x16, 0xb0, 0xf6, 0x98, 0x21, 0xf3 }};

Structure of the Capsule Processing Result Variable

The Capsule Processing Result Variable contents always begin with the
EFI_CAPSULE_RESULT_VARIABLE_HEADER structure. The value of CapsuleGuid determines any
additional data that may follow within the instance of the Result Variable contents. For some values of
CapsuleGuid no additional data may be defined.

As noted below, VariableTotalSize is the size of complete result variable including the entire header
and any additional data required for particular CapsuleGuid types.

typedef struct {

 UINT32 VariableTotalSize;

 UINT32 Reserved; //for alignment

 EFI_GUID CapsuleGuid;

 EFI_TIME CapsuleProcessed;

 EFI_STATUS CapsuleStatus;

} EFI_CAPSULE_RESULT_VARIABLE_HEADER;

VariableTotalSize

Size in bytes of the variable including any data beyond header as specified by
CapsuleGuid.

CapsuleGuid

Guid from EFI_CAPSULE_HEADER

Variable Name Attributes Internal Format

Capsule0000, Capsule0001, …
up to max

NV, BS, RT EFI_CAPSULE_RESULT_VARIABLE

CapsuleMax BS, RT, Read-Only CHAR16[11]
(no zero terminator)

CapsuleLast NV, BS, RT, Read-Only CHAR16[11]
(no zero terminator)
UEFI Forum, Inc. March 2019 276

UEFI Specification, Version 2.8 Services — Runtime Services
CapsuleProcessed

Timestamp using system time when processing completed.

CapsuleStatus

Result of the capsule processing. Exact interpretation of any error code may depend
upon type of capsule processed.

Additional Structure When CapsuleGuid is EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

The Capsule Processing Result Variable contents always begin with
EFI_CAPSULE_RESULT_VARIABLE_HEADER. When CapsuleGuid is
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID, the header is followed by additional data as
defined by EFI_CAPSULE_RESULT_VARIABLE_FMP.

typedef struct {

 UINT16 Version;

 UINT8 PayloadIndex;

 UINT8 UpdateImageIndex;

 EFI_GUID UpdateImageTypeId;

 // CHAR16 CapsuleFileName[];

 // CHAR16 CapsuleTarget[];

} EFI_CAPSULE_RESULT_VARIABLE_FMP;

Version The version of this structure, currently 0x00000001.
PayloadIndex The index, starting from zero, of the payload within the FMP

capsule which was processed to generate this report.
UpdateImageIndex The UpdateImageIndex from

EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER (after
unsigned conversion from UINT8 to UINT16).

UpdateImageTypeId The UpdateImageTypeId Guid from
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER.

CapsuleFileName In case of capsule loaded from disk, the zero-terminated array
containing file name of capsule that was processed. In case of
capsule submitted directly to UpdateCapsule() there is no
file name, and this field is required to contain a single 16-bit
zero character which is included in VariableTotalSize.

CapsuleTarget This field will contain a zero-terminated CHAR16 string
containing the text representation of the device path of device
publishing Firmware Management Protocol (if present). In
case where device path is not present and the target is not
otherwise known to firmware, or when payload was blocked
by policy, or skipped, this field is required to contain a single
16-bit zero character which is included in
VariableTotalSize.
UEFI Forum, Inc. March 2019 277

UEFI Specification, Version 2.8 Services — Runtime Services
Additional Structure When CapsuleGuid is EFI_JSON_CAPSULE_ID_GUID

The Capsule Processing Result Variable contents always begin with
EFI_CAPSULE_RESULT_VARIABLE_HEADER. When CapsuleGuid is EFI_JSON_CAPSULE_ID_GUID,
the header is followed by additional data as defined by EFI_CAPSULE_RESULT_VARIABLE_JSON.

typedef struct {

 UINT32 Version;

 UINT32 CapsuleId;

 UINT32 RespLength;

 // UINT8 Resp[];

 } EFI_CAPSULE_RESULT_VARIABLE_JSON;

Version

The version of this structure, currently 0x00000001.

CapsuleId

The unique identifier of the capsule whose processing result is recorded in this variable.

RespLength

The length of Resp in bytes.

Resp

Variable length buffer containing the replied JSON payload to the caller who delivered JSON
capsule to system. The definition of the JSON schema used in the replied payload is beyond
the scope of this specification.
UEFI Forum, Inc. March 2019 278

UEFI Specification, Version 2.8 Services — Runtime Services
Status Codes Returned in CapsuleStatus

EFI_SUCCESS Valid capsule was passed and the capsule has been successfully
processed by the firmware.

EFI_INVALID_PARAMETER Invalid capsule size, or an incompatible set of flags were set in the
capsule header. In the case of a capsule file, the file size was not valid or
an error was detected in the internal structure of the file.

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.

EFI_ACCESS_DENIED Image within capsule was not loaded because the platform policy
prohibits the image from being loaded.

EFI_LOAD_ERROR For capsule with included driver, no driver with correct format for the
platform was found.

EFI_UNSUPPORTED The capsule type is not supported on this platform. Or the capsule
internal structures were not recognized as valid by the platform.

EFI_OUT_OF_RESOURCES There were insufficient resources to process the capsule.

EFI_NOT_READY Capsule payload blocked by platform policy.

EFI_ABORTED Capsule payload was skipped.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made.
The platform must correctly reflect this behavior in the

RuntimeServicesSupported variable.
UEFI Forum, Inc. March 2019 279

UEFI Specification, Version 2.8
9 - Protocols — EFI Loaded Image

This section defines EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL. Respectively, these protocols describe an Image that
has been loaded into memory and specifies the device path used when a PE/COFF image was loaded
through the EFI Boot Service LoadImage(). These descriptions include the source from which the image
was loaded, the current location of the image in memory, the type of memory allocated for the image,
and the parameters passed to the image when it was invoked.

9.1 EFI Loaded Image Protocol

EFI_LOADED_IMAGE_PROTOCOL

Summary

Can be used on any image handle to obtain information about the loaded image.

GUID

#define EFI_LOADED_IMAGE_PROTOCOL_GUID\

 {0x5B1B31A1,0x9562,0x11d2,\

 {0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x72,0x3B}}

Revision Number

#define EFI_LOADED_IMAGE_PROTOCOL_REVISION 0x1000

Protocol Interface Structure

typedef struct {

 UINT32 Revision;

 EFI_HANDLE ParentHandle;

 EFI_SYSTEM_TABLE *SystemTable;

 // Source location of the image

 EFI_HANDLE DeviceHandle;

 EFI_DEVICE_PATH_PROTOCOL *FilePath;

 VOID *Reserved;

 // Image’s load options

 UINT32 LoadOptionsSize;

 VOID *LoadOptions;

 // Location where image was loaded

 VOID *ImageBase;

 UINT64 ImageSize;

 EFI_MEMORY_TYPE ImageCodeType;

 EFI_MEMORY_TYPE ImageDataType;

 EFI_IMAGE_UNLOAD Unload;
} EFI_LOADED_IMAGE_PROTOCOL;
UEFI Forum, Inc. March 2019 280

UEFI Specification, Version 2.8 Protocols — EFI Loaded Image
Parameters

Revision Defines the revision of the EFI_LOADED_IMAGE_PROTOCOL
structure. All future revisions will be backward compatible to
the current revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI_HANDLE
is defined in Section 7.

SystemTable The image’s EFI system table pointer. Type
EFI_SYSTEM_TABLE is defined in Section 4.

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_HANDLE is defined in Section 7.

FilePath A pointer to the file path portion specific to DeviceHandle that
the EFI Image was loaded from. EFI_DEVICE_PATH_PROTOCOL
is defined in Section 10.2.

Reserved Reserved. DO NOT USE.
LoadOptionsSize The size in bytes of LoadOptions.
LoadOptions A pointer to the image’s binary load options.
ImageBase The base address at which the image was loaded.
ImageSize The size in bytes of the loaded image.
ImageCodeType The memory type that the code sections were loaded as. Type

EFI_MEMORY_TYPE is defined in Section 7.
ImageDataType The memory type that the data sections were loaded as. Type

EFI_MEMORY_TYPE is defined in Section 7.
Unload Function that unloads the image. See Unload().

Description

Each loaded image has an image handle that supports EFI_LOADED_IMAGE_PROTOCOL. When an image
is started, it is passed the image handle for itself. The image can use the handle to obtain its relevant
image data stored in the EFI_LOADED_IMAGE_PROTOCOL structure, such as its load options.

EFI_LOADED_IMAGE_PROTOCOL.Unload()

Summary

Unloads an image from memory.

Prototype
UEFI Forum, Inc. March 2019 281

UEFI Specification, Version 2.8 Protocols — EFI Loaded Image
typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_UNLOAD) (

 IN EFI_HANDLE ImageHandle,
);

Parameters

ImageHandle The handle to the image to unload. Type EFI_HANDLE is
defined in Section .

Description

The Unload() function is a callback that a driver registers to do cleanup when the UnloadImage boot
service function is called.

Status Codes Returned

9.2 EFI Loaded Image Device Path Protocol

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

Summary

When installed, the Loaded Image Device Path Protocol specifies the device path that was used when a
PE/COFF image was loaded through the EFI Boot Service LoadImage().

GUID

#define EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID \
{0xbc62157e,0x3e33,0x4fec,\

 {0x99,0x20,0x2d,0x3b,0x36,0xd7,0x50,0xdf}}

Description

The Loaded Image Device Path Protocol uses the same protocol interface structure as the Device Path
Protocol defined in Chapter 9. The only difference between the Device Path Protocol and the Loaded
Image Device Path Protocol is the protocol GUID value.

The Loaded Image Device Path Protocol must be installed onto the image handle of a PE/COFF image
loaded through the EFI Boot Service LoadImage(). A copy of the device path specified by the
DevicePath parameter to the EFI Boot Service LoadImage() is made before it is installed onto the
image handle. It is legal to call LoadImage() for a buffer in memory with a NULL DevicePath
parameter. In this case, the Loaded Image Device Path Protocol is installed with a NULL interface pointer.

EFI_SUCCESS The image was unloaded.

EFI_INVALID_PARAMETER The ImageHandle was not valid.
UEFI Forum, Inc. March 2019 282

UEFI Specification, Version 2.8
10 - Protocols — Device Path Protocol

This section contains the definition of the device path protocol and the information needed to construct
and manage device paths in the UEFI environment. A device path is constructed and used by the
firmware to convey the location of important devices, such as the boot device and console, consistent
with the software-visible topology of the system.

10.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a Device Path
is to allow an application, such as an OS loader, to determine the physical device that the interfaces are
abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted around a
name space that is written in ASL (ACPI Source Language). Given that EFI does not replace ACPI and
defers to ACPI when ever possible, it would seem logical to utilize the ACPI name space in EFI. However,
the ACPI name space was designed for usage at operating system runtime and does not fit well in
platform firmware or OS loaders. Given this, EFI defines its own name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key structures
in the Device Path defines the linkage back to the ACPI name space. The Device Path also is used to fill in
the gaps where ACPI defers to buses with standard enumeration algorithms. The Device Path is able to
relate information about which device is being used on buses with standard enumeration mechanisms.
The Device Path is also used to define the location on a medium where a file should be, or where it was
loaded from. A special case of the Device Path can also be used to support the optional booting of legacy
operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which devices
the platform firmware was using as boot devices. This allows the operating system to maintain a view of
the system that is consistent with the platform firmware. An example of this is a “headless” system that is
using a network connection as the boot device and console. In such a case, the firmware will convey to
the operating system the network adapter and network protocol information being used as the console
and boot device in the device path for these devices.

10.2 EFI Device Path Protocol

This section provides a detailed description of EFI_DEVICE_PATH_PROTOCOL.

EFI_DEVICE_PATH_PROTOCOL

Summary

Can be used on any device handle to obtain generic path/location information concerning the physical
device or logical device. If the handle does not logically map to a physical device, the handle may not
necessarily support the device path protocol. The device path describes the location of the device the
handle is for. The size of the Device Path can be determined from the structures that make up the Device
Path.
UEFI Forum, Inc. March 2019 283

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
GUID

#define EFI_DEVICE_PATH_PROTOCOL_GUID \

 {0x09576e91,0x6d3f,0x11d2,\

 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure

//***
// EFI_DEVICE_PATH_PROTOCOL
//***
typedef struct _EFI_DEVICE_PATH_PROTOCOL {
 UINT8 Type;
 UINT8 SubType;
 UINT8 Length[2];
} EFI_DEVICE_PATH_PROTOCOL;

Description

The executing UEFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing UEFI OS loader and UEFI application images must access all physical
devices via Boot Services device handles until EFI_BOOT_SERVICES.ExitBootServices() is
successfully called. A UEFI driver may access only a physical device for which it provides functionality.

10.3 Device Path Nodes

There are six major types of Device Path nodes:

• Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped I/
O, and I/O space of the system.

• ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI AML in
the ACPI name space; this Device Path is a linkage to the ACPI name space.

• Messaging Device Path. This Device Path is used to describe the connection of devices outside
the resource domain of the system. This Device Path can describe physical messaging
information such as a SCSI ID, or abstract information such as networking protocol IP
addresses.

• Media Device Path. This Device Path is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which partition on
a hard drive was being used.

• BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy operating
systems; it is based on the BIOS Boot Specification Version 1.01. Refer to Appendix Q for details
on obtaining this specification.

• End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to
indicate the end of the Device Path instance or Device Path structure.
UEFI Forum, Inc. March 2019 284

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.1 Generic Device Path Structures

A Device Path is a variable-length binary structure that is made up of variable-length generic Device Path
nodes. Table 44 defines the structure of a variable-length generic Device Path node and the lengths of its
components. The table defines the type and sub-type values corresponding to the Device Paths described
in Section 10.3; all other type and sub-type values are Reserved.

Table 44. Generic Device Path Node Structure

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte offset zero
of the Device Path. The next Device Path node starts at the end of the previous Device Path node.
Therefore all nodes are byte-packed data structures that may appear on any byte boundary. All code
references to device path notes must assume all fields are unaligned. Since every Device Path node
contains a length field in a known place, it is possible to traverse Device Path nodes that are of an
unknown type. There is no limit to the number, type, or sequence of nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two sub-
types (see Table 45):

• End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an environment
variable represents multiple devices. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and serial output console. This
variable would describe a console output stream that is sent to both VGA and serial
concurrently and thus has a Device Path that contains two complete Device Paths.

• End Entire Device Path (sub-type 0xFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must end
with this sub-type.

Table 45. Device Path End Structure


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 0x01 – Hardware Device Path
Type 0x02 – ACPI Device Path
Type 0x03 – Messaging Device Path
Type 0x04 – Media Device Path
Type 0x05 – BIOS Boot Specification Device Path
Type 0x7F – End of Hardware Device Path

Sub-Type 1 1 Sub-Type – Varies by Type. (See Table 45.)

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define type of
data. Size of data is included in Length.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 0x7F – End of Hardware Device Path
UEFI Forum, Inc. March 2019 285

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.2 Hardware Device Path

This Device Path defines how a device is attached to the resource domain of a system, where resource
domain is simply the shared memory, memory mapped I/O, and I/O space of the system. It is possible to
have multiple levels of Hardware Device Path such as a PCCARD device that was attached to a PCCARD
PCI controller.

10.3.2.1 PCI Device Path

The Device Path for PCI defines the path to the PCI configuration space address for a PCI device. There is
one PCI Device Path entry for each device and function number that defines the path from the root PCI
bus to the device. Because the PCI bus number of a device may potentially change, a flat encoding of
single PCI Device Path entry cannot be used. An example of this is when a PCI device is behind a bridge,
and one of the following events occurs:

• OS performs a Plug and Play configuration of the PCI bus.

• A hot plug of a PCI device is performed.

• The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies the PCI
root bus. The programming of root PCI bridges is not defined by any PCI specification and this is why an
ACPI Device Path entry is required.

Table 46. PCI Device Path

10.3.2.2 PCCARD Device Path

Table 47. PCCARD Device Path

Sub-Type 1 1 Sub-Type 0xFF – End Entire Device Path, or
Sub-Type 0x01 – End This Instance of a Device Path and start a new Device
Path

Length 2 2 Length of this structure in bytes. Length is 4 bytes.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 1 – PCI

Length 2 2 Length of this structure is 6 bytes

Function 4 1 PCI Function Number

Device 5 1 PCI Device Number


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 2 – PCCARD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.
UEFI Forum, Inc. March 2019 286

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.2.3 Memory Mapped Device Path

Table 48. Memory Mapped Device Path

10.3.2.4 Vendor Device Path

The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must allocate a
Vendor GUID for a Device Path. The Vendor GUID can then be used to define the contents on the n bytes
that follow in the Vendor Device Path node.

Table 49. Vendor-Defined Device Path

10.3.2.5 Controller Device Path

Table 50. Controller Device Path

Function Number 4 1 Function Number (0 = First Function)


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 3 – Memory Mapped.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Memory Type 4 4 EFI_MEMORY_TYPE. Type EFI_MEMORY_TYPE is defined in

the EFI_BOOT_SERVICES.AllocatePages()

function description.

Start Address 8 8 Starting Memory Address.

End Address 16 8 Ending Memory Address.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 4 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 5 – Controller.

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Controller Number 4 4 Controller number.


Mnemonic

Byte
Offset

Byte
Length


Description
UEFI Forum, Inc. March 2019 287

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.2.6 BMC Device Path

 The Device Path for a Baseboard Management Controller (BMC) host interface.

Table 51. BMC Device Path

10.3.3 ACPI Device Path

This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID and its
corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and _UID device
identification objects that are associated with a device. The ACPI Device Path contains values that must
match exactly the ACPI name space that is provided by the platform firmware to the operating system.
Refer to the ACPI specification for a complete description of the _HID, _CID, and _UID device
identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name space. If
only _HID is present, the _HID must be used to describe any device that will be enumerated by the ACPI
driver. The _CID, if present, contains information that is important for the OS to attach generic driver
(e.g., PCI Bus Driver), while the _HID contains information important for the OS to attach device-specific
driver. The ACPI bus driver only enumerates a device when no standard bus enumerator exists for a
device.

The _UID object provides the OS with a serial number-style ID for a device that does not change across
reboots. The object is optional, but is required when a system contains two devices that report the same
_HID. The _UID only needs to be unique among all device objects with the same _HID value. If no _UID
exists in the APCI name space for a _HID the value of zero must be stored in the _UID field of the ACPI
Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device Path. An
_HID (along with _CID if present) is required to represent a PCI root bridge, since the PCI specification
does not define the programming model for a PCI root bridge. There are two subtypes of the ACPI Device
Path: a simple subtype that only includes the _HID and _UID fields, and an extended subtype that
includes the _HID, _CID, and _UID fields.

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub Type 6 – BMC

Length 2 2 Length of this structure in bytes. Length is 13 bytes.

Interface Type 4 1 The Baseboard Management Controller (BMC) host interface type:

0x00: Unknown
0x01: KCS: Keyboard Controller Style
0x02: SMIC: Server Management Interface Chip
0x03: BT: Block Transfer

Base Address 5 8 Base address (either memory-mapped or I/O) of the BMC.
If the least-significant bit of the field is a 1, the address is in
I/O space; otherwise, the address is memory-mapped. Refer to the IPMI
Interface Specification for usage details.
UEFI Forum, Inc. March 2019 288

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values. The
Expanded ACPI Device Path node supports both numeric and string values for the _HID, _UID, and _CID
values. As a result, the ACPI Device Path node is smaller and should be used if possible to reduce the size
of device paths that may potentially be stored in nonvolatile storage. If a string value is required for the
_HID field, or a string value is required for the _UID field, or a _CID field is required, then the Expanded
ACPI Device Path node must be used. If a string field of the Expanded ACPI Device Path node is present,
then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node are stored as
a 32-bit compressed EISA-type IDs. The following macro can be used to compute these EISA-type IDs from
a Plug and Play Hardware ID. The Plug and Play Hardware IDs used to compute the _HID and _CID fields in
the EFI device path nodes must match the Plug and Play Hardware IDs used to build the matching entries
in the ACPI tables. The compressed EISA-type IDs produced by this macro differ from the compressed
EISA-type IDs stored in ACPI tables. As a result, the compressed EISA-type IDs from the ACPI Device Path
nodes cannot be directly compared to the compressed EISA-type IDs from the ACPI table.

#define EFI_PNP_ID(ID) (UINT32)(((ID) << 16) | 0x41D0)
#define EISA_PNP_ID(ID) EFI_PNP_ID(ID)

Table 52. ACPI Device Path

Table 53. Expanded ACPI Device Path


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 1 ACPI Device Path.

Length 2 2 Length of this structure in bytes. Length is 12 bytes.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit compressed
EISA-type ID. This value must match the corresponding _HID in the
ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the same
_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space. Only the 32-bit numeric value type of
_UID is supported; thus strings must not be used for the _UID in
the ACPI name space.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.

Length 2 2 Length of this structure in bytes. Minimum length is 19 bytes. The
actual size will depend on the size of the _HIDSTR, _UIDSTR, and
_CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit compressed
EISA-type ID. This value must match the corresponding _HID in the
ACPI name space.
UEFI Forum, Inc. March 2019 289

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.3.1 ACPI _ADR Device Path

The _ADR device path is used to contain video output device attributes to support the Graphics Output
Protocol. The device path can contain multiple _ADR entries if multiple video output devices are
displaying the same output.

Table 54. ACPI _ADR Device Path

_UID 8 4 Unique ID that is required by ACPI if two devices have the same
_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match at least one of
the compatible device IDs returned by the corresponding _CID in
the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII string.
This value must match the corresponding _HID in the ACPI name
space. If the length of this string not including the null-terminator
is 0, then the _HID field is used. If the length of this null-
terminated string is greater than 0, then this field supersedes the
_HID field.

_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the same
_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space. This value is stored as a null-
terminated ASCII string. If the length of this string not including
the null-terminator is 0, then the _UID field is used. If the length of
this null-terminated string is greater than 0, then this field
supersedes the _UID field. The Byte Offset of this field can be
computed by adding 16 to the size of the _HIDSTR field.

_CIDSTR Varies >=1 Device’s compatible PnP hardware ID stored as a null-terminated
ASCII string. This value must match at least one of the compatible
device IDs returned by the corresponding _CID in the ACPI name
space. If the length of this string not including the null-terminator
is 0, then the _CID field is used. If the length of this null-
terminated string is greater than 0, then this field supersedes the
_CID field. The Byte Offset of this field can be computed by adding
16 to the sum of the sizes of the _HIDSTR and _UIDSTR fields.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 2 – ACPI Device Path

Sub-Type 1 1 Sub-Type3 _ADR Device Path

Length 2 2 Length of this structure in bytes. Minimum length is 8.

_ADR 4 4 _ADR value. For video output devices the value of this field
comes from Table B-2 ACPI 3.0 specification. At least one
_ADR value is required

Additional _ADR 8 N This device path may optionally contain more than one
_ADR entry.


Mnemonic

Byte
Offset

Byte
Length


Description
UEFI Forum, Inc. March 2019 290

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.3.2 NVDIMM Device Path

This device path describes an NVDIMM device using the ACPI 6.0 specification defined NFIT Device
Handle as the identifier.

Table 55. NVDIMM Device Path

10.3.4 Messaging Device Path

This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID, or abstract
information like networking protocol IP addresses.

10.3.4.1 ATAPI Device Path

Table 56. ATAPI Device Path

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 - ACPI Device Path

Sub-Type 1 1 Sub-type 4 - NVDIMM Device

Length 2 2 8 – Single NFIT Device Handle is supported.

NFIT Device
Handle

4 4

NFIT Device Handle - Unique physical identifier. 
See ACPI Defined Devices and Device Specific Objects section,
NVDIMM Devices sub-chapter for the specific definition of the fields
utilized for this handle.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 1 – ATAPI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

PrimarySecondary 4 1 Set to zero for primary or one for secondary

SlaveMaster 5 1 Set to zero for master or one for slave mode

Logical Unit Number 6 2 Logical Unit Number
UEFI Forum, Inc. March 2019 291

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.2 SCSI Device Path

Table 57. SCSI Device Path

10.3.4.3 Fibre Channel Device Path

Table 58. Fibre Channel Device Path

Table 59. Fibre Channel Ex Device Path

The Fibre Channel Ex device path clarifies the definition of the Logical Unit Number field to conform with
the T-10 SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the device path
must conform with a logical unit number returned by a SCSI REPORT LUNS command.

When the Fibre Channel Ex Device Path is used with the Extended SCSI Pass Thru Protocol the UINT64
LUN argument must be converted to the eight byte array Logical Unit Number field in the device path by


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 2 – SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Target ID 4 2 Target ID on the SCSI bus (PUN)

Logical Unit Number 6 2 Logical Unit Number (LUN)


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 3 – Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Name 8 8 Fibre Channel World Wide Name

Logical Unit Number 16 8 Fibre Channel Logical Unit Number


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 21 – Fibre Channel Ex

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Name 8 8 8 byte array containing Fibre Channel End Device Port Name
(a.k.a., World Wide Name)

Logical Unit Number 16 8 8 byte array containing Fibre Channel Logical Unit Number
UEFI Forum, Inc. March 2019 292

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
treating the eight byte array as an EFI UINT64.For example a Logical Unit Number array of { 0,1,2,3,4,5,6,7
} becomes a UINT64 of 0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN visible to a user, it should be done in
conformance with SAM-4. SAM-4 requires a LUN to be displayed in hexadecimal format with byte 0 first
(i.e., on the left) and byte 7 last (i.e., on the right) regardless of the internal representation of the LUN.
UEFI defines all data structures a “little endian” and SCSI defines all data structures as “big endian”.Fibre
Channel Ex Device Path Example shows an example device path for a Fibre Channel controller on a typical
UEFI platform. This Fibre Channel Controller is connected to the port 0 of the root hub, and its interface
number is 0. The Fibre Channel Host Controller is a PCI device whose PCI device number 0x1F and PCI
function 0x00. So, the whole device path for this Fibre Channel Controller consists an ACPI Device Path
Node, a PCI Device Path Node, a Fibre Channel Device Path Node and a Device Path End Structure. The
_HID and _UID must match the ACPI table description of the PCI Root Bridge. The Fibre Channel WWN
and LUN were picked to show byte order and they are not typical real world values. The shorthand
notation for this device path is:

PciRoot(0)/PCI(31,0)/FibreEx(0x0001020304050607, 0x0001020304050607)

Table 60. Fibre Channel Ex Device Path Example

Byte
Offset

Byte
Length


Data


Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length – 0x0C bytes

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

8 4 0x0000 _UID

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type – PCI

14 2 0x06 Length – 0x06 bytes

16 1 0x0 PCI Function

17 1 0x1F PCI Device

18 1 0x03 Generic Device Path Header – Type Message Device Path

19 1 0x15 Sub type – Fibre Channel Ex

20 2 0x14 Length – 20 bytes

21 1 0x00 8 byte array containing Fibre Channel End Device Port Name (a.k.a., World Wide
Name)

22 1 0x01

23 1 0x02

24 1 0x03

25 1 0x04

26 1 0x05

27 1 0x06
UEFI Forum, Inc. March 2019 293

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.4 1394 Device Path

Table 61. 1394 Device Path

10.3.4.5 USB Device Paths

Table 62. USB Device Path

10.3.4.5.1 USB Device Path Example

Table 63 shows an example device path for a USB controller on a desktop platform. This USB Controller is
connected to the port 0 of the root hub, and its interface number is 0. The USB Host Controller is a PCI

28 1 0x07

29 1 0x00 8 byte array containing Fibre Channel Logical Unit Number

30 1 0x01

31 1 0x02

32 1 0x03

33 1 0x04

34 1 0x05

35 1 0x06

36 1 0x07

37 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

38 1 0xFF Sub type – End of Entire Device Path

39 2 0x04 Length – 0x04 bytes


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 4 – 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

Reserved 4 4 Reserved

GUID1 8 8 1394 Global Unique ID (GUID)1

Note: 1 The usage of the term GUID is per the 1394 specification. This is not the same as the EFI_GUID type

defined in the EFI Specification.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 5 – USB

Length 2 2 Length of this structure in bytes. Length is 6 bytes.

USB Parent Port Number 4 1 USB Parent Port Number

Interface 5 1 USB Interface Number
UEFI Forum, Inc. March 2019 294

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
device whose PCI device number 0x1F and PCI function 0x02. So, the whole device path for this USB
Controller consists an ACPI Device Path Node, a PCI Device Path Node, a USB Device Path Node and a
Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(0,0).

Table 63. USB Device Path Examples

Another example is a USB Controller (interface number 0) that is connected to port 3 of a USB Hub
Controller (interface number 0), and this USB Hub Controller is connected to the port 1 of the root hub.
The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(1,0)/USB(3,0).

Table 63 shows the device path for this USB Controller.

Table 64. Another USB Device Path Example

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x1F PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path
UEFI Forum, Inc. March 2019 295

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.6 SATA Device Path

Table 65. SATA Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x1F PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x01 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x19 0x01 0x05 Sub type – USB

0x1A 0x02 0x06 Length – 0x06 bytes

0x1C 0x01 0x03 Parent Hub Port Number

0x1D 0x01 0x00 Controller Interface Number

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 18 – SATA

Length 2 2 Length of this structure in bytes. Length is 10 bytes.

HBA Port Number 4 2 The HBA port number that facilitates the connection to the device
or a port multiplier. The value 0xFFFF is reserved.

Port Multiplier Port
Number

6 2 The Port multiplier port number that facilitates the connection to
the device. Must be set to 0xFFFF if the device is directly
connected to the HBA.

Logical Unit Number 8 2 Logical Unit Number.

Byte
Offset

Byte
Length


Data


Description
UEFI Forum, Inc. March 2019 296

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.7 USB Device Paths (WWID)

This device path describes a USB device using its serial number.

Specifications, such as the USB Mass Storage class, bulk-only transport subclass, require that some
portion of the suffix of the device’s serial number be unique with respect to the vendor and product id for
the device. So, in order to avoid confusion and overlap of WWID’s, the interface’s class, subclass, and
protocol are included.

Table 66. USB WWID Device Path

Devices that do not have a serial number string must use with the USB Device Path (type 5) as described
in Section 10.3.4.5.

Including the interface as part of this node allows distinction for multi-interface devices, e.g., an HID
interface and a Mass Storage interface on the same device, or two Mass Storage interfaces.

Section 3.1.2 defines special rules for processing the USB WWID Device Path. These special rules enable a
device location to change and still have the system boot from the device.

10.3.4.8 Device Logical Unit

For some classes of devices, such as USB Mass Storage, it is necessary to specify the Logical Unit Number
(LUN), since a single device may have multiple logical units. In order to boot from one of these logical
units of the device, the Device Logical Unit device node is appended to the device path. The EFI path node
subtype is defined, as in Table 67.

Table 67. Device Logical Unit

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 16– USB WWID

Length 2 2 Length of this structure in bytes. Length is 10+

• Interface Number 4 2 USB interface number

• Device Vendor Id 6 2 USB vendor id of the device

• Device Product Id 8 2 USB product id of the device

• Serial Number 10 n Last 64-or-fewer UTF-16 characters of the USB serial
number. The length of the string is determined by the
Length field less the offset of the Serial Number field
(10)

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 17 – Device Logical unit

Length 2 2 Length of this structure in bytes. Length is 5

LUN 4 1 Logical Unit Number for the interface
UEFI Forum, Inc. March 2019 297

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Section 3.1.2 defines special rules for processing the USB Class Device Path. These special rules enable a
device location to change and still have the system recognize the device.

Section 3.3 defines how the ConIn, ConOut, and ErrOut variables are processed and contains special
rules for processing the USB Class device path. These special rules allow all USB keyboards to be specified
as valid input devices.

10.3.4.9 USB Device Path (Class)

Table 68. USB Class Device Path

10.3.4.10 I2O Device Path

Table 69. I2O Device Path

10.3.4.11 MAC Address Device Path

Table 70. MAC Address Device Path


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 - Messaging Device Path.

Sub-Type 1 1 Sub-Type 15 - USB Class.

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of 0xFFFF will match any
Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of 0xFFFF will match any
Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of 0xFF will match
any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of 0xFF will
match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of 0xFF will
match any protocol code.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 6 – I2O Random Block Storage Class

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

TID 4 4 Target ID (TID) for a device


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 11 – MAC Address for a network interface
UEFI Forum, Inc. March 2019 298

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.12 IPv4 Device Path

Previous versions of the specification only defined a 19 byte IPv4 device path. To access fields at off-set
19 or greater, the size of the device path must be checked first.

Table 71. IPv4 Device Path

10.3.4.13 IPv6 Device Path

Table 72. IPv6 Device Path

Length 2 2 Length of this structure in bytes. Length is 37 bytes.

MAC Address 4 32 The MAC address for a network interface padded with 0s

IfType 36 1 Network interface type(i.e., 802.3, FDDI). See RFC 3232


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 12 – IPv4

Length 2 2 Length of this structure in bytes. Length is 27 bytes.

Local IP Address 4 4 The local IPv4 address

Remote IP Address 8 4 The remote IPv4 address

Local Port 12 2 The local port number

Remote Port 14 2 The remote port number

Protocol 16 2 The network protocol(i.e., UDP, TCP). See RFC 3232

StaticIPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP
0x01 - The Source IP Address is statically bound

GatewayIPAddress 19 4 The Gateway IP Address

Subnet Mask 23 4 Subnet mask


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 13 – IPv6

Length 2 2 Length of this structure in bytes. Length is 60 bytes.

Local IP Address 4 16 The local IPv6 address

Remote IP Address 20 16 The remote IPv6 address

Local Port 36 2 The local port number

Remote Port 38 2 The remote port number

Protocol 40 2 The network protocol (i.e., UDP, TCP). See RFC 3232

IPAddressOrigin 42 1 0x00 - The Local IP Address was manually configured.
0x01 - The Local IP Address is assigned through IPv6 stateless
auto-configuration.
0x02 - The Local IP Address is assigned through IPv6stateful
configuration.
UEFI Forum, Inc. March 2019 299

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.14 2.VLAN device path node

10.3.4.15 InfiniBand Device Path

Table 73. InfiniBand Device Path

10.3.4.16 UART Device Path

Table 74. UART Device Path

PrefixLength 43 1 The Prefix Length

GatewayIPAddress 44 16 The Gateway IP Address

Mnemonic Byte Offset Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 20 – Vlan (802.1q)

Length 2 2 Length of this device node

VlanId 4 2 VLAN identifier (0-4094)


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 9 – InfiniBand

Length 2 2 Length of this structure in bytes. Length is 48 bytes.

Resource Flags 4 4 Flags to help identify/manage InfiniBand device path elements:
• Bit 0 – IOC/Service (0b = IOC, 1b = Service)

• Bit 1 – Extend Boot Environment

• Bit 2 – Console Protocol

• Bit 3 – Storage Protocol

• Bit 4 – Network Protocol

All other bits are reserved.

PORT GID 8 16 128-bit Global Identifier for remote fabric port

IOC GUID/Service ID 24 8 64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)

Target Port ID 32 8 64-bit persistent ID of remote IOC port

Device ID 40 8 64-bit persistent ID of remote device

Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not the same as

the EFI_GUID type defined in this EFI Specification.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 14 – UART
UEFI Forum, Inc. March 2019 300

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.17 Vendor-Defined Messaging Device Path

Table 75. Vendor-Defined Messaging Device Path

The following GUIDs are used with a Vendor-Defined Messaging Device Path to describe the transport
protocol for use with PC-ANSI, VT-100, VT-100+, and VT-UTF8 terminals. Device paths can be constructed
with this node as the last node in the device path. The rest of the device path describes the physical
device that is being used to transmit and receive data. The PC-ANSI, VT-100, VT-100+, and VT-UTF8 GUIDs
define the format of the data that is being sent though the physical device. Additional GUIDs can be
generated to describe additional transport protocols.

#define EFI_PC_ANSI_GUID \
 { 0xe0c14753,0xf9be,0x11d2,{0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0x4d }}

#define EFI_VT_100_GUID \
 { 0xdfa66065,0xb419,0x11d3,{0x9a,0x2d,0x00,0x90,0x27,0x3f,0xc1,0x4d }}

#define EFI_VT_100_PLUS_GUID \
 { 0x7baec70b,0x57e0,0x4c76,{0x8e,0x87,0x2f,0x9e,0x28,0x08,0x83,0x43 }}

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Reserved 4 4 Reserved

Baud Rate 8 8 The baud rate setting for the UART style device. A value of 0
means that the device's default baud rate will be used.

Data Bits 16 1 The number of data bits for the UART style device. A value of 0
means that the device's default number of data bits will be used.

Parity 17 1 The parity setting for the UART style device.
Parity 0x00 - Default Parity
Parity 0x01 - No Parity
Parity 0x02 - Even Parity
Parity 0x03 - Odd Parity
Parity 0x04 - Mark Parity
Parity 0x05 - Space Parity

Stop Bits 18 1 The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits
Stop Bits 0x01 - 1 Stop Bit
Stop Bits 0x02 - 1.5 Stop Bits
Stop Bits 0x03 - 2 Stop Bits


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows

Vendor Defined Data 20 n Vendor-defined variable size data
UEFI Forum, Inc. March 2019 301

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
#define EFI_VT_UTF8_GUID \
 { 0xad15a0d6,0x8bec,0x4acf,{0xa0,0x73,0xd0,0x1d,0xe7,0x7e,0x2d,0x88 }}

10.3.4.18 UART Flow Control Messaging Path

The UART messaging device path defined in the EFI 1.02 specification does not contain a provision for
flow control. Therefore, a new device path node is needed to declare flow control characteristics. It is a
vendor-defined messaging node which may be appended to the UART node in a device path. It has the
following definition:

#define DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL \
{0x37499a9d,0x542f,0x4c89,{0xa0,0x26,0x35,0xda,0x14,0x20,0x94,0xe4}}

Table 76. UART Flow Control Messaging Device Path

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to the
following:

PciRoot(0)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,N,8,1)/UartFlowCtrl(2)/
DebugPort()

Note: If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent
to leaving the flow control node out of the device path completely.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Vendor GUID 4 16 DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL

Flow_Control_Map 20 4 Bitmap of supported flow control types.
• Bit 0 set indicates hardware flow control.

• Bit 1 set indicates Xon/Xoff flow control.

• All other bits are reserved and are clear.
UEFI Forum, Inc. March 2019 302

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.19 Serial Attached SCSI (SAS) Device Path

This section defines the device node for Serial Attached SCSI (SAS) devices.

Table 77. Messaging Device Path Structure

Summary

The device node represented by the structure in Table 77 (above) shall be appended after the Hardware
Device Path node in the device path.

There are two cases for boot devices connected with SAS HBA’s. Each of the cases is described below
with an example of the expected Device Path for these.

• SAS Device anywhere in an SAS domain accessed through SSP Protocol.

PciRoot(0)/PCI(1,0)/Sas(0x31000004CF13F6BD, 0)

The first 64-bit number represents the SAS address of the target SAS device.
The second number is the boot LUN of the target SAS device.
The third number is the Relative Target Port (RTP)

• SATA Device connected directly to a HBA port.

PciRoot(0)/PCI(1,0)/Sas(0x31000004CF13F6BD)

The first number represents either a real SAS address reserved by the HBA for above
connections, or a fake but unique SAS address generated by the HBA to represent the
SATA device.

10.3.4.19.1 Device and Topology Information

First Byte (At offset 40 into the structure):

Bits 0:3:

Value 0x0 -> No Additional Information about device topology.

Value 0x1 -> More Information about device topology valid in this byte.

Value 0x2 -> More Information about device topology valid in this and next 1 byte.

Values 0x3 thru 0xF -> Reserved.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type -3 Messaging

Sub Type 1 1 10 (Vendor)

Length 2 2 Length of this Structure.

Vendor GUID 4 16 d487ddb4-008b-11d9-afdc-001083ffca4d

Reserved 20 4 Reserved for future use.

SAS Address 24 8 SAS Address for Serial Attached SCSI Target.

Logical Unit Number 32 8 SAS Logical Unit Number.

SAS/SATA device and Topology
Info

40 2 More Information about the device and its interconnect

Relative Target Port 42 2 Relative Target Port (RTP)
UEFI Forum, Inc. March 2019 303

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Bits 4:5: Device Type (Valid only if the More Information field above is non-zero)

Value 0x0 -> SAS Internal Device

Value 0x1 -> SATA Internal Device

Value 0x2 -> SAS External Device

Value 0x3 -> SATA External Device

Bits 6:7: Topology / Interconnect (Valid only if the More Information field above is non-zero)

Value 0x0 -> Direct Connect (Connected directly with the HBA Port/Phy)

Value 0x1 -> Expander Connect (Connected thru/via one or more Expanders)

Value 0x2 and 0x3 > Reserved

10.3.4.19.2 Device and Topology Information

Second Byte (At offset 41 into the structure). Valid only if bits 0-3 of More Information in Byte 40 have a
value of 2:

Bits 0-7: Internal Drive/Bay Id (Only applicable if Internal Drive is indicated in Device Type)

Value 0x0 thru 0xFF -> Drive 1 thru Drive 256

10.3.4.19.3 Relative Target Port

At offset 42 into the structure:

This two-byte field shall contain the “Relative Target Port” of the target SAS port. Relative Target Port can
be obtained by performing an INQUIRY command to VPD page 0x83 in the target. Implementation of RTP
is mandatory for SAS targets as defined in Section 10.2.10 of sas1r07 specification (or later).

Note: If a LUN is seen thru multiple RTPs in a given target, then the UEFI driver shall create separate
device path instances for both paths. RTP in the device path shall distinguish these two device
path instantiations.

Note: Changing the values of the SAS/SATA device topology information or the RTP fields of the device
path will make UEFI think this is a different device.

10.3.4.19.4 Examples Of Correct Device Path Display Format

Case 1: When Additional Information is not Valid or Not Present (Bits 0:3 of Byte 40 have a value of 0)

PciRoot(0)/PCI(1,0)/SAS(0x31000004CF13F6BD, 0)

Case 2: When Additional Information is Valid and present (Bits 0:3 of Byte 40 have a value of 1 or 2)

• If Bits 4-5 of Byte 40 (Device and Topology information) indicate an SAS device (Internal or
External) i.e., has values 0x0 or 0x2, then the following format shall be used.

PciRoot(0)/PCI(1,0)/SAS(0x31000004CF13F6BD, 0, SAS)

• If Bits 4-5 of Byte 40 (Device and Topology information) indicate a SATA device (Internal or
External) i.e., has a value of 0x1 or 0x3, then the following format shall be used.
UEFI Forum, Inc. March 2019 304

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
ACPI(PnP)/PCI(1,0)/SAS(0x31000004CF13F6BD, SATA)

10.3.4.20 Serial Attached SCSI (SAS) Ex Device Path

This section defines the extended device node for Serial Attached SCSI (SAS) devices. In this device path
the SAS Address and LUN are now defined as arrays to remove the need to endian swap the values.

Table 78. Messaging Device Path Structure

The SAS Ex device path clarifies the definition of the Logical Unit Number field to conform with the T-10
SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the device path must
conform with a logical unit number returned by a SCSI REPORT LUNS command.

When the SAS Device Path Ex is used with the Extended SCSI Pass Thru Protocol, the UINT64 LUN must be
converted to the eight byte array Logical Unit Number field in the device path by treating the eight byte
array as an EFI UINT64. For example, a Logical Unit Number array of { 0,1,2,3,4,5,6,7 } becomes a UINT64
of 0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN (8 byte array) visible to a user, it
should be done in conformance with SAM-4. SAM-4 requires a LUN to be displayed in hexadecimal
format with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right) regardless of the internal
representation of the LUN. UEFI defines all data structures a “little endian” and SCSI defines all data
structures as “big endian”.

10.3.4.21 iSCSI Device Path

Table 79. iSCSI Device Path Node (Base Information)


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type -3 Messaging

Sub Type 1 1 Sub-type 22 SAS Ex

Length 2 2 Length of this Structure. 32 bytes

SAS Address 4 8 8-byte array of the SAS Address for Serial Attached SCSI
Target Port.

Logical Unit Number 20 8 8-byte array of the SAS Logical Unit Number.

SAS/SATA device and Topology
Info

28 2 More Information about the device and its interconnect

Relative Target Port 30 2 Relative Target Port (RTP)


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 19 – (iSCSI)

Length 2 2 Length of this structure in bytes. Length is (18 + n) bytes

Protocol 4 2 Network Protocol (0 = TCP, 1+ = reserved)

Options 6 2 iSCSI Login Options
UEFI Forum, Inc. March 2019 305

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.21.1 iSCSI Login Options

The iSCSI Device Node Options describe the iSCSI login options for the key values:

Bits 0:1:

0 = No Header Digest

2 = Header Digest Using CRC32C

Bits 2-3:

0 = No Data Digest

2 = Data Digest Using CRC32C

Bits 4:9:

Reserved for future use

Bits 10-11:

0 = AuthMethod_CHAP

2 = AuthMethod_None

Bit 12:

0 = CHAP_BI

1 = CHAP_UNI

For each specific login key, none, some or all of the defined values may be configured. If none of the
options are defined for a specific key, the iSCSI driver shall propose “None” as the value. If more than one
option is configured for a specific key, all the configured values will be proposed (ordering of the values is
implementation dependent).

• Portal Group Tag: defines the iSCSI portal group the initiator intends to establish Session with.

• Logical Unit Number: defines the 8 byte SCSI LUN. The Logical Unit Number field must conform
to the T-10 SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the
device path must conform with a logical unit number returned by a SCSI REPORT LUNS
command.

• iSCSI Target Name: defines the iSCSI Target Name for the iSCSI Node. The size of the iSCSI
Target Name can be up to a maximum of 223 bytes.

10.3.4.21.2 Device Path Examples

Some examples for the Device Path for the case the boot device connected to iSCSI bootable controller:

Logical Unit Number 8 8 8 byte array containing the iSCSI Logical Unit Number

Target Portal group tag 16 2 iSCSI Target Portal group tag the initiator intends to
establish a session with.

iSCSI Target Name 18 n iSCSI NodeTarget Name. The length of the name is
determined by subtracting the offset of this field from
Length.
UEFI Forum, Inc. March 2019 306

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
• With IPv4 configuration:
PciRoot(0)/Pci(19|0)/Mac(001320F5FA77,0x01)/
IPv4(192.168.0.100,TCP,Static,192.168.0.1)/ iSCSI(iqn.1991-
05.com.microsoft:iscsitarget-iscsidisk-target,0x1,0x0,None,None,None,TCP)/
HD(1,GPT,15E39A00-1DD2-1000-8D7F-00A0C92408FC,0x22,0x2710000)

Table 80. IPv4 configuration

Byte
Offse
t

Byte
Length


Data


Description

0x00 1 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 1 0x01 Sub type – ACPI Device Path

0x02 2 0x0C Length – 0x0C bytes

0x04 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 4 0x0000 _UID

0x0C 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 1 0x01 Sub type – PCI

0x0E 2 0x06 Length – 0x06 bytes

0x10 1 0x0 PCI Function

0x11 1 0x19 PCI Device

0x12 1 0x03 Generic Device Path Header – Messaging Device Path

0x13 1 0x0B Sub type – MAC Address Device path

0x14 2 0x25 Length – 0x25
UEFI Forum, Inc. March 2019 307

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
0x16 32 0x00, 0x13, 0x20, 0xF5,
0xFA, 0x77,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

MAC address for a network interface padded with zeros

0x36 1 0x01 Network Interface Type - other

0x37 1 0x03 Generic Device Path Header – Messaging Device Path

0x38 1 0x0c Sub type – IPv4

0x39 2 0x1B Length – 27

0x3b 4 0xC0, 0xA8,
0x00,
0x01

Local IPv4 address – 192.168.0.1

0x3F 4 0xC0, 0xA8, 0x00,
0x64

Remote IPv4 address – 192.168.0.100

0x43 2 0x0000 Local Port Number – 0

0x45 2 0x0CBC Remote Port Number – 3260

0x47 2 0x6 Network Protocol. See RFC 3232. TCP

0x49 1 1 Static IP Address

0x4A 4 Gateway IP Address

0x4E 4 Subnet mask

0x52 1 0x03 Generic Device Path Header – Messaging Device Path

0x53 1 0x13 Sub type – iSCSI

0x54 2 0x49 Length – 0x49

0x56 2 0x00 Network Protocol

0x58 2 0x800 iSCSI Login Options – AuthMethod_None
UEFI Forum, Inc. March 2019 308

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
0x5A 8 0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

iSCSI LUN

0x62 2 0x01 Target Portal group tag

0x64 55 0x69, 0x71, 0x6E, 0x2E,
0x31, 0x39, 0x39, 0x31,
0x2D, 0x30, 0x35, 0x2E,
0x63, 0x6F, 0x6D, 0x2E,
0x6D, 0x69, 0x63, 0x72,
0x6F, 0x73, 0x6F, 0x66,
0x74,

iSCSI node name.

0x64
(cont.)

55
(cont.)

0x3A, 0x69, 0x73, 0x63,
0x73, 0x69, 0x74, 0x61,
0x72, 0x67, 0x65, 0x74,
0x2D, 0x69, 0x73, 0x63,
0x73, 0x69, 0x64, 0x69,
0x73, 0x6B, 0x2D,
0x74, 0x61, 0x72, 0x67,
0x65, 0x74, 0x00

iSCSI node name
(cont.)

0x9B 1 0x04 Generic Device Path Header – Media Device Path

0x9C 1 0x01 Sub type – Hard Drive

0x9D 2 0x2A Length – 0x2a

0x9F 4 0x1 Partition Number

0xA3 8 0x22 Partition Start

0xAB 8 0x2710000 Partition Size

0xB3 16 0x00,
0x9A,
0xE3,
0x15,
0xD2,
0x1D,
0x00,
0x10,
0x8D,
0x7F,
0x00,
0xA0,
0xC9,
0x24, 0x08, 0xFC

Partition Signature

0xC3 1 0x02 Partition Format – GPT

0xC4 1 0x02 Signature Type – GUID

0xC5 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

0xC6 1 0xFF Sub type – End of Entire Device Path

0xC7 2 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 309

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
• With IPv6 configuration:
PciRoot(0x0)/Pci(0x1C,0x2)/Pci(0x0,0x0)/MAC(001517215593,0x0)/
IPv6(2001:4898:000A:1005:95A6:EE6C:BED3:4859,TCPDHCP,2001:4898:000A:1005:021
5:17FF:FE21:5593)/iSCSI(iqn.1991-05.com.microsoft:iscsiipv6-ipv6test-
target,0x1,0x0,None,None,None,TCP)/HD(1,MBR,0xA0021243,0x800,0x2EE000)

Table 81. IPv6 configuration

Byte
Offset

Byte
Length

Data Description

0x00 1 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 1 0x01 Sub type – ACPI Device Path

0x02 2 0x0C Length – 0x0C bytes

0x04 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in the
ACPI Specification.

0x08 4 0x0000 _UID

0x0C 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 1 0x01 Sub type – PCI

0x0E 2 0x06 Length – 0x06 bytes

0x10 1 0x02 PCI Function

0x11 1 0x1C PCI Device

0x12 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 1 0x01 Sub type – PCI

0x14 2 0x06 Length – 0x06 bytes

0x16 1 0x00 PCI Function

0x17 1 0x00 PCI Device

0x18 1 0x03 Generic Device Path Header – Messaging Device Path

0x19 1 0x0B Sub type – MAC Address Device path

0x1A 2 0x25 Length – 0x25
UEFI Forum, Inc. March 2019 310

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
0x1C 32 0x00, 0x15,
0x17, 0x21,
0x55, 0x93,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

MAC address for a network interface padded with zeros

0x3C 1 0x01 Network Interface Type - other

0x3D 1 0x03 Generic Device Path Header – Messaging Device Path

0x3E 1 0x0C Sub type – IPv6

0x3F 2 0x3C Length – 0x3C

0x41 16 0x20, 0x01,
0x48, 0x98,
0x00, 0x0A,
0x10, 0x05,
0x02, 0x15,
0x17, 0xFF, 0xFE,
0x21, 0x55, 0x93

Local IPv6 address – 2001:4898:000A:1005:0215:17FF:FE21:5593

0x51 16 0x20, 0x01,
0x48, 0x98,
0x00, 0x0A,
0x10, 0x05,
0x95, 0xA6,
0xEE, 0x6C,
0xBE, 0xD3,
0x48, 0x59

Remote IPv6 address – 2001:4898:000A:1005:95A6:EE6C:BED3:4859

0x61 2 0x0000 Local Port Number – 0

Byte
Offset

Byte
Length

Data Description
UEFI Forum, Inc. March 2019 311

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
0x63 2 0x0CBC Remote Port Number – 3260

0x65 2 0x6 Network Protocol. See RFC 3232. TCP

0x66 1 1 IP Address Origin

0x67 1 The Prefix Length

0x68 16 The Gateway IP Address

0x78 1 0x03 Generic Device Path Header – Messaging Device Path

0x79 1 0x13 Sub type – iSCSI

0x7A 2 0x46 Length – 0x46

0x7C 2 0x00 Network Protocol

0x7E 2 0x800 iSCSI Login Options – AuthMethod_None

0x81 8 0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

iSCSI LUN

0x89 2 0x01 Target Portal group tag

0x8B 52 0x69, 0x71,
0x6E, 0x2E,
0x31, 0x39,
0x39, 0x31,
0x2D, 0x30,
0x35, 0x2E,
0x63, 0x6F,
0x6D, 0x2E,
0x6D, 0x69,
0x63, 0x72,
0x6F, 0x73,
0x6F, 0x66,
0x74, 0x3A,
0x69, 0x73,
0x63, 0x73,
0x69, 0x69,
0x70, 0x76,

iSCSI node name.

0x8B
(cont.)

52 (cont.) 0x36, 0x2D,
0x69, 0x70,
0x76, 0x36,
0x74, 0x65,
0x73, 0x74,
0x2D, 0x74,
0x61, 0x72,
0x67, 0x65,
0x74, 0x00

iSCSI node name
(cont.)

0xBF 1 0x04 Generic Device Path Header – Media Device Path

0xC0 1 0x01 Sub type – Hard Drive

Byte
Offset

Byte
Length

Data Description
UEFI Forum, Inc. March 2019 312

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.22 NVM Express namespace messaging device path node

Table 82. NVM Express Namespace Device Path

Refer to the latest NVM Express specification for descriptions of Namespace Identifier (NSID) and IEEE
Extended Unique Identifier (EUI-64):See “Links to UEFI-Related Documents” (http://uefi.org/uefi under
the headings “NVM Express Specification”.

0xC1 2 0x2A Length – 0x2a

0xC3 4 0x1 Partition Number

0xC7 8 0x800 Partition Start

0xCF 8 0x2EE000 Partition Size

0xDF 16 0x43, 0x12,
0x02, 0xA0,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

Partition Signature

0xEF 1 0x01 Partition Format – MBR

0xF0 1 0x01 Signature Type – 32bit signature

0xF1 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

0xF2 1 0xFF Sub type – End of Entire Device Path

0xF3 2 0x04 Length – 0x04 bytes

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 23 – NVM Express Namespace

Length 2 2 Length of this structure in bytes. Length is 16
bytes.

Namespace Identifier 4 4 Namespace identifier (NSID). The values of 0 and
0xFFFFFFFF are invalid.

IEEE Extended Unique
Identifier

8 8 This field contains the IEEE Extended Unique
Identifier (EUI-64). Devices without an EUI-64
value must initialize this field with a value of 0.

Byte
Offset

Byte
Length

Data Description
UEFI Forum, Inc. March 2019 313

http://www.nvmexpress.org/index.php/download_file/view/102/1/
http://www.nvmexpress.org/index.php/download_file/view/102/1/

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.23 Uniform Resource Identifiers (URI) Device Path

Refer to RFC 3986 for details on the URI contents.

Table 83. URI Device Path

10.3.4.24 UFS (Universal Flash Storage) device messaging device path node

Table 84. UFS Device Path

Refer to the UFS 2.0 specification for additional LUN descriptions: See “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading “UFS 2.0 Specification”.

• PUN field: According to current available UFS 2.0 spec, the topology is one device per UFS port.
A topology to support multiple devices on a single interface is planned for future revision. So
suggest to reserve/introduce this field to support multiple devices per UFS port. This value
should be 0 for current UFS2.0 spec compliance.

• LUN field: This field is used to specify up to 8 normal LUNs(0-7) and 4 well-known LUNs(81h,
D0h, B0h and C4h). For those well-known LUNs, the BIT7 is set. See Figure 10.2 of UFS 2.0 spec
for details.

10.3.4.25 SD (Secure Digital) Device Path

Table 85. SD Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 24 – Universal Resource Identifier
(URI) Device Path

Length 2 2 Length of this structure in bytes. Length is 4 +
n bytes.

… 4 n Instance of the URI pursuant to RFC 3986. For
an empty URI, Length is 4 bytes.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 25 – UFS

Length 2 2 Length of this structure in bytes. Length is 6 bytes.

Target ID 4 1 Target ID on the UFS interface (PUN).

LUN 5 1 Logical Unit Number (LUN).

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 26 – SD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.

Slot Number 4 1 Slot Number
UEFI Forum, Inc. March 2019 314

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.26 EFI Bluetooth Device Path

Table 86. Bluetooth Device Path

10.3.4.27 Wireless Device Path

Table 87. Wi-Fi Device Path

10.3.4.28 eMMC (Embedded Multi-Media Card) Device Path

Table 88. eMMC Device Path

10.3.4.29 EFI BluetoothLE Device Path

Table 89. EFI BluetoothLE Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 27 – Bluetooth

Length 2 2 Length of this structure in bytes. Length is 10 bytes.

Bluetooth Device Address 4 6 48-bit Bluetooth device address.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 28 – Wi-Fi Device Path

Length 2 2 Length of this structure in bytes. Length
is 36
bytes.

SSID 4 32 SSID in octet string

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device
Path

Sub-Type 1 1 Sub-Type 29 – eMMC

Length 2 2 Length of this structure in
bytes. Length is 5 bytes.

Slot Number 4 1 Slot Number

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 30 – BluetoothLE

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Bluetooth Device Address 4 6 48-bit Bluetooth device address

Address Type 10 1 0x00 – Public Device Address
0x01 – Random Device Address
UEFI Forum, Inc. March 2019 315

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.4.30 DNS Device Path

Table 90. DNS Device Path

10.3.4.31 NVDIMM Namespace path

This device path describes a bootable NVDIMM namespace that is defined by a namespace label. The
presence of this type of device path indicates that UEFI supports booting to the namespace including any
address abstraction specified by the namespace label. Refer to the NVDIMM Label Protocol section to
retrieve relevant details about the namespace.

Table 91. NVDIMM Namespace Device Path

10.3.4.32 REST Service Device Path

Device path example of Out-of-band Redfish REST Service through NIC:

PciRoot(0x2)/Pci(0x2,0x0)/Pci(0x0,0x0)/MAC(FD19FA100672,0x0)/
IPv4(0.0.0.0,0x0,DHCP,0.0.0.0,0.0.0.0,0.0.0.0)/RestService(1,2)

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 31 – DNS Device Path

Length 2 2 Length of this structure in bytes. Length is 5 + n bytes.

IsIPv6 4 1 0x00 – The DNS server address is IPv4 address.
0x01 – The DNS server address is IPv6 address.

... 5 n One or more instances of the DNS server address in
EFI_IP_ADDRESS.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 - Messaging Device

Sub-Type 1 1 Sub-type 32 - NVDIMM Namespace

Length 2 2 20 - Single namespace UUID is supported.

Uuid 4 16 Namespace unique label identifier UUID.
See the Uuid description in the NVDIMM Label Protocol -
Label definitions section for details on this field.

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x03 – Messaging Device Path

Sub-Type 1 1 Sub-Type 32– REST Service Device Path

Length 2 2 Length of this structure in bytes. Length is 6 bytes.

REST Service 4 1 0x01 = Redfish REST Service
0x02 = OData REST Service

Access Mode 5 1 (0x01) In-Band REST Service, (0x02) Out-of-band REST
Service.
UEFI Forum, Inc. March 2019 316

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Below is vendor-specific REST Service Device Path

Device path example of In-band vendor-specific REST Service through BMC:

PciRoot(0x2)/Pci(0x2,0x0)/Pci(0x0,0x0)/BMC(0,0xf0000000)/RestService(0xff, 1,
00000000-0000-0000-0000000000000000,0,0)

10.3.5 Media Device Path

This Device Path is used to describe the portion of the medium that is being abstracted by a boot service.
An example of Media Device Path would be defining which partition on a hard drive was being used.

10.3.5.1 Hard Drive

The Hard Drive Media Device Path is used to represent a partition on a hard drive. Each partition has at
least Hard Drive Device Path node, each describing an entry in a partition table. EFI supports MBR and
GPT partitioning formats. Partitions are numbered according to their entry in their respective partition
table, starting with 1. Partitions are addressed in EFI starting at LBA zero. A partition number of zero can
be used to represent the raw hard drive or a raw extended partition.

The partition format is stored in the Device Path to allow new partition formats to be supported in the
future. The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type. The disk
signature is maintained by the OS and only used by EFI to partition Device Path nodes. The disk signature
enables the OS to find disks even after they have been physically moved in a system.

Section 3.1.2 defines special rules for processing the Hard Drive Media Device Path. These special rules
enable a disk’s location to change and still have the system boot from the disk.

Table 92. Hard Drive Media Device Path

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x03 – Messaging Device Path

Sub-Type 1 1 Sub-Type 32– REST Service Device Path

Length 2 2 Length of this structure in bytes. Length is 21 + n bytes.

REST Service 4 1 0xFF = Vendor specific REST Service

Access Mode 5 1 (0x01) In-Band REST Service, (0x02) Out-of-band REST
Service.

Vendor specific REST service
GUID

6 16 GUID of vendor specific REST service.

Vendor defined data 22 n Vendor-defined data.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 1 – Hard Drive

Length 2 2 Length of this structure in bytes. Length is 42 bytes.
UEFI Forum, Inc. March 2019 317

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.5.2 CD-ROM Media Device Path

The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM. The CD-
ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito” format. The Boot
Entry number from the Boot Catalog is how the “El Torito” specification defines the existence of bootable
entities on a CD-ROM. In EFI the bootable entity is an EFI System Partition that is pointed to by the Boot
Entry.

Partition Number 4 4 Describes the entry in a partition table, starting with entry 1.
Partition number zero represents the entire device. Valid partition
numbers for a MBR partition are [1, 4]. Valid partition numbers for
a GPT partition are [1, NumberOfPartitionEntries].

Partition Start 8 8 Starting LBA of the partition on the hard drive

Partition Size 16 8 Size of the partition in units of Logical Blocks

Partition Signature 24 16 Signature unique to this partition:
If SignatureType is 0, this field has to be initialized with 16 zeroes.
If SignatureType is 1, the MBR signature is stored in the first 4
bytes of this field. The other 12 bytes are initialized with zeroes.
If SignatureType is 2, this field contains a 16 byte signature.

Partition Format 40 1 Partition Format: (Unused values reserved)
0x01 – PC-AT compatible legacy MBR (see Section 5.2.1). Partition
Start and Partition Size come from PartitionStartingLBA
and PartitionSizeInLBA for the partition.
0x02 – GUID Partition Table (see Section 5.3.2).

Signature Type 41 1 Type of Disk Signature: (Unused values reserved)
0x00 – No Disk Signature.
0x01 – 32-bit signature from address 0x1b8 of the type 0x01 MBR.
0x02 – GUID signature.


Mnemonic

Byte
Offset

Byte
Length


Description
UEFI Forum, Inc. March 2019 318

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Table 93. CD-ROM Media Device Path

10.3.5.3 Vendor-Defined Media Device Path

Table 94. Vendor-Defined Media Device Path

10.3.5.4 File Path Media Device Path

Table 95. File Path Media Device Path


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 2 – CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The Initial/Default
entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 3 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 4 – File Path.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Path Name 4 N A NULL-terminated Path string including directory and file names.
The length of this string n can be determined by subtracting 4
from the Length entry. A device path may contain one or more of
these nodes. Each node can optionally add a "\" separator to the
beginning and/or the end of the Path Name string. The complete
path to a file can be found by logically concatenating all the Path
Name strings in the File Path Media Device Path nodes. This is
typically used to describe the directory path in one node, and the
filename in another node.
UEFI Forum, Inc. March 2019 319

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
 Rules for Path Name conversion:

• When concatenating two Path Names, ensure that the resulting string does not contain a
double-separator "\\". If it does, convert that double-separator to a single-separator.

• In the case where a Path Name which has no end separator is being concatenated to a Path
Name with no beginning separator, a separator will need to be inserted between the Path
Names.

• Single file path nodes with no directory path data are presumed to have their files located in
the root directory of the device.

10.3.5.5 Media Protocol Device Path

The Media Protocol Device Path is used to denote the protocol that is being used in a device path at the
location of the path specified. Many protocols are inherent to the style of device path.

Table 96. Media Protocol Media Device Path

10.3.5.6 PIWG Firmware File

This type is used by systems implementing the UEFI PI Specification to describe a firmware file. The exact
format and usage are defined in that specification.

Table 97. PIWG Firmware Volume Device Path


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 5 – Media Protocol.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Protocol GUID 4 16 The ID of the protocol.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 6 – PIWG Firmware File.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

... 4 n Contents are defined in the UEFI PI Specification.
UEFI Forum, Inc. March 2019 320

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.3.5.7 PIWG Firmware Volume

This type is used by systems implementing the UEFI PI Specification to describe a firmware volume. The
exact format and usage are defined in that specification.

Table 98. PIWG Firmware Volume Device Path

10.3.5.8 Relative Offset Range

This device path node specifies a range of offsets relative to the first byte available on the device. The
starting offset is the first byte of the range and the ending offset is the last byte of the range (not the last
byte + 1).

Table 99. Relative Offset Range

10.3.5.9 RAM Disk

Table 100. RAM Disk Device Path


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 7 – PIWG Firmware Volume.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

... 4 n Contents are defined in the UEFI PI Specification.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 8 – Relative Offset Range

Length 2 2 Length of this structure in bytes.

Reserved 4 4 Reserved for future use.

Starting Offset 8 8 Offset of the first byte, relative to the parent device node.

Ending Offset 16 8 Offset of the last byte, relative to the parent device node.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 9 – RAM Disk Device Path

Length 2 2 Length of this structure in bytes. Length is 38 bytes.

Starting Address 4 8 Starting Memory Address.

Ending Address 12 8 Ending Memory Address.

Disk Type GUID 20 16 GUID that defines the type of the RAM Disk. The GUID can be
any of the values defined below, or a vendor defined GUID.

Disk Instance 36 2 RAM Disk instance number, if supported. The default value is
zero.
UEFI Forum, Inc. March 2019 321

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
The following GUIDs are used with a RAM Disk Device Path to describe the RAM Disk Type. Additional
GUIDs can be generated to describe additional RAM Disk Types. The Disk Type GUID values used in the
RAM Disk device path must match the corresponding values in the Address Range Type GUID of the ACPI
NFIT table. Refer to the ACPI specification for details.

 This GUID defines a RAM Disk supporting a raw disk format in volatile memory:

#define EFI_VIRTUAL_DISK_GUID \

{ 0x77AB535A,0x45FC,0x624B,\

{0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }}

This GUID defines a RAM Disk supporting an ISO image in volatile memory:

#define EFI_VIRTUAL_CD_GUID \

{ 0x3D5ABD30,0x4175,0x87CE,\

{0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }}

This GUID defines a RAM Disk supporting a raw disk format in persistent memory:

#define EFI_PERSISTENT_VIRTUAL_DISK_GUID \

{ 0x5CEA02C9,0x4D07,0x69D3,\

{0x26,0x9F,0x44,0x96,0xFB,0xE0,0x96,0xF9 }}

This GUID defines a RAM Disk supporting an ISO image in persistent memory:
#define EFI_PERSISTENT_VIRTUAL_CD_GUID \

{ 0x08018188,0x42CD,0xBB48,\

{0x10,0x0F,0x53,0x87,0xD5,0x3D,0xED,0x3D }}

10.3.6 BIOS Boot Specification Device Path

This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device Path is
based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS Boot
Specification. The BIOS Boot Specification Device Path defines a complete Device Path and is not used
with other Device Path entries. This Device Path is only needed to enable platform firmware to select a
legacy non-EFI OS as a boot option.
UEFI Forum, Inc. March 2019 322

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Table 101. BIOS Boot Specification Device Path

Example BIOS Boot Specification Device Types include:

• 00h = Reserved

• 01h = Floppy

• 02h = Hard Disk

• 03h = CD-ROM

• 04h = PCMCIA

• 05h = USB

• 06h = Embedded network

• 07h..7Fh = Reserved

• 80h = BEV device

• 81h..FEh = Reserved

• FFh = Unknown

Note: When UEFI Secure Boot is enabled, attempts to boot non-UEFI OS shall fail; see Section 32.4.

10.4 Device Path Generation Rules

10.4.1 Housekeeping Rules

The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of Device
Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of a single End
Device Path Node. A Device Path that contains a NULL pointer and no Device Path structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types can be
skipped when parsing the Device Path since the length field can be used to find the next Device Path
structure in the stream. Any future additions to the Device Path structure types will always start with the
current standard header. The size of a Device Path can be determined by traversing the generic Device
Path structures in each header and adding up the total size of the Device Path. This size will include the
four bytes of the End of Device Path structure.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 5 – BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 – BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n A null-terminated ASCII string that describes the boot device to a
user. The size of this string n can be determined by subtracting 8
from the Length entry.
UEFI Forum, Inc. March 2019 323

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will contain
a complete Device Path that is terminated by the Device Path End Structure. The Device Path End
Structures that do not end the Device Path contain a sub-type of End This Instance of the Device Path.
The last Device Path End Structure contains a sub-type of End Entire Device Path.

10.4.2 Rules with ACPI _HID and _UID

As described in the ACPI specification, ACPI supports several different kinds of device identification
objects, including _HID, _CID and _UID. The _UID device identification objects are optional in ACPI and
only required if more than one _HID exists with the same ID. The ACPI Device Path structure must contain
a zero in the _UID field if the ACPI name space does not implement _UID. The _UID field is a unique serial
number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource Setting) then
it should be described by an ACPI Device Path structure. A _CRS implies that a device is not mapped by
any other standard. A _CRS is used by ACPI to make a nonstandard device into a Plug and Play device. The
configuration methods in the ACPI name space allow the ACPI driver to configure the device in a standard
fashion. The presence of a _CID determines whether the ACPI Device Path node or the Expanded ACPI
Device Path node should be used.

Table 102 maps ACPI _CRS devices to EFI Device Path.

Table 102. ACPI _CRS to EFI Device Path Mapping

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a PCI device
usually contained in a chipset that consumes a proprietary bus and produces a PCI bus. In typical desktop
and mobile systems there is only one root PCI bridge. On larger server systems there are typically
multiple root PCI bridges. The operation of root PCI bridges is not defined in any current PCI specification.
A root PCI bridge should not be confused with a PCI to PCI bridge that both consumes and produces a PCI
bus. The operation and configuration of PCI to PCI bridges is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNP0A03, This will be stored in the ACPI Device Path
_HID field, or in the Expanded ACPI Device Path _CID field to match the ACPI name space. The _UID in the
ACPI Device Path structure must match the _UID in the ACPI name space.

10.4.3 Rules with ACPI _ADR

If a device in the ACPI name space can be completely described by a _ADR object then it will map to an
EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with a standard
enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it should also have a
_HID method and follow the rules for using _HID.

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNP0A03, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3

Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3
UEFI Forum, Inc. March 2019 324

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Table 103 relates the ACPI _ADR bus definition to the EFI Device Path:

Table 103. ACPI _ADR to EFI Device Path Mapping

10.4.4 Hardware vs. Messaging Device Path Rules

Hardware Device Paths are used to define paths on buses that have a standard enumeration algorithm
and that relate directly to the coherency domain of the system. The coherency domain is defined as a
global set of resources that is visible to at least one processor in the system. In a typical system this would
include the processor memory space, IO space, and PCI configuration space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration algorithm,
but are not part of the global coherency domain of the system. SCSI and Fibre Channel are examples of
this kind of bus. The Messaging Device Path can also be used to describe virtual connections over
network-style devices. An example would be the TCP/IP address of an internet connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency resource
domain of the system. A Message Device Path is used if the bus consumes resources from the coherency
domain and produces resources out side the coherency domain of the system.

10.4.5 Media Device Path Rules

The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is being
used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and the Media
Device Path is used to point to these partitions.

An EFI_BLOCK_IO_PROTOCOL is produced for both raw devices and partitions on devices. This allows
the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL protocol to not have to understand media formats. The
EFI_BLOCK_IO_PROTOCOL for a partition contains the same Device Path as the parent
EFI_BLOCK_IO_PROTOCOL for the raw device with the addition of a Media Device Path that defines
which partition is being abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device Path is used
to load files and to represent what file an image was loaded from.

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

SATA bus SATA Messaging Device Path
UEFI Forum, Inc. March 2019 325

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.4.6 Other Rules

The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing the BIOS
Boot Specification Device Path should only contain the required End Device Path structure and no other
Device Path structures. The BIOS Boot Specification Device Path is only used to allow the EFI boot menus
to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID to a
Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict with future
extensions of this specification.

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only permitted
using a Vendor GUID Device Path entry.

10.5 Device Path Utilities Protocol

This section describes the EFI_DEVICE_PATH_UTILITIES_PROTOCOL, which aids in creating and
manipulating device paths.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL

Summary

Creates and manipulates device paths and device nodes.

GUID

// {0379BE4E-D706-437d-B037-EDB82FB772A4}

#define EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID \

 {0x379be4e,0xd706,0x437d,\

 {0xb0,0x37,0xed,0xb8,0x2f,0xb7,0x72,0xa4 }}

Protocol Interface Structure

typedef struct _EFI_DEVICE_PATH_UTILITIES_PROTOCOL {

 EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE GetDevicePathSize;

 EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;

 EFI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;

 EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;

 EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE AppendDevicePathInstance;

 EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE GetNextDevicePathInstance;

 EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE IsDevicePathMultiInstance;

 EFI_DEVICE_PATH_UTILS_CREATE_NODE CreateDeviceNode;

} EFI_DEVICE_PATH_UTILITIES_PROTOCOL;

Parameters

GetDevicePathSize Returns the size of the specified device path, in bytes.

DuplicateDevicePathDuplicates a device path structure.

AppendDeviceNode Appends the device node to the specified device path.

AppendDevicePath Appends the device path to the specified device path.
UEFI Forum, Inc. March 2019 326

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
AppendDevicePathInstance
Appends a device path instance to another device path.

GetNextDevicePathInstance
Retrieves the next device path instance from a device path data
structure.

IsDevicePathMultiInstance
Returns TRUE if this is a multi-instance device path.

CreateDeviceNode Allocates memory for a device node with the specified type and sub-
type.

Description

The EFI_DEVICE_PATH_UTILITIES_PROTOCOL provides common utilities for creating a manipulating
device paths and device nodes.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()

Summary

Returns the size of the device path, in bytes.

Prototype

typedef

UINTN

(EFIAPI *EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);

Parameters

DevicePath Points to the start of the EFI device path.

Description

This function returns the size of the specified device path, in bytes, including the end-of-path tag. If
DevicePath is NULL then zero is returned.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()

Summary

Create a duplicate of the specified path.

Prototype

typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
UEFI Forum, Inc. March 2019 327

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
);

Parameters

DevicePath Points to the source device path.

Description

This function creates a duplicate of the specified device path. The memory is allocated from EFI boot
services memory. It is the responsibility of the caller to free the memory allocated. If DevicePath is
NULL then NULL will be returned and no memory will be allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the duplicate device path or NULL if there was insufficient memory.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()

Summary

Create a new path by appending the second device path to the first.

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_PATH) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *Src1,

 IN CONST EFI_DEVICE_PATH_PROTOCOL *Src2
);

Parameters

Src1 Points to the first device path.

Src2 Points to the second device path.

Description

This function creates a new device path by appending a copy of the second device path to a copy of the
first device path in a newly allocated buffer. Only the end-of-device-path device node from the second
device path is retained. If Src1 is NULL and Src2 is non-NULL, then a duplicate of Src2 is returned. If
Src1 is non-NULL and Src2 is NULL, then a duplicate of Src1 is returned. If Src1 and Src2 are both
NULL, then a copy of an end-of-device-path is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.
UEFI Forum, Inc. March 2019 328

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Returns

This function returns a pointer to the newly created device path or NULL if memory could not be allocate.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()

Summary

Creates a new path by appending the device node to the device path.

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_NODE) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DeviceNode
);

Parameters

DevicePath Points to the device path.

DeviceNode Points to the device node.

Description

This function creates a new device path by appending a copy of the specified device node to a copy of the
specified device path in an allocated buffer. The end-of-device-path device node is moved after the end
of the appended device node. If DeviceNode is NULL then a copy of DevicePath is returned. If
DevicePath is NULL then a copy of DeviceNode, followed by an end-of-device path device node is
returned. If both DeviceNode and DevicePath are NULL then a copy of an end-of-device-path device
node is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the allocated device path, or NULL if there was insufficient memory.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()

Summary

Creates a new path by appending the specified device path instance to the specified device path.
UEFI Forum, Inc. March 2019 329

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
);

Parameters

DevicePath Points to the device path. If NULL, then ignored.

DevicePathInstancePoints to the device path instance

Description

This function creates a new device path by appending a copy of the specified device path instance to a
copy of the specified device path in an allocated buffer. The end-of-device-path device node is moved
after the end of the appended device node and a new end-of-device-path-instance node is inserted
between. If DevicePath is NULL, then a copy if DevicePathInstance is returned instead.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the newly created device path or NULL if DevicePathInstance is
NULL or there was insufficient memory.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()

Summary

Creates a copy of the current device path instance and returns a pointer to the next device path instance.

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE) (

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePathInstance,

 OUT UINTN *DevicePathInstanceSize OPTIONAL
);

Parameters

DevicePathInstanceOn input, this holds the pointer to the current device path instance.
On output, this holds the pointer to the next device path instance or
NULL if there are no more device path instances in the device path.
UEFI Forum, Inc. March 2019 330

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
DevicePathInstanceSize
On output, this holds the size of the device path instance, in bytes or
zero, if DevicePathInstance is NULL. If NULL, then the instance
size is not output.

Description

This function creates a copy of the current device path instance. It also updates DevicePathInstance
to point to the next device path instance in the device path (or NULL if no more) and updates
DevicePathInstanceSize to hold the size of the device path instance copy.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the copy of the current device path instance or NULL if
DevicePathInstance was NULL on entry or there was insufficient memory.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()

Summary

Creates a device node

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_UTILS_CREATE_NODE) (

 IN UINT8 NodeType,

 IN UINT8 NodeSubType,

 IN UINT16 NodeLength
);

Parameters

NodeType NodeType is the device node type
(EFI_DEVICE_PATH_PROTOCOL.Type) for the new device node.

NodeSubType NodeSubType is the device node sub-type
(EFI_DEVICE_PATH_PROTOCOL.SubType) for the new device
node.

NodeLength NodeLength is the length of the device node
(EFI_DEVICE_PATH_PROTOCOL.Length) for the new device
node.

Description

This function creates a new device node in a newly allocated buffer.
UEFI Forum, Inc. March 2019 331

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the created device node or NULL if NodeLength is less than the size of
the header or there was insufficient memory.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance()

Summary

Returns whether a device path is multi-instance.

Prototype

typedef

BOOLEAN

(EFIAPI *EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);

Parameters

DevicePath Points to the device path. If NULL, then ignored.

Description

This function returns whether the specified device path has multiple path instances.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns TRUE if the device path has more than one instance or FALSE if it is empty or
contains only a single instance.

10.6 EFI Device Path Display Format Overview

This section describes the recommended conversion between an EFI Device Path Protocol and text. It
also describes standard protocols for implementing these. The goals are:

• Standardized display format. This allows documentation and test tools to understand output
coming from drivers provided by multiple vendors.

• Increase Readability. Device paths need to be read by people, so the format should be in a form
which can be deciphered, maintaining as much as possible the industry standard means of
presenting data. In this case, there are two forms, a display-only form and a parse-able form.

• Round-trip conversion from text to binary form and back to text without loss, if desired.
UEFI Forum, Inc. March 2019 332

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
• Ease of command-line parsing. Since device paths can appear on the command-lines of UEFI
applications executed from a shell, the conversion format should not prohibit basic command-
line processing, either by the application or by a shell.

10.6.1 Design Discussion

The following subsections describe the design considerations for conversion to and from the EFI Device
Path Protocol binary format and its corresponding text form.

10.6.1.1 Standardized Display Format

Before the UEFI 2.0, there was no standardized format for the conversion from the EFI Device Path
protocol and text. Some de-facto standards arose, either as part of the standard implementation or in
descriptive text in the EFI Device Driver Writer’s Guide, although they didn’t agree. The standardized
format attempts to maintain at least the spirit of these earlier ideas.

10.6.1.2 Readability

Since these are conversions to text and, in many cases, users have to read and understand the text form
of the EFI Device Path, it makes sense to make them as readable as reasonably possible. Several
strategies are used to accomplish this:

• Creating simplified forms for well-known device paths. For example, a PCI root Bridge can be
represented as Acpi(PNP0A03,0), but makes more sense as PciRoot(0). When converting from
text to binary form, either form is accepted, but when converting from binary form to text, the
latter is preferred.

• Omitting the conversion of fields which have empty or default values. By doing this, the
average display length is greatly shortened, which improves readability.

10.6.1.3 Round-Trip Conversion

The conversions specified here guarantee at least that conversion to and from the binary representation
of the EFI Device Path will be semantically identical.

Text1 ð Binary1 ð Text2 ð Binary2

Figure 28. Text to Binary Conversion

In Figure 28, the process described in this section is applied to Text1, converting it to Binary1.
Subsequently, Binary1 is converted to Text2. Finally, the Text2 is converted to Binary2. In these cases,
Binary1 and Binary2 will always be identical. Text1 and Text2 may or may not be identical. This is the
result of the fact that the text representation has, in some cases, more than one way of representing the
same EFI Device Path node.

Binary1 ð Text1 ð Binary2 ðText2

Figure 29. Binary to Text Conversion
UEFI Forum, Inc. March 2019 333

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
In Figure 29 the process described in this section is applied to Binary1, converting it to Text1.
Subsequently, Text1 is converted to Binary2. Finally, Binary2 is converted to Text2. In these cases,
Binary1 and Binary2 will always be identical and Text1 and Text2 will always be identical.

Another consideration in round-trip conversion is potential ambiguity in parsing. This happens when the
text representation could be converted into more than type of device node, thus requiring information
beyond that contained in the text representation in order to determine the correct conversion to apply.
In the case of EFI Device Paths, this causes problems primarily with literal strings in the device path, such
as those found in file names, volumes or directories.

For example, the file name Acpi(PNP0A03,0) might be a legal FAT32 file name. However, in parsing this, it
is not clear whether it refers to an Acpi device node or a file name. Thus, it is ambiguous. In order to
prevent ambiguity, certain characters may only be used for device node keywords and may not be used
in file names or directories.

10.6.1.4 Command-Line Parsing

Applications written to this specification need to accept the text representation of EFI device paths as
command-line parameters, possibly in the context of a command-prompt or shell. In order to do this, the
text representation must follow simple guidelines concerning its format.

Command-line parsing generally involves three separate concepts: substitution, redirection and division.

In substitution, the invoker of the application modifies the actual contents of the command-line before it
is passed to the application. For example:

copy *.xyz

In redirection, the invoker of the application gleans from the command line parameters which it uses to,
for example, redirect or pipe input or output. For example:

echo This text is copied to a file >abc

dir | more

Finally, in division, the invoker or the application startup code divides the command-line up into
individual arguments. The following line, for example, has (at least) three arguments, divided by
whitespace.

copy /b file1.info file2.info

10.6.1.5 Text Representation Basics

This section describes the basic rules for the text representation of device nodes and device paths. The
formal grammar describing appears later.

The text representation of a device path (or text device path) consists of one or more text device nodes,
each preceded by a ‘/’ or ‘\’ character. The behavior of a device path where the first node is not preceded
by one of these characters is undefined. Some implementations may treat it as a relative path from a
current working directory.

Spaces are not allowed at any point within the device path except when quoted with double quotes (“).
The ‘|” (bar), ‘<’ (less than) and ‘>’ (greater than) characters are likewise reserved for use by the shell.
UEFI Forum, Inc. March 2019 334

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Figure 30. Device Path Text Representation

There are two types of text device nodes : file-name/directory or canonical. Canonical text device nodes
are prefixed by an option name consisting of only alphanumerical characters, followed by a parenthesis,
followed by option-specific parameters separated by a ‘,’ (comma). File names and directories have no
prefixes.

Figure 31. Text Device Node Names

The canonical device node can have zero or more option parameters between the parentheses. Multiple
option parameters are separated by a comma. The meaning of the option parameters depends primarily
on the option name, then the parameter-identifier (if present) and then the order of appearance in the
parameter list. The parameter identifier allows the text representation to only contain the non-default
option parameter value, even if it would normally appear fourth in the list of option parameters. Missing
parameters do not require the comma unless needed as a placeholder to correctly increment the
parameter count for a subsequent parameter.

Consider:

AcpiEx(HWP0002, PNP0A03,0)

Which could also be written:

AcpiEx(HWP0002,CID=PNP0A03) or

AcpiEx(HWP0002,PNP0A03)

Since CID and UID are optional parameters. Or consider:

 Acpi(HWP0002,0)

Which could also be written:

 Acpi(HWP0002)

Since UID is an optional parameter.

device-path:= \device-node

/device-node

\device-path device-node

/device-path device-node

device-node := standard-device-node | file-name/directory

standard-device-node :=option-name(option-parameters)

file-name/directory := any character except ‘/’ ‘\’ ‘|’ ‘>’ ‘<’
UEFI Forum, Inc. March 2019 335

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Figure 32. Device Node Option Names

10.6.1.6 Text Device Node Reference

In each of the following table rows, a specific device node type and sub-type are given, along with the
most general form of the text representation. Any parameters for the device node are listed in italics. In
each case, the type is listed and along with it what is required or optional, and any default value, if
applicable.

On subsequent lines, alternate representations are listed. In general, these alternate representations are
simplified by the assumption that one or more of the parameters is set to a specific value.

Parameter Types

This section describes the various types of option parameter values.

Table 104. EFI Device Path Option Parameter Values

GUID An EFI GUID in standard format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. See “GUID and Time
Formats” on page 2200.

Keyword In some cases, one of a series of keywords must be listed.

Integer Unless otherwise specified, this indicates an unsigned integer in the range of 0 to 2^32-1. The
value is decimal, unless preceded by “0x” or “0X”, in which case it is hexadecimal.

EISAID A seven character text identifier in the format used by the ACPI specification. The first three
characters must be alphabetic, either upper or lower case. The second four characters are
hexadecimal digits, either numeric, upper case or lower case. Optionally, it can be the number 0.

String Series of alphabetic, numeric and punctuation characters not including a right parenthesis ‘)’, bar
‘|’ less-than ‘<’ or greater than ‘>’ character.

HexDump Series of bytes, represented by two hexadecimal characters per byte. Unless otherwise indicated,
the size is only limited by the length of the device node.

IPv4 Address Series of four integer values (each between 0-255), separated by a ‘.’ Optionally, followed by a ‘:’
and an integer value between 0-65555. If the ‘:’ is not present, then the port value is zero.

IPv6 Address IPv6 Address is expressed in the format [address]:port. The 'address' is expressed in the way
defined in RFC4291 Section 2.2. The ':port' after the [address] is optional. If present, the 'port' is an
integer value between 0-65535 to represent the port number, or else, port number is zero..

option-name := alphanumerical characters string

option-parameters :=option-parameter

option-parameters,option-parameter

option-parameter :=parameter-value

parameter-identifier=parameter-value
UEFI Forum, Inc. March 2019 336

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Table 105. Device Node Table

Device Node Type/SubType/Other Description

(when type is not recognized)
Path(type, subtype, data)
The type is an integer from 0-255.
The sub-type is an integer from 0-255.
The data is a hex dump.

Type: 1 (Hardware Device Path)

(when subtype is not recognized)

HardwarePath(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 1 (Hardware Device Path)
SubType: 1 (PCI)

Pci(Device, Function)

The Device is an integer from 0-31 and is required.
The Function is an integer from 0-7 and is required.

Type: 1 (Hardware Device Path)
SubType: 2 (PcPcard)

PcCard(Function)

The Function is an integer from 0-255 and is required.

Type: 1 (Hardware Device Path)
SubType: 3 (Memory Mapped)

MemoryMapped(EfiMemoryType,StartingAddress, EndingAddress)

The EfiMemoryType is a 32-bit integer and is required.
The StartingAddress and EndingAddress are both 64-bit integers and are
both required.

Type: 1 (Hardware Device Path)
SubType: 4 (Vendor)

VenHw(Guid, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is optional. The default value is zero bytes.

Type: 1 (Hardware Device Path)
SubType: 5 (Controller)

Ctrl(Controller)

The Controller is an integer and is required.

Type: 1 (Hardware Device Path)
SubType: 6 (BMC)

BMC(Type,Address)

The Type is an integer from 0-255, and is required.
The Address is an unsigned 64-bit integer, and is required.

Type: 2 (ACPI Device Path)

(when subtype is not recognized)

AcpiPath(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)

Acpi(HID,UID)

The HID parameter is an EISAID and is required.
The UID parameter is an integer and is optional. The default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0A03

PciRoot(UID)

The UID parameter is an integer. It is optional but required for display. The
default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0A08

PcieRoot(UID)

The UID parameter is an integer. It is optional but required for display. The
default value is zero.
UEFI Forum, Inc. March 2019 337

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0604

Floppy(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0301

Keyboard(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0501

Serial(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0401

ParallelPort(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded Device
Path)

AcpiEx(HID,CID,UID,HIDSTR,CIDSTR,UIDSTR)
AcpiEx(HID|HIDSTR,(CID|CIDSTR,UID|UIDSTR))(Display Only)

The HID parameter is an EISAID. The default value is 0. Either HID or HIDSTR
must be present.
The CID parameter is an EISAID. The default value is 0. Either CID must be 0
or CIDSTR must be empty.
The UID parameter is an integer. The default value is 0. Either UID must be 0
or UIDSTR must be empty.
The HIDSTR is a string. The default value is the empty string. Either HID or
HIDSTR must be present.
The CIDSTR is a string. The default value is an empty string. Either CID must
be 0 or CIDSTR must be empty.
The UIDSTR is a string. The default value is an empty string. Either UID must
be 0 or UIDSTR must be empty.

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded Device
Path)
HIDSTR=empty
CIDSTR=empty
UID STR!=empty

AcpiExp(HID,CID,UIDSTR)

The HID parameter is an EISAID. It is required.
The CID parameter is an EISAID. It is optional and has a default value of 0.
The UIDSTR parameter is a string. If UID is 0 and UIDSTR is empty, then use
AcpiEx format.

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded Device
Path)
HID=PNP0A03 or CID=PNP0A03 and
HID != PNP0A08.

PciRoot(UID|UIDSTR) (Display Only)

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded Device
Path)
HID=PNP0A08 or CID=PNP0A08.

PcieRoot(UID|UIDSTR) (Display Only)

Type: 2 (ACPI Device Path)
SubType: 3 (ACPI ADR Device Path)

AcpiAdr(DisplayDevice[, DisplayDevice...])

The DisplayDevice parameter is an Integer. There may be one or more,
separated by a comma.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 338

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 MessagingPath

(when subtype is not recognized)

Msg(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 3 (Messaging Device Path)
SubType: 1 (ATAPI)

Ata(Controller,Drive,LUN)
Ata(LUN) (Display only)

The Controller is either an integer with a value of 0 or 1 or else the keyword
Primary (0) or Secondary (1). It is required.
The Drive is either an integer with the value of 0 or 1 or else the keyword
Master (0) or Slave (1). It is required.
The LUN is a 16-bit integer. It is required.

Type: 3 (Messaging Device Path)
SubType: 2 (SCSI)

Scsi(PUN,LUN)

The PUN is an integer between 0 and 65535 and is required.
The LUN is an integer between 0 and 65535 and is required.

Type: 3 (Messaging Device Path)
SubType: 3 (Fibre Channel)

Fibre(WWN,LUN)

The WWN is a 64-bit unsigned integer and is required.
The LUN is a 64-bit unsigned integer and is required.

Type: 3 (Messaging Device Path)
SubType: 21 (Fibre Channel Ex)

FibreEx(WWN,LUN)

The WWN is an 8 byte array that is displayed in hexadecimal format with
byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right), and is
required.
The LUN is an 8 byte array that is displayed in hexadecimal format with byte
0 first (i.e., on the left) and byte 7 last (i.e., on the right), and is required.

Type: 3 (Messaging Device Path)
SubType: 4 (1394)

I1394(GUID)

The GUID is a GUID and is required.

Type: 3 (Messaging Device Path)
SubType: 5 (USB)

USB(Port,Interface)

The Port is an integer between 0 and 255 and is required.
The Interface is an integer between 0 and 255 and is required.

Type: 3 (Messaging Device Path)
SubType: 6 (I2O)

I2O(TID)

The TID is an integer and is required.

Type: 3 (Messaging Device Path)
SubType: 9 (Infiniband)

Infiniband(Flags, Guid, ServiceId, TargetId, DeviceId)

Flags is an integer.
Guid is a guid..
ServiceId, TargetId and DeviceId are 64-bit unsigned integers.
All fields are required.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)

VenMsg(Guid, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is option. The default value is zero bytes.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_PC_ANSI_GUID

VenPcAnsi()

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 339

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_100_GIUD

VenVt100()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_100_PLUS_GUID

VenVt100Plus()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_UTF8_GUID

VenUtf8()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=DEVICE_PATH_MESSAGING_UA
RT_FLOW_CONTROL

UartFlowCtrl(Value)

The Value is either an integer with the value 0, 1 or 2 or the keywords
XonXoff (2) or Hardware (1) or None (0).

Type: 3 (Messaging Device Path)
SubType: 10 (Serial Attached SCSI)
Vendor GUID: d487ddb4-008b-11d9-
afdc-001083ffca4d

SAS(Address, LUN, RTP, SASSATA, Location, Connect, DriveBay, Reserved)

The Address is a 64-bit unsigned integer representing the SAS Address and is
required.
The LUN is a 64-bit unsigned integer representing the Logical Unit Number
and is optional. The default value is 0.
The RTP is a 16-bit unsigned integer representing the Relative Target Port
and is optional. The default value is 0.
The SASSATA is a keyword SAS or SATA or NoTopology or an unsigned 16-
bit integer and is optional. The default is NoTopology. If NoTopology or an
integer are specified, then Location, Connect and DriveBay are prohibited. If
SAS or SATA is specified, then Location and Connect are required, but
DriveBay is optional. If an integer is specified, then the topology information
is filled with the integer value.
The Location is an integer between 0 and 1 or else the keyword Internal (0)
or External (1) and is optional. If SASSATA is an integer or NoToplogy, it is
prohibited. The default value is 0.
The Connect is an integer between 0 and 3 or else the keyword Direct (0) or
Expanded (1) and is optional. If SASSATA is an integer or NoTopology, it is
prohibited. The default value is 0.
The DriveBay is an integer between 1 and 256 and is optional unless
SASSATA is an integer or NoTopology, in which case it is prohibited.
The Reserved field is an integer and is optional. The default value is 0.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_DEBUGPORT_
PROTOCOL_GUID

DebugPort()

Type: 3 (Messaging Device Path)
SubType: 11 (MAC Address)

MAC(MacAddr, IfType)

The MacAddr is a Hex Dump and is required. If IfType is 0 or 1, then the
MacAddr must be exactly six bytes.
The IfType is an integer from 0-255 and is optional. The default is zero.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 340

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 12 (IPv4)

IPv4(RemoteIp, Protocol, Type, LocalIp, GatewayIPAddress, SubnetMask)
IPv4(RemoteIp) (Display Only)

The RemoteIp is an IP Address and is required.
The Protocol is an integer between 0 and 255 or else the keyword UDP (17)
or TCP (6). The default value is UDP.
The Type is a keyword, either Static (1) or DHCP (0). It is optional. The
default value is DHCP.
The LocalIp is an IP Address and is optional. The default value is all zeroes.
The GatewayIPAddress is an IP Address and is optional. The default value is
all zeroes.
The SubnetMask is an IP Address and is optional. The default value is all
zeroes.

Type: 3 (Messaging Device Path)
SubType: 13 (IPv6)

IPv6(RemoteIp, Protocol, IPAddressOrigin, LocalIp, GatewayIPAddress,
SubnetMask)
IPv6(RemoteIp) (Display Only)

The RemoteIp is an IPv6 Address and is required.
The Protocol is an integer between 0 and 255 or else the keyword UDP (17)
or TCP (6). The default
value is UDP.
The IPAddressOrigin is a keyword, could be Static (0),
StatelessAutoConfigure (1), or StatefulAutoConfigure (2).
The LocalIp is the IPv6 Address and is optional. The default value is all
zeroes.
The GatewayIPAddress is an IP Address. The PrefixLength is the prefix length
of the Local IPv6 Address.
The GatewayIPAddress is the IPv6 Address of the Gateway.

Type: 3 (Messaging Device Path)
SubType: 14 (UART)

Uart(Baud, DataBits, Parity, StopBits)
The Baud is a 64-bit integer and is optional. The default value is 115200.
The DataBits is an integer from 0 to 255 and is optional. The default value is
8.
The Parity is either an integer from 0-255 or else a keyword and should be D
(0), N (1), E (2), O (3), M (4) or S (5). It is optional. The default value is 0.
The StopBits is a either an integer from 0-255 or else a keyword and should
be D (0), 1 (1), 1.5 (2), 2 (3). It is optional. The default value is 0.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)

UsbClass(VID,PID,Class,SubClass,Protocol)
The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The Class is an integer between 0 and 255 and is optional. The default value
is 0xFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 341

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 1

UsbAudio(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 2

UsbCDCControl(VID,PID,SubClass,Protocol)

The VID is an optional integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an optional integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an optional integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an optional integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 3

UsbHID(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 6

UsbImage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 7

UsbPrinter(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 342

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 8

UsbMassStorage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 9

UsbHub(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 10

UsbCDCData(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 11

UsbSmartCard(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 14

UsbVideo(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 343

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 220

UsbDiagnostic(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 224

UsbWireless(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The default
value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 1

UsbDeviceFirmwareUpdate(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 2

UsbIrdaBridge(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 3

UsbTestAndMeasurement(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The default
value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The default
value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 16 (USB WWID Class)

UsbWwid(VID,PID,InterfaceNumber,”WWID”)

The VID is an integer between 0 and 65535 and is required.
The PID is an integer between 0 and 65535 and is required.
The InterfaceNumber is an integer between 0 and 255 and is required.
The WWID is a string and is required.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 344

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 17 (Logical Unit Class)

Unit(LUN)

The LUN is an integer and is required.

Type: 3 (Messaging Device Path)
SubType: 18 (SATA)

Sata(HPN, PMPN, LUN)

The HPN is an integer between 0 and 65534 and is required.
The PMPN is an integer between 0 and 65535 and is optional. If not
provided, the default is 0xFFFF, which implies no port multiplier.
The LUN is a 16-bit integer. It is required. Note that LUN is applicable to
ATAPI devices only, and most ATAPI devices assume LUN=0

Type: 3 (Messaging Device Path)
SubType: 19 (iSCSI)

iSCSI(TargetName, PortalGroup, LUN, HeaderDigest, DataDigest,
Authentication, Protocol)

The TargetName is a string and is required.
The PortalGroup is an unsigned 16-bit integer and is required.
The LUN is an 8 byte array that is displayed in hexadecimal format with byte
0 first (i.e., on the left) and byte 7 last (i.e, on the right), and is required.
The HeaderDigest is a keyword None or CRC32C is optional. The default is
None.
The DataDigest is a keyword None or CRC32C is optional. The default is
None.
The Authentication is a keyword None or CHAP_BI or CHAP_UNI and
optional. The default is None.
The Protocol defines the network protocol used by iSCSI and is optional. The
default is TCP.

Type: 3 (Messaging Device Path)
SubType: 20 (VLAN)

Vlan(VlanId)

Type: 3 (Messaging Device Path)
SubType: 22 (Serial Attached SCSI Ex)

SasEx(Address, LUN, RTP, SASSATA, Location, Connect, DriveBay)

The Address is an 8 byte array that is displayed in hexadecimal format with
byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right), and is
required.
The LUN is an 8 byte array that is displayed in hexadecimal format with byte
0 first (i.e., on the left) and byte 7 last (i.e., on the right), and is optional. The
default value is 0.
The RTP is a 16-bit unsigned integer representing the Relative Target Port
and is optional. The default value is 0.
The SASSATA is a keyword SAS or SATA or NoTopology or an unsigned 16-
bit integer and is optional. The default is NoTopology. If NoTopology or an
integer are specified, then Location, Connect and DriveBay are prohibited. If
SAS or SATA is specified, then Location and Connect are required, but
DriveBay is optional. If an integer is specified, then the topology information
is filled with the integer value.
The Location is an integer between 0 and 1 or else the keyword Internal (0)
or External (1) and is optional. If SASSATA is an integer or NoToplogy, it is
prohibited. The default value is 0.
The Connect is an integer between 0 and 3 or else the keyword Direct (0) or
Expanded (1) and is optional. If SASSATA is an integer or NoTopology, it is
prohibited. The default value is 0.
The DriveBay is an integer between 1 and 256 and is optional unless
SASSATA is an integer or NoTopology, in which case it is prohibited.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 345

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 23 (NVM Express
Namespace)

NVMe(NSID,EUI)

The NSID is a namespace identifier that is displayed in hexadecimal format
with an integer value between 0 and 0xFFFFFFFF.
The EUI is the IEEE Extended Unique Identifier (EUI-64) that is displayed in
hexadecimal format represented as a set of octets separated by dashes
(hexadecimal notation), e.g., FF-FF-FF-FF-FF-FF-FF-FF.

Type: 3 (Messaging Device Path)
SubType: 24 (URI)

Uri(Uri) 

The Uri is optional.

Type: 3 (Messaging Device Path)
SubType: 25 (Universal Flash Storage)

UFS(PUN,LUN)
The PUN is 0 for current UFS2.0 spec. For future UFS specs which support
multiple devices on a UFS port, it would reflect the device ID on the UFS
port.
The LUN is 0-7 for common LUNs or 81h, D0h, B0h and C4h for well-known
LUNs supported by UFS.

Type: 3 (Messaging Device Path)
SubType: 26 (SD)

SD(Slot Number)
SlotNumber is an integer. It is optional and has a default value of 0.

Type: 3 (Messaging Device Path)
SubType: 27 (Bluetooth)

Bluetooth(BD_ADDR)

BD_ADDR is HEX dump of 48-bit Bluetooth device address.

Type: 3 (Messaging Device Path)|
SubType: 28 (Wi-Fi)

Wi-Fi(SSID)
The SSID is a string and is required.

Type: 3 (Messaging Device Path)
SubType: 29 (eMMC)

eMMC(SlotNumber)
SlotNumber is an integer. It is optional and has a default value of 0.

Type: 3 (Messaging Device Path)
SubType: 30 (BluetoothLE)

BluetoothLE(BD_ADDR, AddressType)
BD_ADDR is HEX dump of 48-bit Bluetooth device address.
AddressType is an integer.

Type: 3 (Messaging Device Path)
SubType: 31 (DNS)

Dns(DnsServerIp[, DnsServerIp…])
DnsServerIp is optional. It is the IP address of DNS server.

Type: 3 (Messaging Device Path)
SubType: 32 (REST Service)

RestService(RestExServiceType, AccessMode)

For vendor-specific REST service:
RestService(RestExServiceType, AccessMode, VendorRestServiceGuid,
VendorDefinedData)
RestExServiceType is 0xff in this case.

Type: 4 (Media Device Path)
(when subtype is not recognized)

MediaPath(subtype, data)
The subtype is an integer from 0-255 and is required.
The data is a hex dump.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 346

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Type: 4 (Media Device Path)
SubType: 1 (Hard Drive)

HD(Partition,Type,Signature,Start, Size)
HD(Partition,Type,Signature) (Display Only)

The Partition is an integer representing the partition number. It is optional
and the default is 0. If Partition is 0, then Start and Size are prohibited.
The Type is an integer between 0-255 or else the keyword MBR (1) or GPT
(2). The type is optional and the default is 2.
The Signature is an integer if Type is 1 or else GUID if Type is 2. The signature
is required.
The Start is a 64-bit unsigned integer. It is prohibited if Partition is 0.
Otherwise it is required.
The Size is a 64-bit unsigned integer. It is prohibited if Partition is 0.
Otherwise it is required.

Type: 4 (Media Device Path)
SubType: 2 (CD-ROM)

CDROM(Entry,Start,Size)
CDROM(Entry) (Display Only)

The Entry is an integer representing the Boot Entry from the Boot Catalog. It
is optional and the default is 0.
The Start is a 64-bit integer and is required.
The Size is a 64-bit integer and is required.

Type: 4 (Media Device Path)
SubType: 3 (Vendor)

VenMedia(GUID, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is option. The default value is zero bytes.

Type: 4 (Media Device Path)
SubType: 4 (File Path)

String

The String is the file path and is a string.

Type: 4 (Media Device Path)
SubType: 5 (Media Protocol)

Media(Guid)

The Guid is a GUID and is required.

Type: 4 (Media Device Path)
SubType: 6 (PIWG Firmware File)

Contents are defined in the UEFI PI Specification.

Type: 4 (Media Device Path)
SubType: 7 (PIWG Firmware Volume)

Contents are defined in the UEFI PI Specification.

Type: 4 (Media Device Path)
SubType: 8 (Relative Offset Range)

Offset(StartingOffset,EndingOffset)
The StartingOffset is an unsigned 64-bit integer. The EndingOffset is an
unsigned 64-bit integer.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)

RamDisk (StartingAddress,EndingAddress,DiskInstance,DiskTypeGuid)

The StartingAddress and EndingAddress are both 64-bit integers and are
both required.
The DiskInstance is a 16-bit integer and is optional. The default value is 0.
The DiskTypeGuid is a GUID and is required.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_VIRTUAL_DISK_GUID

VirtualDisk StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and are
both required.
The DiskInstance is a 16-bit integer and is optional. The default value is 0.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 347

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
10.6.2 Device Path to Text Protocol

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL

Summary

Convert device nodes and paths to text.

GUID

#define EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID \

 {0x8b843e20,0x8132,0x4852,\

 {0x90,0xcc,0x55,0x1a,0x4e,0x4a,0x7f,0x1c}}

Protocol Interface Structure

typedef struct _EFI_DEVICE_PATH_TO_TEXT_PROTOCOL {

 EFI_DEVICE_PATH_TO_TEXT_NODE ConvertDeviceNodeToText;

 EFI_DEVICE_PATH_TO_TEXT_PATH ConvertDevicePathToText;

} EFI_DEVICE_PATH_TO_TEXT_PROTOCOL;

Parameters

ConvertDeviceNodeToText Converts a device node to text.

ConvertDevicePathToText Converts a device path to text.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_VIRTUAL_CD_GUID

VirtualCD(StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and are
both required.
The DiskInstance is a 16-bit integer and is optional. The default value is 0.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_PERSISTENT_VIRTUAL_DISK_GUID

PersistentVirtualDisk (StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and are
both required.
The DiskInstance is a 16-bit integer and is optional. The default value is 0.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_PERSISTENT_VIRTUAL_CD_GUID

PersistentVirtualCD(StartingAddress,EndingAddress,DiskInstance)
The StartingAddress and EndingAddress are both 64-bit integers and are
both required.
The DiskInstance is a 16-bit integer and is optional. The default value is 0.

Type: 5 (Media Device Path)

(when subtype is not recognized)

BbsPath(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 5 (BIOS Boot Specification Device
Path)
SubType: 1 (BBS 1.01)

BBS(Type,Id,Flags)
BBS(Type, Id) (Display Only)
The Type is an integer from 0-65535 or else one of the following keywords:
Floppy (1), HD (2), CDROM (3), PCMCIA (4), USB (5), Network (6). It is
required.
The Id is a string and is required.
The Flags are an integer and are optional. The default value is 0.

Device Node Type/SubType/Other Description
UEFI Forum, Inc. March 2019 348

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Description

The EFI_DEVICE_PATH_TO_TEXT_PROTOCOL provides common utility functions for converting device
nodes and device paths to a text representation.

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText()

Summary

Convert a device node to its text representation.

Prototype

typedef

CHAR16*

(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_NODE) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL* DeviceNode,
 IN BOOLEAN DisplayOnly,

 IN BOOLEAN AllowShortcuts

);

Parameters

DeviceNode Points to the device node to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation of the
display node is used, where applicable. If DisplayOnly is FALSE,
then the longer text representation of the display node is used.

AllowShortcuts If AllowShortcuts is TRUE, then the shortcut forms of text
representation for a device node can be used, where applicable.

Description

The ConvertDeviceNodeToText function converts a device node to its text representation and copies it
into a newly allocated buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only) form of
the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node cannot
be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns the pointer to the allocated text representation of the device node data or else
NULL if DeviceNode was NULL or there was insufficient memory.
UEFI Forum, Inc. March 2019 349

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()

Summary

Convert a device path to its text representation.

Prototype

typedef

CHAR16*

(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_PATH) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN BOOLEAN DisplayOnly,

 IN BOOLEAN AllowShortcuts

);

Parameters

DeviceNode Points to the device path to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation of the
display node is used, where applicable. If DisplayOnly is FALSE,
then the longer text representation of the display node is used.

AllowShortcuts The AllowShortcuts is FALSE, then the shortcut forms of text
representation for a device node cannot be used.

Description

This function converts a device path into its text representation and copies it into an allocated buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only) form of
the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node cannot
be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the allocated text representation of the device node or NULL if
DevicePath was NULL or there was insufficient memory.

10.6.3 Device Path from Text Protocol

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL

Summary

Convert text to device paths and device nodes.
UEFI Forum, Inc. March 2019 350

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
GUID

#define EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL_GUID \

 {0x5c99a21,0xc70f,0x4ad2,\

 {0x8a,0x5f,0x35,0xdf,0x33,0x43,0xf5, 0x1e}}

Protocol Interface Structure

typedef struct _EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL {

 EFI_DEVICE_PATH_FROM_TEXT_NODE ConvertTextToDevicNode;

 EFI_DEVICE_PATH_FROM_TEXT_PATH ConvertTextToDevicPath;

} EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL;

Parameters

ConvertTextToDeviceNode Converts text to a device node.

ConvertTextToDevicePath Converts text to a device path.

Description

The EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL provides common utilities for converting text to
device paths and device nodes.

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()

Summary

Convert text to the binary representation of a device node.

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_FROM_TEXT_NODE) (

 IN CONST CHAR16* TextDeviceNode

);

Parameters

TextDeviceNode TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues until
the first non-device node character.

Description

This function converts text to its binary device node representation and copies it into an allocated buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.
UEFI Forum, Inc. March 2019 351

UEFI Specification, Version 2.8 Protocols — Device Path Protocol
Returns

This function returns a pointer to the EFI device node or NULL if TextDeviceNode is NULL or there was
insufficient memory.

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDevicePath()

Summary

Convert a text to its binary device path representation.

Prototype

typedef

EFI_DEVICE_PATH_PROTOCOL*

(EFIAPI *EFI_DEVICE_PATH_FROM_TEXT_PATH) (

 IN CONST CHAR16* TextDevicePath

);

Parameters

TextDevicePath TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues until
the first non-device path character.

Description

This function converts text to its binary device path representation and copies it into an allocated buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the
memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

Returns

This function returns a pointer to the allocated device path or NULL if TextDevicePath is NULL or there
was insufficient memory.
UEFI Forum, Inc. March 2019 352

UEFI Specification, Version 2.8
11 - Protocols — UEFI Driver Model

EFI drivers that follow the UEFI Driver Model are not allowed to search for controllers to manage. When a
specific controller is needed, the EFI boot service EFI_BOOT_SERVICES.ConnectController() is
used along with the EFI_DRIVER_BINDING_PROTOCOL services to identify the best drivers for a
controller. Once ConnectController() has identified the best drivers for a controller, the start
service in the EFI_DRIVER_BINDING_PROTOCOL is used by ConnectController() to start each
driver on the controller. Once a controller is no longer needed, it can be released with the EFI boot
service EFI_BOOT_SERVICES.DisconnectController(). DisconnectController() calls the
stop service in each EFI_DRIVER_BINDING_PROTOCOL to stop the controller.

The driver initialization routine of an UEFI driver is not allowed to touch any device hardware. Instead, it
just installs an instance of the EFI_DRIVER_BINDING_PROTOCOL on the ImageHandle of the UEFI
driver. The test to determine if a driver supports a given controller must be performed in as little time as
possible without causing any side effects on any of the controllers it is testing. As a result, most of the
controller initialization code is present in the start and stop services of the
EFI_DRIVER_BINDING_PROTOCOL.

11.1 EFI Driver Binding Protocol

This section provides a detailed description of the EFI_DRIVER_BINDING_PROTOCOL. This protocol is
produced by every driver that follows the UEFI Driver Model, and it is the central component that allows
drivers and controllers to be managed. It provides a service to test if a specific controller is supported by
a driver, a service to start managing a controller, and a service to stop managing a controller. These
services apply equally to drivers for both bus controllers and device controllers.

EFI_DRIVER_BINDING_PROTOCOL

Summary

Provides the services required to determine if a driver supports a given controller. If a controller is
supported, then it also provides routines to start and stop the controller.

GUID

#define EFI_DRIVER_BINDING_PROTOCOL_GUID \

{0x18A031AB,0xB443,0x4D1A,\

 {0xA5,0xC0,0x0C,0x09,0x26,0x1E,0x9F,0x71}}

Protocol Interface Structure

typedef struct _EFI_DRIVER_BINDING_PROTOCOL {

 EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED Supported;
 EFI_DRIVER_BINDING_PROTOCOL_START Start;
 EFI_DRIVER_BINDING_PROTOCOL_STOP Stop;
 UINT32 Version;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DriverBindingHandle;
} EFI_DRIVER_BINDING_PROTOCOL;
UEFI Forum, Inc. March 2019 353

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Parameters

Supported Tests to see if this driver supports a given controller. This service is
called by the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). In order to make
drivers as small as possible, there are a few calling restrictions for
this service. ConnectController() must follow these calling
restrictions. If any other agent wishes to call Supported() it must
also follow these calling restrictions. See the Supported() function
description.

Start Starts a controller using this driver. This service is called by the EFI
boot service ConnectController(). In order to make drivers as small
as possible, there are a few calling restrictions for this service.
ConnectController() must follow these calling restrictions. If any
other agent wishes to call Start() it must also follow these calling
restrictions. See the Start() function description.

Stop Stops a controller using this driver. This service is called by the EFI
boot service EFI_BOOT_SERVICES.DisconnectController().
In order to make drivers as small as possible, there are a few calling
restrictions for this service. DisconnectController() must follow
these calling restrictions. If any other agent wishes to call Stop() it
must also follow these calling restrictions. See the Stop() function
description.

Version The version number of the UEFI driver that produced the
EFI_DRIVER_BINDING_PROTOCOL. This field is used by the EFI boot
service ConnectController() to determine the order that driver's
Supported() service will be used when a controller needs to be
started. EFI Driver Binding Protocol instances with higher Version
values will be used before ones with lower Version values. The
Version values of 0x0-0x0f and 0xfffffff0-0xffffffff are reserved for
platform/OEM specific drivers. The Version values of 0x10-0xffffffef
are reserved for IHV-developed drivers.

ImageHandle The image handle of the UEFI driver that produced this instance of
the EFI_DRIVER_BINDING_PROTOCOL.

DriverBindingHandle The handle on which this instance of the
EFI_DRIVER_BINDING_PROTOCOL is installed. In most cases, this is
the same handle as ImageHandle. However, for UEFI drivers that
produce more than one instance of the
EFI_DRIVER_BINDING_PROTOCOL, this value may not be the same
as ImageHandle.

Description

The EFI_DRIVER_BINDING_PROTOCOL provides a service to determine if a driver supports a given
controller. If a controller is supported, then it also provides services to start and stop the controller. All
UEFI drivers are required to be reentrant so they can manage one or more controllers. This requires that
drivers not use global variables to store device context. Instead, they must allocate a separate context
structure per controller that the driver is managing. Bus drivers must support starting and stopping the
same bus multiple times, and they must also support starting and stopping all of their children, or just a
subset of their children.
UEFI Forum, Inc. March 2019 354

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_DRIVER_BINDING_PROTOCOL.Supported()

Summary

Tests to see if this driver supports a given controller. If a child device is provided, it further tests to see if
this driver supports creating a handle for the specified child device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED) (

 IN EFI_DRIVER_BINDING_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.

ControllerHandle The handle of the controller to test. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
Sometimes just the presence of this I/O abstraction is enough for the
driver to determine if it supports ControllerHandle. Sometimes, the
driver may use the services of the I/O abstraction to determine if this
driver supports ControllerHandle.

RemainingDevicePath A pointer to the remaining portion of a device path. For bus drivers,
if this parameter is not NULL, then the bus driver must determine if
the bus controller specified by ControllerHandle and the child
controller specified by RemainingDevicePath are both supported by
this bus driver.

Description

This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to ControllerHandle and/or the
services from the bus I/O abstraction attached to ControllerHandle to determine if the driver supports
ControllerHandle. This function may be called many times during platform initialization. In order to
reduce boot times, the tests performed by this function must be very small, and take as little time as
possible to execute. This function must not change the state of any hardware devices, and this function
must be aware that the device specified by ControllerHandle may already be managed by the same driver
or a different driver. This function must match its calls to EFI_BOOT_SERVICES.AllocatePages()
with EFI_BOOT_SERVICES.FreePages(), EFI_BOOT_SERVICES.AllocatePool() with
EFI_BOOT_SERVICES.FreePool(), and EFI_BOOT_SERVICES.OpenProtocol() with
EFI_BOOT_SERVICES.CloseProtocol(). Since ControllerHandle may have been previously started
by the same driver, if a protocol is already in the opened state, then it must not be closed with
CloseProtocol(). This is required to guarantee the state of ControllerHandle is not modified by this
function.
UEFI Forum, Inc. March 2019 355

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
If any of the protocol interfaces on the device specified by ControllerHandle that are required by the
driver specified by This are already open for exclusive access by a different driver or application, then
EFI_ACCESS_DENIED is returned.

If any of the protocol interfaces on the device specified by ControllerHandle that are required by the
driver specified by This are already opened by the same driver, then EFI_ALREADY_STARTED is
returned. However, if the driver specified by This is a bus driver, then it is not an error, and the bus
driver should continue with its test of ControllerHandle and RemainingDevicePath. This allows a
bus driver to create one child handle on the first call to Supported() and Start(), and create
additional child handles on additional calls to Supported() and Start().This also allows a bus driver
to create no child handle on the first call to Supported() and Start() by specifying an End of Device
Path Node RemainingDevicePath, and create additional child handles on additional calls to
Supported() and Start().

If ControllerHandle is not supported by This, then EFI_UNSUPPORTED is returned.

If This is a bus driver that creates child handles with an EFI_DEVICE_PATH_PROTOCOL, then
ControllerHandle must support the EFI_DEVICE_PATH_PROTOCOL. If it does not, then
EFI_UNSUPPORTED is returned.

If ControllerHandle is supported by This, and This is a device driver, then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and RemainingDevicePath is NULL or
the first Device Path Node is the End of Device Path Node, then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and RemainingDevicePath is not NULL,
then RemainingDevicePath must be analyzed. If the first node of RemainingDevicePath is the End of
Device Path Node or an EFI Device Path node that the bus driver recognizes and supports, then
EFI_SUCCESS is returned. Otherwise, EFI_UNSUPPORTED is returned.

The Supported() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). As a result, much of the error checking on the
parameters to Supported() has been moved into this common boot service. It is legal to call
Supported() from other locations, but the following calling restrictions must be followed or the system
behavior will not be deterministic.

ControllerHandle must be a valid EFI_HANDLE. If RemainingDevicePath is not NULL, then it must be a
pointer to a naturally aligned EFI_DEVICE_PATH_PROTOCOL.
UEFI Forum, Inc. March 2019 356

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only

EFI_SUCCESS The device specified by ControllerHandle and RemainingDevicePath
is supported by the driver specified by This.

EFI_ALREADY_STARTED The device specified by ControllerHandle and RemainingDevicePath
is already being managed by the driver specified by This.

EFI_ACCESS_DENIED The device specified by ControllerHandle and RemainingDevicePath
is already being managed by a different driver or an application that requires
exclusive access.

EFI_UNSUPPORTED The device specified by ControllerHandle and RemainingDevicePath
is not supported by the driver specified by This.
UEFI Forum, Inc. March 2019 357

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI_SUCCESS if the SCSI driver supports creating the
// child handle for PUN=3, LUN=0. Otherwise it would return an error.
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
return Status;

Pseudo Code

Listed below are the algorithms for the Supported() function for three different types of drivers. How
the Start() function of a driver is implemented can affect how the Supported() function is
implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to work together to
make sure that all resources opened or allocated in Supported() and Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only attaches
one or more protocols to an existing handle. The second is a bus driver that always creates all of its child
handles on the first call to Start(). The third is a more advanced bus driver that can either create one
child handles at a time on successive calls to Start(), or it can create all of its child handles or all of the
remaining child handles in a single call to Start().

Device Driver:

1. Ignore the parameter RemainingDevicePath.

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard driver
should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs
exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and return
EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().

6. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure it is
the End of Device Path Node or a legal Device Path Node for this bus driver’s children. If it is
not, then return EFI_UNSUPPORTED.
UEFI Forum, Inc. March 2019 358

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard driver
should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs
exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and return
EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().

6. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure it is
the End of Device Path Node or a legal Device Path Node for this bus driver’s children. If it is
not, then return EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access to a
protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER
| EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) failed with an error other than
EFI_ALREADY_STARTED, then close all of the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol(), and return the status code from the
OpenProtocol() call that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol() and return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) that did not return EFI_ALREADY_STARTED with
CloseProtocol().

6. Return EFI_SUCCESS.

Listed below is sample code of the Supported() function of device driver for a device on the XYZ bus.
The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. Just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver supports
ControllerHandle. The gBS variable is initialized in this driver’s entry point. See Section 4.

extern EFI_GUID gEfiXyzIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcSupported (
UEFI Forum, Inc. March 2019 359

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;

 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

 return EFI_SUCCESS;
}

EFI_DRIVER_BINDING_PROTOCOL.Start()

Summary

Starts a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_START) (

 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,

 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL

);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.

ControllerHandle The handle of the controller to start. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
UEFI Forum, Inc. March 2019 360

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
RemainingDevicePath A pointer to the remaining portion of a device path. For a bus driver,
if this parameter is NULL, then handles for all the children of
Controller are created by this driver.

If this parameter is not NULL and the first Device Path Node is not
the End of Device Path Node, then only the handle for the child
device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.

If the first Device Path Node of RemainingDevicePath is the End
of Device Path Node, no child handle is created by this driver.

Description

This function starts the device specified by Controller with the driver specified by This. Whatever
resources are allocated in Start() must be freed in Stop(). For example, every
EFI_BOOT_SERVICES.AllocatePool(), EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.OpenProtocol(), and
EFI_BOOT_SERVICES.InstallProtocolInterface() in Start() must be matched with a
EFI_BOOT_SERVICES.FreePool(), EFI_BOOT_SERVICES.FreePages(),
EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.UninstallProtocolInterface() in Stop().

If Controller is started, then EFI_SUCCESS is returned.

If Controller could not be started, but can potentially be repaired with configuration or repair
operations using the EFI_DRIVER_HEALTH_PROTOCOL and this driver produced an instance of the
EFI_DRIVER_HEALTH_PROTOCOL for Controller, then return EFI_SUCESS.

If Controller cannot be started due to a device error and the driver does not produce the
EFI_DRIVER_HEALTH_PROTOCOL for Controller, then return EFI_DEVICE_ERROR.

If the driver does not support Controller then EFI_DEVICE_ERROR is returned. This condition will
only be met if Supported() returns EFI_SUCCESS and a more extensive supported check in Start()
fails.

If there are not enough resources to start the device or bus specified by Controller, then
EFI_OUT_OF_RESOURCES is returned.

If the driver specified by This is a device driver, then RemainingDevicePath is ignored.

If the driver specified by This is a bus driver, and RemainingDevicePath is NULL, then all of the
children of Controller are discovered and enumerated, and a device handle is created for each child.

If the driver specified by This is a bus driver, and RemainingDevicePath is not NULL and begins with
the End of Device Path node, then the driver must not enumerate any of the children of Controller nor
create any child device handle. Only the controller initialization should be performed. If the driver
implements EFI_DRIVER_DIAGNOSTICS2_PROTOCOL, EFI_COMPONENT_NAME2_PROTOCOL,
EFI_SERVICE_BINDING_PROTOCOL, EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL, or
EFI_DRIVER_HEALTH_PROTOCOL, the driver still should install the implemented protocols. If the driver
supports EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL, the driver still should retrieve
and process the configuration information.

If the driver specified by This is a bus driver that is capable of creating one child handle at a time and
RemainingDevicePath is not NULL and does not begin with the End of Device Path node, then an attempt
UEFI Forum, Inc. March 2019 361

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
is made to create the device handle for the child device specified by RemainingDevicePath. Depending on
the bus type, all of the child devices may need to be discovered and enumerated, but at most only the
device handle for the one child specified by RemainingDevicePath shall be created.

The Start() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). As a result, much of the error checking on the
parameters to Start() has been moved into this common boot service. It is legal to call Start() from
other locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.

• ControllerHandle must be a valid EFI_HANDLE.
• If RemainingDevicePath is not NULL, then it must be a pointer to a

naturally aligned EFI_DEVICE_PATH_PROTOCOL.
• Prior to calling Start(), the Supported() function for the driver

specified by This must have been called with the same calling
parameters, and Supported() must have returned EFI_SUCCESS.

Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

EFI_SUCCESS The device was started.

EFI_SUCCESS The device could not be started because the device needs to be

configured by the user or requires a repair operation, and the driver

produced the Driver Health Protocol that will return the required

configuration and repair operations for this device.

EFI_DEVICE_ERROR The driver does not produce the Driver Health Protocol and the

device could not be started due to a device error.

EFI_DEVICE_ERROR The driver produces the Driver Health Protocol, and the driver does

not support the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 362

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 NULL
); 
}

return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI_SUCCESS if the SCSI driver supports creating the
// child handle for PUN=3, LUN=0. Otherwise it would return an error.
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
}

return Status;
UEFI Forum, Inc. March 2019 363

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Pseudo Code

Listed below are the algorithms for the Start() function for three different types of drivers. How the
Start() function of a driver is implemented can affect how the Supported() function is implemented.
All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to work together to make sure that all
resources opened or allocated in Supported() and Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only attaches
one or more protocols to an existing handle. The second is a simple bus driver that always creates all of
its child handles on the first call to Start(). It does not attach any additional protocols to the handle for
the bus controller. The third is a more advanced bus driver that can either create one child handles at a
time on successive calls to Start(), or it can create all of its child handles or all of the remaining child
handles in a single call to Start(). Once again, it does not attach any additional protocols to the handle
for the bus controller.

Device Driver:
1. Ignore the parameter RemainingDevicePath..

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard driver
should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs
exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved with
the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can be resolved with the
EFI_DRIVER_HEALTH_PROTOCOL, then produce the EFI_DRIVER_HEALTH_PROTOCOL for
ControllerHandle and make sure EFI_SUCESS is returned from Start(). In this case,
depending on the type of error detected, not all of the following steps may be completed

5. Allocate and initialize all of the data structures that this driver requires to manage the device
specified by ControllerHandle. This would include space for public protocols and space for
any additional private data structures that are related to ControllerHandle. If an error
occurs allocating the resources, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

6. Install all the new protocol interfaces onto ControllerHandle using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). If an error occurs,
close all of the protocols opened in (1) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

7. Return EFI_SUCCESS.
UEFI Forum, Inc. March 2019 364

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Bus Driver that creates all of its child handles on the first call to Start():
1. Ignore the parameter RemainingDevicePath. with the exception that if the first Device Path

Node is the End of Device Path Node, skip steps 5-8.

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard driver
should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs
exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved
with the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can be resolved with
the EFI_DRIVER_HEALTH_PROTOCOL, then produce the EFI_DRIVER_HEALTH_PROTOCOL
for ControllerHandle and make sure EFI_SUCESS is returned from Start(). In this case,
depending on the type of error detected, not all of the following steps may be completed.

5. Discover all the child devices of the bus controller specified by ControllerHandle.

6. If the bus requires it, allocate resources to all the child devices of the bus controller specified
by ControllerHandle.

7. FOR each child C of ControllerHandle:

a Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional private
data structures that are related to the child device C. If an error occurs allocating the
resources, then close all of the protocols opened in (2) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c Initialize the child device C. If an error occurs, close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR.

d Create a new handle for C, and install the protocol interfaces for child device C using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). This may include
the EFI_DEVICE_PATH_PROTOCOL.

e Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

8. END FOR

9. If the bus driver also produces protocols on ControllerHandle, then install all the new
protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the protocols
UEFI Forum, Inc. March 2019 365

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
opened in (2) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

10. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():
1. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard driver

should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs
exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

2. If any of the calls to OpenProtocol() in (1) returned an error, then close all of the protocols
opened in (1) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

3. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (1) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved
with the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (1) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can be resolved with
the EFI_DRIVER_HEALTH_PROTOCOL, then produce the EFI_DRIVER_HEALTH_PROTOCOL
for ControllerHandle and make sure EFI_SUCESS is returned from Start(). In this case,
depending on the type of error detected, not all of the following steps may be completed.

4. IF RemainingDevicePath is not NULL, THEN

a C is the child device specified by RemainingDevicePath. If the first Device Path Node is
the End of Device Path Node, proceed to step 6.

b Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional private
data structures that are related to the child device C. If an error occurs allocating the
resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

c If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

d Initialize the child device C.

e Create a new handle for C, and install the protocol interfaces for child device C using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). This may include
the EFI_DEVICE_PATH_PROTOCOL.

f Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

ELSE

a Discover all the child devices of the bus controller specified by ControllerHandle.

b If the bus requires it, allocate resources to all the child devices of the bus controller
specified by ControllerHandle.

c FOR each child C of ControllerHandle
UEFI Forum, Inc. March 2019 366

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Allocate and initialize all of the data structures that this driver requires to manage
the child device C. This would include space for public protocols and space for any
additional private data structures that are related to the child device C. If an error
occurs allocating the resources, then close all of the protocols opened in (1) with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.
If the bus driver creates device paths for the child devices, then create a device
path for the child C based upon the device path attached to ControllerHandle.
Initialize the child device C.
Create a new handle for C, and install the protocol interfaces for child device C
using InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH_PROTOCOL.
Call EFI_BOOT_SERVICES.OpenProtocol() on behalf of the child C with an
Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

d END FOR

5. END IF

6. If the bus driver also produces protocols on ControllerHandle, then install all the new
protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the protocols
opened in (2) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

7. Return EFI_SUCCESS.

Listed below is sample code of the Start() function of a device driver for a device on the XYZ bus. The
XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver supports
ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on ControllerHandle. The gBS
variable is initialized in this driver’s entry point as shown in the UEFI Driver Model examples in
Section 1.6.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcStart (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Open the Xyz I/O Protocol that this driver consumes
 //
UEFI Forum, Inc. March 2019 367

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Allocate and zero a private data structure for the Abc device.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_ABC_DEVICE),
 &AbcDevice
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }
 ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE));

 //
 // Initialize the contents of the private data structure for the Abc device.
 // This includes the XyzIo protocol instance and other private data fields
 // and the EFI_ABC_IO_PROTOCOL instance that will be installed.
 //
 AbcDevice->Signature = EFI_ABC_DEVICE_SIGNATURE;
 AbcDevice->XyzIo = XyzIo;

 AbcDevice->PrivateData1 = PrivateValue1;
 AbcDevice->PrivateData2 = PrivateValue2;
 . . .
 AbcDevice->PrivateDataN = PrivateValueN;

 AbcDevice->AbcIo.Revision = EFI_ABC_IO_PROTOCOL_REVISION;
 AbcDevice->AbcIo.Func1 = AbcIoFunc1;
 AbcDevice->AbcIo.Func2 = AbcIoFunc2;
 . . .
 AbcDevice->AbcIo.FuncN = AbcIoFuncN;

 AbcDevice->AbcIo.Data1 = Value1;
 AbcDevice->AbcIo.Data2 = Value2;
 . . .
 AbcDevice->AbcIo.DataN = ValueN;

 //
 // Install protocol interfaces for the ABC I/O device.
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
UEFI Forum, Inc. March 2019 368

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 NULL
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }

 return EFI_SUCCESS;

ErrorExit:
 //
 // When there is an error, the private data structures need to be freed and
 // the protocols that were opened need to be closed.
 //
 if (AbcDevice != NULL) {
 gBS->FreePool (AbcDevice);
 }
 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);
 return Status;
}

EFI_DRIVER_BINDING_PROTOCOL.Stop()

Summary

Stops a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_STOP) (

 IN EFI_DRIVER_BINDING_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN UINTN NumberOfChildren,

 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL

);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. Type
EFI_DRIVER_BINDING_PROTOCOL is defined in Section 11.1.

ControllerHandle A handle to the device being stopped. The handle must support a
bus specific I/O protocol for the driver to use to stop the device.

NumberOfChildren The number of child device handles in ChildHandleBuffer.

ChildHandleBuffer An array of child handles to be freed. May be NULL if
NumberOfChildren is 0.
UEFI Forum, Inc. March 2019 369

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Description

This function performs different operations depending on the parameter NumberOfChildren. If
NumberOfChildren is not zero, then the driver specified by This is a bus driver, and it is being requested to
free one or more of its child handles specified by NumberOfChildren and ChildHandleBuffer. If all of the
child handles are freed, then EFI_SUCCESS is returned. If NumberOfChildren is zero, then the driver
specified by This is either a device driver or a bus driver, and it is being requested to stop the controller
specified by ControllerHandle. If ControllerHandle is stopped, then EFI_SUCCESS is returned. In either
case, this function is required to undo what was performed in Start(). Whatever resources are
allocated in Start() must be freed in Stop(). For example, every
EFI_BOOT_SERVICES.AllocatePool(), EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.OpenProtocol(), and
EFI_BOOT_SERVICES.InstallProtocolInterface() in Start() must be matched with a
EFI_BOOT_SERVICES.FreePool(), EFI_BOOT_SERVICES.FreePages(),
EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.UninstallProtocolInterface() in Stop().

If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If, for some reason, there
are not enough resources to stop ControllerHandle, then EFI_OUT_OF_RESOURCES is returned.

The Stop() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.DisconnectController(). As a result, much of the error checking on the
parameters to Stop() has been moved into this common boot service. It is legal to call Stop() from
other locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.

• ControllerHandle must be a valid EFI_HANDLE that was used on a previous
call to this same driver’s Start() function.

• The first NumberOfChildren handles of ChildHandleBuffer must all be a
valid EFI_HANDLE. In addition, all of these handles must have been
created in this driver’s Start() function, and the Start() function
must have called EFI_BOOT_SERVICES.OpenProtocol() on ControllerHandle
with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (

EFI_SUCCESS The device was stopped.

EFI_DEVICE_ERROR The device could not be stopped due to a device error.
UEFI Forum, Inc. March 2019 370

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Use the Driver Binding Protocol instance to free the child
// specified by ChildHandle. Then, use the Driver Binding
// Protocol to stop ControllerHandle.
//
Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 1,
 &ChildHandle
);

Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 0,
 NULL
);

Pseudo Code

Device Driver:

1. Uninstall all the protocols that were installed onto ControllerHandle in Start().

2. Close all the protocols that were opened on behalf of ControllerHandle in Start().

3. Free all the structures that were allocated on behalf of ControllerHandle in Start().

4. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. IF NumberOfChildren is zero THEN:

a Uninstall all the protocols that were installed onto ControllerHandle in Start().

b Close all the protocols that were opened on behalf of ControllerHandle in Start().

c Free all the structures that were allocated on behalf of ControllerHandle in Start().

2. ELSE

a FOR each child C in ChildHandleBuffer

Uninstall all the protocols that were installed onto C in Start().
Close all the protocols that were opened on behalf of C in Start().
Free all the structures that were allocated on behalf of C in Start().
UEFI Forum, Inc. March 2019 371

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
b END FOR

3. END IF

4. Return EFI_SUCCESS.

Listed below is sample code of the Stop() function of a device driver for a device on the XYZ bus. The
XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver supports
ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on ControllerHandle in Start(). The
gBS variable is initialized in this driver’s entry point. See Section 4.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcStop (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_ABC_IO AbcIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Get our context back
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid,
 &AbcIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_UNSUPPORTED;
 }

 //
 // Use Containment Record Macro to get AbcDevice structure from
 // a pointer to the AbcIo structure within the AbcDevice structure.
 //
 AbcDevice = ABC_IO_PRIVATE_DATA_FROM_THIS (AbcIo);

 //
 // Uninstall the protocol installed in Start()
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ControllerHandle,
UEFI Forum, Inc. March 2019 372

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (!EFI_ERROR (Status)) {

 //
 // Close the protocol opened in Start()
 //
 Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);

 //
 // Free the structure allocated in Start().
 //
 gBS->FreePool (AbcDevice);
 }

 return Status;

}

11.2 EFI Platform Driver Override Protocol

This section provides a detailed description of the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.
This protocol can override the default algorithm for matching drivers to controllers.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. A platform driver produces this protocol, and it
is installed on a separate handle. This protocol is used by the
EFI_BOOT_SERVICES.ConnectController() boot service to select the best driver for a controller.
All of the drivers returned by this protocol have a higher precedence than drivers found from an EFI Bus
Specific Driver Override Protocol or drivers found from the general UEFI driver Binding search algorithm.
If more than one driver is returned by this protocol, then the drivers are returned in order from highest
precedence to lowest precedence.
UEFI Forum, Inc. March 2019 373

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
GUID

#define EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL_GUID \

{0x6b30c738,0xa391,0x11d4,\

 {0x9a,0x3b,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure

typedef struct _EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL {

 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER GetDriver;

 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH GetDriverPath;

 EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED DriverLoaded;

} EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Retrieves the image handle of a platform override driver for a
controller in the system. See the GetDriver() function
description.

GetDriverPath Retrieves the device path of a platform override driver for a
controller in the system. See the GetDriverPath() function
description.

DriverLoaded This function is used after a driver has been loaded using a device
path returned by GetDriverPath(). This function associates a device
path to an image handle, so the image handle can be returned the
next time that GetDriver() is called for the same controller. See the
DriverLoaded() function description.

Description

The EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL is used by the EFI boot service
EFI_BOOT_SERVICES.ConnectController() to determine if there is a platform specific driver
override for a controller that is about to be started. The bus drivers in a platform will use a bus defined
matching algorithm for matching drivers to controllers. This protocol allows the platform to override the
bus driver's default driver matching algorithm. This protocol can be used to specify the drivers for on-
board devices whose drivers may be in a system ROM not directly associated with the on-board
controller, or it can even be used to manage the matching of drivers and controllers in add-in cards. This
can be very useful if there are two adapters that are identical except for the revision of the driver in the
adapter's ROM. This protocol, along with a platform configuration utility, could specify which of the two
drivers to use for each of the adapters.

The drivers that this protocol returns can be either in the form of an image handle or a device path.
EFI_BOOT_SERVICES.ConnectController() can only use image handles, so
ConnectController() is required to use the GetDriver() service. A different component, such as
the Boot Manager, will have to use the GetDriverPath() service to retrieve the list of drivers that
need to be loaded from I/O devices. Once a driver has been loaded and started, this same component can
use the DriverLoaded() service to associate the device path of a driver with the image handle of the
loaded driver. Once this association has been established, the image handle can then be returned by the
GetDriver() service the next time it is called by ConnectController().
UEFI Forum, Inc. March 2019 374

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Retrieves the image handle of the platform override driver for a controller in the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER) (

 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN OUT EFI_HANDLE *DriverImageHandle

);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImageHandle On input, a pointer to the previous driver image handle returned by
GetDriver(). On output, a pointer to the next driver image handle.
Passing in a NULL, will return the first driver image handle for
ControllerHandle.

Description

This function is used to retrieve a driver image handle that is selected in a platform specific manner. The
first driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This will cause the
first driver image handle to be returned in DriverImageHandle. On each successive call, the previous
value of DriverImageHandle must be passed in. If a call to this function returns a valid driver image
handle, then EFI_SUCCESS is returned. This process is repeated until EFI_NOT_FOUND is returned. If a
DriverImageHandle is passed in that was not returned on a prior call to this function, then
EFI_INVALID_PARAMETER is returned. If ControllerHandle isNULL, then EFI_INVALID_PARAMETER is
returned. The first driver image handle has the highest precedence, and the last driver image handle has
the lowest precedence. This ordered list of driver image handles is used by the boot service
EFI_BOOT_SERVICES.ConnectController() to search for the best driver for a controller.
UEFI Forum, Inc. March 2019 375

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()

Summary

Retrieves the device path of the platform override driver for a controller in the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH) (

 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DriverImagePath

);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImagePath On input, a pointer to the previous driver device path returned by
GetDriverPath(). On output, a pointer to the next driver device path.
Passing in a pointer to NULL, will return the first driver device path
for ControllerHandle.

Description

This function is used to retrieve a driver device path that is selected in a platform specific manner. The
first driver device path is retrieved by passing in a DriverImagePath value that is a pointer to NULL. This
will cause the first driver device path to be returned in DriverImagePath. On each successive call, the
previous value of DriverImagePath must be passed in. If a call to this function returns a valid driver device
path, then EFI_SUCCESS is returned. This process is repeated until EFI_NOT_FOUND is returned. If a
DriverImagePath is passed in that was not returned on a prior call to this function, then
EFI_INVALID_PARAMETER is returned. If ControllerHandle is NULL, then EFI_INVALID_PARAMETER is
returned. The first driver device path has the highest precedence, and the last driver device path has the
lowest precedence. This ordered list of driver device paths is used by a platform specific component, such
as the EFI Boot Manager, to load and start the platform override drivers by using the EFI boot services
EFI_BOOT_SERVICES.LoadImage() and EFI_BOOT_SERVICES.StartImage(). Each time one of
these drivers is loaded and started, the DriverLoaded() service is called.

EFI_SUCCESS The driver override for ControllerHandle was returned in
DriverImageHandle.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a previous
call to GetDriver().
UEFI Forum, Inc. March 2019 376

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

Summary

Used to associate a driver image handle with a device path that was returned on a prior call to the
GetDriverPath() service. This driver image handle will then be available through the GetDriver()
service.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED) (

 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_DEVICE_PATH_PROTOCOL *DriverImagePath,

 IN EFI_HANDLE DriverImageHandle

);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance.

ControllerHandle The device handle of a controller. This must match the controller
handle that was used in a prior call to GetDriver() to retrieve
DriverImagePath.

DriverImagePath A pointer to the driver device path that was returned in a prior call to
GetDriverPath().

DriverImageHandle The driver image handle that was returned by
EFI_BOOT_SERVICES.LoadImage() when the driver specified by
DriverImagePath was loaded into memory.

Description

This function associates the image handle specified by DriverImageHandle with the device path of a
driver specified by DriverImagePath. DriverImagePath must be a value that was returned on a prior call
to GetDriverPath() for the controller specified by ControllerHandle. Once this association has been
established, then the service GetDriver() must return DriverImageHandle as one of the override
drivers for the controller specified by ControllerHandle.

EFI_SUCCESS The driver override for ControllerHandle was returned in
DriverImagePath.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImagePath is not a device path that was returned on a

previous call to GetDriverPath().
UEFI Forum, Inc. March 2019 377

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
If the association between the image handle specified by DriverImageHandle and the device path
specified by DriverImagePath is established for the controller specified by ControllerHandle, then
EFI_SUCCESS is returned. If ControllerHandle is NULL, or DriverImagePath is not a valid device path, or
DriverImageHandle is NULL, then EFI_INVALID_PARAMETER is returned. If DriverImagePath is not a
device path that was returned on a prior call to GetDriver() for the controller specified by
ControllerHandle, then EFI_NOT_FOUND is returned.

Status Codes Returned

11.3 EFI Bus Specific Driver Override Protocol

This section provides a detailed description of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL. Bus drivers that have a bus specific algorithm for
matching drivers to controllers are required to produce this protocol for each controller. For example, a
PCI Bus Driver will produce an instance of this protocol for every PCI controller that has a PCI option ROM
that contains one or more UEFI drivers. The protocol instance is attached to the handle of the PCI
controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. This protocol is produced by a bus driver, and
it is installed on the child handles of buses that require a bus specific algorithm for matching drivers to
controllers. This protocol is used by the EFI_BOOT_SERVICES.ConnectController() boot service
to select the best driver for a controller. All of the drivers returned by this protocol have a higher
precedence than drivers found in the general EFI Driver Binding search algorithm, but a lower precedence
than those drivers returned by the EFI Platform Driver Override Protocol. If more than one driver image
handle is returned by this protocol, then the drivers image handles are returned in order from highest
precedence to lowest precedence.

EFI_SUCCESS The association between DriverImagePath and
DriverImageHandle was established for the controller specified by
ControllerHandle.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND DriverImagePath is not a device path that was returned on a prior
call to GetDriverPath() for the controller specified by
ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid device handle.

EFI_INVALID_PARAMETER DriverImagePath is not a valid device path.

EFI_INVALID_PARAMETER DriverImageHandle is not a valid image handle.
UEFI Forum, Inc. March 2019 378

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
GUID

#define EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL_GUID \

{0x3bc1b285,0x8a15,0x4a82,\

 {0xaa,0xbf,0x4d,0x7d,0x13,0xfb,0x32,0x65}}

Protocol Interface Structure

typedef struct _EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL {

 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER GetDriver;

} EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Uses a bus specific algorithm to retrieve a driver image handle for a
controller. See the GetDriver() function description.

Description

The EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL provides a mechanism for bus drivers to
override the default driver selection performed by the ConnectController() boot service. This
protocol is attached to the handle of a child device after the child handle is created by the bus driver. The
service in this protocol can return a bus specific override driver to ConnectController().
ConnectController() must call this service until all of the bus specific override drivers have been
retrieved. ConnectController() uses this information along with the EFI Platform Driver Override
Protocol and all of the EFI Driver Binding protocol instances to select the best drivers for a controller.
Since a controller can be managed by more than one driver, this protocol can return more than one bus
specific override driver.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Uses a bus specific algorithm to retrieve a driver image handle for a controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER) (

 IN EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL *This,

 IN OUT EFI_HANDLE *DriverImageHandle

);

Parameters

This A pointer to the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL instance.

DriverImageHandle On input, a pointer to the previous driver image handle returned by
GetDriver(). On output, a pointer to the next driver image handle.
Passing in a NULL, will return the first driver image handle.
UEFI Forum, Inc. March 2019 379

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Description

This function is used to retrieve a driver image handle that is selected in a bus specific manner. The first
driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This will cause the first
driver image handle to be returned in DriverImageHandle. On each successive call, the previous value of
DriverImageHandle must be passed in. If a call to this function returns a valid driver image handle, then
EFI_SUCCESS is returned. This process is repeated until EFI_NOT_FOUND is returned. If a
DriverImageHandle is passed in that was not returned on a prior call to this function, then
EFI_INVALID_PARAMETER is returned. The first driver image handle has the highest precedence, and
the last driver image handle has the lowest precedence. This ordered list of driver image handles is used
by the boot service EFI_BOOT_SERVICES.ConnectController() to search for the best driver for a
controller.

Status Codes Returned

11.4 EFI Driver Diagnostics Protocol

This section provides a detailed description of the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL. This is a
protocol that allows a UEFI driver to perform diagnostics on a controller that the driver is managing.

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

Summary

Used to perform diagnostics on a controller that a UEFI driver is managing.

GUID

#define EFI_DRIVER_DIAGNOSTICS_PROTOCOL_GUID \

{0x4d330321,0x025f,0x4aac,\

 {0x90,0xd8,0x5e,0xd9,0x00,0x17,0x3b,0x63}}

Protocol Interface Structure

typedef struct _EFI_DRIVER_DIAGNOSTICS2_PROTOCOL {

 EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS RunDiagnostics;

 CHAR8 *SupportedLanguages;

} EFI_DRIVER_DIAGNOSTICS2_PROTOCOL;

Parameters

RunDiagnostics Runs diagnostics on a controller. See the RunDiagnostics()
function description.

SupportedLanguagesA Null-terminated ASCII string that contains one or more supported
language codes. This is the list of language codes that this protocol
supports. The number of languages supported by a driver is up to the

EFI_SUCCESS A bus specific override driver is returned in DriverImageHandle.

EFI_NOT_FOUND The end of the list of override drivers was reached. A bus specific override
driver is not returned in DriverImageHandle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a previous

call to GetDriver().
UEFI Forum, Inc. March 2019 380

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
driver writer. SupportedLanguages is specified in RFC 4646 format.
See Appendix M for the format of language codes and language code
arrays.

Description

The EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is used by a platform management utility to allow the
user to run driver specific diagnostics on a controller. This protocol is optionally attached to the image
handle of driver in the driver's entry point. The platform management utility can collect all the
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL instances present in the system, and present the user with a
menu of the controllers that have diagnostic capabilities. This platform management utility is invoked
through a platform component such as the EFI Boot Manager.

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics()

Summary

Runs diagnostics on a controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS) (

 IN EFI_DRIVER_DIAGNOSTICS2_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE ChildHandle OPTIONAL,

 IN EFI_DRIVER_DIAGNOSTIC_TYPE DiagnosticType,

 IN CHAR8 *Language,

 OUT EFI_GUID **ErrorType,

 OUT UINTN *BufferSize,

 OUT CHAR16 **Buffer

);

Parameters

This A pointer to the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL
instance.

ControllerHandle The handle of the controller to run diagnostics on.

ChildHandle The handle of the child controller to run diagnostics on. This is an
optional parameter that may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers that attempt to run
diagnostics on the bus controller. It will not be NULL for a bus driver
that attempts to run diagnostics on one of its child controllers.

DiagnosticType Indicates type of diagnostics to perform on the controller specified
by ControllerHandle and ChildHandle. See “Related Definitions” for
the list of supported types.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language in which the optional error message
should be returned in Buffer, and it must match one of the languages
specified in SupportedLanguages. The number of languages
UEFI Forum, Inc. March 2019 381

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
supported by a driver is up to the driver writer. Language is
specified in RFC 4646 language code format. See Appendix M for the
format of language codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to lookup
the Unicode string with the closest matching RFC 4646 language
code.

ErrorType A GUID that defines the format of the data returned in Buffer.

BufferSize The size, in bytes, of the data returned in Buffer.

Buffer A buffer that contains a Null-terminated string plus some additional
data whose format is defined by ErrorType. Buffer is allocated by this
function with EFI_BOOT_SERVICES.AllocatePool(), and it is
the caller’s responsibility to free it with a call to
EFI_BOOT_SERVICES.FreePool().

Description

This function runs diagnostics on the controller specified by ControllerHandle and ChildHandle.
DiagnoticType specifies the type of diagnostics to perform on the controller specified by ControllerHandle
and ChildHandle. If the driver specified by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned. If the controller specified by ControllerHandle and ChildHandle is
not supported by the driver specified by This, then EFI_UNSUPPORTED is returned. If the diagnostics
type specified by DiagnosticType is not supported by this driver, then EFI_UNSUPPORTED is returned. If
there are not enough resources available to complete the diagnostic, then EFI_OUT_OF_RESOURCES is
returned. If the controller specified by ControllerHandle and ChildHandle passes the diagnostic, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

If the language specified by Language is supported by this driver, then status information is returned in
ErrorType, BufferSize, and Buffer. Buffer contains a Null-terminated string followed by additional data
whose format is defined by ErrorType. BufferSize is the size of Buffer is bytes, and it is the caller's
responsibility to call FreePool() on Buffer when the caller is done with the return data. If there are not
enough resources available to return the status information, then EFI_OUT_OF_RESOURCES is returned.
UEFI Forum, Inc. March 2019 382

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Related Definitions

//***

// EFI_DRIVER_DIAGNOSTIC_TYPE

//***

typedef enum {

 EfiDriverDiagnosticTypeStandard = 0,

 EfiDriverDiagnosticTypeExtended = 1,

 EfiDriverDiagnosticTypeManufacturing = 2,

 EfiDriverDiagnosticTypeCancel = 3,

 EfiDriverDiagnosticTypeMaximum

} EFI_DRIVER_DIAGNOSTIC_TYPE;

EfiDriverDiagnosticTypeStandard

Performs standard diagnostics on the controller. This diagnostic type is required to
be supported by all implementations of this protocol.

EfiDriverDiagnosticTypeExtended

This is an optional diagnostic type that performs diagnostics on the controller that
may take an extended amount of time to execute.

EfiDriverDiagnosticTypeManufacturing

This is an optional diagnostic type that performs diagnostics on the controller that
are suitable for a manufacturing and test environment.

EfiDriverDiagnosticTypeCancel

This is an optional diagnostic type that would only be used in the situation where an
EFI_NOT_READY had been returned by a previous call to RunDiagnostics() and
there is a desire to cancel the current running diagnostics operation.
UEFI Forum, Inc. March 2019 383

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

11.5 EFI Component Name Protocol

This section provides a detailed description of the EFI_COMPONENT_NAME2_PROTOCOL. This is a
protocol that allows an driver to provide a user readable name of a UEFI Driver, and a user readable
name for each of the controllers that the driver is managing. This protocol is used by platform
management utilities that wish to display names of components. These names may include the names of
expansion slots, external connectors, embedded devices, and add-in devices.

EFI_COMPONENT_NAME2_PROTOCOL

Summary

Used to retrieve user readable names of drivers and controllers managed by UEFI Drivers.

EFI_SUCCESS The controller specified by ControllerHandle and ChildHandle
passed the diagnostic.

EFI_ACCESS_DENIED The request for initiating diagnostics was unable to be completed due to
some underlying hardware or software state.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and ChildHandle is

not NULL.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ErrorType is NULL.

EFI_INVALID_PARAMETER BufferSize is NULL.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The driver specified by This does not support running diagnostics for the
controller specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and ChildHandle
did not pass the diagnostic.

EFI_NOT_READY The diagnostic operation was started, but not yet completed.
UEFI Forum, Inc. March 2019 384

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
GUID

#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \

{0x6a7a5cff, 0xe8d9, 0x4f70,\

 {0xba, 0xda, 0x75, 0xab, 0x30,0x25, 0xce, 0x14}}

Protocol Interface Structure

typedef struct _EFI_COMPONENT_NAME2_PROTOCOL {

 EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;

 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;

 CHAR8 *SupportedLanguages;

} EFI_COMPONENT_NAME2_PROTOCOL;

Parameters

GetDriverName Retrieves a string that is the user readable name of the driver. See
the GetDriverName() function description.

GetControllerName Retrieves a string that is the user readable name of a controller that
is being managed by a driver. See the GetControllerName()
function description.

SupportedLanguagesA Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that this
protocol supports. The number of languages supported by a driver is
up to the driver writer. SupportedLanguages is specified in RFC 4646
format. See Appendix M for the format of language codes and
language code arrays.

Description

The EFI_COMPONENT_NAME2_PROTOCOL is used retrieve a driver's user readable name and the names
of all the controllers that a driver is managing from the driver's point of view. Each of these names is
returned as a Null-terminated string. The caller is required to specify the language in which the string is
returned, and this language must be present in the list of languages that this protocol supports specified
by SupportedLanguages.

EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()

Summary

Retrieves a string that is the user readable name of the driver.
UEFI Forum, Inc. March 2019 385

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_COMPONENT_NAME_GET_DRIVER_NAME) (

 IN EFI_COMPONENT_NAME2_PROTOCOL *This,

 IN CHAR8 *Language,

 OUT CHAR16 **DriverName

);

Parameters

This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL instance.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language of the driver name that the caller is
requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported by a
driver is up to the driver writer. Language is specified in RFC 4646
language code format. See Appendix M for the format of language
codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to lookup
the Unicode string with the closest matching RFC 4646 language
code.

DriverName A pointer to the string to return. This string is the name of the driver
specified by This in the language specified by Language.

Description

This function retrieves the user readable name of a driver in the form of a string. If the driver specified by
This has a user readable name in the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified by This does not support
the language specified by Language, then EFI_UNSUPPORTED is returned.

Status Codes Returned

EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()

Summary

Retrieves a string that is the user readable name of the controller that is being managed by a driver.

EFI_SUCCESS The string for the user readable name in the language specified by
Language for the driver specified by This was returned in
DriverName.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.
UEFI Forum, Inc. March 2019 386

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_COMPONENT_NAME_GET_CONTROLLER_NAME) (

 IN EFI_COMPONENT_NAME2_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE ChildHandle OPTIONAL,

 IN CHAR8 *Language,

 OUT CHAR16 **ControllerName

);

Parameters

This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL instance.

ControllerHandle The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to be
returned.

ChildHandle The handle of the child controller to retrieve the name of. This is an
optional parameter that may be NULL. It will be NULL for device
drivers. It will also be NULL for bus drivers that attempt to retrieve
the name of the bus controller. It will not be NULL for a bus driver
that attempts to retrieve the name of a child controller.

Language A pointer to a Null- terminated ASCII string array indicating the
language. This is the language of the controller name that the caller
is requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported by a
driver is up to the driver writer. Language is specified in RFC 4646
language code format. See Appendix M for the format of language
codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to lookup
the Unicode string with the closest matching RFC 4646 language
code.

ControllerName A pointer to the string to return. This string is the name of the
controller specified by ControllerHandle and ChildHandle in the
language specified by Language from the point of view of the driver
specified by This.

Description

This function retrieves the user readable name of the controller specified by ControllerHandle and
ChildHandle in the form of a string. If the driver specified by This has a user readable name in the
language specified by Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by ControllerHandle and
ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.
UEFI Forum, Inc. March 2019 387

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

11.6 EFI Service Binding Protocol

This section provides a detailed description of the EFI_SERVICE_BINDING_PROTOCOL. This protocol
may be produced only by drivers that follow the UEFI Driver Model. Use this protocol with the
EFI_DRIVER_BINDING_PROTOCOL to produce a set of protocols related to a device. The
EFI_DRIVER_BINDING_PROTOCOL supports simple layering of protocols on a device, but it does not
support more complex relationships such as trees or graphs. The EFI_SERVICE_BINDING_PROTOCOL
provides a member function to create a child handle with a new protocol installed on it, and another
member function to destroy a previously created child handle. These member functions apply equally to
all drivers.

EFI_SERVICE_BINDING_PROTOCOL

Summary

Provides services that are required to create and destroy child handles that support a given set of
protocols.

GUID

This protocol does not have its own GUID. Instead, drivers for other protocols will define a GUID that
shares the same protocol interface as the EFI_SERVICE_BINDING_PROTOCOL. The protocols defined in
this document that have this property include the following:

• EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL
• EFI_ARP_SERVICE_BINDING_PROTOCOL
• EFI_EAP_SERVICE_BINDING_PROTOCOL
• EFI_IP4_SERVICE_BINDING_PROTOCOL
• EFI_TCP4_SERVICE_BINDING_PROTOCOL
• EFI_UDP4_SERVICE_BINDING_PROTOCOL
• EFI_MTFTP4_SERVICE_BINDING_PROTOCOL
• EFI_DHCP4_SERVICE_BINDING_PROTOCOL

EFI_SUCCESS The string for the user readable name specified by This,
ControllerHandle, ChildHandle, and Language was returned
in ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and ChildHandle is

not NULL.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ControllerName is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is not

NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.
UEFI Forum, Inc. March 2019 388

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
• EFI_REST_EX_SERVICE_BINDING_PROTOCOL

Protocol Interface Structure

typedef struct _EFI_SERVICE_BINDING_PROTOCOL {

 EFI_SERVICE_BINDING_CREATE_CHILD CreateChild;

 EFI_SERVICE_BINDING_DESTROY_CHILD DestroyChild;

} EFI_SERVICE_BINDING_PROTOCOL;

Parameters

CreateChild Creates a child handle and installs a protocol. See the
CreateChild() function description.

DestroyChild Destroys a child handle with a protocol installed on it. See the
DestroyChild() function description.

Description

The EFI_SERVICE_BINDING_PROTOCOL provides member functions to create and destroy child
handles. A driver is responsible for adding protocols to the child handle in CreateChild() and
removing protocols in DestroyChild(). It is also required that the CreateChild() function opens
the parent protocol BY_CHILD_CONTROLLER to establish the parent-child relationship, and closes the
protocol in DestroyChild().The pseudo code for CreateChild() and DestroyChild() is
provided to specify the required behavior, not to specify the required implementation. Each consumer of
a software protocol is responsible for calling CreateChild() when it requires the protocol and calling
DestroyChild() when it is finished with that protocol.

EFI_SERVICE_BINDING_PROTOCOL.CreateChild()

Summary

Creates a child handle and installs a protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERVICE_BINDING_CREATE_CHILD) (

 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN OUT EFI_HANDLE *ChildHandle

);

Parameters

This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.

ChildHandle Pointer to the handle of the child to create. If it is a pointer to NULL,
then a new handle is created. If it is a pointer to an existing UEFI
handle, then the protocol is added to the existing UEFI handle.
UEFI Forum, Inc. March 2019 389

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Description

The CreateChild() function installs a protocol on ChildHandle. If ChildHandle is a pointer to
NULL, then a new handle is created and returned in ChildHandle. If ChildHandle is not a pointer to
NULL, then the protocol installs on the existing ChildHandle.

Status Codes Returned

Examples

The following example shows how a consumer of the EFI ARP Protocol would use the CreateChild()
function of the EFI_SERVICE_BINDING_PROTOCOL to create a child handle with the EFI ARP Protocol
installed on that handle.

EFI_HANDLE ControllerHandle;
EFI_HANDLE DriverBindingHandle;
EFI_HANDLE ChildHandle;
EFI_ARP_SERVICE_BINDING_PROTOCOL *ArpSb;
EFI_ARP_PROTOCOL *Arp;

//
// Get the ArpServiceBinding Protocol
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,
 (VOID **)&ArpSb,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}
//
// Initialize a ChildHandle
//
ChildHandle = NULL;
//
// Create a ChildHandle with the Arp Protocol
//
Status = ArpSb->CreateChild (ArpSb, &ChildHandle);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

EFI_SUCCESS The protocol was added to ChildHandle.

EFI_INVALID_PARAMETER ChildHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources available to create the child.

Other The child handle was not created.
UEFI Forum, Inc. March 2019 390

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
//
// Retrieve the Arp Protocol from ChildHandle
//
Status = gBS->OpenProtocol (
 ChildHandle,
 &gEfiArpProtocolGuid,
 (VOID **)&Arp,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

Pseudo Code

The following is the general algorithm for implementing the CreateChild() function:

1. Allocate and initialize any data structures that are required to produce the requested protocol
on a child handle. If the allocation fails, then return EFI_OUT_OF_RESOURCES.

2. Install the requested protocol onto ChildHandle. If ChildHandle is a pointer to NULL, then
the requested protocol installs onto a new handle.

3. Open the parent protocol BY_CHILD_CONTROLLER to establish the parent-child relationship.
If the parent protocol cannot be opened, then destroy the ChildHandle created in step 2,
free the data structures allocated in step 1, and return an error.

4. Increment the number of children created by CreateChild().

5. Return EFI_SUCCESS.

Listed below is sample code of the CreateChild() function of the EFI ARP Protocol driver. This driver
looks up its private context data structure from the instance of the EFI_SERVICE_BINDING_PROTOCOL
produced on the handle for the network controller. After retrieving the private context data structure,
the driver can use its contents to build the private context data structure for the child being created. The
EFI ARP Protocol driver then installs the EFI_ARP_PROTOCOL onto ChildHandle.

EFI_STATUS
EFIAPI
ArpServiceBindingCreateChild (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN EFI_HANDLE *ChildHandle
)
{
 EFI_STATUS Status;
 ARP_PRIVATE_DATA *Private;
 ARP_PRIVATE_DATA *PrivateChild;

 //
 // Retrieve the Private Context Data Structure
 //
 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);
UEFI Forum, Inc. March 2019 391

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 //
 // Create a new child
 //
 PrivateChild = EfiLibAllocatePool (sizeof (ARP_PRIVATE_DATA));
 if (PrivateChild == NULL) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Copy Private Context Data Structure
 //
 gBS->CopyMem (PrivateChild, Private, sizeof (ARP_PRIVATE_DATA));

 //
 // Install Arp onto ChildHandle
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,
 NULL
);
 if (EFI_ERROR (Status)) {
 gBS->FreePool (PrivateChild);
 return Status;
 }

 Status = gBS->OpenProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 (VOID **)&PrivateChild->ManagedNetwork,
 gArpDriverBinding.DriverBindingHandle,
 *ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
 if (EFI_ERROR (Status)) {
 ArpSB->DestroyChild (This, ChildHandle);
 return Status;
 }

 //
 // Increase number of children created
 //
 Private->NumberCreated++;

 return EFI_SUCCESS;
}

UEFI Forum, Inc. March 2019 392

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

Summary

Destroys a child handle with a protocol installed on it.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERVICE_BINDING_DESTROY_CHILD) (

IN EFI_SERVICE_BINDING_PROTOCOL *This,

IN EFI_HANDLE ChildHandle

);

Parameters

This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.

ChildHandle Handle of the child to destroy.

Description

The DestroyChild() function does the opposite of CreateChild(). It removes a protocol that was
installed by CreateChild() from ChildHandle. If the removed protocol is the last protocol on
ChildHandle, then ChildHandle is destroyed.

Status Codes Returned

Examples

The following example shows how a consumer of the EFI ARP Protocol would use the DestroyChild()
function of the EFI_SERVICE_BINDING_PROTOCOL to destroy a child handle with the EFI ARP Protocol
installed on that handle.

EFI_SUCCESS The protocol was removed from ChildHandle.

EFI_UNSUPPORTED ChildHandle does not support the protocol that is being removed.

EFI_INVALID_PARAMETER ChildHandle is not a valid UEFI handle.

EFI_ACCESS_DENIED The protocol could not be removed from the ChildHandle because its
services are being used.

Other The child handle was not destroyed.
UEFI Forum, Inc. March 2019 393

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_HANDLE ControllerHandle;

EFI_HANDLE DriverBindingHandle;

EFI_HANDLE ChildHandle;

EFI_ARP_SERVICE_BINDING_PROTOCOL *Arp;

//

// Get the Arp Service Binding Protocol

//

Status = gBS->OpenProtocol (

 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,

 (VOID **)&ArpSb,

 DriverBindingHandle,

 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if (EFI_ERROR (Status)) {

 return Status;

}

//

// Destroy the ChildHandle with the Arp Protocol

//

Status = ArpSb->DestroyChild (ArpSb, ChildHandle);

if (EFI_ERROR (Status)) {

 return Status;

}

Pseudo Code

The following is the general algorithm for implementing the DestroyChild() function:

1. Retrieve the protocol from ChildHandle. If this retrieval fails, then return EFI_SUCCESS
because the child has already been destroyed.

2. If this call is a recursive call to destroy the same child, then return EFI_SUCCESS.

3. Close the parent protocol with CloseProtocol().

4. Set a flag to detect a recursive call to destroy the same child.

5. Remove the protocol from ChildHandle. If this removal fails, then reopen the parent
protocol and clear the flag to detect a recursive call to destroy the same child.

6. Free any data structures that allocated in CreateChild().

7. Decrement the number of children that created with CreateChild().

8. Return EFI_SUCCESS.

Listed below is sample code of the DestroyChild() function of the EFI ARP Protocol driver. This driver
looks up its private context data structure from the instance of the EFI_SERVICE_BINDING_PROTOCOL
produced on the handle for the network controller. The driver attempts to retrieve the
EFI_ARP_PROTOCOL from ChildHandle. If that fails, then EFI_SUCCESS is returned. The
UEFI Forum, Inc. March 2019 394

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_ARP_PROTOCOL is then used to retrieve the private context data structure for the child. The private
context data stores the flag that detects if DestroyChild() is being called recursively. If a recursion is
detected, then EFI_SUCCESS is returned. Otherwise, the EFI_ARP_PROTOCOL is removed from
ChildHandle, the number of children are decremented, and EFI_SUCESS is returned.
UEFI Forum, Inc. March 2019 395

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_STATUS

EFIAPI

ArpServiceBindingDestroyChild (

 IN EFI_SERVICE_BINDING_PROTOCOL *This,

 IN EFI_HANDLE ChildHandle
)

{

 EFI_STATUS Status;

 EFI_ARP_PROTOCOL *Arp;

 ARP_PRIVATE_DATA *Private;

 ARP_PRIVATE_DATA *PrivateChild;

 //

 // Retrieve the Private Context Data Structure

 //

 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);

 //

 // Retrieve Arp Protocol from ChildHandle

 //

 Status = gBS->OpenProtocol (

 ChildHandle,
 &gEfiArpProtocolGuid,

 (VOID **)&Arp,

 gArpDriverBinding.DriverBindingHandle,

 ChildHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

 if (EFI_ERROR (Status)) {

 return EFI_SUCCESS;

 }

 //

 // Retrieve Private Context Data Structure

 //

 PrivateChild = ARP_PRIVATE_DATA_FROM_ARP_THIS (Arp);

 if (PrivateChild->Destroy) {

 return EFI_SUCCESS;

 }

 //

 // Close the ManagedNetwork Protocol

 //

 gBS->CloseProtocol (

 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
UEFI Forum, Inc. March 2019 396

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
 gArpDriverBinding.DriverBindingHandle,

 ChildHandle
);

 PrivateChild->Destroy = TRUE;

 //

 // Uninstall Arp from ChildHandle
 //

 Status = gBS->UninstallMultipleProtocolInterfaces (

 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,

 NULL

);

 if (EFI_ERROR (Status)) {

 //

 // Uninstall failed, so reopen the parent Arp Protocol and

 // return an error

 //

 PrivateChild->Destroy = FALSE;

 gBS->OpenProtocol (

 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,

 (VOID **)&PrivateChild->ManagedNetwork,

 gArpDriverBinding.DriverBindingHandle,

 ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER

);

 return Status;

 }

 //

 // Free Private Context Data Structure

 //

 gBS->FreePool (PrivateChild);

 //

 // Decrease number of children created

 //

 Private->NumberCreated--;

 return EFI_SUCCESS;

11.7 EFI Platform to Driver Configuration Protocol

This section provides a detailed description of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL. This is a protocol that is optionally
UEFI Forum, Inc. March 2019 397

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
produced by the platform and optionally consumed by a UEFI Driver in its Start() function. This
protocol allows the driver to receive configuration information as part of being started.

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL

Summary

Used to retrieve configuration information for a device that a UEFI driver is about to start.

GUID

#define EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL_GUID \

 { 0x642cd590, 0x8059, 0x4c0a,\

 { 0xa9, 0x58, 0xc5, 0xec, 0x07, 0xd2, 0x3c, 0x4b } }

Protocol Interface Structure

typedef struct _EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL {

 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_QUERY Query;

 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_RESPONSE Response;

} EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL;

Parameters

Query Called by the UEFI Driver Start() function to get configuration
information from the platform.

Response Called by the UEFI Driver Start() function to let the platform know
how UEFI driver processed the data return from Query.

Description

The EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL is used by the UEFI driver to query the
platform for configuration information. The UEFI driver calls Query() multiple times to get configuration
information from the platform. For every call to Query() there must be a matching call to Response() so
the UEFI driver can inform the platform how it used the information passed in from Query().

It’s legal for a UEFI driver to use Response() to inform the platform it does not understand the data
returned via Query() and thus no action was taken.

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()

Summary

Allows the UEFI driver to query the platform for configuration information needed to complete the
drivers Start() operation.
UEFI Forum, Inc. March 2019 398

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PLATFORM_TO_DRIVER_CONFIGURATION_QUERY) (

 IN EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE ChildHandle OPTIONAL,

 IN UINTN *Instance,

 OUT EFI_GUID **ParameterTypeGuid,
 OUT VOID **ParameterBlock,

 OUT UINTN *ParameterBlockSize
);

Parameters

This A pointer to the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL
instance.

ControllerHandle The handle the platform will return configuration information about.

ChildHandle The handle of the child controller to return information on. This is an
optional parameter that may be NULL. It will be NULL for device
drivers, and for bus drivers that attempt to get options for the bus
controller. It will not be NULL for a bus driver that attempts to get
options for one of its child controllers.

Instance Pointer to the Instance value. Zero means return the first query data.
The caller should increment this value by one each time to retrieve
successive data.

ParameterTypeGuid An EFI_GUID that defines the contents of ParameterBlock. UEFI
drivers must use the ParameterTypeGuid to determine how to parse
the ParameterBlock.The caller should not attempt to free
ParameterTypeGuid.

ParameterBlock The platform returns a pointer to the ParameterBlock structure
which contains details about the configuration parameters specific
to the ParameterTypeGuid. This structure is defined based on the
protocol and may be different for different protocols. UEFI driver
decodes this structure and its contents based on
ParameterTypeGuid. ParameterBlock is allocated by the
platform and the platform is responsible for freeing the
ParameterBlock after Response is called.

ParameterBlockSize The platform returns the size of the ParameterBlock in bytes.

Description

The UEFI driver must call Query early in the Start() function before any time consuming operations are
performed. If ChildHandle is NULL the driver is requesting information from the platform about the
ControllerHandle that is being started. Information returned from Query may lead to the drivers
Start() function failing.
UEFI Forum, Inc. March 2019 399

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
If the UEFI driver is a bus driver and producing a ChildHandle the driver must call Query after the child
handle has been created and an EFI_DEVICE_PATH_PROTOCOL has been placed on that handle, but
before any time consuming operation is performed. If information return by Query may lead the driver
to decide to not create the ChildHandle. The driver must then cleanup and remove the ChildHandle from
the system.

The UEFI driver repeatedly calls Query, processes the information returned by the platform, and calls
Response passing in the arguments returned from Query. The Instance value passed into Response
must be the same value passed to the corresponding call to Query. The UEFI driver must continuously call
Query and Response until EFI_NOT_FOUND is returned by Query.

If the UEFI driver does not recognize the ParameterTypeGuid, it calls Response with a
ConfigurationAction of EfiPlatformConfigurationActionUnsupportedGuid. The UEFI
driver must then continue calling Query and Response until EFI_NOT_FOUND is returned by Query.
This gives the platform an opportunity to pass additional configuration settings using a different
ParameterTypeGuid that may be supported by the driver.

An Instance value of zero means return the first ParameterBlock in the set of unprocessed parameter
blocks. The driver should increment the Instance value by one for each successive call to Query.

Status Codes Returned

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Response()

Summary

Tell the platform what actions where taken by the driver after processing the data returned from Query.

EFI_SUCCESS The platform return parameter information for ControllerHandle.

EFI_NOT_FOUND No more unread Instance exists.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER Instance is NULL.

EFI_DEVICE_ERROR A device error occurred while attempting to return parameter block
information for the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.
UEFI Forum, Inc. March 2019 400

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PLATFORM_TO_DRIVER_CONFIGURATION_RESPONSE) (

 IN EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE ChildHandle OPTIONAL,

 IN UINTN *Instance,

 IN EFI_GUID *ParameterTypeGuid,

 IN VOID *ParameterBlock,
 IN UINTN ParameterBlockSize ,

 IN EFI_PLATFORM_CONFIGURATION_ACTION ConfigurationAction

);

Parameters

This A pointer to the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL
instance.

ControllerHandle The handle the driver is returning configuration information about.

ChildHandle The handle of the child controller to return information on. This is an
optional parameter that may be NULL. It will be NULL for device
drivers, and for bus drivers that attempt to get options for the bus
controller. It will not be NULL for a bus driver that attempts to get
options for one of its child controllers.

Instance Instance data passed to Query().

ParameterTypeGuid ParameterTypeGuid returned from Query.

ParameterBlock ParameterBlock returned from Query.

ParameterBlockSize The ParameterBlock size returned from Query.

ConfigurationAction The driver tells the platform what action is required for
ParameterBlock to take effect. See ”Related Definitions” for a list of
actions.

Description

The UEFI driver repeatedly calls Query, processes the information returned by the platform, and calls
Response passing in the arguments returned from Query. The UEFI driver must continuously call Query
until EFI_NOT_FOUND is returned. For every call to Query that returns EFI_SUCCESS a corresponding call
to Response is required passing in the same ContollerHandle, ChildHandle, Instance, ParameterTypeGuid,
ParameterBlock, and ParameterBlockSize. The UEFI driver may update values in ParameterBlock based
on rules defined by ParameterTypeGuid.

The platform is responsible for freeing ParameterBlock and the UEFI driver must not try to free it.
UEFI Forum, Inc. March 2019 401

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Related Definitions

typedef enum {

 EfiPlatformConfigurationActionNone = 0,

 EfiPlatformConfigurationActionStopController = 1,

 EfiPlatformConfigurationActionRestartController = 2,

 EfiPlatformConfigurationActionRestartPlatform = 3,

 EfiPlatformConfigurationActionNvramFailed = 4,

 EfiPlatformConfigurationActionUnsupportedGuid = 5,

 EfiPlatformConfigurationActionMaximum

} EFI_PLATFORM_CONFIGURATION_ACTION;

EfiPlatformConfigurationActionNone
The controller specified by ControllerHandle is still in a usable
state, it’s configuration has been updated via parsing the
ParameterBlock. If required by the parameter block and the
module supports an NVRAM store the configuration information
from ParameterBlock was successfully saved to the NVRAM. No
actions are required before this controller can be used again with
the updated configuration settings

EfiPlatformConfigurationStopController
The driver has detected that the controller specified by
ControllerHandle is not in a usable state, and it needs to be
stopped. The calling agent can use the
EFI_BOOT_SERVICES.DisconnectController() service to
perform this operation, and it should be performed as soon as
possible.

EfiPlatformConfigurationRestartController
This controller specified by ControllerHandle needs to be
stopped and restarted before it can be used again. The calling agent
can use the DisconnectController() and
EFI_BOOT_SERVICES.ConnectController() services to
perform this operation. The restart operation can be delayed until all
of the configuration options have been set.

EfiPlatformConfigurationRestartPlatform
A configuration change has been made that requires the platform to
be restarted before the controller specified by ControllerHandle
can be used again. The calling agent can use the ResetSystem()
services to perform this operation. The restart operation can be
delayed until all of the configuration options have been set.

EfiPlatformConfigurationActionNvramFailed
The controller specified by ControllerHandle is still in a usable
state; its configuration has been updated via parsing the
ParameterBlock. The driver tried to update the driver’s private
NVRAM store with information from ParameterBlock and failed.
No actions are required before this controller can be used again with
the updated configuration settings, but these configuration settings
are not guaranteed to persist after ControllerHandle is stopped.
UEFI Forum, Inc. March 2019 402

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EfiPlatformConfigurationActionUnsupportedGuid
The controller specified by ControllerHandle is still in a usable state;
its configuration has not been updated via parsing the
ParameterBlock. The driver did not support the ParameterBlock
format identified by ParameterTypeGuid. No actions are required
before this controller can be used again. On additional Query calls
from this ControllerHandle, the platform should stop returning a
ParameterBlock qualified by this same ParameterTypeGuid. If no
other ParameterTypeGuid is supported by the platform, Query
should return EFI_NOT_FOUND.

Status Codes Returned

11.7.1 DMTF SM CLP ParameterTypeGuid

The following parameter protocol ParameterTypeGuid provides the support for parameters
communicated through the DMTF SM CLP Specification 1.0 Final Standard to be used to configure the
UEFI driver.

In this section the producer of the EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL is
platform firmware and the consumer is the UEFI driver.

Note: If future versions of the DMTF SM CLP Specification require changes to the parameter block
definition, newer ParameterTypeGuid will be used.

GUID

#define EFI_PLATFORM_TO_DRIVER_CONFIGURATION_CLP_GUID \

 {0x345ecc0e, 0xcb6, 0x4b75, \

 {0xbb, 0x57, 0x1b, 0x12, 0x9c, 0x47, 0x33,0x3e}}

Parameter Block

typedef struct {

 CHAR8 *CLPCommand;

 UINT32 CLPCommandLength;

 CHAR8 *CLPReturnString;

 UINT32 CLPReturnStringLength;

 UINT8 CLPCmdStatus;

 UINT8 CLPErrorValue;

 UINT16 CLPMsgCode;
} EFI_CONFIGURE_CLP_PARAMETER_BLK;

Structure Member Definitions

CLPCommand A pointer to the null-terminated UTF-8 string that specifies the DMTF
SM CLP command line that the driver is required to parse and
process when this function is called. See the DMTF SM CLP

EFI_SUCCESS The platform return parameter information for ControllerHandle.

EFI_NOT_FOUND Instance was not found.

EFI_INVALID_PARAMETER ControllerHandle is NULL.
UEFI Forum, Inc. March 2019 403

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Specification 1.0 Final Standard for details on the format and syntax
of the CLP command line string.

CLPCommand buffer is allocated by the producer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.

CLPCommandLength The length of the CLP Command in bytes.

CLPReturnString A pointer to the null-terminated UTF-8 string that indicates the CLP
return status that the driver is required to provide to the calling
agent. The calling agent may parse and/or pass this for processing
and user feedback. The SM CLP Command Response string buffer is
filled in by the UEFI driver in the “keyword=value” format described
in the SM CLP Specification (see section 3.table 101, “Output Data”),
unless otherwise requested via the SM CLP –output option in the
Command Line string buffer. UEFI driver’s support for this default
“keyword=value” output format is required if the UEFI driver
supports this protocol, while support for other SM CLP output
formats is optional. (The UEFI Driver should set CLPCmdStatus=2
(COMMAND PROCESSING FAILED) and CLPErrorValue=249 (OUTPUT
FORMAT NOT SUPPORTED) if the SM CLP –output option requested
by the caller is not supported by the UEFI Driver.).

CLPReturnString buffer is allocated by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL and
undefined prior to the call to Response().

CLPReturnStringLength
The length of the CLP return status string in bytes.

CLPCmdStatus SM CLP Command Status (see DMTF SM CLP Specification 1.0 Final
Standard - Table 4)

CLPErrorValue SM CLP Processing Error Value (see DMTF SM CLP Specification 1.0
Final Standard - Table 6).

This field is filled in by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL and
undefined prior to the call to Response().

CLPMsgCode Bit 15: OEM Message Code Flag
0 = Message Code is an SM CLP Probable Cause Value.

 (see SM CLP Specification Table 11)

1 = Message Code is OEM Specific

Bits 14-0: Message Code

This field is filled in by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL and
undefined prior to the call to Response().
UEFI Forum, Inc. March 2019 404

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
11.8 EFI Driver Supported EFI Version Protocol

EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL

Summary

Provides information about the version of the EFI specification that a driver is following. This protocol is
required for EFI drivers that are on PCI and other plug in cards.

GUID

#define EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL_GUID \

 { 0x5c198761, 0x16a8, 0x4e69, \

 { 0x97, 0x2c, 0x89, 0xd6, 0x79, 0x54, 0xf8, 0x1d } }

Protocol Interface Structure

typedef struct _EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL {

 UINT32 Length;

 UINT32 FirmwareVersion;

} EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL;

Parameters

Length The size, in bytes, of the entire structure. Future versions of this
specification may grow the size of the structure.

FirmwareVersion The latest version of the UEFI Specification that this driver conforms
to. Refer to the EFI_SPECIFICATION_VERSION definition in
Section 4.3.

Description

The EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL provides a mechanism for an EFI driver to
publish the version of the EFI specification it conforms to. This protocol must be placed on the drivers
image handle when the driver’s entry point is called.

11.9 EFI Driver Family Override Protocol

11.9.1 Overview

This section defines the Driver Family Override Protocol, and contains the following:

• Description and code definitions of the Driver Family Override
Protocol.

• Required updates to the EFI Boot Services ConnectController().
• Typical production of the Driver Family Override Protocol by an EFI

Driver that follows the EFI Driver Model.

The Driver Family Override Protocol provides a method for an EFI Driver to opt-in to a higher priority rule
for connecting drivers to controllers in the EFI Boot Service ConnectController(). This new rule is
higher priority than the Bus Specific Driver Override Protocol rule and lower priority than the Platform
Driver Override Rule.
UEFI Forum, Inc. March 2019 405

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
The Driver Family Override Protocol is a backwards compatible extension to the EFI Driver Model and is
only available during boot time. The Driver Family Override Protocol may be optionally produced by a
driver that follows the EFI Driver Model. If this protocol is produced, it must be installed onto the Driver
Image Handle. Drivers that follow the EFI Driver Model typically install the EFI Driver Binding Protocol
onto the driver's image handle. In this case, the Driver Family Override Protocol must also be installed
onto the driver's image handle. If a single EFI Driver produces more than one instance of the EFI Driver
Binding Protocol, then the Driver Family Override Protocol must be installed onto the same handle as the
EFI Driver Binding Protocol that is associated with the Driver Family Override Protocol. Since it is legal for
a single EFI Driver to produce multiple EFI Driver Binding Protocol instances, it is also legal for a single EFI
Driver to produce multiple Driver Family Override Protocol instances.

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL

Summary

When installed, the Driver Family Override Protocol informs the UEFI Boot Service
ConnectController() that this driver is higher priority than the list of drivers returned by the Bus
Specific Driver Override Protocol.

GUID

#define EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL_GUID \

 {0xb1ee129e,0xda36,0x4181,\

 {0x91,0xf8,0x04,0xa4,0x92,0x37,0x66,0xa7}}

Protocol Interface Structure

typedef struct _EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL {

 EFI_DRIVER_FAMILY_OVERRIDE_GET_VERSION GetVersion;
} EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL;

Parameters

GetVersion Retrieves the version of the driver that is used by the EFI Boot
Service ConnectController() to sort the set of Driver Binding
Protocols in order from highest priority to lowest priority. For drivers
that support the Driver Family Override Protocol, those drivers are
sorted so that the drivers with higher values returned by
GetVersion() are high priority that drivers that return lower
values from GetVersion().

Description

This protocol contains a single service that returns a version value for the driver that produces this
protocol. High values are higher priority than lower values when evaluated by the EFI Boot Service
ConnectController(). This is an optional protocol that may be produced by an EFI Driver that follows
the EFI Driver Model. If this protocol is produced, it must be installed onto a handle that also contains the
EFI Driver Binding Protocol.

If this protocol is not produced by an EFI Driver, then the rules used to connect a driver to a controller
from highest priority to lowest priority are as follows:

• Context Override
UEFI Forum, Inc. March 2019 406

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
• Platform Driver Override
• Bus Specific Driver Override Protocol
• Driver Binding Search

If this protocol is produced by an EFI Driver, then the rules used to connect a driver to a controller from
highest priority to lowest priority are as follows:

• Context Override
• Platform Driver Override
• Driver Family Override
• Bus Specific Driver Override
• Driver Binding Search

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion ()

Summary

Retrieves the version of the driver that is used by the EFI Boot Service ConnectController() to sort
the set of Driver Binding Protocols in order from highest priority to lowest priority. For drivers that
support the Driver Family Override Protocol, those drivers are sorted so that the drivers with higher
values returned by GetVersion() are high priority that drivers that return lower values from
GetVersion().

Prototype

typedef

UINT32

(EFIAPI *EFI_DRIVER_FAMILY_OVERRIDE_GET_VERSION) (

 IN EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL *This
);

Parameters

This

A pointer to the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL instance.

Description

This function returns the version value associated with the driver specified by This.

11.10 EFI Driver Health Protocol

This section contains the basic definitions of the Driver Health Protocol.

EFI_DRIVER_HEALTH_PROTOCOL

Summary

When installed, the Driver Health Protocol produces a collection of services that allow the health status
for a controller to be retrieved. If a controller is not in a usable state, status messages may be reported to
the user, repair operations can be invoked, and the user may be asked to make software and/or
UEFI Forum, Inc. March 2019 407

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
hardware configuration changes. All display, as well as interaction, with the user must be handled by the
consumer of the Driver Health Protocol.

GUID

#define EFI_DRIVER_HEALTH_PROTOCOL_GUID \

 {0x2a534210,0x9280,0x41d8,\

 {0xae,0x79,0xca,0xda,0x01,0xa2,0xb1,0x27 }}

Protocol Interface Structure

typedef struct _EFI_DRIVER_HEALTH_PROTOCOL {

 EFI_DRIVER_HEALTH_GET_HEALTH_STATUS GetHealthStatus;

 EFI_DRIVER_HEALTH_REPAIR Repair;
} EFI_DRIVER_HEALTH_PROTOCOL;

Parameters

GetHealthStatus Retrieves the health status of a controller in the platform. This
function can also optionally return warning messages, error
messages, and an HII Form that may be used to repair a controller
that is not properly configured.

Repair Performs a repair operation on a controller in the platform. This
function can optionally report repair progress information back to
the platform.

Description

The Driver Health Protocol is optionally produced by a driver that follows the EFI Driver Model. If an EFI
Driver needs to report health status to the platform, provide warning or error messages to the user,
perform length repair operations, or request the user to make hardware or software configuration
changes, then the Driver Health Protocol must be produced.

A controller that is managed by driver that follows the EFI Driver Model and produces the Driver Health
Protocol must report the current health of the controllers that the driver is currently managing. The
controller can initially be healthy, failed, require repair, or require configuration. If a controller requires
configuration, and the user make configuration changes, the controller may then need to be reconnected
or the system may need to be rebooted for the configuration changes to take effect. Figure 2-1 below
shows all the possible health states of a controller, the set of initial states, the set of terminal states, and
the legal transitions between the health states.
UEFI Forum, Inc. March 2019 408

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Figure 33. Driver Health Status States

EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus()

Summary

Retrieves the health status of a controller in the platform. This function can also optionally return
warning messages, error messages, and an HII Form that may be used to repair a controller that is not
proper configured.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_HEALTH_GET_HEALTH_STATUS) (

 IN EFI_DRIVER_HEALTH_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle, OPTIONAL

 IN EFI_HANDLE ChildHandle, OPTIONAL

 OUT EFI_DRIVER_HEALTH_STATUS *HealthStatus,

 OUT EFI_DRIVER_HEALTH_HII_MESSAGE **MessageList, OPTIONAL

 OUT EFI_HII_HANDLE *FormHiiHandle OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_HEALTH_PROTOCOL instance.

Configuration
Required *

Repair
Required *

Reconnect
Required **

Failed *, **Reboot
Required **

Healthy *, **

* Initial State
** Terminal State
UEFI Forum, Inc. March 2019 409

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
ControllerHandle The handle of the controller to retrieve the health status on. This is
an optional parameter that may be NULL. If this parameter is NULL,
then the value of ChildHandle is ignored, and the combined
health status of all the devices that the driver is managing is
returned.

ChildHandle The handle of the child controller to retrieve the health status on.
This is an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for bus drivers when an attempt is
made to collect the health status of the bus controller. If will not be
NULL when an attempt is made to collect the health status for a child
controller produced by the driver. If ControllerHandle is NULL, then
this parameter is ignored.

HealthStatus A pointer to the health status that is returned by this function. The
health status for the controller specified by ControllerHandle
and ChildHandle is returned.

MessageList A pointer to an array of warning or error messages associated with
the controller specified by ControllerHandle and ChildHandle.
This is an optional parameter that may be NULL. MessageList is
allocated by this function with the EFI Boot Service
AllocatePool(), and it is the caller’s responsibility to free
MessageList with the EFI Boot Service FreePool(). Each
message is specified by tuple of an EFI_HII_HANDLE and an
EFI_STRING_ID. The array of messages is terminated by tuple
containing a EFI_HII_HANDLE with a value of NULL. The
EFI_HII_STRING_PROTOCOL.GetString() function can be used
to retrieve the warning or error message as a Null-terminated string
in a specific language. Messages may be returned for any of the
HealthStatus values except
EfiDriverHealthStatusReconnectRequired and
EfiDriverHealthStatusRebootRequired.

FormHiiHandle A pointer to the HII handle containing the HII form used when
configuration is required. The HII handle is associated with the
controller specified by ControllerHandle and ChildHandle. If
this is NULL, then no HII form is available. An HII handle will only be
returned with a HealthStatus value of
EfiDriverHealthStatusConfigurationRequired.

Description

This function returns the health status associated with the controller specified by ControllerHandle
and ChildHandle. If ControllerHandle is not NULL and the driver specified by This is not
currently managing the controller specified by ControllerHandle and ChildHandle, then
EFI_UNSUPPORTED is returned. If HealthStatus is NULL, then EFI_INVALID_PARAMETER is
returned.

If ControllerHandle is NULL, then the cumulative health status of all the controllers managed by the
EFI driver is returned. If all the controller manages by the driver are healthy, then
EfiDriverHealthStatusHealthy must be returned in HealthStatus. If one or more of the
controllers managed by the EFI Driver is not healthy, then EfiDriverHealthStatusFailed must be
returned.
UEFI Forum, Inc. March 2019 410

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
If ControllerHandle is not NULL and ChildHandle is NULL, then the health status of the controller
specified by ControllerHandle is returned in HealthStatus and EFI_SUCCESS is returned.

If ControllerHandle is not NULL and ChildHandle is not NULL, then the health status of the child
controller specified by ControllerHandle and ChildHandle is returned in HealthStatus and
EFI_SUCCESS is returned.

If MessageList is NULL, then no messages are returned from this function.

If MessageList is not NULL, and HealthStatus is EfiDriverHealthStatusReconnectRequired
or EfiDriverHealthStatusRebootRequired then no messages are returned and *MessageList
must be set to NULL.

If MessageList is not NULL, and there are no warning or error messages associated with the controller
specified by ControllerHandle and ChildHandle, then *MessageList must be set to NULL.

If MessageList is not NULL, and there are one or more warning or error messages associated with the
controller specified by ControllerHandle and ChildHandle, then *MessageList must point to a
buffer allocated with the EFI Boot Service AllocatePool(). The number of
EFI_DRIVER_HEALTH_HII_MESSAGE structures allocated in the buffer must be one more than the
total number of warning or error messages, and the HiiHandle field of the last
EFI_DRIVER_HEALTH_HII_MESSAGE structure must be set to NULL to terminate the list of messages.
It is the caller’s responsibility to free the buffer returned in *MessageList using the EFI Boot Service
FreePool(). Each message is specified by an EFI_HII_HANDLE and an EFI_STRING_ID. The caller
may use the EFI_HII_STRING_PROTOCOL.GetString() function to convert each message into a
Null-terminated string that can may be displayed on a console device.

If FormHiiHandle is NULL, then no forms are returned from this function.

If FormHiiHandle is not NULL, and HealthStatus is not
EfiDriverHealthStatusConfigurationRequired, then no forms are returned and
*FormHiiHandle must be set to NULL.

If FormHiiHandle is not NULL, and FormSetGuid is not NULL, and HealthStatus is
EfiDriverHealthStatusConfigurationRequired, then FormHiiHandle is assigned to the HII
handle which contains the HII form required to perform the configuration operation.

Related Definitions

//***

// EFI_DRIVER_HEALTH_STATUS

//***

typedef enum {

 EfiDriverHealthStatusHealthy,

 EfiDriverHealthStatusRepairRequired,

 EfiDriverHealthStatusConfigurationRequired,

 EfiDriverHealthStatusFailed,

 EfiDriverHealthStatusReconnectRequired,

 EfiDriverHealthStatusRebootRequired

} EFI_DRIVER_HEALTH_STATUS;

EfiDriverHealthStatusHealthy
UEFI Forum, Inc. March 2019 411

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
The controller is in a healthy state.

EfiDriverHealthStatusRepairRequired

The controller requires a repair operation that will take an extended period of time
to perform. The EFI Boot Manager is required to call the Repair() function when
this state is detected. After the Repair() function completed, the health status
may be EfiDriverHealthStatusHealthy,
EfiDriverHealthStatusConfigurationRequired, or
EfiDriverHealthStatusFailed.

EfiDriverHealthStatusConfigurationRequired

The controller requires the user to make software or hardware configuration
changes in order to put the controller into a healthy state. The set of software
configuration changes are specified by the FormHiiHandle and FormSetGuid
parameters. The EFI Boot Manager may call the
EFI_FORM_BROWSER2_PROTOCOL.SendForm() function to display configuration
information and allow the user to make the required configuration changes. The HII
form is the first enabled form in the form set class
EFI_HII_DRIVER_HEALTH_FORMSET_GUID, which is installed on the returned HII
handle FormHiiHandle. The MessageList parameter may be used to identify
additional user configuration operations required to place the controller in a healthy
state. After the FormHiiHandle and MessageList have been processed by the EFI
Boot Manager, the health status may be EfiDriverHealthStatusHealthy,
EfiDriverHealthStatusConfigurationRequired,
EfiDriverHealthStatusRepairRequired,
EfiDriverHealthStatusFailed,
EfiDriverHealthStatusReconnectRequired, or
EfiDriverHealthStatusRebootRequired.

EfiDriverHealthStatusFailed

The controller is in a failed state, and there no actions that can place the controller
into a healthy state. This controller can not be used as a boot device and no boot
devices behind this controller can be used as a boot device.

EfiDriverHealthStatusReconnectRequired

A hardware and/or software configuration change was performed by the
user, and the controller needs to be reconnected before the controller can
be placed in a healthy state. The EFI Boot Manager is required to call the EFI
Boot Service DisconnectController() followed by the EFI Boot Service Con-
nectController() to reconnect the controller.

EfiDriverHealthStatusRebootRequired

A hardware and/or software configuration change was performed by the user, and
the controller requires the entire platform to be rebooted before the controller can
be placed in a healthy state. The EFI Boot Manager should complete the
configuration and repair operations on all the controllers that are not in a healthy
state before rebooting the system.
UEFI Forum, Inc. March 2019 412

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
//***

// EFI_DRIVER_HEALTH_HII_MESSAGE

//***

typedef struct {

 EFI_HII_HANDLE HiiHandle;

 EFI_STRING_ID StringId;

 UINT64 MessageCode;
} EFI_DRIVER_HEALTH_HII_MESSAGE;

HiiHandle The EFI_HII_HANDLE that was returned by
EFI_HII_DATABASE_PROTOCOL.NewPackageList() when the
string pack containing StringId was registered with the HII Database.

StringId The identifier for a single string token in the string pack associated
with HiiHandle.

MessageCode 64-bit numeric value of the warning/error specified by this message.
A value of 0x0000000000000000 is used to indicate that
MessageCode is not specified.

The values 0x0000000000000001 to 0x0fffffffffffffff are
reserved for allocation by the UEFI Specification.

The values 0x1000000000000000 to 0x1fffffffffffffff are
reserved for IHV-developed drivers.

The values 0x8000000000000000 to 0x8fffffffffffffff is
reserved for platform/OEM drivers.

All other values are reserved and should not be used.

Status Codes Returned

EFI_DRIVER_HEALTH_PROTOCOL.Repair ()

Summary

Performs a repair operation on a controller in the platform. This function can optionally report repair
progress information back to the platform.

EFI_SUCCESS The health status of the controller specified by
ControllerHandle and ChildHandle was returned in
HealthStatus. A list of warning and error messages may be
optionally returned in MessageList, and an HII Form may be
optionally specified by FormHiiHandle.

EFI_UNSUPPORTED ControllerHandle is not NULL, and the controller specified by
ControllerHandle and ChildHandle is not currently being
managed by the driver specified by This.

EFI_INVALID_PARAMETER HealthStatus is NULL.

EFI_OUT_OF_RESOURCES MessageList is not NULL, and there are not enough resource
available to allocate memory for MessageList.
UEFI Forum, Inc. March 2019 413

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_HEALTH_REPAIR) (

 IN EFI_DRIVER_HEALTH_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE ChildHandle OPTIONAL,

 IN EFI_DRIVER_HEALTH_REPAIR_NOTIFY RepairNotify OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_HEALTH_PROTOCOL instance.

ControllerHandle The handle of the controller to repair.

ChildHandle The handle of the child controller to repair. This is an optional
parameter that may be NULL. It will be NULL for device drivers. It
will also be NULL for bus drivers when an attempt is made to repair a
bus controller. If will not be NULL when an attempt is made to repair
a child controller produced by the driver.

RepairNotify A notification function that may be used by a driver to report the
progress of the repair operation. This is an optional parameter that
may be NULL.

Description

This function repairs the controller specified by ControllerHandle and ChildHandle. If the driver
specified by This is not currently managing the controller specified by ControllerHandle and
ChildHandle, then EFI_UNSUPPORTED is returned. If there are not enough resource available to
complete the repair operation, then EFI_OUT_OF_RESOURCES is returned. Otherwise, EFI_SUCCESS
is returned. A return value of EFI_SUCCESS does not guarantee that the controller is in a healthy state.
The EFI Boot Manager must call the GetHealthStatus() function to determine the result of the repair
operation.

If RepairNotify is not NULL, and the repair operation requires an extended period of time to execute,
then the driver performing the repair operation may intermittently call the RepairNotify function to
inform the EFI Boot Manager of the progress of the repair operation. The RepairNotify function take
two parameters to specify the current progress value and the limit value. These two values may be used
by the EFI Boot Manager to present status information for the current repair operation.
UEFI Forum, Inc. March 2019 414

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Related Definitions

//***

// EFI_DRIVER_HEALTH_REPAIR_NOTIFY

//***

typedef

EFI_STATUS

(EFIAPI *EFI_DRIVER_HEALTH_REPAIR_NOTIFY) (

 IN UINTN Value,

 IN UINTN Limit
);

Value A value between 0 and Limit that identifies the current progress of
the repair operation.

Limit The maximum value of Value for the current repair operation. If
Limit is 0, then the completion progress is indeterminate. For
example, a driver that wants to specify progress in percent would
use a Limit value of 100.

Status Codes Returned

11.10.1 UEFI Boot Manager Algorithms

This section contains example algorithms that a UEI Boot Manager or UEFI Application could use to
interact with one or more instances of the EFI Driver Health Protocol present in the platform.

11.10.1.1 All Controllers Healthy

This section contains example algorithms that a UEI Boot Manager or UEFI Application could use to
interact with one or more instances of the EFI Driver Health Protocol present in the platform.

The following algorithm collects all the EFI Driver Health Protocols currently present in the EFI Handle
Database, and queries each EFI Driver Health Protocol to determine if one or more of the controllers
managed by each EFI Driver Health Protocol instance are not healthy. The variable AllHealthy is TRUE
if all the controllers in the platform are healthy. AllHealthy is FALSE if one of more of the controllers
in the platform are not healthy.

EFI_SUCCESS An attempt to repair the controller specified by
ControllerHandle and ChildHandle was performed. The
result of the repair operation can bet determined by calling
GetHealthStatus().

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_OUT_OF_RESOURCES There are not enough resources to perform the repair operation.
UEFI Forum, Inc. March 2019 415

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
EFI_STATUS Status;

UINTN NoHandles;

EFI_HANDLE *Handles;

UINTN Index;

EFI_DRIVER_HEALTH_PROTOCOL *DriverHealth;

BOOLEAN AllHealthy;

Status = gBS->LocateHandleBuffer (

 ByProtocol,

 &gEfiDriverHealthProtocolGuid,

 NULL,

 &NoHandles,

 &Handles

);

if (EFI_ERROR (Status)) {

 return;

}

AllHealthy = TRUE;

for (Index = 0; Index < NoHandles; Index++) {

 Status = gBS->HandleProtocol (

 Handles[Index],

 &gEfiDriverHealthProtocolGuid,

 (VOID **)&DriverHealth

);

 if (!EFI_ERROR (Status)) {

 Status = DriverHealth->GetHealthStatus (

 DriverHealth,

 NULL,

 NULL,

 NULL,

 NULL,

 NULL,

 NULL

);

 if (EFI_ERROR (Status)) {

 AllHealthy = FALSE;

 }

 }

}

11.10.1.2 Process a Controller Until Terminal State Reached

The following algorithm processes a single controller using the EFI Driver Health Protocol associated with
UEFI Forum, Inc. March 2019 416

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
that controller. This algorithm continues to query the GetHealthStatus() service until one of the legal
terminal states of the EFI Driver Health Protocol is reached. This may require the processing of HII
Messages, HII Form, and invocation of repair operations.

EFI_STATUS Status;
EFI_DRIVER_HEALTH_PROTOCOL *DriverHealth;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_HEALTH_HEALTH_STATUS HealthStatus;
EFI_DRIVER_HEALTH_HII_MESSAGE *MessageList;
EFI_HII_HANDLE FormHiiHandle;

do {
 HealthStatus = EfiDriverHealthStatusHealthy;
 Status = DriverHealth->GetHealthStatus (

 DriverHealth,
 ControllerHandle,
 ChildHandle,
 &HealthStatus,
 &MessageList,
 &FormHiiHandle
);
 ProcessMessages (MessageList);
 if (HealthStatus == EfiDriverHealthStatusRepairRequired) {
 Status = DriverHealth->Repair (

 DriverHealth,
 ControllerHandle,
 ChildHandle,

 RepairNotify
);
 }
 if (HealthStatus == EfiDriverHealthStatusConfigurationRequired) {
 ProcessForm (FormHiiHandle);
 }
} while (HealthStatus == EfiDriverHealthStatusConfigurationRequired ||
 HealthStatus == EfiDriverHealthStatusRepairRequired);
//
// Check for RebootRequired or ReconnectRequired

//
UEFI Forum, Inc. March 2019 417

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
11.10.1.3 Repair Notification Function

The following is an example repair notification function.

VOID
RepairNotify (

 UINTN Value,
 UINTN Limit
)
{

 UINTN Percent;

 if (Limit == 0) {
 Print (L"Repair Progress Undefined\n\r”);
 } else {
 Percent = Value * 100 / Limit;
 Print (L"Repair Progress = %3d%%", Percent);
 }
}

11.10.1.4 Process Message List

The following algorithm processes a set of messages returned by the GetHealthStatus() service of
the EFI Driver Health Protocol.

EFI_STATUS Status;
EFI_DRIVER_HEALTH_HII_MESSAGE *MessageList;
UINTN MessageIndex;
EFI_HII_STRING_PROTOCOL *HiiString;
EFI_STRING MessageString[200];

for (MessageIndex = 0;
 MessageList[MessageIndex].HiiHandle != 0;
 MessageIndex++) {
 MessageLength = sizeof (MessageString);
 Status = HiiString->GetString (

 HiiString,
 NULL,
 MessageList[MessageIndex].HiiHandle,
 MessageList[MessageIndex].StringId,
 MessageString
 &MessageLength,
 NULL
);
 if (!EFI_ERROR (Status)) {
 // Log or Print or Display MessageString
 }
}

UEFI Forum, Inc. March 2019 418

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
11.10.1.5 Process HII Form

The following algorithm processes an HII Form returned by the GetHealthStatus() service of the EFI
Driver Health Protocol.

EFI_STATUS Status;
EFI_FORM_BROWSER2_PROTOCOL *FormBrowser;
EFI_HII_HANDLE FormHiiHandle;

Status = FormBrowser->SendForm (

 FormBrowser,
 &FormHiiHandle,
 1,
 &gEfiHiiDriverHealthFormsetGuid,
 ,
 0,
 NULL,
 NULL
);

11.10.2 UEFI Driver Algorithms

A UEFI Driver that supports the EFI Driver Health Protocol will typically make the following changes:

11.10.2.1 Driver Entry Point Updates

Install Driver Health Protocol on the driver image handle.

Register HII String/IFR packs with the HII Database

• HII String/IFR packs can also be carried in a PE/COFF image extension
eliminating the need for the driver to perform the registration

• The HII String and HII Forms may be produced dynamically when the
GetHealthStatus() service is called.

11.10.2.2 ·Add global variable

Add global variable to track combined health status of all controllers managed by the driver. The variable
is TRUE if all the controllers managed by the driver are healthy. The variable is FALSE if one or more
controllers managed by the drover are not healthy.

11.10.2.3 Update private context structure

Update private context structure to track health status of each controller managed by the driver. This
may also include the current set of HII Strings and HII Forms associated with the controllers that are not
healthy.
UEFI Forum, Inc. March 2019 419

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
11.10.2.4 Implement GetHealthStatus() service

Implement GetHealthStatus() service of the EFI Driver Health Protocol

• Make sure only legal state transitions are implemented
• Evaluate configuration data and repair status
• Return HII Strings for message(s) associated with the current state
• If configuration required, return HII Form to be processed

11.10.2.5 Implement Repair() service

Implement Repair() service of the EFI Driver Health Protocol

• Calling Repair Notification callback is optional, but recommended.
• Update health status in private context structure before returning
• Make sure only legal state transitions are implemented

11.11 EFI Adapter Information Protocol

This section provides a detailed description of the EFI_ADAPTER_INFORMATION_PROTOCOL. The
EFI Adapter Information Protocol is used to dynamically and quickly discover or set device information for
an adapter. The discovery of information and state of an adapter should be quick and only return
dynamic information. The information should never be cached or stale. The setting information for the
adapter should also be fast and simple. The only information that should be set is operating state
information, like setting a speed. This protocol is meant to be light weight and non-blocking.

EFI_ADAPTER_INFORMATION_PROTOCOL

SUMMARY

Since this protocol will return and set information for the adapter, the adapter device driver must
publish the EFI_ADAPTER_INFORMATION_PROTOCOL.

There are many kinds of adapters. The set and get adapter information functions should be used to
determine the current state of the adapter, or to set a state for an adapter, like device speed.

GUID

#define EFI_ADAPTER_INFORMATION_PROTOCOL_GUID \

 { 0xE5DD1403, 0xD622, 0xC24E, \

 { 0x84, 0x88, 0xC7, 0x1B, 0x17, 0xF5, 0xE8, 0x02 } }

Protocol Interface Structure

typedef struct _EFI_ADAPTER_INFORMATION_PROTOCOL {

 EFI_ADAPTER_INFO_GET_INFO GetInformation;

 EFI_ADAPTER_INFO_SET_INFO SetInformation;

 EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES GetSupportedTypes;
} EFI_ADAPTER_INFORMATION_PROTOCOL;

Parameters

GetInformation Gets device state information from adapter. See
GetInformation() for more function description.
UEFI Forum, Inc. March 2019 420

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
SetInformation Sets device information for adapter. See SetInformation() for
more function description.

GetSupportedTypes Gets a list of supported information types for this instance of the
protocol.

Description

The EFI_ADAPTER_INFORMATION_PROTOCOL is used to get or set the state for an adapter.

EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_GET_INFO()

Summary

Returns the current state information for the adapter.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ADAPTER_INFO_GET_INFO) (

 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,

 IN EFI_GUID *InformationType,

 OUT VOID **InformationBlock,

 OUT UINTN *InformationBlockSize
);

Parameters

This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL
instance.

InformationType A pointer to an EFI_GUID that defines the contents of
InformationBlock. The caller must use the InformationType
to specify the information it needs to retrieve from this service and
to determine how to parse the InformationBlock. The driver
should not attempt to free InformationType.

InformationBlock This service returns a pointer to the buffer with the
InformationBlock structure which contains details about the
data specific to InformationType. This structure is defined based
on the type of data returned, and will be different for different data
types. This service and caller decode this structure and its contents
based on InformationType. This buffer is allocated by this service,
and it is the responsibility of the caller to free it after using it.

InformationBlockSize

The driver returns the size of the InformationBlock in bytes.

Description

The GetInformation() function returns information of type InformationType from the
adapter. If an adapter does not support the requested informational type, then EFI_UNSUPPORTED is
returned.
UEFI Forum, Inc. March 2019 421

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_SET_INFO()

Summary

Sets state information for an adapter.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ADAPTER_INFO_SET_INFO) (

 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,

 IN EFI_GUID *InformationType,

 IN VOID *InformationBlock,

 IN UINTN InformationBlockSize
);

Parameters

This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL
instance.

InformationType A pointer to an EFI_GUID that defines the contents of
InformationBlock. The caller must use the InformationType
to specify the information it wants the service.

InformationBlock A pointer to the InformationBlock structure which contains
details about the data specific to InformationType. This structure
is defined based on the type of data sent, and will be different for
different data types. The driver and caller decode this structure and
its contents based on InformationType. This buffer is allocated by
the caller. It is the responsibility of the caller to free it after the caller
has set the requested parameters.

InformationBlockSizeThe size of the InformationBlock in bytes.

Description

The SetInformation() function sends information of type InformationType for an adapter.
If an adapter does not support the requested informational type, then EFI_UNSUPPORTED is returned.

EFI_SUCCESS The InformationType information was retrieved.

EFI_UNSUPPORTED The InformationType is not known.

EFI_DEVICE_ERROR The device reported an error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER InformationBlock is NULL

EFI_INVALID_PARAMETER InformationBlockSize is NULL
UEFI Forum, Inc. March 2019 422

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Related Definitions

Status Codes Returned

EFI_ADAPTER_INFORMATION_PROTOCOL.
EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES()

Summary

Get a list of supported information types for this instance of the protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES) (

 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,

 OUT EFI_GUID **InfoTypesBuffer,

 OUT UINTN *InfoTypesBufferCount
) ;

Parameters

This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL
instance.

InfoTypesBuffer A pointer to the array of InformationType GUIDs that are supported
by This. This buffer is allocated by this service, and it is the
responsibility of the caller to free it after using it

InfoTypesBufferCountA pointer to the number of GUIDs present in InfoTypesBuffer.

Description

The GetSupportedTypes() function returns a list of InformationType GUIDs that are
supported on an adapter with this instance of EFI_ADAPTER_INFORMATION_PROTOCOL. The list is
returned in InfoTypesBuffer, and the number of GUID pointers in InfoTypesBuffer is returned in
InfoTypesBufferCount.

EFI_SUCCESS The information was received and interpreted successfully.

EFI_UNSUPPORTED The InformationType is not known.

EFI_DEVICE_ERROR The device reported an error.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER InformationBlock is NULL

EFI_WRITE_PROTECTED The InformationType cannot be modified using

EFI_ADAPTER_INFO_SET_INFO()
UEFI Forum, Inc. March 2019 423

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
Status Codes Returned

11.12 EFI Adapter Information Protocol Information Types

Note: In addition to the information block types defined in this section, driver writers may define
additional information type blocks for their own use provided all such blocks are each identified
by a unique GUID created by the definer.

 Clients of the protocol should ignore any unrecognized block types returned by
GetSupportedTypes().

11.12.1 Network Media State

For network adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the
same handle as the UNDI protocol. If SNP or MNP protocol, instead of the UNDI protocol, is installed on
adapter handle, then the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the same
handle as the SNP or MNP protocol.

InformationType

#define EFI_ADAPTER_INFO_MEDIA_STATE_GUID \

 {0xD7C74207, 0xA831, 0x4A26 \

 {0xB1,0xF5,0xD1,0x93,0x06,0x5C,0xE8,0xB6}}

Corresponding

 InformationBlock:

typedef struct {

 EFI_STATUS MediaState;
} EFI_ADAPTER_INFO_MEDIA_STATE;

MediaState Returns the current media state status. MediaState can have any
of the following values:

EFI_SUCCESS: There is media attached to the network adapter.

EFI_NOT_READY: This detects a bounced state. There was media
attached to the network adapter, but it was removed and is trying to
attach to the network adapter again. If re-attached, the status will
be updated to EFI_SUCCESS later.

EFI_NO_MEDIA: There is not any media attached to the network
adapter.

EFI_SUCCESS The list of information type GUIDs that are supported on this adapter was returned in
InfoTypesBuffer. The number of information type GUIDs was returned in
InfoTypesBufferCount.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER InfoTypesBuffer is NULL

EFI_INVALID_PARAMETER InfoTypesBufferCount is NULL

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results
UEFI Forum, Inc. March 2019 424

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
11.12.2 Network Boot

For iSCSI and FCoE HBA adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on
the same handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. When the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL cannot be installed because the adapter was not adequately
configured, or if the relevant SCSI bus handles cannot be produced, this information must be installed on
the controller handle that has been passed to the adapter Pass Thru Driver’s
EFI_DRIVER_BINDING_PROTOCOL.Start() function. This will typically be a handle with the
EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL. If the handle with the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL is produced at a later time, the information on the controller
handle must be uninstalled so as to avoid duplicate information.

InformationType

#define EFI_ADAPTER_INFO_NETWORK_BOOT_GUID \

 {0x1FBD2960, 0x4130, 0x41E5,\

 {0x94,0xAC,0xD2, 0xCF, 0x03, 0x7F, 0xB3, 0x7C}}

Corresponding InformationBlock:

typedef struct {

 BOOLEAN iSsciIpv4BootCapablity;

 BOOLEAN iScsiIpv6BootCapablity;

 BOOLEAN FCoeBootCapablity;

 BOOLEAN OffloadCapability;

 BOOLEAN iScsiMpioCapability

 BOOLEAN iScsiIpv4Boot;

 BOOLEAN iScsiIpv6Boot;

 BOOLEAN FCoeBoot;
} EFI_ADAPTER_INFO_NETWORK_BOOT;

iScsiIpv4BootCapablity

TRUE if the adapter supports booting from iSCSI IPv4 targets.

iScsiIpv6BootCapablity

TRUE if the adapter supports booting from iSCSI IPv6 targets.

FCoeBootCapablity TRUE if the adapter supports booting from FCoE targets.

OffloadCapability TRUE if the adapter supports an offload engine (such as TCP Offload
Engine (TOE) for its iSCSI or FCoE boot operations.

iScsiMpioCapability

TRUE if the adapter supports multipath I/O (MPIO) for its iSCSI boot
operations.

iScsiIpv4Boot TRUE if the adapter is currently configured to boot from iSCSI IPv4
targets.

iScsiIpv6Boot TRUE if the adapter is currently configured to boot from iSCSI IPv6
targets.
UEFI Forum, Inc. March 2019 425

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
FCoeBoot TRUE if the adapter is currently configured to boot from FCoE
targets.

Note: The adapter should set the iScsiIpv4BootCapablity, iScsiIpv6BootCapablity , or
FCoeBootCapablity fields to TRUE if it supports that boot capability, even if that capability is
currently disabled or not configured.

11.12.3 SAN MAC Address

SUMMARY

This information block for the EFI_ADAPTER_INFORMATION_PROTOCOL supports ascertaining the SAN
MAC address for an FCOE-aware network interface controller. This address is the Fabric-Provided MAC
Address (FPMA) that gets assigned to the adapter port after the fabric login.

Note: An instance of the EFI_ADAPTER_INFORMATION_PROTOCOL supporting this GUID must be
installed on the same handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL when it is
produced. However, this address is available to the adapter only when the fabric login has
occurred, so in cases where the login cannot happen, where the adapter was not adequately
configured, or if the relevant SCSI bus handles cannot be produced, this information type may not
be produced.

SAN MAC address information

InformationType

#define EFI_ADAPTER_INFO_SAN_MAC_ADDRESS_GUID \

{0x114da5ef, 0x2cf1, 0x4e12,\

 {0x9b, 0xbb, 0xc4, 0x70, 0xb5, 0x52, 0x05, 0xd9}}

Corresponding InformationBlock:

typedef struct {

 EFI_MAC_ADDRESS SanMacAddress;
} EFI_ADAPTER_INFO_SAN_MAC_ADDRESS;

SanMacAddress Returns the SAN MAC address for the adapter.

11.12.4 IPV6 Support from UNDI

For network adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the same

handle as the UNDI protocol.

• Ipv6Support returns capability of UNDI to support IPV6 traffic.

• Ipv6Support can have any of the following values::

TRUE: The UNDI supports IPV6.

FALSE: This UNDI does not support IPV6 traffic.
UEFI Forum, Inc. March 2019 426

UEFI Specification, Version 2.8 Protocols — UEFI Driver Model
InformationType

#define EFI_ADAPTER_INFO_UNDI_IPV6_SUPPORT_GUID \

{ 0x4bd56be3, 0x4975, 0x4d8a, \

{0xa0, 0xad, 0xc4, 0x91, 0x20, 0x4b, 0x5d, 0x4d}}

Corresponding InformationBlock:

typedef struct {

 BOOLEAN Ipv6Support;

} EFI_ADAPTER_INFO_UNDI_IPV6_SUPPORT;

11.12.5 Network Media Type

For network adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the same
handle as the UNDI protocol. If SNP or MNP protocol, instead of the UNDI protocol, is installed on
adapter handle, then the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the same
handle as the SNP or MNP protocol.

Information Type

 #define EFI_ADAPTER_INFO_MEDIA_TYPE_GUID \

{ 0x8484472f, 0x71ec, 0x411a, \

{ 0xb3, 0x9c, 0x62, 0xcd, 0x94, 0xd9, 0x91, 0x6e }}

Corresponding InformationBlock:

typedef struct {

UINT8 MediaType;

} EFI_ADAPTER_INFO_MEDIA_TYPE;

MediaType indicates the current media type, and can have any of the following values:

1: Ethernet Network Adapter

2: Ethernet Wireless Network Adapter

3~255: Reserved
UEFI Forum, Inc. March 2019 427

UEFI Specification, Version 2.8
12 - Protocols — Console Support

This section explores console support protocols, including Simple Text Input, Simple Text Output, Simple
Pointer, Serial IO, and Graphics Output protocols.

12.1 Console I/O Protocol

This section defines the Console I/O protocol. This protocol is used to handle input and output of text-
based information intended for the system user during the operation of code in the boot services
environment. Also included here are the definitions of three console devices: one for input and one each
for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in implementation.
For example, there is no requirement for compliant systems to have a keyboard or screen directly
connected to the system. Implementations may choose to direct information passed using these
interfaces in arbitrary ways provided that the semantics of the functions are preserved (in other words,
provided that the information is passed to and from the system user).

12.1.1 Overview

The UEFI console is built out of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL and the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. These two protocols implement a basic text-based console
that allows platform firmware, applications written to this specification, and UEFI OS loaders to present
information to and receive input from a system administrator. The UEFI console supported 16-bit
Unicode character codes, a simple set of input control characters (Scan Codes), and a set of output-
oriented programmatic interfaces that give functionality equivalent to an intelligent terminal. The
console does not support pointing devices on input or bitmaps on output.

This specification requires that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL support the same languages
as the corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. The
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is recommended to support at least the printable Basic Latin
Unicode character set to enable standard terminal emulation software to be used with an EFI console.
The Basic Latin Unicode character set implements a superset of ASCII that has been extended to 16-bit
characters. Any number of other Unicode character sets may be optionally supported.

12.1.2 ConsoleIn Definition

The EFI_SIMPLE_TEXT_INPUT_PROTOCOL defines an input stream that contains Unicode characters
and required EFI scan codes. Only the control characters defined in Table 106 have meaning in the
Unicode input or output streams. The control characters are defined to be characters U+0000 through
U+001F. The input stream does not support any software flow control.

Table 106. Supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left margin,
no action is taken.

TAB U+0x0009 Tab.
UEFI Forum, Inc. March 2019 428

UEFI Specification, Version 2.8 Protocols — Console Support
The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to 0x00
then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00 value it
represents a special key as defined by Table 107.

Table 107. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Table 108. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.


EFI Scan Code


Description

0x15 Function 11

0x16 Function 12
UEFI Forum, Inc. March 2019 429

UEFI Specification, Version 2.8 Protocols — Console Support
12.2 Simple Text Input Ex Protocol

The Simple Text Input Ex protocol defines an extension to the Simple Text Input protocol which enables
various new capabilities describes in this section.

0x68 Function 13

0x69 Function 14

0x6A Function 15

0x6B Function 16

0x6C Function 17

0x6D Function 18

0x6E Function 19

0x6F Function 20

0x70 Function 21

0x71 Function 22

0x72 Function 23

0x73 Function 24

0x7F Mute

0x80 Volume Up

0x81 Volume Down

0x100 Brightness Up

0x101 Brightness Down

0x102 Suspend

0x103 Hibernate

0x104 Toggle Display

0x105 Recovery

0x106 Eject

0x8000-0xFFFF OEM Reserved


EFI Scan Code


Description
UEFI Forum, Inc. March 2019 430

UEFI Specification, Version 2.8 Protocols — Console Support
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

Summary

This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires that the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL supports the same languages as the corresponding
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

GUID

#define EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL_GUID \

 {0xdd9e7534, 0x7762, 0x4698, \

 {0x8c, 0x14, 0xf5, 0x85, 0x17, 0xa6, 0x25, 0xaa}}

Protocol Interface Structure

typedef struct _EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL{

 EFI_INPUT_RESET_EX Reset;

 EFI_INPUT_READ_KEY_EX ReadKeyStrokeEx;

 EFI_EVENT WaitForKeyEx;

 EFI_SET_STATE SetState;

 EFI_REGISTER_KEYSTROKE_NOTIFY RegisterKeyNotify;

 EFI_UNREGISTER_KEYSTROKE_NOTIFY UnregisterKeyNotify;
} EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL;

Parameters

Reset Reset the ConsoleIn device. See Reset().

ReadKeyStrokeEx Returns the next input character. See ReadKeyStrokeEx().

WaitForKeyEx Event to use with WaitForEvent() to wait for a key to be
available. An Event will only be triggered if KeyData.Key has
information contained within it.

SetState Set the EFI_KEY_TOGGLE_STATE state settings for the input
device.

RegisterKeyNotify Register a notification function to be called when a given key
sequence is hit.

UnregisterKeyNotifyRemoves a specific notification function.

Description

The EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is used on the ConsoleIn device. It is an extension to
the Simple Text Input protocol which allows a variety of extended shift state information to be returned.

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset()

Summary

Resets the input device hardware.
UEFI Forum, Inc. March 2019 431

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INPUT_RESET_EX) (

 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification

);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the input device hardware.

The implementation of Reset is required to clear the contents of any input queues resident in memory
used for buffering keystroke data and put the input stream in a known empty state.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to verify
that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take an
extended amount of time to verify the device is operating on reset. Otherwise the reset operation is to
occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx()

Summary

Reads the next keystroke from the input device.

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 432

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INPUT_READ_KEY_EX) (

 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,

 OUT EFI_KEY_DATA *KeyData
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

KeyData A pointer to a buffer that is filled in with the keystroke state data for
the key that was pressed. Type EFI_KEY_DATA is defined in
"Related Definitions" below.

Related Definitions

//***

// EFI_KEY_DATA

//***

typedef struct {

 EFI_INPUT_KEY Key;

 EFI_KEY_STATE KeyState;
} EFI_KEY_DATA

Key The EFI scan code and Unicode value returned from the input device.

KeyState The current state of various toggled attributes as well as input
modifier values.

//***

// EFI_KEY_STATE

//***

//

// Any Shift or Toggle State that is valid should have

// high order bit set.

//

typedef struct EFI_KEY_STATE {

 UINT32 KeyShiftState;

 EFI_KEY_TOGGLE_STATE KeyToggleState;
} EFI_KEY_STATE;

KeyShiftState Reflects the currently pressed shift modifiers for the input device.
The returned value is valid only if the high order bit has been set.

KeyToggleState Reflects the current internal state of various toggled attributes. The
returned value is valid only if the high order bit has been set.
UEFI Forum, Inc. March 2019 433

UEFI Specification, Version 2.8 Protocols — Console Support
#define EFI_SHIFT_STATE_VALID 0x80000000

#define EFI_RIGHT_SHIFT_PRESSED 0x00000001

#define EFI_LEFT_SHIFT_PRESSED 0x00000002

#define EFI_RIGHT_CONTROL_PRESSED 0x00000004

#define EFI_LEFT_CONTROL_PRESSED 0x00000008

#define EFI_RIGHT_ALT_PRESSED 0x00000010

#define EFI_LEFT_ALT_PRESSED 0x00000020

#define EFI_RIGHT_LOGO_PRESSED 0x00000040

#define EFI_LEFT_LOGO_PRESSED 0x00000080

#define EFI_MENU_KEY_PRESSED 0x00000100

#define EFI_SYS_REQ_PRESSED 0x00000200

//***

// EFI_KEY_TOGGLE_STATE

//***

typedef UINT8 EFI_KEY_TOGGLE_STATE;

#define EFI_TOGGLE_STATE_VALID 0x80

#define EFI_KEY_STATE_EXPOSED 0x40

#define EFI_SCROLL_LOCK_ACTIVE 0x01

#define EFI_NUM_LOCK_ACTIVE 0x02

#define EFI_CAPS_LOCK_ACTIVE 0x04

Description

The ReadKeyStrokeEx() function reads the next keystroke from the input device. If there is no
pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke, then
KeyData.Key.ScanCode is the EFI scan code defined in Table 107. The KeyData.Key.UnicodeChar
is the actual printable character or is zero if the key does not represent a printable character (control key,
function key, etc.). The KeyData.KeyState is the modifier shift state for the character reflected in
KeyData.Key.UnicodeChar or KeyData.Key.ScanCode. This function mirrors the behavior of
ReadKeyStroke(in the Simple Input Protocol in that a keystroke will only be returned when
KeyData.Key has data within it.

When interpreting the data from this function, it should be noted that if a class of printable characters
that are normally adjusted by shift modifiers (e.g. Shift Key + "f" key) would be presented solely as a
KeyData.Key.UnicodeChar without the associated shift state. So in the previous example of a Shift
Key + "f" key being pressed, the only pertinent data returned would be KeyData.Key.UnicodeChar
with the value of "F". This of course would not typically be the case for non-printable characters such as
the pressing of the Right Shift Key + F10 key since the corresponding returned data would be reflected
both in the KeyData.KeyState.KeyShiftState and KeyData.Key.ScanCode values.

UEFI drivers which implement the EFI_SIMPLE_TEXT_INPUT_EX protocol are required to return
KeyData.Key and KeyData.KeyState values. These drivers must always return the most current
state of KeyData.KeyState.KeyShiftState and KeyData.KeyState.KeyToggleState. It
should also be noted that certain input devices may not be able to produce shift or toggle state
information, and in those cases the high order bit in the respective Toggle and Shift state fields should
not be active.
UEFI Forum, Inc. March 2019 434

UEFI Specification, Version 2.8 Protocols — Console Support
If the EFI_KEY_STATE_EXPOSED bit is turned on, then this instance of the
EFI_SIMPLE_INPUT_EX_PROTOCOL supports the ability to return partial keystrokes. With
EFI_KEY_STATE_EXPOSED bit enabled, the ReadKeyStrokeEx function will allow the return of
incomplete keystrokes such as the holding down of certain keys which are expressed as a part of
KeyState when there is no Key data.

Status Codes Returned

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState()

Summary

Set certain state for the input device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SET_STATE) (

 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,

 IN EFI_KEY_TOGGLE_STATE *KeyToggleState
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

KeyToggleState Pointer to the EFI_KEY_TOGGLE_STATE to set the state for the
input device. Type EFI_KEY_TOGGLE_STATE is defined in "Related
Definitions" for
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx(
), above.

The SetState() function allows the input device hardware to have state settings adjusted. By calling the
SetState() function with the EFI_KEY_STATE_EXPOSED bit active in the KeyToggleState parameter,
this will enable the ReadKeyStrokeEx function to return incomplete keystrokes such as the holding
down of certain keys which are expressed as a part of KeyState when there is no Key data.

EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.. 
Current KeyData.KeyState values are exposed.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.
UEFI Forum, Inc. March 2019 435

UEFI Specification, Version 2.8 Protocols — Console Support
Status Codes Returned

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify()

Summary

Register a notification function for a particular keystroke for the input device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REGISTER_KEYSTROKE_NOTIFY) (

 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,

 IN EFI_KEY_DATA *KeyData,

 IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction,

 OUT VOID **NotifyHandle

);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

KeyData A pointer to a buffer that is filled in with the keystroke information
for the key that was pressed. If KeyData.Key,
KeyData.KeyState.KeyToggleState and
KeyData.KeyState.KeyShiftState are 0, then any incomplete
keystroke will trigger a notification of the KeyNotificationFunction.

KeyNotificationFunction
Points to the function to be called when the key sequence is typed
specified by KeyData. This notification function should be called at
<=TPL_CALLBACK. See EFI_KEY_NOTIFY_FUNCTION below.

NotifyHandle Points to the unique handle assigned to the registered notification.

Description

The RegisterKeystrokeNotify() function registers a function which will be called when a specified
keystroke will occur. The keystroke being specified can be for any combination of KeyData.Key or
KeyData.KeyState information.

EFI_SUCCESS The device state was set appropriately.

EFI_DEVICE_ERROR The device is not functioning correctly and could not have the setting adjusted.

EFI_UNSUPPORTED The device does not support the ability to have its state set or the requested
state change was not supported.
UEFI Forum, Inc. March 2019 436

UEFI Specification, Version 2.8 Protocols — Console Support
Related Definitions

//***

// EFI_KEY_NOTIFY

//***

typedef

EFI_STATUS

(EFIAPI *EFI_KEY_NOTIFY_FUNCTION) (

 IN EFI_KEY_DATA *KeyData
);

Status Codes Returned

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()

Summary

Remove the notification that was previously registered.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UNREGISTER_KEYSTROKE_NOTIFY) (

 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,

 IN VOID *NotificationHandle
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

NotificationHandleThe handle of the notification function being unregistered.

Description

The UnregisterKeystrokeNotify() function removes the notification which was previously
registered.

Status Codes Returned

12.3 Simple Text Input Protocol

The Simple Text Input protocol defines the minimum input required to support the ConsoleIn device.

EFI_SUCCESS Key notify was registered successfully.

EFI_OUT_OF_RESOURCES Unable to allocate necessary data structures.

EFI_SUCCESS Key notify was unregistered successfully.

EFI_INVALID_PARAMETER The NotificationHandle is invalid.
UEFI Forum, Inc. March 2019 437

UEFI Specification, Version 2.8 Protocols — Console Support
EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Summary

This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires that the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL supports the same languages as the corresponding
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

GUID

#define EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID \

{0x387477c1,0x69c7,0x11d2,\

 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure

typedef struct _EFI_SIMPLE_TEXT_INPUT_PROTOCOL {

 EFI_INPUT_RESET Reset;

 EFI_INPUT_READ_KEY ReadKeyStroke;

 EFI_EVENT WaitForKey;
} EFI_SIMPLE_TEXT_INPUT_PROTOCOL;

Parameters

Reset Reset the ConsoleIn device. See Reset().

ReadKeyStroke Returns the next input character. See ReadKeyStroke().

WaitForKey Event to use with EFI_BOOT_SERVICES.WaitForEvent() to wait
for a key to be available.

Description

The EFI_SIMPLE_TEXT_INPUT_PROTOCOL is used on the ConsoleIn device. It is the minimum required
protocol for ConsoleIn.

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()

Summary

Resets the input device hardware.
UEFI Forum, Inc. March 2019 438

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INPUT_RESET) (

 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is defined in
Section 12.3

ExtendedVerification 
Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

The Reset() function resets the input device hardware.

The implementation of Reset is required to clear the contents of any input queues resident in memory
used for buffering keystroke data and put the input stream in a known empty state.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to verify
that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take an extended
amount of time to verify the device is operating on reset. Otherwise the reset operation is to occur as
quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke()

Summary

Reads the next keystroke from the input device.

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 439

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INPUT_READ_KEY) (

 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,

 OUT EFI_INPUT_KEY *Key
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is defined in
Section 12.3.

Key A pointer to a buffer that is filled in with the keystroke information
for the key that was pressed. Type EFI_INPUT_KEY is defined in
“Related Definitions” below.

Related Definitions

//***

// EFI_INPUT_KEY

//***

typedef struct {

 UINT16 ScanCode;

 CHAR16 UnicodeChar;
} EFI_INPUT_KEY;

Description

The ReadKeyStroke() function reads the next keystroke from the input device. If there is no pending
keystroke the function returns EFI_NOT_READY. If there is a pending keystroke, then ScanCode is the EFI
scan code defined in Table 107. The UnicodeChar is the actual printable character or is zero if the key
does not represent a printable character (control key, function key, etc.).

Status Codes Returned

12.3.1 ConsoleOut or StandardError

The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must implement the same Unicode code pages as the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL. The protocol must also support the Unicode control characters
defined in Table 106. The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL supports special manipulation of the
screen by programmatic methods and therefore does not support the EFI scan codes defined in
Table 107.

EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.
UEFI Forum, Inc. March 2019 440

UEFI Specification, Version 2.8 Protocols — Console Support
12.4 Simple Text Output Protocol

The Simple Text Output protocol defines the minimum requirements for a text-based ConsoleOut device.
The EFI specification requires that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL support the same
languages as the corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

Summary

This protocol is used to control text-based output devices.

GUID

#define EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID \

 {0x387477c2,0x69c7,0x11d2,\

 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure

typedef struct _EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL {

 EFI_TEXT_RESET Reset;

 EFI_TEXT_STRING OutputString;

 EFI_TEXT_TEST_STRING TestString;

 EFI_TEXT_QUERY_MODE QueryMode;

 EFI_TEXT_SET_MODE SetMode;

 EFI_TEXT_SET_ATTRIBUTE SetAttribute;

 EFI_TEXT_CLEAR_SCREEN ClearScreen;

 EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition;

 EFI_TEXT_ENABLE_CURSOR EnableCursor;

 SIMPLE_TEXT_OUTPUT_MODE *Mode;
} EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL;

Parameters

Reset Reset the ConsoleOut device. See Reset().

OutputString Displays the string on the device at the current cursor location. See
OutputString().

TestString Tests to see if the ConsoleOut device supports this string. See
TestString().

QueryMode Queries information concerning the output device’s supported text
mode. See QueryMode().

SetMode Sets the current mode of the output device. See SetMode().

SetAttribute Sets the foreground and background color of the text that is output.
See SetAttribute().

ClearScreen Clears the screen with the currently set background color. See
ClearScreen().

SetCursorPosition Sets the current cursor position. See SetCursorPosition().

EnableCursor Turns the visibility of the cursor on/off. See EnableCursor().
UEFI Forum, Inc. March 2019 441

UEFI Specification, Version 2.8 Protocols — Console Support
Mode Pointer to SIMPLE_TEXT_OUTPUT_MODE data. Type
SIMPLE_TEXT_OUTPUT_MODE is defined in “Related Definitions”
below.

The following data values in the SIMPLE_TEXT_OUTPUT_MODE interface are read-only and are changed
by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and SetMode().

Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***

// SIMPLE_TEXT_OUTPUT_MODE

//***

typedef struct {

 INT32 MaxMode;
 // current settings

 INT32 Mode;

 INT32 Attribute;

 INT32 CursorColumn;

 INT32 CursorRow;

 BOOLEAN CursorVisible;
} SIMPLE_TEXT_OUTPUT_MODE;

Description

The SIMPLE_TEXT_OUTPUT protocol is used to control text-based output devices. It is the minimum
required protocol for any handle supplied as the ConsoleOut or StandardError device. In addition, the
minimum supported text mode of such devices is at least 80 x 25 characters.

A video device that only supports graphics mode is required to emulate text mode functionality. Output
strings themselves are not allowed to contain any control codes other than those defined in Table 106.
Positional cursor placement is done only via the SetCursorPosition() function. It is highly
recommended that text output to the StandardError device be limited to sequential string outputs. (That
is, it is not recommended to use ClearScreen() or SetCursorPosition() on output messages to
StandardError.)

If the output device is not in a valid text mode at the time of the
EFI_BOOT_SERVICES.HandleProtocol() call, the device is to indicate that its CurrentMode is –1. On
connecting to the output device the caller is required to verify the mode of the output device, and if it is
not acceptable to set it to something it can use.
UEFI Forum, Inc. March 2019 442

UEFI Specification, Version 2.8 Protocols — Console Support
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()

Summary

Resets the text output device hardware.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_RESET) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

ExtendedVerification Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

The Reset() function resets the text output device hardware. The cursor position is set to (0, 0), and the
screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to verify
that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take an extended
amount of time to verify the device is operating on reset. Otherwise the reset operation is to occur as
quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()

Summary

Writes a string to the output device.

EFI_SUCCESS The text output device was reset.

EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 443

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_STRING) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN CHAR16 *String
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

String The Null-terminated string to be displayed on the output device(s).
All output devices must also support the Unicode drawing character
codes defined in “Related Definitions.”
UEFI Forum, Inc. March 2019 444

UEFI Specification, Version 2.8 Protocols — Console Support
Related Definitions

//***

// UNICODE DRAWING CHARACTERS

//***

#define BOXDRAW_HORIZONTAL 0x2500

#define BOXDRAW_VERTICAL 0x2502

#define BOXDRAW_DOWN_RIGHT 0x250c

#define BOXDRAW_DOWN_LEFT 0x2510

#define BOXDRAW_UP_RIGHT 0x2514

#define BOXDRAW_UP_LEFT 0x2518

#define BOXDRAW_VERTICAL_RIGHT 0x251c

#define BOXDRAW_VERTICAL_LEFT 0x2524

#define BOXDRAW_DOWN_HORIZONTAL 0x252c

#define BOXDRAW_UP_HORIZONTAL 0x2534

#define BOXDRAW_VERTICAL_HORIZONTAL 0x253c

#define BOXDRAW_DOUBLE_HORIZONTAL 0x2550

#define BOXDRAW_DOUBLE_VERTICAL 0x2551

#define BOXDRAW_DOWN_RIGHT_DOUBLE 0x2552

#define BOXDRAW_DOWN_DOUBLE_RIGHT 0x2553

#define BOXDRAW_DOUBLE_DOWN_RIGHT 0x2554

#define BOXDRAW_DOWN_LEFT_DOUBLE 0x2555

#define BOXDRAW_DOWN_DOUBLE_LEFT 0x2556

#define BOXDRAW_DOUBLE_DOWN_LEFT 0x2557

#define BOXDRAW_UP_RIGHT_DOUBLE 0x2558

#define BOXDRAW_UP_DOUBLE_RIGHT 0x2559

#define BOXDRAW_DOUBLE_UP_RIGHT 0x255a

#define BOXDRAW_UP_LEFT_DOUBLE 0x255b

#define BOXDRAW_UP_DOUBLE_LEFT 0x255c

#define BOXDRAW_DOUBLE_UP_LEFT 0x255d

#define BOXDRAW_VERTICAL_RIGHT_DOUBLE 0x255e

#define BOXDRAW_VERTICAL_DOUBLE_RIGHT 0x255f

#define BOXDRAW_DOUBLE_VERTICAL_RIGHT 0x2560

#define BOXDRAW_VERTICAL_LEFT_DOUBLE 0x2561

#define BOXDRAW_VERTICAL_DOUBLE_LEFT 0x2562

#define BOXDRAW_DOUBLE_VERTICAL_LEFT 0x2563

#define BOXDRAW_DOWN_HORIZONTAL_DOUBLE 0x2564

#define BOXDRAW_DOWN_DOUBLE_HORIZONTAL 0x2565

#define BOXDRAW_DOUBLE_DOWN_HORIZONTAL 0x2566
UEFI Forum, Inc. March 2019 445

UEFI Specification, Version 2.8 Protocols — Console Support
#define BOXDRAW_UP_HORIZONTAL_DOUBLE 0x2567

#define BOXDRAW_UP_DOUBLE_HORIZONTAL 0x2568

#define BOXDRAW_DOUBLE_UP_HORIZONTAL 0x2569

#define BOXDRAW_VERTICAL_HORIZONTAL_DOUBLE 0x256a

#define BOXDRAW_VERTICAL_DOUBLE_HORIZONTAL 0x256b

#define BOXDRAW_DOUBLE_VERTICAL_HORIZONTAL 0x256c

//***

// EFI Required Block Elements Code Chart

//***

#define BLOCKELEMENT_FULL_BLOCK 0x2588

#define BLOCKELEMENT_LIGHT_SHADE 0x2591

//***

// EFI Required Geometric Shapes Code Chart

//***

#define GEOMETRICSHAPE_UP_TRIANGLE 0x25b2

#define GEOMETRICSHAPE_RIGHT_TRIANGLE 0x25ba

#define GEOMETRICSHAPE_DOWN_TRIANGLE 0x25bc

#define GEOMETRICSHAPE_LEFT_TRIANGLE 0x25c4

//***

// EFI Required Arrow shapes

//***

#define ARROW_UP 0x2191

#define ARROW_DOWN 0x2193

Description

The OutputString() function writes a string to the output device. This is the most basic output
mechanism on an output device. The String is displayed at the current cursor location on the output
device(s) and the cursor is advanced according to the rules listed in Table 109.

Table 109. EFI Cursor Location/Advance Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and do not
update the cursor position. Otherwise, move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.
UEFI Forum, Inc. March 2019 446

UEFI Specification, Version 2.8 Protocols — Console Support
Note: If desired, the system’s NVRAM environment variables may be used at install time to determine
the configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure
the installed image’s strings to use the proper text for the selected locale.

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()

Summary

Verifies that all characters in a string can be output to the target device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_TEST_STRING) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN CHAR16 *String
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

String The Null-terminated string to be examined for the output device(s).

Description

The TestString() function verifies that all characters in a string can be output to the target device.

This function provides a way to know if the desired character codes are supported for rendering on the
output device(s). This allows the installation procedure (or EFI image) to at least select character codes
that the output devices are capable of displaying. Since the output device(s) may be changed between
boots, if the loader cannot adapt to such changes it is recommended that the loader call

Other U+XXXX Print the character at the current cursor position and move the cursor right one column.
If this moves the cursor past the right edge of the display, then the line should wrap to
the beginning of the next line. This is equivalent to inserting a CR and an LF. Note that if
the cursor is at the bottom of the display, and the line wraps, then the display will be
scrolled one line.

EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output the
text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined text
mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters in the
string could not be rendered and were skipped.

Mnemonic Unicode Description
UEFI Forum, Inc. March 2019 447

UEFI Specification, Version 2.8 Protocols — Console Support
OutputString() with the text it has and ignore any “unsupported” error codes. Devices that are
capable of displaying the Unicode character codes will do so.

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()

Summary

Returns information for an available text mode that the output device(s) supports.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_QUERY_MODE) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN UINTN ModeNumber,

 OUT UINTN *Columns,

 OUT UINTN *Rows
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

ModeNumber The mode number to return information on.

Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.

Description

The QueryMode() function returns information for an available text mode that the output device(s)
supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be mode 0.
If the output devices support 80x50, that is defined to be mode 1. All other text dimensions supported by
the device will follow as modes 2 and above. If an output device supports modes 2 and above, but does
not support 80x50, then querying for mode 1 will return EFI_UNSUPPORTED.

EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the string cannot be rendered by one or more of
the output devices mapped by the EFI handle.
UEFI Forum, Inc. March 2019 448

UEFI Specification, Version 2.8 Protocols — Console Support
Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()

Summary

Sets the output device(s) to a specified mode.

Prototype

typedef

EFI_STATUS

(* EFIAPI EFI_TEXT_SET_MODE) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN UINTN ModeNumber
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

ModeNumber The text mode to set.

Description

The SetMode() function sets the output device(s) to the requested mode. On success the device is in the
geometry for the requested mode, and the device has been cleared to the current background color with
the cursor at (0,0).

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()

Summary

Sets the background and foreground colors for theOutputString() and ClearScreen() functions.

EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

EFI_SUCCESS The requested text mode was set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.
UEFI Forum, Inc. March 2019 449

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_SET_ATTRIBUTE) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN UINTN Attribute
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits 4..6
are the background color. All other bits are reserved. See “Related
Definitions” below.

Related Definitions
UEFI Forum, Inc. March 2019 450

UEFI Specification, Version 2.8 Protocols — Console Support
//***

// Attributes

//***

#define EFI_BLACK 0x00

#define EFI_BLUE 0x01

#define EFI_GREEN 0x02

#define EFI_CYAN 0x03

#define EFI_RED 0x04

#define EFI_MAGENTA 0x05

#define EFI_BROWN 0x06

#define EFI_LIGHTGRAY 0x07

#define EFI_BRIGHT 0x08

#define EFI_DARKGRAY(EFI_BLACK | EFI_BRIGHT) 0x08

#define EFI_LIGHTBLUE 0x09

#define EFI_LIGHTGREEN 0x0A

#define EFI_LIGHTCYAN 0x0B

#define EFI_LIGHTRED 0x0C

#define EFI_LIGHTMAGENTA 0x0D

#define EFI_YELLOW 0x0E

#define EFI_WHITE 0x0F

#define EFI_BACKGROUND_BLACK 0x00

#define EFI_BACKGROUND_BLUE 0x10

#define EFI_BACKGROUND_GREEN 0x20

#define EFI_BACKGROUND_CYAN 0x30

#define EFI_BACKGROUND_RED 0x40

#define EFI_BACKGROUND_MAGENTA 0x50

#define EFI_BACKGROUND_BROWN 0x60

#define EFI_BACKGROUND_LIGHTGRAY 0x70

//

// Macro to accept color values in their raw form to create

// a value that represents both a foreground and background

// color in a single byte.

// For Foreground, and EFI_* value is valid from EFI_BLACK(0x00)

// to EFI_WHITE (0x0F).

// For Background, only EFI_BLACK, EFI_BLUE, EFI_GREEN,

// EFI_CYAN, EFI_RED, EFI_MAGENTA, EFI_BROWN, and EFI_LIGHTGRAY

// are acceptable.

//

// Do not use EFI_BACKGROUND_xxx values with this macro.

//#define EFI_TEXT_ATTR(Foreground,Background) \

((Foreground) | ((Background) << 4))

Description

The SetAttribute() function sets the background and foreground colors for the OutputString() and
ClearScreen() functions.
UEFI Forum, Inc. March 2019 451

UEFI Specification, Version 2.8 Protocols — Console Support
The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the best
of the device’s capabilities.

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()

Summary

Clears the output device(s) display to the currently selected background color.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_CLEAR_SCREEN) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

Description

The ClearScreen() function clears the output device(s) display to the currently selected background color.
The cursor position is set to (0, 0).

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()

Summary

Sets the current coordinates of the cursor position.

EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode.
UEFI Forum, Inc. March 2019 452

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_SET_CURSOR_POSITION) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN UINTN Column,

 IN UINTN Row
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

Column, Row The position to set the cursor to. Must greater than or equal to zero
and less than the number of columns and rows returned by
QueryMode().

Description

The SetCursorPosition() function sets the current coordinates of the cursor position. The upper left
corner of the screen is defined as coordinate (0, 0).

Status Codes Returned

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

Summary

Makes the cursor visible or invisible.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TEXT_ENABLE_CURSOR) (

 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,

 IN BOOLEAN Visible
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 12.4.

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor position is
invalid for the current mode.
UEFI Forum, Inc. March 2019 453

UEFI Specification, Version 2.8 Protocols — Console Support
Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is set to be
invisible.

Description

The EnableCursor() function makes the cursor visible or invisible.

Status Codes Returned

12.5 Simple Pointer Protocol

This section defines the Simple Pointer Protocol and a detailed description of the
EFI_SIMPLE_POINTER_PROTOCOL. The intent of this section is to specify a simple method for accessing
pointer devices. This would include devices such as mice and trackballs.

The EFI_SIMPLE_POINTER_PROTOCOL allows information about a pointer device to be retrieved. This
would include the status of buttons and the motion of the pointer device since the last time it was
accessed. This protocol is attached the device handle of a pointer device, and can be used for input from
the user in the preboot environment.

EFI_SIMPLE_POINTER_PROTOCOL

Summary

Provides services that allow information about a pointer device to be retrieved.

GUID

#define EFI_SIMPLE_POINTER_PROTOCOL_GUID \

 {0x31878c87,0xb75,0x11d5,\

 {0x9a,0x4f,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure

typedef struct _EFI_SIMPLE_POINTER_PROTOCOL {

 EFI_SIMPLE_POINTER_RESET Reset;

 EFI_SIMPLE_POINTER_GET_STATE GetState;

 EFI_EVENT WaitForInput;

 EFI_SIMPLE_INPUT_MODE *Mode;
} EFI_SIMPLE_POINTER_PROTOCOL;

Parameters

Reset Resets the pointer device. See the Reset() function description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or the device
does not support changing the cursor mode.

EFI_UNSUPPORTED The output device does not support visibility control of the cursor.
UEFI Forum, Inc. March 2019 454

UEFI Specification, Version 2.8 Protocols — Console Support
WaitForInput Event to use with EFI_BOOT_SERVICES.WaitForEvent() to wait
for input from the pointer device.

Mode Pointer to EFI_SIMPLE_POINTER_MODE data. The type
EFI_SIMPLE_POINTER_MODE is defined in “Related Definitions”
below.

Related Definitions

//***

// EFI_SIMPLE_POINTER_MODE

//***

typedef struct {

 UINT64 ResolutionX;

 UINT64 ResolutionY;

 UINT64 ResolutionZ;

 BOOLEAN LeftButton;

 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_MODE;

The following data values in the EFI_SIMPLE_POINTER_MODE interface are read-only and are changed
by using the appropriate interface functions:

ResolutionX The resolution of the pointer device on the x-axis in counts/mm. If 0,
then the pointer device does not support an x-axis.

ResolutionY The resolution of the pointer device on the y-axis in counts/mm. If 0,
then the pointer device does not support a y-axis.

ResolutionZ The resolution of the pointer device on the z-axis in counts/mm. If 0,
then the pointer device does not support a z-axis.

LeftButton TRUE if a left button is present on the pointer device. Otherwise
FALSE.

RightButton TRUE if a right button is present on the pointer device. Otherwise
FALSE.

Description

The EFI_SIMPLE_POINTER_PROTOCOL provides a set of services for a pointer device that can use used as
an input device from an application written to this specification. The services include the ability to reset
the pointer device, retrieve get the state of the pointer device, and retrieve the capabilities of the
pointer device.

EFI_SIMPLE_POINTER_PROTOCOL.Reset()

Summary

Resets the pointer device hardware.
UEFI Forum, Inc. March 2019 455

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_POINTER_RESET) (

 IN EFI_SIMPLE_POINTER_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL instance. Type
EFI_SIMPLE_POINTER_PROTOCOL is defined in Section 12.5.

ExtendedVerification 
Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

This Reset() function resets the pointer device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to verify
that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take an extended
amount of time to verify the device is operating on reset. Otherwise the reset operation is to occur as
quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SIMPLE_POINTER_PROTOCOL.GetState()

Summary

Retrieves the current state of a pointer device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_POINTER_GET_STATE)

 IN EFI_SIMPLE_POINTER_PROTOCOL *This,

 IN OUT EFI_SIMPLE_POINTER_STATE *State
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL instance. Type
EFI_SIMPLE_POINTER_PROTOCOL is defined in Section 12.5.

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 456

UEFI Specification, Version 2.8 Protocols — Console Support
State A pointer to the state information on the pointer device. Type
EFI_SIMPLE_POINTER_STATE is defined in “Related Definitions”
below.

Related Definitions

//***

// EFI_SIMPLE_POINTER_STATE

//***

typedef struct {

 INT32 RelativeMovementX;

 INT32 RelativeMovementY;

 INT32 RelativeMovementZ;

 BOOLEAN LeftButton;

 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_STATE;

RelativeMovementX The signed distance in counts that the pointer device has been
moved along the x-axis. The actual distance moved is
RelativeMovementX / ResolutionX millimeters. If the ResolutionX
field of the EFI_SIMPLE_POINTER_MODE structure is 0, then this
pointer device does not support an x-axis, and this field must be
ignored.

RelativeMovementY The signed distance in counts that the pointer device has been
moved along the y-axis. The actual distance moved is
RelativeMovementY / ResolutionY millimeters. If the ResolutionY
field of the EFI_SIMPLE_POINTER_MODE structure is 0, then this
pointer device does not support a y-axis, and this field must be
ignored.

RelativeMovementZ The signed distance in counts that the pointer device has been
moved along the z-axis. The actual distance moved is
RelativeMovementZ / ResolutionZ millimeters. If the ResolutionZ
field of the EFI_SIMPLE_POINTER_MODE structure is 0, then this
pointer device does not support a z-axis, and this field must be
ignored.

LeftButton If TRUE, then the left button of the pointer device is being pressed. If
FALSE, then the left button of the pointer device is not being
pressed. If the LeftButton field of the EFI_SIMPLE_POINTER_MODE
structure is FALSE, then this field is not valid, and must be ignored.

RightButton If TRUE, then the right button of the pointer device is being pressed.
If FALSE, then the right button of the pointer device is not being
pressed. If the RightButton field of the EFI_SIMPLE_POINTER_MODE
structure is FALSE, then this field is not valid, and must be ignored.

Description

The GetState() function retrieves the current state of a pointer device. This includes information on the
buttons associated with the pointer device and the distance that each of the axes associated with the
pointer device has been moved. If the state of the pointer device has not changed since the last call to
UEFI Forum, Inc. March 2019 457

UEFI Specification, Version 2.8 Protocols — Console Support
GetState(), then EFI_NOT_READY is returned. If the state of the pointer device has changed since the last
call to GetState(), then the state information is placed in State, and EFI_SUCCESS is returned. If a device
error occurs while attempting to retrieve the state information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned

12.6 EFI Simple Pointer Device Paths

An EFI_SIMPLE_POINTER_PROTOCOL must be installed on a handle for its services to be available to
drivers and applications written to this specification. In addition to the
EFI_SIMPLE_POINTER_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be installed on the
same handle. See Section 10.2 for a detailed description of the EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s point of
view. This includes the list of busses that lie between the processor and the pointer controller. The UEFI
Specification takes advantage of the ACPI Specification to name system components. The following set of
examples shows sample device paths for a PS/2* mouse, a serial mouse, and a USB mouse.

Table 110 shows an example device path for a PS/2 mouse that is located behind a PCI to ISA bridge that
is located at PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge.
This device path consists of an ACPI Device Path Node for the PCI Root Bridge, a PCI Device Path Node for
the PCI to ISA bridge, an ACPI Device Path Node for the PS/2 mouse, and a Device Path End Structure. The
_HID and _UID of the first ACPI Device Path Node must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/ACPI(PNP0F03,0)

Table 110. PS/2 Mouse Device Path

EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to

GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device's
current state.

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in the low
order bytes. The compression method is described in the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device
UEFI Forum, Inc. March 2019 458

UEFI Specification, Version 2.8 Protocols — Console Support
Table 111 shows an example device path for a serial mouse that is located on COM 1 behind a PCI to ISA
bridge that is located at PCI device number 0x07 and PCI function 0x00. The PCI to ISA bridge is directly
attached to a PCI root bridge, and the communications parameters for COM 1 are 1200 baud, no parity, 8
data bits, and 1 stop bit. This device path consists of an ACPI Device Path Node for the PCI Root Bridge, a
PCI Device Path Node for the PCI to ISA bridge, an ACPI Device Path Node for COM 1, a UART Device Path
Node for the communications parameters, an ACPI Device Path Node for the serial mouse, and a Device
Path End Structure. The _HID and _UID of the first ACPI Device Path Node must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/ACPI(PNP0501,0)/UART(1200,N,8,1)/ACPI(PNP0F01,0)

Table 111. Serial Mouse Device Path

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0F03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in the low
order bytes. The compression method is described in the ACPI Specification.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0501

_HID PNP0501 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0x03 Generic Device Path Header – Messaging Device Path
UEFI Forum, Inc. March 2019 459

UEFI Specification, Version 2.8 Protocols — Console Support
Table 112 shows an example device path for a USB mouse that is behind a PCI to USB host controller that
is located at PCI device number 0x07 and PCI function 0x02. The PCI to USB host controller is directly
attached to a PCI root bridge. This device path consists of an ACPI Device Path Node for the PCI Root
Bridge, a PCI Device Path Node for the PCI to USB controller, a USB Device Path Node, and a Device Path
End Structure. The _HID and _UID of the first ACPI Device Path Node must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,2)/USB(0,0)

Table 112. USB Mouse Device Path

0x1F 0x01 0x0E Sub type – UART Device Path

0x20 0x02 0x13 Length – 0x13 bytes

0x22 0x04 0x00 Reserved

0x26 0x08 1200 Baud Rate

0x2E 0x01 0x08 Data Bits

0x2F 0x01 0x01 Parity

0x30 0x01 0x01 Stop Bits

0x31 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x32 0x01 0x01 Sub type – ACPI Device Path

0x33 0x02 0x0C Length – 0x0C bytes

0x35 0x04 0x41D0,
0x0F01

_HID PNP0F01 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x39 0x04 0x0000 _UID

0x3D 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x3E 0x01 0xFF Sub type – End of Entire Device Path

0x3F 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in the low
order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Messaging Device Path

0x13 0x01 0x05 Sub type – USB
UEFI Forum, Inc. March 2019 460

UEFI Specification, Version 2.8 Protocols — Console Support
12.7 Absolute Pointer Protocol

This section defines the Absolute Pointer Protocol and a detailed description of the
EFI_ABSOLUTE_POINTER_PROTOCOL. The intent of this section is to specify a simple method

for accessing absolute pointer devices. This would include devices like touch screens, and digitizers.

The EFI_ABSOLUTE_POINTER_PROTOCOL allows information about a pointer device to be

retrieved. This would include the status of buttons and the coordinates of the pointer device on the last
time it was activated. This protocol is attached to the device handle of an absolute pointer device, and
can be used for input from the user in the preboot environment.

Supported devices may return 1, 2, or 3 axis of information. The Z axis may optionally be used to return
pressure data measurements derived from user pen force.

All supported devices must support a touch-active status. Supported devices may optionally support a
second input button, for example a pen side-button.

EFI_ABSOLUTE_POINTER_PROTOCOL

Summary

Provides services that allow information about an absolute pointer device to be retrieved.

GUID

#define EFI_ABSOLUTE_POINTER_PROTOCOL_GUID \

 {0x8D59D32B, 0xC655, 0x4AE9, \

 {0x9B, 0x15, 0xF2, 0x59, 0x04, 0x99, 0x2A, 0x43}}

Protocol Interface Structure

typedef struct _EFI_ABSOLUTE_POINTER_PROTOCOL {

 EFI_ABSOLUTE_POINTER_RESET Reset;

 EFI_ABSOLUTE_POINTER_GET_STATE GetState;

 EFI_EVENT WaitForInput;

 EFI_ABSOLUTE_POINTER_MODE *Mode;
} EFI_ABSOLUTE_POINTER_PROTOCOL;

Parameters

Reset Resets the pointer device. See the Reset() function description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 USB Port Number

0x17 0x01 0x00 USB Endpoint Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 461

UEFI Specification, Version 2.8 Protocols — Console Support
WaitForInput Event to use with WaitForEvent() to wait for input from the
pointer device.

*Mode Pointer to EFI_ABSOLUTE_POINTER_MODE data. The type
EFI_ABSOLUTE_POINTER_MODE is defined in "Related Definitions"
below.

Related Definitions

//***

// EFI_ABSOLUTE_POINTER_MODE

//***

typedef struct {

 UINT64 AbsoluteMinX;

 UINT64 AbsoluteMinY;

 UINT64 AbsoluteMinZ;

 UINT64 AbsoluteMaxX;

 UINT64 AbsoluteMaxY;

 UINT64 AbsoluteMaxZ;

 UINT32 Attributes;
} EFI_ABSOLUTE_POINTER_MODE;

The following data values in the EFI_ABSOLUTE_POINTER_MODE interface are read-only and are
changed by using the appropriate interface functions:

AbsoluteMinX The Absolute Minimum of the device on the x-axis

AbsoluteMinY The Absolute Minimum of the device on the y -axis.

AbsoluteMinZ The Absolute Minimum of the device on the z-axis.

AbsoluteMaxX The Absolute Maximum of the device on the x-axis. If 0, and the
AbsoluteMinX is 0, then the pointer device does not support a x-axis.

AbsoluteMaxY The Absolute Maximum of the device on the y -axis. If 0, and the
AbsoluteMinY is 0, then the pointer device does not support a y-axis.

AbsoluteMaxZ The Absolute Maximum of the device on the z-axis. If 0, and the
AbsoluteMinZ is 0, then the pointer device does not support a z-axis.

Attributes The following bits are set as needed (or'd together) to indicate the
capabilities of the device supported. The remaining bits are
undefined and should be returned as 0.

#define EFI_ABSP_SupportsAltActive 0x00000001

#define EFI_ABSP_SupportsPressureAsZ 0x00000002

EFI_ABSP_SupportsAltActive
If set, indicates this device supports an alternate button input.

EFI_ABSP_SupportsPressureAsZ
If set, indicates this device returns pressure data in parameter
CurrentZ.
UEFI Forum, Inc. March 2019 462

UEFI Specification, Version 2.8 Protocols — Console Support
The driver is not permitted to return all zeros for all three pairs of Min and Max as this would indicate no
axis supported.

Description

The EFI_ABSOLUTE_POINTER_PROTOCOL provides a set of services for a pointer device that can be used
as an input device from an application written to this specification. The services include the ability to
reset the pointer device, retrieve the state of the pointer device, and retrieve the capabilities of the
pointer device. In addition certain data items describing the device are provided.

EFI_ABSOLUTE_POINTER_PROTOCOL.Reset()

Summary

Resets the pointer device hardware.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ABSOLUTE_POINTER_RESET) (

 IN EFI_ABSOLUTE_POINTER_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_ABSOLUTE_POINTER_PROTOCOL instance.
Type EFI_ABSOLUTE_POINTER_PROTOCOL is defined in this section.

ExtendedVerification Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

This Reset() function resets the pointer device hardware. As part of initialization process, the firmware/
device will make a quick but reasonable attempt to verify that the device is functioning. If the
ExtendedVerification flag is TRUE the firmware may take an extended amount of time to verify the device
is operating on reset. Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Codes Returned

EFI_ABSOLUTE_POINTER_PROTOCOL.GetState()

Summary

Retrieves the current state of a pointer device.

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 463

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ABSOLUTE_POINTER_GET_STATE) (

 IN EFI_ABSOLUTE_POINTER_PROTOCOL *This,

 IN OUT EFI_ABSOLUTE_POINTER_STATE *State
);

Parameters

This A pointer to the EFI_ABSOLUTE_POINTER_PROTOCOL instance.
Type EFI_ABSOLUTE_POINTER_PROTOCOL is defined in
Section 12.7.

State A pointer to the state information on the pointer device. Type
EFI_ABSOLUTE_POINTER_STATE is defined in "Related Definitions"
below.

Related Definitions

//***
// EFI_ABSOLUTE_POINTER_STATE

//***

typedef struct {

 UINT64 CurrentX;

 UINT64 CurrentY;

 UINT64 CurrentZ;

 UINT32 ActiveButtons;
} EFI_ABSOLUTE_POINTER_STATE;

CurrentX The unsigned position of the activation on the x axis If the
AboluteMinX and the AboluteMaxX fields of the
EFI_ABSOLUTE_POINTER_MODE structure are both 0, then this
pointer device does not support an x-axis, and this field must be
ignored.

CurrentY The unsigned position of the activation on the y axis If the
AboluteMinY and the AboluteMaxY fields of the
EFI_ABSOLUTE_POINTER_MODE structure are both 0, then this
pointer device does not support a y-axis, and this field must be
ignored.

CurrentZ The unsigned position of the activation on the z axis, or the pressure
measurement. If the AboluteMinZ and the AboluteMaxZ fields of the
EFI_ABSOLUTE_POINTER_MODE structure are both 0, then this
pointer device does not support a z-axis, and this field must be
ignored.

ActiveButtons Bits are set to 1 in this structure item to indicate that device buttons
are active.
UEFI Forum, Inc. March 2019 464

UEFI Specification, Version 2.8 Protocols — Console Support
Related Definitions

//******************************

//definitions of bits within ActiveButtons

//******************************

#define EFI_ABSP_TouchActive 0x00000001

#define EFI_ABS_AltActive 0x00000002

EFI_ABSP_TouchActiveThis bit is set if the touch sensor is active

EFI_ABS_AltActive This bit is set if the alt sensor, such as pen-side button, is active.

Description

The GetState() function retrieves the current state of a pointer device. This includes information on the
active state associated with the pointer device and the current position of the axes associated with the
pointer device. If the state of the pointer device has not changed since the last call to GetState(), then
EFI_NOT_READY is returned. If the state of the pointer device has changed since the last call to
GetState(), then the state information is placed in State, and EFI_SUCCESS is returned. If a device
error occurs while attempting to retrieve the state information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned

12.8 Serial I/O Protocol

This section defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

EFI_SERIAL_IO_PROTOCOL

Summary

This protocol is used to communicate with any type of character-based I/O device.

EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to

GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device's
current state.
UEFI Forum, Inc. March 2019 465

UEFI Specification, Version 2.8 Protocols — Console Support
GUID

#define EFI_SERIAL_IO_PROTOCOL_GUID \

 {0xBB25CF6F,0xF1D4,0x11D2,\

 {0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0xfd}}

Revision Number

#define EFI_SERIAL_IO_PROTOCOL_REVISION 0x00010000

#define EFI_SERIAL_IO_PROTOCOL_REVISION1p1 0x00010001

Protocol Interface Structure

typedef struct {

 UINT32 Revision;

 EFI_SERIAL_RESET Reset;

 EFI_SERIAL_SET_ATTRIBUTES SetAttributes;

 EFI_SERIAL_SET_CONTROL_BITS SetControl;

 EFI_SERIAL_GET_CONTROL_BITS GetControl;

 EFI_SERIAL_WRITE Write;

 EFI_SERIAL_READ Read;

 SERIAL_IO_MODE *Mode;
 CONST EFI_GUID *DeviceTypeGuid; // Revision 1.1

} EFI_SERIAL_IO_PROTOCOL;

Parameters

Revision The revision to which the EFI_SERIAL_IO_PROTOCOL adheres. All
future revisions must be backwards compatible. If a future version is
not back wards compatible, it is not the same GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These include
the baud rate, receive FIFO depth, transmit/receive time out, parity,
data bits, and stop bit attributes.

SetControl Sets the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Reads the status of the control bits on a serial device. These include
Clear to Send, Data Set Ready, Ring Indicator, and Carrier Detect.

Write Sends a buffer of characters to a serial device.

Read Receives a buffer of characters from a serial device.

Mode Pointer to SERIAL_IO_MODE data. Type SERIAL_IO_MODE is
defined in “Related Definitions” below.

DeviceTypeGuid Pointer to a GUID identifying the device connected to the serial port.
This field is NULL when the protocol is installed by the serial port
driver and may be populated by a platform driver for a serial port
with a known device attached. The field will remain NULL if there is
no platform serial device identification information available.
UEFI Forum, Inc. March 2019 466

UEFI Specification, Version 2.8 Protocols — Console Support
Related Definitions

//***

// SERIAL_IO_MODE

//***

typedef struct {

UINT32 ControlMask;

 // current Attributes

 UINT32 Timeout;

 UINT64 BaudRate;

 UINT32 ReceiveFifoDepth;

 UINT32 DataBits;

 UINT32 Parity;

 UINT32 StopBits;
} SERIAL_IO_MODE;

The data values in the SERIAL_IO_MODE are read-only and are updated by the code that produces the
EFI_SERIAL_IO_PROTOCOL functions:

ControlMask A mask of the Control bits that the device supports. The device must
always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing out
a Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device; otherwise,
baud rate has the value of zero to indicate that device runs at the
device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.

DataBits The number of data bits in each character.

Parity If applicable, this is the EFI_PARITY_TYPE that is computed or
checked as each character is transmitted or received. If the device
does not support parity the value is the default parity value.

StopBits If applicable, the EFI_STOP_BITS_TYPE number of stop bits per
character. If the device does not support stop bits the value is the
default stop bit value.
UEFI Forum, Inc. March 2019 467

UEFI Specification, Version 2.8 Protocols — Console Support
//***

// EFI_PARITY_TYPE

//***

typedef enum {

 DefaultParity,

 NoParity,

 EvenParity,

 OddParity,

 MarkParity,

 SpaceParity

} EFI_PARITY_TYPE;

//***

// EFI_STOP_BITS_TYPE

//***

typedef enum {

 DefaultStopBits,

 OneStopBit, // 1 stop bit

 OneFiveStopBits, // 1.5 stop bits

 TwoStopBits // 2 stop bits

} EFI_STOP_BITS_TYPE;

Description

The Serial I/O protocol is used to communicate with UART-style serial devices. These can be standard
UART serial ports in PC-AT systems, serial ports attached to a USB interface, or potentially any character-
based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device, to a device with features
such as a UART. As such many of the serial I/O features are optional to allow for the case of devices that
do not have UART controls. Each of these options is called out in the specific serial I/O functions.

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte receive FIFO,
a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit. Flow control is the
responsibility of the software that uses the protocol. Hardware flow control can be implemented through
the use of the GetControl() and SetControl() functions (described below) to monitor and assert
the flow control signals. The XON/XOFF flow control algorithm can be implemented in software by
inserting XON and XOFF characters into the serial data stream as required.

Special care must be taken if a significant amount of data is going to be read from a serial device. Since
UEFI drivers are polled mode drivers, characters received on a serial device might be missed. It is the
responsibility of the software that uses the protocol to check for new data often enough to guarantee
that no characters will be missed. The required polling frequency depends on the baud rate of the
connection and the depth of the receive FIFO.
UEFI Forum, Inc. March 2019 468

UEFI Specification, Version 2.8 Protocols — Console Support
12.8.1 Serial Device Identification

Serial device identification is accomplished through the interaction of three distinct drivers. The serial
port driver binds to the serial port hardware and produces the EFI_SERIAL_IO_PROTOCOL. At the time
the protocol is produced the DeviceTypeGuid field is NULL.

During the UEFI Driver Binding process a platform driver, with a EFI_DRIVER_BINDING_PROTOCOL
Version field in the range of 0xfffffff0 to 0xffffffff can check for the presence of the
EFI_SERIAL_IO_PROTOCOL and any other necessary information in Supported() to check if the serial port
instance is recognized for the purposes of provide serial device identification information. If the port
instance is recognized then EFI_SUCCESS will be returned from Supported(). Since the driver binding
Version field is higher than any device driver the platform’s serial device identification driver binding
instance will have Start() called. This function will write the DeviceTypeGuid with a value that identifies
the attached serial device.

When the driver binding process continues the serial device driver can use the DeviceTypeGuid field to
determine the serial device connected to the port is supported.

Serial device drivers for non-terminal devices that will co-exist with backwards-compatible terminal
drivers must check that the EFI_SERIAL_IO_PROTOCOL Revision field is at least 0x00010001 and compare
the DeviceTypeGuid in their driver binding Supported() function. Terminal drivers provide backwards
compatibility by assuming a Terminal device is present when a protocol instance Revision is the original
0x00010000 value. Terminal drivers may also assume a Terminal device is present if the DeviceTypeGuid
is NULL for cases where the platform does not provide serial identification information.
UEFI Forum, Inc. March 2019 469

UEFI Specification, Version 2.8 Protocols — Console Support
12.8.2 Serial Device Type GUIDs

#define EFI_SERIAL_TERMINAL_DEVICE_TYPE_GUID \

 { 0x6ad9a60f, 0x5815, 0x4c7c, \

 { 0x8a, 0x10, 0x50, 0x53, 0xd2, 0xbf, 0x7a, 0x1b } }

The EFI_SERIAL_TERMINAL_DEVICE_TYPE_GUID describes a serial terminal type device suitable for use as
a UEFI console.

Vendors may define and use additional GUIDs for other serial device types.

Figure 34. Serial Device Identification Driver Relationships

EFI_SERIAL_IO_PROTOCOL.Reset()

Summary

Resets the serial device.
UEFI Forum, Inc. March 2019 470

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERIAL_RESET) (

 IN EFI_SERIAL_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

Description

The Reset() function resets the hardware of a serial device.

Status Codes Returned

EFI_SERIAL_IO_PROTOCOL.SetAttributes()

Summary

Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a
serial device.

EFI_STATUS

(EFIAPI *EFI_SERIAL_SET_ATTRIBUTES) (

 IN EFI_SERIAL_IO_PROTOCOL *This,

 IN UINT64 BaudRate,

 IN UINT32 ReceiveFifoDepth,

 IN UINT32 Timeout

 IN EFI_PARITY_TYPE Parity,

 IN UINT8 DataBits,

 IN EFI_STOP_BITS_TYPE StopBits

);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

BaudRate The requested baud rate. A BaudRate value of 0 will use the device’s
default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the device’s default
FIFO depth.

Timeout The requested time out for a single character in microseconds. This
timeout applies to both the transmit and receive side of the

EFI_SUCCESS The serial device was reset.

EFI_DEVICE_ERROR The serial device could not be reset.
UEFI Forum, Inc. March 2019 471

UEFI Specification, Version 2.8 Protocols — Console Support
interface. A Timeout value of 0 will use the device’s default time out
value.

Parity The type of parity to use on this serial device. A Parity value of
DefaultParity will use the device’s default parity value. Type
EFI_PARITY_TYPE is defined in “Related Definitions” in
Section 12.8.

DataBits The number of data bits to use on this serial device. A DataBits value
of 0 will use the device’s default data bit setting.

StopBits The number of stop bits to use on this serial device. A StopBits value
of DefaultStopBits will use the device’s default number of stop bits.
Type EFI_STOP_BITS_TYPE is defined in “Related Definitions” in
Section 12.8.

Description

The SetAttributes() function sets the baud rate, receive-FIFO depth, transmit/receive time out, parity,
data bits, and stop bits on a serial device.

The controller for a serial device is programmed with the specified attributes. If the Parity, DataBits, or
StopBits values are not valid, then an error will be returned. If the specified BaudRate is below the
minimum baud rate supported by the serial device, an error will be returned. The nearest baud rate
supported by the serial device will be selected without exceeding the BaudRate parameter. If the
specified ReceiveFifoDepth is below the smallest FIFO size supported by the serial device, an error will be
returned. The nearest FIFO size supported by the serial device will be selected without exceeding the
ReceiveFifoDepth parameter.

Status Codes Returned

EFI_SERIAL_IO_PROTOCOL.SetControl()

Summary

Sets the control bits on a serial device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERIAL_SET_CONTROL_BITS) (

 IN EFI_SERIAL_IO_PROTOCOL *This,

 IN UINT32 Control
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

EFI_SUCCESS The new attributes were set on the serial device.

EFI_INVALID_PARAMETER One or more of the attributes has an unsupported value.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
UEFI Forum, Inc. March 2019 472

UEFI Specification, Version 2.8 Protocols — Console Support
Control Sets the bits of Control that are settable. See “Related Definitions”
below.

Related Definitions

//***

// CONTROL BITS

//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010

#define EFI_SERIAL_DATA_SET_READY 0x0020

#define EFI_SERIAL_RING_INDICATE 0x0040

#define EFI_SERIAL_CARRIER_DETECT 0x0080

#define EFI_SERIAL_REQUEST_TO_SEND 0x0002

#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001

#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100

#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200

#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000

#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000

#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description

The SetControl() function is used to assert or deassert the control signals on a serial device. The following
signals are set according their bit settings:

• Request to Send

• Data Terminal Ready

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set with
SetControl(). All the bits can be read with GetControl().

Status Codes Returned

EFI_SERIAL_IO_PROTOCOL.GetControl()

Summary

Retrieves the status of the control bits on a serial device.

EFI_SUCCESS The new control bits were set on the serial device.

EFI_UNSUPPORTED The serial device does not support this operation.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
UEFI Forum, Inc. March 2019 473

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERIAL_GET_CONTROL_BITS) (

 IN EFI_SERIAL_IO_PROTOCOL *This,

 OUT UINT32 *Control
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

Control A pointer to return the current control signals from the serial device.
See “Related Definitions” below.

Related Definitions

//***
// CONTROL BITS

//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010

#define EFI_SERIAL_DATA_SET_READY 0x0020

#define EFI_SERIAL_RING_INDICATE 0x0040

#define EFI_SERIAL_CARRIER_DETECT 0x0080

#define EFI_SERIAL_REQUEST_TO_SEND 0x0002

#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001

#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100

#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200

#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000

#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000

#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description

The GetControl() function retrieves the status of the control bits on a serial device.

Status Codes Returned

EFI_SERIAL_IO_PROTOCOL.Write()

Summary

Writes data to a serial device.

EFI_SUCCESS The control bits were read from the serial device.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
UEFI Forum, Inc. March 2019 474

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERIAL_WRITE) (

 IN EFI_SERIAL_IO_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to a serial device. If a time out error occurs
while data is being sent to the serial port, transmission of this buffer will terminate, and EFI_TIMEOUT
will be returned. In all cases the number of bytes actually written to the serial device is returned in
BufferSize.

Status Codes Returned

EFI_SERIAL_IO_PROTOCOL.Read()

Summary

Reads data from a serial device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SERIAL_READ) (

 IN EFI_SERIAL_IO_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 12.8.

EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.
UEFI Forum, Inc. March 2019 475

UEFI Specification, Version 2.8 Protocols — Console Support
BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer.

Buffer The buffer to return the data into.

Description

The Read() function reads a specified number of bytes from a serial device. If a time out error or an
overrun error is detected while data is being read from the serial device, then no more characters will be
read, and an error will be returned. In all cases the number of bytes actually read is returned in
BufferSize.

Status Codes Returned

12.9 Graphics Output Protocol

The goal of this section is to replace the functionality that currently exists with VGA hardware and its
corresponding video BIOS. The Graphics Output Protocol is a software abstraction and its goal is to
support any foreseeable graphics hardware and not require VGA hardware, while at the same time also
lending itself to implementation on the current generation of VGA hardware.

Graphics output is important in the pre-boot space to support modern firmware features. These features
include the display of logos, the localization of output to any language, and setup and configuration
screens.

Graphics output may also be required as part of the startup of an operating system. There are potentially
times in modern operating systems prior to the loading of a high performance OS graphics driver where
access to graphics output device is required. The Graphics Output Protocol supports this capability by
providing the EFI OS loader access to a hardware frame buffer and enough information to allow the OS to
draw directly to the graphics output device.

The EFI_GRAPHICS_OUTPUT_PROTOCOL supports three member functions to support the limited
graphics needs of the pre-boot environment. These member functions allow the caller to draw to a
virtualized frame buffer, retrieve the supported video modes, and to set a video mode. These simple
primitives are sufficient to support the general needs of pre-OS firmware code.

The EFI_GRAPHICS_OUTPUT_PROTOCOL also exports enough information about the current mode for
operating system startup software to access the linear frame buffer directly.

The interface structure for the Graphics Output protocol is defined in this section. A unique Graphics
Output protocol must represent each video frame buffer in the system that is driven out to one or more
video output devices.

12.9.1 Blt Buffer

The basic graphics operation in the EFI_GRAPHICS_OUTPUT_PROTOCOL is the Block Transfer or Blt. The
Blt operation allows data to be read or written to the video adapter’s video memory. The Blt operation

EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The serial device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.
UEFI Forum, Inc. March 2019 476

UEFI Specification, Version 2.8 Protocols — Console Support
abstracts the video adapters hardware implementation by introducing the concept of a software Blt
buffer.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video display
is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line is a horizontal
line of pixels on the display. The Y coordinate represents a vertical line on the display. The upper left hand
corner of the video display is defined as (0, 0) where the notation (X, Y) represents the X and Y coordinate
of the pixel. The lower right corner of the video display is represented by (Width –1, Height -1).

The software Blt buffer is structured as an array of pixels. Pixel (0, 0) is the first element of the software
Blt buffer. The Blt buffer can be thought of as a set of scan lines. It is possible to convert a pixel location
on the video display to the Blt buffer using the following algorithm: Blt buffer array index = Y * Width + X.

Each software Blt buffer entry represents a pixel that is comprised of a 32-bit quantity. The color
components of Blt buffer pixels are in PixelBlueGreenRedReserved8BitPerColor format as defined by
EFI_GRAPHICS_OUTPUT_BLT_PIXEL. The byte values for the red, green, and blue components represent
the color intensity. This color intensity value range from a minimum intensity of 0 to maximum intensity
of 255.

Figure 35. Software BLT Buffer

EFI_GRAPHICS_OUTPUT_PROTOCOL

Summary

Provides a basic abstraction to set video modes and copy pixels to and from the graphics controller’s
frame buffer. The linear address of the hardware frame buffer is also exposed so software can write
directly to the video hardware.

OM13157

Software BLT Buffer

(0, 0) X-axis
(Width -1, 0)

Y-axis

Pixel

Scan Line

(0, Height - 1) (Width -1, Height - 1)
UEFI Forum, Inc. March 2019 477

UEFI Specification, Version 2.8 Protocols — Console Support
GUID

#define EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID \

 {0x9042a9de,0x23dc,0x4a38,\

 {0x96,0xfb,0x7a,0xde,0xd0,0x80,0x51,0x6a}}

Protocol Interface Structure

typedef struct EFI_GRAPHICS_OUTPUT_PROTCOL {

 EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE QueryMode;

 EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE SetMode;

 EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT Blt;

 EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE *Mode;
} EFI_GRAPHICS_OUTPUT_PROTOCOL;

Parameters

QueryMode Returns information for an available graphics mode that the graphics
device and the set of active video output devices supports.

SetMode Set the video device into the specified mode and clears the visible
portions of the output display to black.

Blt Software abstraction to draw on the video device’s frame buffer.

Mode Pointer to EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE data. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is defined in “Related
Definitions” below.

Related Definitions

typedef struct {

 UINT32 RedMask;

 UINT32 GreenMask;

 UINT32 BlueMask;

 UINT32 ReservedMask;
} EFI_PIXEL_BITMASK;

If a bit is set in RedMask, GreenMask, or BlueMask then those bits of the pixel represent the
corresponding color. Bits in RedMask, GreenMask, BlueMask, and ReserverdMask must not over lap bit
positions. The values for the red, green, and blue components in the bit mask represent the color
intensity. The color intensities must increase as the color values for a each color mask increase with a
minimum intensity of all bits in a color mask clear to a maximum intensity of all bits in a color mask set.
UEFI Forum, Inc. March 2019 478

UEFI Specification, Version 2.8 Protocols — Console Support
typedef enum {

 PixelRedGreenBlueReserved8BitPerColor,

 PixelBlueGreenRedReserved8BitPerColor,

 PixelBitMask,

 PixelBltOnly,

 PixelFormatMax

} EFI_GRAPHICS_PIXEL_FORMAT;

PixelRedGreenBlueReserved8BitPerColor
A pixel is 32-bits and byte zero represents red, byte one represents
green, byte two represents blue, and byte three is reserved. This is
the definition for the physical frame buffer. The byte values for the
red, green, and blue components represent the color intensity. This
color intensity value range from a minimum intensity of 0 to
maximum intensity of 255.

PixelBlueGreenRedReserved8BitPerColor
A pixel is 32-bits and byte zero represents blue, byte one represents
green, byte two represents red, and byte three is reserved. This is
the definition for the physical frame buffer. The byte values for the
red, green, and blue components represent the color intensity. This
color intensity value range from a minimum intensity of 0 to
maximum intensity of 255.

PixelBitMask The pixel definition of the physical frame buffer is defined by
EFI_PIXEL_BITMASK.

PixelBltOnly This mode does not support a physical frame buffer.

PixelFormatMax Valid EFI_GRAPHICS_PIXEL_FORMAT enum values are less than this
value.

typedef struct {

 UINT32 Version;

 UINT32 HorizontalResolution;

 UINT32 VerticalResolution;

 EFI_GRAPHICS_PIXEL_FORMAT PixelFormat;

 EFI_PIXEL_BITMASK PixelInformation;

 UINT32 PixelsPerScanLine;

} EFI_GRAPHICS_OUTPUT_MODE_INFORMATION;

Version The version of this data structure. A value of zero represents the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION structure as
defined in this specification. Future version of this specification may
extend this data structure in a backwards compatible way and
increase the value of Version.

HorizontalResolution 
The size of video screen in pixels in the X dimension.

VerticalResolution The size of video screen in pixels in the Y dimension.
UEFI Forum, Inc. March 2019 479

UEFI Specification, Version 2.8 Protocols — Console Support
PixelFormat Enumeration that defines the physical format of the pixel. A value of
PixelBltOnly implies that a linear frame buffer is not available for this
mode.

PixelInformation This bit-mask is only valid if PixelFormat is set to PixelPixelBitMask. A
bit being set defines what bits are used for what purpose such as
Red, Green, Blue, or Reserved.

PixelsPerScanLine Defines the number of pixel elements per video memory line. For
performance reasons, or due to hardware restrictions, scan lines
may be padded to an amount of memory alignment. These padding
pixel elements are outside the area covered by
HorizontalResolution and are not visible. For direct frame
buffer access, this number is used as a span between starts of pixel
lines in video memory. Based on the size of an individual pixel
element and PixelsPerScanline, the offset in video memory
from pixel element (x, y) to pixel element (x, y+1) has to be
calculated as "sizeof(PixelElement) * PixelsPerScanLine", not
"sizeof(PixelElement) * HorizontalResolution", though in many
cases those values can coincide. This value can depend on video
hardware and mode resolution. GOP implementation is responsible
for providing accurate value for this field.
UEFI Forum, Inc. March 2019 480

UEFI Specification, Version 2.8 Protocols — Console Support
Note: The following code sample is an example of the intended field usage:

INTN

GetPixelElementSize (

 IN EFI_PIXEL_BITMASK *PixelBits

)

{

 INTN HighestPixel = -1;

 INTN BluePixel;

 INTN RedPixel;

 INTN GreenPixel;

 INTN RsvdPixel;

 BluePixel = FindHighestSetBit (PixelBits->BlueMask);

 RedPixel = FindHighestSetBit (PixelBits->RedMask);

 GreenPixel = FindHighestSetBit (PixelBits->GreenMask);

 RsvdPixel = FindHighestSetBit (PixelBits->ReservedMask);

 HighestPixel = max (BluePixel, RedPixel);

 HighestPixel = max (HighestPixel, GreenPixel);

 HighestPixel = max (HighestPixel, RsvdPixel);

 return HighestPixel;

}

EFI_PHYSICAL_ADDRESS NewPixelAddress;

EFI_PHYSICAL_ADDRESS CurrentPixelAddress;

EFI_GRAPHICS_OUTPUT_MODE_INFORMATION OutputInfo;

INTN PixelElementSize;

switch (OutputInfo.PixelFormat) {

 case PixelBitMask:

 PixelElementSize =

 GetPixelElementSize (&OutputInfo.PixelInformation);

 break;

 case PixelBlueGreenRedReserved8BitPerColor:

 case PixelRedGreenBlueReserved8BitPerColor:

 PixelElementSize =

 sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL);

 break;

}

//

// NewPixelAddress after execution points to the pixel

// positioned one line below the one pointed by
UEFI Forum, Inc. March 2019 481

UEFI Specification, Version 2.8 Protocols — Console Support
// CurrentPixelAddress

//

NewPixelAddress = CurrentPixelAddress +

 (PixelElementSize *
 OutputInfo.PixelsPerScanLine);

End of note code sample.

typedef struct {

 UINT32 MaxMode;

 UINT32 Mode;

 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info;

 UINTN SizeOfInfo;

 EFI_PHYSICAL_ADDRESS FrameBufferBase;

 UINTN FrameBufferSize;

} EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE;

The EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is read-only and values are only changed by using the
appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and SetMode().

Mode Current Mode of the graphics device. Valid mode numbers are 0 to
MaxMode -1.

Info Pointer to read-only
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

SizeOfInfo Size of Info structure in bytes. Future versions of this specification
may increase the size of the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

FrameBufferBase Base address of graphics linear frame buffer. Info contains
information required to allow software to draw directly to the frame
buffer without using Blt().Offset zero in FrameBufferBase represents
the upper left pixel of the display.

FrameBufferSize Amount of frame buffer needed to support the active mode as
defined by PixelsPerScanLine x VerticalResolution x
PixelElementSize.

Description

The EFI_GRAPHICS_OUTPUT_PROTOCOL provides a software abstraction to allow pixels to be drawn
directly to the frame buffer. The EFI_GRAPHICS_OUTPUT_PROTOCOL is designed to be lightweight and
to support the basic needs of graphics output prior to Operating System boot.

EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()

Summary

Returns information for an available graphics mode that the graphics device and the set of active video
output devices supports.
UEFI Forum, Inc. March 2019 482

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE) (

 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,

 IN UINT32 ModeNumber,

 OUT UINTN *SizeOfInfo

 OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info
);

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this section.

ModeNumber The mode number to return information on. The current mode and
valid modes are read-only values in the Mode structure of the
EFI_GRAPHICS_OUTPUT_PROTOCOL.

SizeOfInfo A pointer to the size, in bytes, of the Info buffer.

Info A pointer to a callee allocated buffer that returns information about
ModeNumber.

Description

The QueryMode() function returns information for an available graphics mode that the graphics device
and the set of active video output devices supports. If ModeNumber is not between 0 and MaxMode – 1,
then EFI_INVALID_PARAMETER is returned. MaxMode is available from the Mode structure of the
EFI_GRAPHICS_OUTPUT_PROTOCOL.

The size of the Info structure should never be assumed and the value of SizeOfInfo is the only valid way to
know the size of Info.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a single video
output device, then the set of modes returned by this service is the subset of modes supported by both
the graphics controller and the video output device.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a combination of
video output devices, then the set of modes returned by this service is the subset of modes supported by
the graphics controller and the all of the video output devices represented by the handle.

Status Codes Returned

EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()

Summary

Set the video device into the specified mode and clears the visible portions of the output display to black.

EFI_SUCCESS Valid mode information was returned.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.

EFI_INVALID_PARAMETER ModeNumber is not valid.
UEFI Forum, Inc. March 2019 483

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE) (

 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,

 IN UINT32 ModeNumber
);

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this section.

ModeNumber Abstraction that defines the current video mode. The current mode
and valid modes are read-only values in the Mode structure of the
EFI_GRAPHICS_OUTPUT_PROTOCOL.

Description

This SetMode() function sets the graphics device and the set of active video output devices to the video
mode specified by ModeNumber. If ModeNumber is not supported EFI_UNSUPPORTED is returned.

If a device error occurs while attempting to set the video mode, then EFI_DEVICE_ERROR is returned.
Otherwise, the graphics device is set to the requested geometry, the set of active output devices are set
to the requested geometry, the visible portion of the hardware frame buffer is cleared to black, and
EFI_SUCCESS is returned.

Status Codes Returned

EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()

Summary

Blt a rectangle of pixels on the graphics screen. Blt stands for BLock Transfer.

EFI_SUCCESS The graphics mode specified by ModeNumber was selected.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED ModeNumber is not supported by this device.
UEFI Forum, Inc. March 2019 484

UEFI Specification, Version 2.8 Protocols — Console Support
Prototype

typedef struct {

 UINT8 Blue;

 UINT8 Green;

 UINT8 Red;

 UINT8 Reserved;
} EFI_GRAPHICS_OUTPUT_BLT_PIXEL;

typedef enum {

 EfiBltVideoFill,

 EfiBltVideoToBltBuffer,

 EfiBltBufferToVideo,

 EfiBltVideoToVideo,

 EfiGraphicsOutputBltOperationMax

} EFI_GRAPHICS_OUTPUT_BLT_OPERATION;

typedef

EFI_STATUS

(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT) (

 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,

 IN OUT EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer, OPTIONAL

 IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,

 IN UINTN SourceX,

 IN UINTN SourceY,

 IN UINTN DestinationX,

 IN UINTN DestinationY,

 IN UINTN Width,

 IN UINTN Height,

 IN UINTN Delta OPTIONAL
);

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance.

BltBuffer The data to transfer to the graphics screen. Size is at least
Width*Height*sizeof(EFI_GRAPHICS_OUTPUT_BLT_PIXEL).

BltOperation The operation to perform when copying BltBuffer on to the graphics
screen.

SourceX The X coordinate of the source for the BltOperation. The origin of the
screen is 0, 0 and that is the upper left-hand corner of the screen.

SourceY The Y coordinate of the source for the BltOperation. The origin of the
screen is 0, 0 and that is the upper left-hand corner of the screen.

DestinationX The X coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the
screen.
UEFI Forum, Inc. March 2019 485

UEFI Specification, Version 2.8 Protocols — Console Support
DestinationY The Y coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the
screen.

Width The width of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_GRAPHICS_OUTPUT_BLT_PIXEL element.

Height The height of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_GRAPHICS_OUTPUT_BLT_PIXEL element.

Delta Not used for EfiBltVideoFill or the EfiBltVideoToVideo operation. If a
Delta of zero is used, the entire BltBuffer is being operated on. If a
subrectangle of the BltBuffer is being used then Delta represents the
number of bytes in a row of the BltBuffer.

Description

The Blt() function is used to draw the BltBuffer rectangle onto the video screen.

The BltBuffer represents a rectangle of Height by Width pixels that will be drawn on the graphics screen
using the operation specified by BltOperation. The Delta value can be used to enable the BltOperation to
be performed on a sub-rectangle of the BltBuffer.

Table 113 describes the BltOperations that are supported on rectangles. Rectangles have coordinates
(left, upper) (right, bottom):

Table 113. Blt Operation Table

Blt Operation Operation

EfiBltVideoFill Write data from the BltBuffer pixel (0,0) directly to every pixel of
the video display rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). Only one
pixel will be used from the BltBuffer. Delta is NOT used.

EfiBltVideoToBltBuffer Read data from the video display rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) and place it in the
BltBuffer rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). If
DestinationX or DestinationY is not zero then Delta must
be set to the length in bytes of a row in the BltBuffer.

EfiBltBufferToVideo Write data from the BltBuffer rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) directly to the video
display rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). If
SourceX or SourceY is not zero then Delta must be set to the
length in bytes of a row in the BltBuffer.

EfiBltVideoToVideo Copy from the video display rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) to the video display
rectangle(DestinationX, DestinationY) (DestinationX +
Width, DestinationY + Height. The BltBuffer and Delta
are not used in this mode. There is no limitation on the overlapping of
the source and destination rectangles.
UEFI Forum, Inc. March 2019 486

UEFI Specification, Version 2.8 Protocols — Console Support
Status Codes Returned

EFI_EDID_DISCOVERED_PROTOCOL

Summary

This protocol contains the EDID information retrieved from a video output device.

GUID

#define EFI_EDID_DISCOVERED_PROTOCOL_GUID \

 {0x1c0c34f6,0xd380,0x41fa,\

 {0xa0,0x49,0x8a,0xd0,0x6c,0x1a,0x66,0xaa}}

Protocol Interface Structure

typedef struct {

 UINT32 SizeOfEdid;

 UINT8 *Edid;
} EFI_EDID_DISCOVERED_PROTOCOL;

Parameter

SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information is
available from the video output device. Otherwise, it must be a
minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for a video output device. This pointer is NULL if no EDID
information is available from the video output device. The minimum
size of a valid Edid buffer is 128 bytes. EDID information is defined in
the E-EDID EEPROM specification published by VESA
(www.vesa.org).

Description

EFI_EDID_DISCOVERED_PROTOCOL represents the EDID information that is returned from a video
output device. If the video output device does not contain any EDID information, then the SizeOfEdid
field must set to zero and the Edid field must be set to NULL. The EFI_EDID_DISCOVERED_PROTOCOL
must be placed on every child handle that represents a possible video output device. The
EFI_EDID_DISCOVERED_PROTOCOL is never placed on child handles that represent combinations of two
or more video output devices.

EFI_EDID_ACTIVE_PROTOCOL

Summary

This protocol contains the EDID information for an active video output device. This is either the EDID
information retrieved from the EFI_EDID_OVERRIDE_PROTOCOL if an override is available, or an

EFI_SUCCESS BltBuffer was drawn to the graphics screen.

EFI_INVALID_PARAMETER BltOperation is not valid.

EFI_DEVICE_ERROR The device had an error and could not complete the request.
UEFI Forum, Inc. March 2019 487

www.vesa.org

UEFI Specification, Version 2.8 Protocols — Console Support
identical copy of the EDID information from the EFI_EDID_DISCOVERED_PROTOCOL if no overrides are
available.

GUID

#define EFI_EDID_ACTIVE_PROTOCOL_GUID \

 {0xbd8c1056,0x9f36,0x44ec,\

 {0x92,0xa8,0xa6,0x33,0x7f,0x81,0x79,0x86}}

Protocol Interface Structure

typedef struct {

 UINT32 SizeOfEdid;

 UINT8 *Edid;
} EFI_EDID_ACTIVE_PROTOCOL;

Parameter

SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information is
available from the video output device. Otherwise, it must be a
minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for an active video output device. This pointer is NULL if
no EDID information is available for the video output device. The
minimum size of a valid Edid buffer is 128 bytes. EDID information is
defined in the E-EDID EEPROM specification published by VESA
(www.vesa.org).

Description

When the set of active video output devices attached to a frame buffer are selected, the
EFI_EDID_ACTIVE_PROTOCOL must be installed onto the handles that represent the each of those active
video output devices. If the EFI_EDID_OVERRIDE_PROTOCOL has override EDID information for an active
video output device, then the EDID information specified by GetEdid() is used for the
EFI_EDID_ACTIVE_PROTOCOL. Otherwise, the EDID information from the
EFI_EDID_DISCOVERED_PROTOCOL is used for the EFI_EDID_ACTIVE_PROTOCOL. Since all EDID
information is read-only, it is legal for the pointer associated with the EFI_EDID_ACTIVE_PROTOCOL to
be the same as the pointer associated with the EFI_EDID_DISCOVERED_PROTOCOL when no overrides
are present.

EFI_EDID_OVERRIDE_PROTOCOL

Summary

This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.
UEFI Forum, Inc. March 2019 488

UEFI Specification, Version 2.8 Protocols — Console Support
GUID

#define EFI_EDID_OVERRIDE_PROTOCOL_GUID \

 {0x48ecb431,0xfb72,0x45c0,\

 {0xa9,0x22,0xf4,0x58,0xfe,0x04,0x0b,0xd5}}

Protocol Interface Structure

typedef struct _EFI_EDID_OVERRIDE_PROTOCOL {

 EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID GetEdid;
} EFI_EDID_OVERRIDE_PROTOCOL;

Parameter

GetEdid Returns EDID values and attributes that the Video BIOS must use

Description

This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.

EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

Summary

Returns policy information and potentially a replacement EDID for the specified video output device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID) (

 IN EFI_EDID_OVERRIDE_PROTOCOL *This,

 IN EFI_HANDLE *ChildHandle,

 OUT UINT32 *Attributes,

 IN OUT UINTN *EdidSize,

 IN OUT UINT8 **Edid
);

Parameters

This The EFI_EDID_OVERRIDE_PROTOCOL instance. Type
EFI_EDID_OVERRIDE_PROTOCOL is defined in Section 12.10.

ChildHandle A child handle that represents a possible video output device.

Attributes A pointer to the attributes associated with ChildHandle video output
device.

EdidSize A pointer to the size, in bytes, of the Edid buffer.

Edid A pointer to the callee allocated buffer that contains the EDID
information associated with ChildHandle. If EdidSize is 0, then a
pointer to NULL is returned.
UEFI Forum, Inc. March 2019 489

UEFI Specification, Version 2.8 Protocols — Console Support
Related Definitions

#define EFI_EDID_OVERRIDE_DONT_OVERRIDE 0x01

#define EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG 0x02

Table 114. Attributes Definition Table

Description

This protocol is optionally provided by the platform to override or provide EDID information and/or
output device display properties to the producer of the Graphics Output protocol. If ChildHandle does not
represent a video output device, or there are no override for the video output device specified by
ChildHandle, then EFI_UNSUPPORTED is returned. Otherwise, the Attributes, EdidSize, and Edid
parameters are returned along with a status of EFI_SUCCESS. Table 114 defines the behavior for the
combinations of the Attribute and EdidSize parameters when EFI_SUCCESS is returned.

Attribute Bit EdidSize Operation

EFI_EDID_OVERRIDE_DONT_OVERRIDE=0 0 No override support for the display
device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE=0 != 0 Always use returned override EDID for
the display device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE!=0 0 No override support for the display
device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE!=0 != 0 Only use returned override EDID if the
display device has no EDID or the EDID is
incorrect. Otherwise, use the EDID from
the display device.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG=0 0 No hot plug support for the display
device. AGraphics Output protocol will
not be installed if no display device is not
present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG=0 != 0 No hot plug support for the display
device. The returned override EDID
should be used according to the

EFI_EDID_OVERRIDE_DONT_OV
ERRIDE attribute bit if the display

device is present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG!=0 0 Invalid. The client of this protocol will not
enable hot plug for the display device,
and a Graphics Output protocol will not
be installed if no other display is present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG!=0 != 0 Enable hot plug for the display device. A
Graphics Output protocol will be
installed even if the display device is not
present.
UEFI Forum, Inc. March 2019 490

UEFI Specification, Version 2.8 Protocols — Console Support
Status Codes Returned

12.10 Rules for PCI/AGP Devices

A UEFI driver that produces the Graphics Output Protocol must follow the UEFI driver model, produce an
EFI_DRIVER_BINDING_PROTOCOL, and follow the rules on implementing the Supported(),
Start(), and Stop(). The Start() function must not update the video output device in any way that is
visible to the user. The Start() function must create child handle for each physical video output device
and each supported combination of video output devices. The driver must retrieve the EDID information
from each physical video output device and produce a EFI_EDID_DISCOVERED_PROTOCOL on the child
handle that corresponds each physical video output device. The following summary describes the
common initialization steps for a driver that produces the EFI_GRAPHICS_OUTPUT_PROTOCOL. This
summary assumes the graphics controller supports a single frame buffer. If a graphics device supports
multiple frame buffers, then handles for the frame buffers must be created first, and then the handles for
the video output devices can be created as children of the frame buffer handles.

Summary of Initialization Steps:

• "If RemainingDevicePath is NULL or the first Device Path Node is the End of Device Path
Node, then Supported() returns EFI_SUCCESS. Otherwise, if the first node of
RemainingDevicePath is not an ACPI _ADR node or the first two nodes of
RemainingDevicePath are not a Controller node followed by an ACPI _ADR node, then
Supported() returns EFI_UNSUPPORTED.

• "If Supported() returned EFI_SUCCESS, system calls Start().

• "If RemainingDevicePath is NULL, then a default set of active video output devices are
selected by the driver.

• "If the first Device Path Node of RemainingDevicePath is the End of Device Path Node, then
skip to the "The EFI Driver must provide EFI_COMPONENT_NAME2_PROTOCOL" step.

• Start() function creates a ChildHandle for each physical video output device and installs the
EFI_DEVICE_PATH_PROTOCOL onto the created ChildHandle. The
EFI_DEVICE_PATH_PROTOCOL is constructed by appending an ACPI _ADR device path node
describing the physical video output device to the end of the device path installed on the
ControllerHandle passed into Start().

• Start()function retrieves EDID information for each physical video output device and installs
the EFI_EDID_DISCOVERED_PROTOCOL onto the ChildHandle for each physical video output
device. If no EDID data is available from the video output device, then SizeOfEdid is set to zero,
and Edid is set to NULL.

• Start()function create a ChildHandle for each valid combination of two or more video output
devices, and installs the EFI_DEVICE_PATH_PROTOCOL onto the created ChildHandle. The
EFI_DEVICE_PATH_PROTOCOL is constructed by appending an ACPI _ADR device path node
describing the combination of video output devices to the end of the device path installed on
the ControllerHandle passed into Start(). The ACPI _ADR entry can represent complex

EFI_SUCCESS Valid over rides returned for ChildHandle.

EFI_UNSUPPORTED ChildHandle has no over rides.
UEFI Forum, Inc. March 2019 491

UEFI Specification, Version 2.8 Protocols — Console Support
topologies of devices and it is possible to have more than one ACPI _ADR entry in a single
device path node. Support of complex video output device topologies is an optional feature.

• Start()function evaluates the RemainingDevicePath to select the set of active video output
devices. If RemainingDevicePath is NULL, then Start() selects a default set of video output
devices. If RemainingDevicePath is not NULL, and ACPI _ADR device path node of
RemainingDevicePath does not match any of the created ChildHandles, then Start()must
destroy all its ChildHandles and return EFI_UNSUPPORTED. Otherwise, Start() selects the set of
active video output devices specified by the ACPI _ADR device path node in
RemainingDevicePath.

• Start() retrieves the ChildHandle associated with each active video output device. Only
ChildHandles that represent a physical video output device are considered. Start() calls the
EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() service passing in ChildHandle. Depending on the
return values from GetEdid(), either the override EDID information or the EDID information
from the EFI_EDID_DISCOVERED_PROTOCOL on ChildHandle is selected. See GetEdid() for a
detailed description of this decision. The selected EDID information is used to produce the
EFI_EDID_ACTIVE_PROTOCOL, and that protocol is installed onto ChildHandle.

• Start() retrieves the one ChildHandle that represents the entire set of active video output
devices. If this set is a single video output device, then this ChildHandle will be the same as the
one used in the previous step. If this set is a combination of video output devices, then this will
not be one of the ChildHandles used in the previous two steps. The
EFI_GRAPHICS_OUTPUT_PROTOCOL is installed onto this ChildHandle.

• The QueryMode() service of the EFI_GRAPHICS_OUTPUT_PROTOCOL returns the set of modes
that both the graphics controller and the set of active video output devices all support. If a
different set of active video output device is selected, then a different set of modes will likely
be produced by QueryMode().

• Start()function optionally initializes video frame buffer hardware. The EFI driver has the option
of delaying this operation until SetMode() is called.

• The EFI Driver must provide EFI_COMPONENT_NAME2_PROTOCOL GetControllerName()
support for ControllerHandle and all the ChildHandles created by this driver. The name
returned for ControllerHandle must return the name of the graphics device. The name
returned for each of the ChildHandles allow the user to pick output display settings and should
be constructed with this in mind.

• The EFI Driver’s Stop() function must cleanly undo what the Start() function created.

• An EFI_GRAPHICS_OUTPUT_PROTOCOL must be implemented for every video frame buffer
that exists on a video adapter. In most cases there will be a single
EFI_GRAPHICS_OUTPUT_PROTOCOL placed on one of the a children of the ControllerHandle
passed into the EFI_DRIVER_BINDING.Start() function.

If a single PCI device/function contains multiple frame buffers the EFI_GRAPHICS_OUTPUT_PROTOCOL
must create child handles of the PCI handle that inherit its PCI device path and appends a controller
device path node. The handles for the video output devices are children of the handles that represent the
frame buffers.

A video device can support an arbitrary number of geometries, but it must support one or more of the
following modes to conform to this specification:
UEFI Forum, Inc. March 2019 492

UEFI Specification, Version 2.8 Protocols — Console Support
Onboard graphics device

• A mode required in a platform design guide

• Native mode of the display

Plug in graphics device

• A mode required in a platform design guide

• 800 x 600 with 32-bit color depth or 640 x 480 with 32-bit color depth and a pixel format
described by PixelRedGreenBlueReserved8BitPerColor or
PixelBlueGreenRedReserved8BitPerColor.

If graphics output device supports both landscape and portrait mode displays it must return a different
mode via QueryMode(). For example landscape mode could be 800 horizontal and 600 vertical while the
equivalent portrait mode would be 600 horizontal and 800 vertical.
UEFI Forum, Inc. March 2019 493

UEFI Specification, Version 2.8
13 - Protocols — Media Access

13.1 Load File Protocol

The Load File protocol is used to obtain files, that are primarily boot options, from arbitrary devices.

EFI_LOAD_FILE_PROTOCOL

Summary

Used to obtain files, that are primarily boot options, from arbitrary devices.

GUID

#define EFI_LOAD_FILE_PROTOCOL_GUID \

 {0x56EC3091,0x954C,0x11d2,\

 {0x8e,0x3f,0x00,0xa0, 0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure

typedef struct _EFI_LOAD_FILE_PROTOCOL {

 EFI_LOAD_FILE LoadFile;
} EFI_LOAD_FILE_PROTOCOL;

Parameters

LoadFile Causes the driver to load the requested file. See the LoadFile() function
description.

Description

The EFI_LOAD_FILE_PROTOCOL is a simple protocol used to obtain files from arbitrary devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File System
protocol to read the file. If the file system protocol is found, the firmware implements the policy of
interpreting the File Path value of the file being loaded. If the device does not support the file system
protocol, the firmware then attempts to read the file via the EFI_LOAD_FILE_PROTOCOL and the
LoadFile() function. In this case the LoadFile() function implements the policy of interpreting the File Path
value.

EFI_LOAD_FILE_PROTOCOL.LoadFile()

Summary

Causes the driver to load a specified file.
UEFI Forum, Inc. March 2019 494

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOAD_FILE) (

 IN EFI_LOAD_FILE_PROTOCOL *This,

 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,

 IN BOOLEAN BootPolicy,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer OPTIONAL
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_LOAD_FILE_PROTOCOL is defined in Section 13.1.

FilePath The device specific path of the file to load. Type
EFI_DEVICE_PATH_PROTOCOL is defined in Section 10.2.

BootPolicy If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load FilePath
as a boot selection. If FALSE, then FilePath must match an exact file
to be loaded.

BufferSize On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer.
On output with a return code of EFI_BUFFER_TOO_SMALL, the size
of Buffer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buffer is NULL, then the
size of the requested file is returned in BufferSize.

Description

The LoadFile() function interprets the device-specific FilePath parameter, returns the entire file into
Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL, then the size of the file is
returned in BufferSize. If Buffer is not NULL, and BufferSize is not large enough to hold the entire file, then
EFI_BUFFER_TOO_SMALL is returned, and BufferSize is updated to indicate the size of the buffer needed
to obtain the file. In this case, no data is returned in Buffer.

If BootPolicy is FALSE the FilePath must match an exact file to be loaded. If no such file exists,
EFI_NOT_FOUND is returned. If BootPolicy is FALSE, and an attempt is being made to perform a network
boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

If BootPolicy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a boot
selection. In this case, FilePath contains the file path value in the boot selection option. Normally the
firmware would implement the policy on how to handle an inexact boot file path; however, since in this
case the firmware cannot interpret the file path, the LoadFile() function is responsible for implementing
the policy. For example, in the case of a network boot through the PXE Base Code protocol, FilePath
merely points to the root of the device, and the firmware interprets this as wanting to boot from the first
valid loader. The following is a list of events that LoadFile() will implement for a PXE boot:

• Perform DHCP.
UEFI Forum, Inc. March 2019 495

UEFI Specification, Version 2.8 Protocols — Media Access
• Optionally prompt the user with a menu of boot selections.

• Discover the boot server and the boot file.

• Download the boot file into Buffer and update BufferSize with the size of the boot file.

If the boot file downloaded from boot server is not an UEFI-formatted executable, but a binary image
which contains a UEFI-compliant file system, then EFI_WARN_FILE_SYSTEM is returned, and a new
RAM disk mapped on the returned Buffer is registered.

Status Codes Returned

13.2 Load File 2 Protocol

The Load File 2 protocol is used to obtain files from arbitrary devices that are not boot options.

EFI_LOAD_FILE2_PROTOCOL

Summary

Used to obtain files from arbitrary devices but are not used as boot options.

GUID

#define EFI_LOAD_FILE2_PROTOCOL_GUID \

 { 0x4006c0c1, 0xfcb3, 0x403e, \

 { 0x99, 0x6d, 0x4a, 0x6c, 0x87, 0x24, 0xe0, 0x6d }}

Protocol Interface Structure

typedef EFI_LOAD_FILE_PROTOCOL EFI_LOAD_FILE2_PROTOCOL;

Parameters

LoadFile

Causes the driver to load the requested file. See the LoadFile() functional
description.

EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED The device does not support the provided BootPolicy.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize is NULL.

EFI_NO_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete the

request.

EFI_WARN_FILE_SYSTEM The resulting Buffer contains UEFI-compliant file system.
UEFI Forum, Inc. March 2019 496

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The EFI_LOAD_FILE2_PROTOCOL is a simple protocol used to obtain files from arbitrary devices that
are not boot options. It is used by LoadImage() when its BootOption parameter is FALSE and the
FilePath does not have an instance of the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.

EFI_LOAD_FILE2_PROTOCOL.LoadFile()

Summary

Causes the driver to load a specified file.

Prototype

The same prototype as EFI_LOAD_FILE_PROTOCOL.LoadFile().

Parameters

This

Indicates a pointer to the calling context.

FilePath

The device specific path of the file to load.

BootPolicy

Should always be FALSE.

BufferSize

On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer. On output with a return
code of EFI_BUFFER_TOO_SMALL, the size of Buffer required to retrieve the
requested file.

Buffer

The memory buffer to transfer the file to. If Buffer is NULL, then no the size of the
requested file is returned in BufferSize.

Description

The LoadFile() function interprets the device-specific FilePath parameter, returns the entire file
into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL, then the size of
the file is returned in BufferSize. If Buffer is not NULL, and BufferSize is not large enough to
hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and BufferSize is updated to indicate
the size of the buffer needed to obtain the file. In this case, no data is returned in Buffer.

FilePath contains the file path value in the boot selection option. Normally the firmware would
implement the policy on how to handle an inexact boot file path; however, since in this case the firmware
cannot interpret the file path, the LoadFile() function is responsible for implementing the policy.
UEFI Forum, Inc. March 2019 497

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

13.3 File System Format

The file system supported by the Extensible Firmware Interface is based on the FAT file system. EFI
defines a specific version of FAT that is explicitly documented and testable. Conformance to the EFI
specification and its associate reference documents is the only definition of FAT that needs to be
implemented to support EFI. To differentiate the EFI file system from pure FAT, a new partition file
system type has been defined.

EFI encompasses the use of FAT32 for a system partition, and FAT12 or FAT16 for removable media. The
FAT32 system partition is identified by an OSType value other than that used to identify previous versions
of FAT. This unique partition type distinguishes an EFI defined file system from a normal FAT file system.
The file system supported by EFI includes support for long file names.

The definition of the EFI file system will be maintained by specification and will not evolve over time to
deal with errata or variant interpretations in OS file system drivers or file system utilities. Future
enhancements and compatibility enhancements to FAT will not be automatically included in EFI file
systems. The EFI file system is a target that is fixed by the EFI specification, and other specifications
explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which this
document was obtained.

13.3.1 System Partition

A System Partition is a partition in the conventional sense of a partition on a legacy system. For a hard
disk, a partition is a contiguous grouping of sectors on the disk where the starting sector and size are
defined by the Master Boot Record (MBR), which resides on LBA 0 (i.e., the first sector of the hard disk)
(see Section 5.2), or the GUID Partition Table (GPT), which resides on logical block 1 (the second sector of
the hard disk) (see Section 5.3.1). For a diskette (floppy) drive, a partition is defined to be the entire
media. A System Partition can reside on any media that is supported by EFI Boot Services.

A System Partition supports backward compatibility with legacy systems by reserving the first block
(sector) of the partition for compatibility code. On legacy systems, the first block (sector) of a partition is
loaded into memory and execution is transferred to this code. EFI firmware does not execute the code in
the MBR. The EFI firmware contains knowledge about the partition structure of various devices, and can
understand legacy MBR, GPT, and “El Torito.”

EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED BootPolicy is TRUE.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize is NULL.

EFI_NO_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry. BufferSize has been
updated with the size needed to complete the request.
UEFI Forum, Inc. March 2019 498

UEFI Specification, Version 2.8 Protocols — Media Access
The System Partition contains directories, data files, and UEFI Images. UEFI Images can contain a OS
Loader, an driver to extend platform firmware capability, or an application that provides a transient
service to the system. Applications written to this specification could include things such as a utility to
create partitions or extended diagnostics. A System Partition can also support data files, such as error
logs, that can be defined and used by various OS or system firmware software components.

13.3.1.1 File System Format

The first block (sector) of a partition contains a data structure called the BIOS Parameter Block (BPB) that
defines the type and location of FAT file system on the drive. The BPB contains a data structure that
defines the size of the media, the size of reserved space, the number of FAT tables, and the location and
size of the root directory (not used in FAT32). The first block (sector) also contains code that will be
executed as part of the boot process on a legacy system. This code in the first block (sector) usually
contains code that can read a file from the root directory into memory and transfer control to it. Since EFI
firmware contains a file system driver, EFI firmware can load any file from the file system with out
needing to execute any code from the media.

The EFI firmware must support the FAT32, FAT16, and FAT12 variants of the EFI file system. What variant
of EFI FAT to use is defined by the size of the media. The rules defining the relationship between media
size and FAT variants is defined in the specification for the EFI file system.

The UEFI system partition FAT32 Data region should be aligned to the physical block boundary and
optimal transfer length granularity of the device(see Section 5.3.1). This is controlled by the
BPB_RsvdSecCnt field and the applicable BPB_FATSz field (e.g., formatting software may set the
BPB_RsvdSecCnt field to a value that results in alignment and/or may set the BPB_FATSz field to a value
that ensures alignment).

13.3.1.2 File Names

FAT stores file names in two formats. The original FAT format limited file names to eight characters with
three extension characters. This type of file name is called an 8.3, pronounced eight dot three, file name.
FAT was extended to include support for long file names (LFN).

FAT 8.3 file names are always stored as uppercase ASCII characters. LFN can either be stored as ASCII or
UCS-2 characters and are stored case sensitive. The string that was used to open or create the file is
stored directly into LFN. FAT defines that all files in a directory must have a unique name, and unique is
defined as a case insensitive match. The following are examples of names that are considered to be the
same and cannot exist in a single directory:

• “ThisIsAnExampleDirectory.Dir”

• “thisisanexamppledirectory.dir”

• THISISANEXAMPLEDIRECTORY.DIR

• ThisIsAnExampleDirectory.DIR
UEFI Forum, Inc. March 2019 499

UEFI Specification, Version 2.8 Protocols — Media Access
Note: Although the FAT32 specification allows file names to be encoded using UTF-16, this specification
only recognizes the UCS-2 subset for the purposes of sorting or collation.

13.3.1.3 Directory Structure

An EFI system partition that is present on a hard disk must contain an EFI defined directory in the root
directory. This directory is named EFI. All OS loaders and applications will be stored in subdirectories
below EFI. Applications that are loaded by other applications or drivers are not required to be stored in
any specific location in the EFI system partition. The choice of the subdirectory name is up to the vendor,
but all vendors must pick names that do not collide with any other vendor’s subdirectory name. This
applies to system manufacturers, operating system vendors, BIOS vendors, and third party tool vendors,
or any other vendor that wishes to install files on an EFI system partition. There must also only be one
executable EFI image for each supported processor architecture in each vendor subdirectory. This
guarantees that there is only one image that can be loaded from a vendor subdirectory by the EFI Boot
Manager. If more than one executable EFI image is present, then the boot behavior for the system will
not be deterministic. There may also be an optional vendor subdirectory called BOOT.

This directory contains EFI images that aide in recovery if the boot selections for the software installed on
the EFI system partition are ever lost. Any additional UEFI-compliant executables must be in
subdirectories below the vendor subdirectory. The following is a sample directory structure for an EFI
system partition present on a hard disk.

\EFI

\<OS Vendor 1 Directory>

<OS Loader Image>

\<OS Vendor 2 Directory>

<OS Loader Image>

. . .

\<OS Vendor N Directory>

<OS Loader Image>

\<OEM Directory>

<OEM Application Image>

\<BIOS Vendor Directory>

<BIOS Vendor Application Image>

\<Third Party Tool Vendor Directory>

<Third Party Tool Vendor Application Image>

\BOOT

BOOT{machine type short name}.EFI

For removable media devices there must be only one UEFI-compliant system partition, and that partition
must contain an UEFI-defined directory in the root directory. The directory will be named EFI. All OS
loaders and applications will be stored in a subdirectory below EFI called BOOT. There must only be one
executable EFI image for each supported processor architecture in the BOOT directory. For removable
media to be bootable under EFI, it must be built in accordance with the rules laid out in Section 3.5.1.1.
This guarantees that there is only one image that can be automatically loaded from a removable media
device by the EFI Boot Manager. Any additional EFI executables must be in directories other than BOOT.
The following is a sample directory structure for an EFI system partition present on a removable media
device.
UEFI Forum, Inc. March 2019 500

UEFI Specification, Version 2.8 Protocols — Media Access
\EFI

\BOOT

BOOT{machine type short name}.EFI

13.3.2 Partition Discovery

This specification requires the firmware to be able to parse the legacy master boot record(MBR) (see
Section 5.2.1), GUID Partition Table (GPT)(see Section 5.3.1), and El Torito (see Section 13.3.2.1) logical
device volumes. The EFI firmware produces a logical EFI_BLOCK_IO_PROTOCOL device for:

• each GUID Partition Entry (see table 16 in 5.3.3) with bit 1 set to zero;

• each El Torito logical device volume; and

• if no GPT is present, each partition found in the legacy MBR partition tables.

LBA zero of the EFI_BLOCK_IO_PROTOCOL device will correspond to the first logical block of the
partition. See Figure 36. If a GPT Partition Entry has Attribute bit 1 set then a logical
EFI_BLOCK_IO_PROTOCOL device must not be created.

Figure 36. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains partitions.
When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.

2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.

3. Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM specification.

4. If none of the above, check LBA 0 for a legacy MBR partition table.

5. No partition found on device.

BLOCK_I/O
DISK

Partition Partition

Partition Table

Pointers
to partitions

Partition Table

Pointers
to partitions

Partition Partition

OM13159
UEFI Forum, Inc. March 2019 501

UEFI Specification, Version 2.8 Protocols — Media Access
If a disk contains a recognized RAID structure (e.g. DDF structure as defined in The Storage Networking
Industry Association Common RAID Disk Data Format Specification--see Glossary), the data on the disk
must be ignored, unless the driver is using the RAID structure to produce a logical RAID volume.

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to contain more
legacy MBR partitions. This is accomplished by supporting the same partition discovery algorithm on
every logical block device. It should be noted that the GUID Partition Table does not allow nesting of
GUID Partition Table Headers. Nesting is not needed since a GUID Partition Table Header can support an
arbitrary number of partitions (the addressability limits of a 64-bit LBA are the limiting factor).

13.3.2.1 ISO-9660 and El Torito

IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. The CD-ROM format
is completely described by the “El Torito” Bootable CD-ROM Format Specification Version 1.0. To boot
from a CD-ROM or DVD-ROM in the boot services environment, an EFI System partition is stored in a “no
emulation” mode as defined by the “El Torito” specification. A Platform ID of 0xEF indicates an EFI System
Partition. The Platform ID is in either the Section Header Entry or the Validation Entry of the Booting
Catalog as defined by the “El Torito” specification. EFI differs from “El Torito” “no emulation” mode in
that it does not load the “no emulation” image into memory and jump to it. EFI interprets the “no
emulation” image as an EFI system partition. EFI interprets the Sector Count in the Initial/Default Entry or
the Section Header Entry to be the size of the EFI system partition. If the value of Sector Count is set to 0
or 1, EFI will assume the system partition consumes the space from the beginning of the “no emulation”
image to the end of the CD-ROM.

A DVD-ROM image formatted as required by the UDF 2.0 specification (OSTA Universal Disk Format
Specification, Revision 2.0) shall be booted by UEFI if:

• the DVD-ROM image conforms to the "UDF Bridge" format defined in the UDF 2.0 specification,
and

• the DVD-ROM image contains exactly one ISO-9660 file system, and

• the ISO-9660 file system conforms to the "El Torito" Bootable CD-ROM Format Specification.

Booting from a DVD-ROM that satisfies the above requirements is accomplished using the same methods
as booting from a CD-ROM: the ISO-9660 file system shall be booted.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy CD-ROM it is
possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The inclusion of boot code for
personal computers is optional and not required by EFI.

13.3.3 Number and Location of System Partitions

UEFI does not impose a restriction on the number or location of System Partitions that can exist on a
system. System Partitions are discovered when required by UEFI firmware by examining the partition
GUID and verifying that the contents of the partition conform to the FAT file system as defined in
Section 13.3.1.1. Further, UEFI implementations may allow the use of conforming FAT partitions which do
not use the ESP GUID. Partition creators may prevent UEFI firmware from examining and using a specific
partition by setting bit 1 of the Partition Attributes (see 5.3.3) which will exclude the partition as a
potential ESP.
UEFI Forum, Inc. March 2019 502

UEFI Specification, Version 2.8 Protocols — Media Access
Software installation may choose to create and locate an ESP on each target OS boot disk, or may choose
to create a single ESP independent of the location of OS boot disks and OS partitions. It is outside of the
scope of this specification to attempt to coordinate the specification of size and location of an ESP that
can be shared by multiple OS or Diagnostics installations, or to manage potential namespace collisions in
directory naming in a single (central) ESP.

13.3.4 Media Formats

This section describes how booting from different types of removable media is handled. In general the
rules are consistent regardless of a media’s physical type and whether it is removable or not.

13.3.4.1 Removable Media

Removable media may contain a standard FAT12, FAT16, or FAT32 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The boot
file path provided to the boot manager can consist of a UEFI application image to load, or can merely be
the path to a removable media device. In the first case, the path clearly indicates the image that is to be
loaded. In the later case, the boot manager implements the policy to load the default application image
from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules laid out in
Section 3.5.1.1

13.3.4.2 Diskette

EFI bootable diskettes follow the standard formatting conventions used on personal computers. The
diskette contains only a single partition that complies to the EFI file system type. For diskettes to be
bootable under EFI, it must be built in accordance with the rules laid out in Section 3.5.1.1.

Since the EFI file system definition does not use the code in the first block of the diskette, it is possible to
boot personal computers using a diskette that is also formatted as an EFI bootable removable media
device. The inclusion of boot code for personal computers is optional and not required by EFI.

Diskettes include the legacy 3.5-inch diskette drives as well as the newer larger capacity removable
media drives such as an Iomega* Zip*, Fujitsu MO, or MKE LS-120/SuperDisk*.

13.3.4.3 Hard Drive

Hard drives may contain multiple partitions as defined in Section 13.3.2 on partition discovery. Any
partition on the hard drive may contain a file system that the EFI firmware recognizes. Images that are to
be booted must be stored under the EFI subdirectory as defined in Section 13.3.1 and Section 13.3.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the BootIndicator field in the
legacy MBR partition records, the hard disk can still boot and function normally.

13.3.4.4 CD-ROM and DVD-ROM

A CD-ROM or DVD-ROM may contain multiple partitions as defined Section 13.3.1 and Section 13.3.2 and
in the “El Torito” specification.
UEFI Forum, Inc. March 2019 503

UEFI Specification, Version 2.8 Protocols — Media Access
EFI code does not assume a fixed block size.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy CD-ROM, it is
possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The inclusion of boot code for
personal computers is optional and not required by EFI.

13.3.4.5 Network

To boot from a network device, the Boot Manager uses the Load File Protocol to perform a LoadFile()
on the network device. This uses the PXE Base Code Protocol to perform DHCP and Discovery. This may
result in a list of possible boot servers along with the boot files available on each server. The Load File
Protocol for a network boot may then optionally produce a menu of these selections for the user to
choose from. If this menu is presented, it will always have a timeout, so the Load File Protocol can
automatically boot the default boot selection. If there is only one possible boot file, then the Load File
Protocol can automatically attempt to load the one boot file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code Protocol.
The downloaded image must be an EFI image that the platform supports.

13.4 Simple File System Protocol

The Simple File System protocol allows code running in the EFI boot services environment to obtain file
based access to a device. EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is used to open a device volume and
return an EFI_FILE_PROTOCOL that provides interfaces to access files on a device volume.

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

Summary

Provides a minimal interface for file-type access to a device.

GUID

#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \

 {0x0964e5b22,0x6459,0x11d2,\

 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number

#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure

typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {

 UINT64 Revision;

 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;

} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

Parameters

Revision The version of the EFI_FILE_PROTOCOL. The version specified by this
specification is 0x00010000. All future revisions must be backwards
UEFI Forum, Inc. March 2019 504

UEFI Specification, Version 2.8 Protocols — Media Access
compatible. If a future version is not backwards compatible, it is not
the same GUID.

OpenVolume Opens the volume for file I/O access. See the OpenVolume()
function description.

Description

The EFI_SIMPLE_FILE_SYSTEM_PROTOCOL provides a minimal interface for file-type access to a device.
This protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE_PROTOCOL. The only function of
this interface is to open a handle to the root directory of the file system on the volume. Once opened, all
accesses to the volume are performed through the volume’s file handles, using the
EFI_FILE_PROTOCOL protocol. The volume is closed by closing all the open file handles.

The firmware automatically creates handles for any block device that supports the following file system
formats:

• FAT12

• FAT16

• FAT32

EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

Summary

Opens the root directory on a volume.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME) (

 IN EFI_SIMPLE_FILE_SYSTEM PROTOCOL *This,

 OUT EFI_FILE_PROTOCOL **Root

);

Parameters

This A pointer to the volume to open the root directory of. See the type
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL description.

Root A pointer to the location to return the opened file handle for the
root directory. See the type EFI_FILE_PROTOCOL description.

Description

The OpenVolume() function opens a volume, and returns a file handle to the volume’s root directory.
This handle is used to perform all other file I/O operations. The volume remains open until all the file
handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the volume
will return EFI_MEDIA_CHANGED. To access the files on the new medium, the volume must be reopened
with OpenVolume(). If the new medium is a different file system than the one supplied in the
UEFI Forum, Inc. March 2019 505

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_HANDLE’s DevicePath for the EFI_SIMPLE_SYSTEM_PROTOCOL, OpenVolume() will return
EFI_UNSUPPORTED.

Status Codes Returned

13.5 File Protocol

The protocol and functions described in this section support access to EFI-supported file systems.

EFI_FILE_PROTOCOL

Summary

Provides file based access to supported file systems.

Revision Number

#define EFI_FILE_PROTOCOL_REVISION 0x00010000

#define EFI_FILE_PROTOCOL_REVISION2 0x00020000

#define EFI_FILE_PROTOCOL_LATEST_REVISION EFI_FILE_PROTOCOL_REVISION2

Protocol Interface Structure

EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no longer
supported. Any existing file handles for this volume are no longer
valid. To access the files on the new medium, the volume must be

reopened with OpenVolume().
UEFI Forum, Inc. March 2019 506

UEFI Specification, Version 2.8 Protocols — Media Access
typedef struct _EFI_FILE_PROTOCOL {

 UINT64 Revision;

 EFI_FILE_OPEN Open;

 EFI_FILE_CLOSE Close;

 EFI_FILE_DELETE Delete;

 EFI_FILE_READ Read;

 EFI_FILE_WRITE Write;

 EFI_FILE_GET_POSITION GetPosition;

 EFI_FILE_SET_POSITION SetPosition;

 EFI_FILE_GET_INFO GetInfo;

 EFI_FILE_SET_INFO SetInfo;

 EFI_FILE_FLUSH Flush;

 EFI_FILE_OPEN_EX OpenEx; // Added for revision 2

 EFI_FILE_READ_EX ReadEx; // Added for revision 2

 EFI_FILE_WRITE_EX WriteEx; // Added for revision 2

 EFI_FILE_FLUSH_EX FlushEx; // Added for revision 2
} EFI_FILE_PROTOCOL;

Parameters

Revision The version of the EFI_FILE_PROTOCOL interface. The version
specified by this specification is
EFI_FILE_PROTOCOL_LATEST_REVISION. Future versions are
required to be backward compatible to version 1.0.

Open Opens or creates a new file. See the Open() function description.

Close Closes the current file handle. See the Close() function
description.

Delete Deletes a file. See the Delete() function description.

Read Reads bytes from a file. See the Read() function description.

Write Writes bytes to a file. See the Write() function description.

GetPosition Returns the current file position. See the GetPosition() function
description.

SetPosition Sets the current file position. See the SetPosition() function
description.

GetInfo Gets the requested file or volume information. See the GetInfo()
function description.

SetInfo Sets the requested file information. See the SetInfo() function
description.

Flush Flushes all modified data associated with the file to the device. See
the Flush() function description.

OpenEx Opens a new file relative to the source directory’s location.

ReadEx Reads data from a file.

WriteEx Writes data to a file.

FlushEx Flushes all modified data associated with a file to a device.
UEFI Forum, Inc. March 2019 507

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The EFI_FILE_PROTOCOL provides file IO access to supported file systems.

An EFI_FILE_PROTOCOL provides access to a file’s or directory’s contents, and is also a reference to a
location in the directory tree of the file system in which the file resides. With any given file handle, other
files may be opened relative to this file’s location, yielding new file handles.

On requesting the file system protocol on a device, the caller gets the EFI_FILE_PROTOCOL to the
volume. This interface is used to open the root directory of the file system when needed. The caller must
Close() the file handle to the root directory, and any other opened file handles before exiting. While
there are open files on the device, usage of underlying device protocol(s) that the file system is
abstracting must be avoided. For example, when a file system that is layered on a
EFI_DISK_IO_PROTOCOL / EFI_BLOCK_IO_PROTOCOL, direct block access to the device for the blocks
that comprise the file system must be avoided while there are open file handles to the same device.

A file system driver may cache data relating to an open file. A Flush() function is provided that flushes all
dirty data in the file system, relative to the requested file, to the physical medium. If the underlying
device may cache data, the file system must inform the device to flush as well.

Implementations must account for cases where there is pending queued asynchronous I/O when a call is
received on a blocking protocol interface. In these cases the pending I/O will be processed and completed
before the blocking function is executed so that operation are carried out in the order they were
requested.

EFI_FILE_PROTOCOL.Open()

Summary

Opens a new file relative to the source file’s location.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_OPEN) (

 IN EFI_FILE_PROTOCOL *This,

 OUT EFI_FILE_PROTOCOL **NewHandle,

 IN CHAR16 *FileName,

 IN UINT64 OpenMode,

 IN UINT64 Attributes

);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to the source location. This would typically be an open
handle to a directory. See the type EFI_FILE_PROTOCOL description.

NewHandle A pointer to the location to return the opened handle for the new
file. See the type EFI_FILE_PROTOCOL description.

FileName The Null-terminated string of the name of the file to be opened. The
file name may contain the following path modifiers: “\”, “.”, and “..”.
UEFI Forum, Inc. March 2019 508

UEFI Specification, Version 2.8 Protocols — Media Access
OpenMode The mode to open the file. The only valid combinations that the file
may be opened with are: Read, Read/Write, or Create/Read/Write.
See “Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these are the
attribute bits for the newly created file. See “Related Definitions”
below.

Related Definitions

//***

// Open Modes

//***

#define EFI_FILE_MODE_READ 0x0000000000000001

#define EFI_FILE_MODE_WRITE 0x0000000000000002

#define EFI_FILE_MODE_CREATE 0x8000000000000000

//***

// File Attributes

//***

#define EFI_FILE_READ_ONLY 0x0000000000000001

#define EFI_FILE_HIDDEN 0x0000000000000002

#define EFI_FILE_SYSTEM 0x0000000000000004

#define EFI_FILE_RESERVED 0x0000000000000008

#define EFI_FILE_DIRECTORY 0x0000000000000010

#define EFI_FILE_ARCHIVE 0x0000000000000020

#define EFI_FILE_VALID_ATTR 0x0000000000000037

Description

The Open()function opens the file or directory referred to by FileName relative to the location of This and
returns a NewHandle. The FileName may include the following path modifiers:

“\” If the filename starts with a “\” the relative location is the root
directory that This resides on; otherwise “\” separates name
components. Each name component is opened in turn, and the
handle to the last file opened is returned.

“.” Opens the current location.

“..” Opens the parent directory for the current location. If the location is
the root directory the request will return an error, as there is no
parent directory for the root directory.

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location of FileName
does not refer to a directory, then the operation fails. If the file does not exist in the directory, then a new
file is created. If the file already exists in the directory, then the existing file is opened.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.
UEFI Forum, Inc. March 2019 509

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_FILE_PROTOCOL.Close()

Summary

Closes a specified file handle.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_CLOSE) (

 IN EFI_FILE_PROTOCOL *This

);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to close. See the type EFI_FILE_PROTOCOL description.

Description

The Close() function closes a specified file handle. All “dirty” cached file data is flushed to the device, and
the file is closed. In all cases the handle is closed. The operation will wait for all pending asynchronous I/O
requests to complete before completing.

Status Codes Returned

EFI_FILE_PROTOCOL.Delete()

Summary

Closes and deletes a file.

EFI_SUCCESS The file was opened.

EFI_NOT_FOUND The specified file could not be found on the device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no longer
supported.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write when
the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.

EFI_SUCCESS The file was closed.
UEFI Forum, Inc. March 2019 510

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_DELETE) (

 IN EFI_FILE_PROTOCOL *This

);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the handle
to the file to delete. See the type EFI_FILE_PROTOCOL description.

Description

The Delete() function closes and deletes a file. In all cases the file handle is closed. If the file cannot be
deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the handle is still closed.

Status Codes Returned

EFI_FILE_PROTOCOL.Read()

Summary

Reads data from a file.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_READ) (

 IN EFI_FILE_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to read data from. See the type EFI_FILE_PROTOCOL
description.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer The buffer into which the data is read.

Description

The Read() function reads data from a file.

EFI_SUCCESS The file was closed and deleted, and the handle was closed.

EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.
UEFI Forum, Inc. March 2019 511

UEFI Specification, Version 2.8 Protocols — Media Access
If This is not a directory, the function reads the requested number of bytes from the file at the file’s
current position and returns them in Buffer. If the read goes beyond the end of the file, the read length is
truncated to the end of the file. The file’s current position is increased by the number of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and returns the
entry in Buffer. If the Buffer is not large enough to hold the current directory entry, then
EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated. BufferSize is set to be
the size of the buffer needed to read the entry. On success, the current position is updated to the next
directory entry. If there are no more directory entries, the read returns a zero-length buffer.
EFI_FILE_INFO is the structure returned as the directory entry.

Status Codes Returned

EFI_FILE_PROTOCOL.Write()

Summary

Writes data to a file.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_WRITE) (

 IN EFI_FILE_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to write data to. See the type EFI_FILE_PROTOCOL
description.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the end of the file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory

entry. BufferSize has been updated with the size needed

to complete the request.
UEFI Forum, Inc. March 2019 512

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The Write() function writes the specified number of bytes to the file at the current file position. The
current file position is advanced the actual number of bytes written, which is returned in BufferSize.
Partial writes only occur when there has been a data error during the write attempt (such as “file space
full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned

EFI_FILE_PROTOCOL.OpenEx()

Summary

Opens a new file relative to the source directory’s location.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_OPEN) (

IN EFI_FILE_PROTOCOL *This,

OUT EFI_FILE_PROTOCOL **NewHandle,

IN CHAR16 *FileName,

IN UINT64 OpenMode,

IN UINT64 Attributes,

IN OUT EFI_FILE_IO_TOKEN *Token

);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to read data from. See the type EFI_FILE_PROTOCOL
description.

NewHandle A pointer to the location to return the opened handle for the new
file. See the type EFI_FILE_PROTOCOL description. For
asynchronous I/O, this pointer must remain valid for the duration of
the asynchronous operation.

EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.
UEFI Forum, Inc. March 2019 513

UEFI Specification, Version 2.8 Protocols — Media Access
FileName The Null-terminated string of the name of the file to be opened. The
file name may contain the following path modifiers: “\”, “.”, and “..”.

OpenMode The mode to open the file. The only valid combinations that the file
may be opened with are: Read, Read/Write, or Create/Read/Write.
See “Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these are
the attribute bits for the

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions" below.

Description

The OpenEx()function opens the file or directory referred to by FileName relative to the location of
This and returns a NewHandle. The FileName may include the path modifiers described previously in
Open().

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location of
FileName does not refer to a directory, then the operation fails. If the file does not exist in the directory,
then a new file is created. If the file already exists in the directory, then the existing file is opened.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.

If an error is returned from the call to OpenEx() and non-blocking I/O is being requested, the Event
associated with this request will not be signaled. If the call to OpenEx() succeeds then the Event will
be signaled upon completion of the open or if an error occurs during the processing of the request. The
status of the read request can be determined from the Status field of the Token once the event is
signaled.

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 UINTN BufferSize;

 VOID *Buffer;
 } EFI_FILE_IO_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the read request is
completed. The caller must be prepared to handle the case where
the callback associated with Event occurs before the original
asynchronous I/O request call returns.

Status Defines whether or not the signaled event encountered an error.

BufferSize For OpenEx(): Not Used, ignored

For ReadEx():On input, the size of the Buffer. On output, the
amount of data returned in Buffer. In both cases, the size is
measured in bytes.
UEFI Forum, Inc. March 2019 514

UEFI Specification, Version 2.8 Protocols — Media Access
For WriteEx(): On input, the size of the Buffer. On output, the
amount of data actually written. In both cases, the size is measured
in bytes.

For FlushEx(): Not used, ignored

Buffer For OpenEx(): Not Used, ignored

For ReadEx(): The buffer into which the data is read.

For WriteEx(): The buffer of data to write.

For FlushEx(): Not Used, ignored

Status Codes Returned

EFI_FILE_PROTOCOL.ReadEx()

Summary

Reads data from a file.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_FILE_READ_EX) (

 IN EFI_FILE_PROTOCOL *This,

 IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to read data from. See the type EFI_FILE_PROTOCOL
description.

EFI_SUCCESS Returned from the call OpenEx()
If Event is NULL (blocking I/O):

The file was opened successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing. Event

will be signaled upon completion.

Returned in the token after signaling Event
The file was opened successfully.

EFI_NOT_FOUND The device has no medium.

EFI_NO_MEDIA The specified file could not be found on the device.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Unable to queue the request or open the file due to lack of
resources.

EFI_VOLUME_FULL The volume is full.
UEFI Forum, Inc. March 2019 515

UEFI Specification, Version 2.8 Protocols — Media Access
Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions" below.

Description

The ReadEx() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the file’s
current position and returns them in Buffer. If the read goes beyond the end of the file, the read length
is truncated to the end of the file. The file’s current position is increased by the number of bytes
returned.

If This is a directory, the function reads the directory entry at the file’s current position and returns the
entry in Buffer. If the Buffer is not large enough to hold the current directory entry, then
EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated. BufferSize is set to
be the size of the buffer needed to read the entry. On success, the current position is updated to the next
directory entry. If there are no more directory entries, the read returns a zero-length buffer.
EFI_FILE_INFO is the structure returned as the directory entry.

If non-blocking I/O is used the file pointer will be advanced based on the order that read requests were
submitted.

If an error is returned from the call to ReadEx() and non-blocking I/O is being requested, the Event
associated with this request will not be signaled. If the call to ReadEx() succeeds then the Event will be
signaled upon completion of the read or if an error occurs during the processing of the request. The
status of the read request can be determined from the Status field of the Token once the event is
signaled.

Status Codes Returned

EFI_FILE_PROTOCOL.WriteEx()

Summary

Writes data to a file.

EFI_SUCCESS Returned from the call ReadEx()
If Event is NULL (blocking I/O):

The data was read successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing. Event will
be signaled upon completion.

Returned in the token after signaling Event
The data was read successfully.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the end of the file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
UEFI Forum, Inc. March 2019 516

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_FILE_WRITE_EX) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT EFI_FILE_IO_TOKEN *Token 
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to write data to. See the type EFI_FILE_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions" above.

Description

The WriteEx() function writes the specified number of bytes to the file at the
current file position. The current file position is advanced the actual number of
bytes written, which is returned in BufferSize. Partial writes only occur when there
has been a data error during the write attempt (such as “file space full”). The file is
automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

If non-blocking I/O is used the file pointer will be advanced based on the order that
write requests were submitted.

If an error is returned from the call to WriteEx() and non-blocking I/O is being
requested, the Event associated with this request will not be signaled. If the call to
WriteEx() succeeds then the Event will be signaled upon completion of the write
or if an error occurs during the processing of the request. The status of the write
request can be determined from the Status field of the Token once the event is
signaled.

Status Codes Returned

EFI_SUCCESS Returned from the call WriteEx()
If Event is NULL (blocking I/O):

The data was written successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing. Event

will be signaled upon completion.

Returned in the token after signaling Event
The data was written successfully.

EFI_UNSUPPORTED Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.
UEFI Forum, Inc. March 2019 517

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
UEFI Forum, Inc. March 2019 518

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_FILE_PROTOCOL.FlushEx()

Summary

Flushes all modified data associated with a file to a device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH_EX) (

 IN EFI_FILE_PROTOCOL *This,

 IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to flush. See the type EFI_FILE_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions" above. The
BufferSize and Buffer fields are not used for a FlushEx
operation.

Description

The FlushEx() function flushes all modified data associated with a file to a device.

For non-blocking I/O all writes submitted before the flush request will be flushed.

If an error is returned from the call to FlushEx() and non-blocking I/O is being requested, the Event
associated with this request will not be signaled.

Status Codes Returned

EFI_SUCCESS Returned from the call FlushEx()
If Event is NULL (blocking I/O):
The data was flushed successfully.
If Event is not NULL (asynchronous I/O):
The request was successfully queued for processing. Event will
be signaled upon completion.
Returned in the token after signaling Event
The data was flushed successfully.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
UEFI Forum, Inc. March 2019 519

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_FILE_PROTOCOL.SetPosition()

Summary

Sets a file’s current position.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_SET_POSITION) (

 IN EFI_FILE_PROTOCOL *This,

 IN UINT64 Position
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the he file
handle to set the requested position on. See the type
EFI_FILE_PROTOCOL description.

Position The byte position from the start of the file to set.

Description

The SetPosition() function sets the current file position for the handle to the position supplied. With the
exception of seeking to position 0xFFFFFFFFFFFFFFFF, only absolute positioning is supported, and seeking
past the end of the file is allowed (a subsequent write would grow the file). Seeking to position
0xFFFFFFFFFFFFFFFF causes the current position to be set to the end of the file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the read
process of the directory entries over.

Status Codes Returned

EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open directories.

EFI_DEVICE_ERROR An attempt was made to set the position of a deleted file.
UEFI Forum, Inc. March 2019 520

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_FILE_PROTOCOL.GetPosition()

Summary

Returns a file’s current position.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_GET_POSITION) (

 IN EFI_FILE_PROTOCOL *This,

 OUT UINT64 *Position
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to get the current position on. See the type
EFI_FILE_PROTOCOL description.

Position The address to return the file’s current position value.

Description

The GetPosition() function returns the current file position for the file handle. For directories, the current
file position has no meaning outside of the file system driver and as such the operation is not supported.
An error is returned if This is a directory.

Status Codes Returned

EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

EFI_DEVICE_ERROR An attempt was made to get the position from a deleted file.
UEFI Forum, Inc. March 2019 521

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_FILE_PROTOCOL.GetInfo()

Summary

Returns information about a file.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_GET_INFO) (

 IN EFI_FILE_PROTOCOL *This,

 IN EFI_GUID *InformationType,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle the requested information is for. See the type
EFI_FILE_PROTOCOL description.

InformationType The type identifier for the information being requested. Type
EFI_GUID is defined on page 176. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions for the related GUID
definitions.

BufferSize On input, the size of Buffer. On output, the amount of data returned
in Buffer. In both cases, the size is measured in bytes.

Buffer A pointer to the data buffer to return. The buffer’s type is indicated
by InformationType.

Description

The GetInfo() function returns information of type InformationType for the requested file. If the file does
not support the requested information type, then EFI_UNSUPPORTED is returned. If the buffer is not
large enough to fit the requested structure, EFI_BUFFER_TOO_SMALL is returned and the BufferSize is
set to the size of buffer that is required to make the request.

The information types defined by this specification are required information types that all file systems
must support.
UEFI Forum, Inc. March 2019 522

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_FILE_PROTOCOL.SetInfo()

Summary

Sets information about a file.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_SET_INFO) (

 IN EFI_FILE_PROTOCOL *This,

 IN EFI_GUID *InformationType,

 IN UINTN BufferSize,

 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle the information is for. See the type EFI_FILE_PROTOCOL
description.

InformationType The type identifier for the information being set. Type EFI_GUID is
defined in page 176. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions in this section for the
related GUID definitions.

BufferSize The size, in bytes, of Buffer.

Buffer A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description

The SetInfo() function sets information of type InformationType on the requested file. Because a read-
only file can be opened only in read-only mode, an InformationType of EFI_FILE_INFO_ID can be
used with a read-only file because this method is the only one that can be used to convert a read-only file
to a read-write file. In this circumstance, only the Attribute field of the EFI_FILE_INFO structure
may be modified. One or more calls to SetInfo() to change the Attribute field are permitted before
it is closed. The file attributes will be valid the next time the file is opened with Open().

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.
BufferSize has been updated with the size needed to complete the
request.
UEFI Forum, Inc. March 2019 523

UEFI Specification, Version 2.8 Protocols — Media Access
An InformationType of EFI_FILE_SYSTEM_INFO_ID or EFI_FILE_SYSTEM_VOLUME_LABEL_ID
may not be used on read-only media.

Status Codes Returned

EFI_FILE_PROTOCOL.Flush()

Summary

Flushes all modified data associated with a file to a device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FILE_FLUSH) (

 IN EFI_FILE_PROTOCOL *This
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to flush. See the type EFI_FILE_PROTOCOL description.

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED InformationType is EFI_FILE_INFO_ID and the

media is read-only.

EFI_WRITE_PROTECTED InformationType is

EFI_FILE_PROTOCOL_SYSTEM_INFO_ID and

the media is read only.

EFI_WRITE_PROTECTED InformationType is

EFI_FILE_SYSTEM_VOLUME_LABEL_ID and

the media is read-only.

EFI_ACCESS_DENIED An attempt is made to change the name of a file to a file
that is already present.

EFI_ACCESS_DENIED An attempt is being made to change the

EFI_FILE_DIRECTORY Attribute.

EFI_ACCESS_DENIED An attempt is being made to change the size of a directory.

EFI_ACCESS_DENIED InformationType is EFI_FILE_INFO_ID and the

file was opened read-only and an attempt is being made to
modify a field other than Attribute.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type indicated
by InformationType.
UEFI Forum, Inc. March 2019 524

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The Flush() function flushes all modified data associated with a file to a device.

Status Codes Returned

EFI_FILE_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.SetInfo() and
EFI_FILE_PROTOCOL.GetInfo() to set or get generic file information.

GUID

#define EFI_FILE_INFO_ID \

 {0x09576e92,0x6d3f,0x11d2,\

 {0x8e39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Related Definitions

EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.
UEFI Forum, Inc. March 2019 525

UEFI Specification, Version 2.8 Protocols — Media Access
typedef struct {

 UINT64 Size;

 UINT64 FileSize;

 UINT64 PhysicalSize;

 EFI_TIME CreateTime;

 EFI_TIME LastAccessTime;

 EFI_TIME ModificationTime;

 UINT64 Attribute;

 CHAR16 FileName[];
} EFI_FILE_INFO;

//***

// File Attribute Bits

//***

#define EFI_FILE_READ_ONLY 0x0000000000000001

#define EFI_FILE_HIDDEN 0x0000000000000002

#define EFI_FILE_SYSTEM 0x0000000000000004

#define EFI_FILE_RESERVED 0x0000000000000008

#define EFI_FILE_DIRECTORY 0x0000000000000010

#define EFI_FILE_ARCHIVE 0x0000000000000020

#define EFI_FILE_VALID_ATTR 0x0000000000000037

Parameters

Size Size of the EFI_FILE_INFO structure, including the Null-terminated
FileName string.

FileSize The size of the file in bytes.

PhysicalSize The amount of physical space the file consumes on the file
system volume.

CreateTime The time the file was created.

LastAccessTime The time when the file was last accessed.

ModificationTime The time when the file’s contents were last modified.

Attribute The attribute bits for the file. See “Related Definitions” above.

FileName The Null-terminated name of the file. For a root directory, the name
is an empty string.

Description

The EFI_FILE_INFO data structure supports GetInfo() and SetInfo() requests. In the case of
SetInfo(), the following additional rules apply:

• On directories, the file size is determined by the contents of the directory and cannot be
changed by setting FileSize. On directories, FileSize is ignored during a SetInfo().

• The PhysicalSize is determined by the FileSize and cannot be changed. This value is ignored
during a SetInfo() request.

• The EFI_FILE_DIRECTORY attribute bit cannot be changed. It must match the file’s actual type.
UEFI Forum, Inc. March 2019 526

UEFI Specification, Version 2.8 Protocols — Media Access
• A value of zero in CreateTime, LastAccess, or ModificationTime causes the fields to be ignored
(and not updated).

EFI_FILE_SYSTEM_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.GetInfo() to get
information about the system volume, and EFI_FILE_PROTOCOL.SetInfo() to set the system
volume’s volume label.

GUID

#define EFI_FILE_SYSTEM_INFO_ID \

 {0x09576e93,0x6d3f,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,\

 0x3b}

Related Definitions

typedef struct {

 UINT64 Size;

 BOOLEAN ReadOnly;

 UINT64 VolumeSize;

 UINT64 FreeSpace;

 UINT32 BlockSize;

 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_INFO;

Parameters

Size Size of the EFI_FILE_SYSTEM_INFO structure, including the Null-
terminated VolumeLabel string.

ReadOnly TRUE if the volume only supports read access.

VolumeSize The number of bytes managed by the file system.

FreeSpace The number of available bytes for use by the file system.

BlockSize The nominal block size by which files are typically grown.

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_INFO data structure is an information structure that can be obtained on the root
directory file handle. The root directory file handle is the file handle first obtained on the initial call to the
EFI_BOOT_SERVICES.HandleProtocol() function to open the file system interface. All of the fields
are read-only except for VolumeLabel. The system volume’s VolumeLabel can be created or modified by
calling EFI_FILE_PROTOCOL.SetInfo() with an updated VolumeLabel field.
UEFI Forum, Inc. March 2019 527

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_FILE_SYSTEM_VOLUME_LABEL

Summary

Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.GetInfo() or
EFI_FILE_PROTOCOL.SetInfo() to get or set information about the system’s volume label.

GUID

#define EFI_FILE_SYSTEM_VOLUME_LABEL_ID \
{0xdb47d7d3,0xfe81,0x11d3,0x9a35,\
 {0x00,0x90,0x27,0x3f,0xC1,0x4d}}

Related Definitions

typedef struct {

 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_VOLUME_LABEL;

Parameters

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_VOLUME_LABEL data structure is an information structure that can be obtained
on the root directory file handle. The root directory file handle is the file handle first obtained on the
initial call to the EFI_BOOT_SERVICES.HandleProtocol() function to open the file system interface.
The system volume’s VolumeLabel can be created or modified by calling EFI_FILE_PROTOCOL.SetInfo()
with an updated VolumeLabel field.

13.6 Tape Boot Support

13.6.1 Tape I/O Support

This section defines the Tape I/O Protocol and standard tape header format. These enable the support of
booting from tape on UEFI systems. This protocol is used to abstract the tape drive operations to support
applications written to this specification.

13.6.2 Tape I/O Protocol

This section defines the Tape I/O Protocol and its functions. This protocol is used to abstract the tape
drive operations to support applications written to this specification.

EFI_TAPE_IO_PROTOCOL

Summary

The EFI Tape IO protocol provides services to control and access a tape device.

GUID
UEFI Forum, Inc. March 2019 528

UEFI Specification, Version 2.8 Protocols — Media Access
#define EFI_TAPE_IO_PROTOCOL_GUID \

 {0x1e93e633,0xd65a,0x459e, \

 {0xab,0x84,0x93,0xd9,0xec,0x26,0x6d,0x18}}

Protocol Interface Structure

typedef struct _EFI_TAPE_IO_PROTOCOL {

 EFI_TAPE_READ TapeRead;

 EFI_TAPE_WRITE TapeWrite;

 EFI_TAPE_REWIND TapeRewind;

 EFI_TAPE_SPACE TapeSpace;

 EFI_TAPE_WRITEFM TapeWriteFM;

 EFI_TAPE_RESET TapeReset;
} EFI_TAPE_IO_PROTOCOL;

Parameters

TapeRead Read a block of data from the tape. See the TapeRead()
description.

TapeWrite Write a block of data to the tape. See the TapeWrite()
description.

TapeRewind Rewind the tape. See the TapeRewind() description.

TapeSpace Position the tape. See the TapeSpace() description.

TapeWriteFM Write filemarks to the tape. See the TapeWriteFM() description.

TapeReset Reset the tape device or its parent bus. See the TapeReset()
description.

Description

The EFI_TAPE_IO_PROTOCOL provides basic sequential operations for tape devices. These include read,
write, rewind, space, write filemarks and reset functions. Per this specification, a boot application uses
the services of this protocol to load the bootloader image from tape.

No provision is made for controlling or determining media density or compression settings. The protocol
relies on devices to behave normally and select settings appropriate for the media loaded. No support is
included for tape partition support, setmarks or other tapemarks such as End of Data. Boot tapes are
expected to use normal variable or fixed block size formatting and filemarks.
UEFI Forum, Inc. March 2019 529

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_TAPE_IO_PROTOCOL.TapeRead()

Summary

Reads from the tape.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TAPE_READ) (

 IN EFI_TAPE_IO_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be read into.

Description

This function will read up to BufferSize bytes from media into the buffer pointed to by Buffer using
an implementation-specific timeout. BufferSize will be updated with the number of bytes transferred.

Each read operation for a device that operates in variable block size mode reads one media data block.
Unread bytes which do not fit in the buffer will be skipped by the next read operation. The number of
bytes transferred will be limited by the actual media block size. Best practice is for the buffer size to
match the media data block size. When a filemark is encountered in variable block size mode the read
operation will indicate that 0 bytes were transferred and the function will return an EFI_END_OF_FILE
error condition.

In fixed block mode the buffer is expected to be a multiple of the data block size. Each read operation for
a device that operates in fixed block size mode may read multiple media data blocks. The number of
bytes transferred will be limited to an integral number of complete media data blocks. BufferSize
should be evenly divisible by the device’s fixed block size. When a filemark is encountered in fixed block
size mode the read operation will indicate that the number of bytes transferred is less than the number
of blocks that would fit in the provided buffer (possibly 0 bytes transferred) and the function will return
an EFI_END_OF_FILE error condition.

Two consecutive filemarks are normally used to indicate the end of the last file on the media.

The value specified for BufferSize should correspond to the actual block size used on the media. If
necessary, the value for BufferSize may be larger than the actual media block size.

Specifying a BufferSize of 0 is valid but requests the function to provide read-related status
information instead of actual media data transfer. No data will be attempted to be read from the device
however this operation is classified as an access for status handling. The status code returned may be
used to determine if a filemark has been encountered by the last read request with a non-zero size, and
to determine if media is loaded and the device is ready for reading. A NULL value for Buffer is valid
when BufferSize is zero.
UEFI Forum, Inc. March 2019 530

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_TAPE_IO_PROTOCOL.TapeWrite()

Summary

Write to the tape.

Prototype

Typedef EFI_STATUS

(EFIAPI *EFI_TAPE_WRITE) (

 IN EFI_TAPE_IO_PROTOCOL *This,

 IN UINTN *BufferSize,

 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written from.

Description

This function will write BufferSize bytes from the buffer pointed to by Buffer to media using an
implementation-specific timeout.

Each write operation for a device that operates in variable block size mode writes one media data block
of BufferSize bytes.

Each write operation for a device that operates in fixed block size mode writes one or more media data
blocks of the device’s fixed block size. BufferSize must be evenly divisible by the device’s fixed block
size.

EFI_SUCCESS Data was successfully transferred from the media.

EFI_END_OF_FILE A filemark was encountered which limited the data transferred by
the read operation or the head is positioned just after a filemark.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access. The
transfer was aborted since the current position of the media may be
incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from the
media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero BufferSize

or the device is operating in fixed block size mode and the

BufferSize was not a multiple of device’s fixed block size

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not online).
The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
UEFI Forum, Inc. March 2019 531

UEFI Specification, Version 2.8 Protocols — Media Access
Although sequential devices in variable block size mode support a wide variety of block sizes, many issues
may be avoided in I/O software, adapters, hardware and firmware if common block sizes are used such
as: 32768, 16384, 8192, 4096, 2048, 1024, 512, and 80.

BufferSize will be updated with the number of bytes transferred.

When a write operation occurs beyond the logical end of media an EFI_END_OF_MEDIA error condition
will occur. Normally data will be successfully written and BufferSize will be updated with the number
of bytes transferred. Additional write operations will continue to fail in the same manner. Excessive
writing beyond the logical end of media should be avoided since the physical end of media may be
reached.

Specifying a BufferSize of 0 is valid but requests the function to provide write-related status
information instead of actual media data transfer. No data will be attempted to be written to the device
however this operation is classified as an access for status handling. The status code returned may be
used to determine if media is loaded, writable and if the logical end of media point has been reached. A
NULL value for Buffer is valid when BufferSize is zero.

Status Codes Returned

EFI_TAPE_IO_PROTOCOL.TapeRewind()

Summary

Rewinds the tape.

EFI_SUCCESS Data was successfully transferred to the media.

EFI_END_OF_MEDIA The logical end of media has been reached. Data may have been
successfully transferred to the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access. The
transfer was aborted since the current position of the media may be
incorrect.

EFI_WRITE_PROTECTED The media in the device is write-protected. The transfer was aborted
since a write cannot be completed.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from the
media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero BufferSize or

the device is operating in fixed block size mode and BufferSize

was not a multiple of device’s fixed block size.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not online).
The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
UEFI Forum, Inc. March 2019 532

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TAPE_REWIND) (

 IN EFI_TAPE_IO_PROTOCOL *This,
);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Description

This function will rewind the media using an implementation-specific timeout. The function will check if
the media was changed since the last access and reinstall the EFI_TAPE_IO_PROTOCOL interface for the
device handle if needed.

Status Codes Returned

EFI_TAPE_IO_PROTOCOL.TapeSpace()

Summary

Positions the tape.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TAPE_SPACE) (

 IN EFI_TAPE_IO_PROTOCOL *This,

 IN INTN Direction,

 IN UINTN Type
);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Direction Direction and number of data blocks or filemarks to space over on
media.

Type Type of mark to space over on media.

EFI_SUCCESS The media was successfully repositioned.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the media.

EFI_NOT_READY Repositioning the media failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of media repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the timeout specified.
UEFI Forum, Inc. March 2019 533

UEFI Specification, Version 2.8 Protocols — Media Access
Description

This function will position the media using an implementation-specific timeout.

A positive Direction value will indicate the number of data blocks or filemarks to forward space the
media. A negative Direction value will indicate the number of data blocks or filemarks to reverse space
the media.

The following Type marks are mandatory:

Space operations position the media past the data block or filemark. Forward space operations leave
media positioned with the tape device head after the data block or filemark. Reverse space operations
leave the media positioned with the tape device head before the data block or filemark.

If beginning of media is reached before a reverse space operation passes the requested number of data
blocks or filemarks an EFI_END_OF_MEDIA error condition will occur. If end of recorded data or end of
physical media is reached before a forward space operation passes the requested number of data blocks
or filemarks an EFI_END_OF_MEDIA error condition will occur. An EFI_END_OF_MEDIA error condition
will not occur due to spacing over data blocks or filemarks past the logical end of media point used to
indicate when write operations should be limited.

Status Codes Returned

EFI_TAPE_IO_PROTOCOL.TapeWriteFM()

Summary

Writes filemarks to the media.

Type of Tape Mark MarkType

BLOCK 0

FILEMARK 1

EFI_SUCCESS The media was successfully repositioned.

EFI_END_OF_MEDIA Beginning or end of media was reached before the indicated
number of data blocks or filemarks were found.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
Repositioning the media was aborted since the current position of
the media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the media.

EFI_NOT_READY Repositioning the media failed since the device was not ready
(e.g. not online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of media repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the timeout
specified.
UEFI Forum, Inc. March 2019 534

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TAPE_WRITEFM) (

 IN EFI_TAPE_IO_PROTOCOL *This,

 IN UINTN Count

);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Count Number of filemarks to write to the media.

Description

This function will write filemarks to the tape using an implementation-specific timeout.

Writing filemarks beyond logical end of tape does not result in an error condition unless physical end of
media is reached.

Status Codes Returned

EFI_TAPE_IO_PROTOCOL.TapeReset()

Summary

Resets the tape device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TAPE_RESET) (

 IN EFI_TAPE_IO_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification

);

Parameters

This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

EFI_SUCCESS Data was successfully transferred from the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access. The transfer
was aborted since the current position of the media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from the
media.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not online). The
transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
UEFI Forum, Inc. March 2019 535

UEFI Specification, Version 2.8 Protocols — Media Access
ExtendedVerification
Indicates whether the parent bus should also be reset.

Description

This function will reset the tape device. If ExtendedVerification is set to true, the function will reset
the parent bus (e.g., SCSI bus). The function will check if the media was changed since the last access and
reinstall the EFI_TAPE_IO_PROTOCOL interface for the device handle if needed. Note media needs to
be loaded and device online for the reset, otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned

13.6.3 Tape Header Format

The boot tape will contain a Boot Tape Header to indicate it is a valid boot tape. The Boot Tape Header
must be located within the first 20 blocks on the tape. One or more tape filemarks may appear prior to
the Boot Tape Header so that boot tapes may include tape label files. The Boot Tape Header must begin
on a block boundary and be contained completely within a block. The Boot Tape Header will have the
following format:

Table 115. Tape Header Formats

EFI_SUCCESS The bus and/or device were successfully reset.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the bus and/or device.

EFI_NOT_READY The reset failed since the device and/or bus was not ready. The reset may
be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of reset.

EFI_TIMEOUT The reset did not complete within the timeout allowed.

Bytes (Dec) Value Purpose

0-7 0x544f4f4220494645 Signature (‘EFI BOOT’ in ASCII)

8-11 1 Revision

12-15 1024 Tape Header Size in bytes

16-19 calculated Tape Header CRC

20-35 { 0x8befa29a, 0x3511, 0x4cf7,
{ 0xa2, 0xeb, 0x5f, 0xe3, 0x7c,
0x3b, 0xf5, 0x5b } }

EFI Boot Tape GUID
(same for all EFI Boot Tapes, like EFI Disk GUID)

36-51 User Defined EFI Boot Tape Type GUID
(bootloader / OS specific, like EFI Partition Type GUID)

52-67 User Defined EFI Boot Tape Unique GUID
(unique for every EFI Boot Tape)

68-71 e.g. 2 File Number of EFI Bootloader relative to the Boot Tape
Header
(first file immediately after the Boot Tape Header is file
number 1, ANSI labels are counted)

72-75 e.g. 0x400 EFI Bootloader Block Size in bytes

76-79 e.g. 0x20000 EFI Bootloader Total Size in bytes
UEFI Forum, Inc. March 2019 536

UEFI Specification, Version 2.8 Protocols — Media Access
All numeric values will be specified in binary format. Note that all values are specified in Little Endian byte
ordering.

The Boot Tape Header can also be represented as the following data structure:

typedef struct EFI_TAPE_HEADER {

 UINT64 Signature;

 UINT32 Revision;

 UINT32 BootDescSize;

 UINT32 BootDescCRC;

 EFI_GUID TapeGUID;

 EFI_GUID TapeType;

 EFI_GUID TapeUnique;

 UINT32 BLLocation;

 UINT32 BLBlocksize;

 UINT32 BLFilesize;

 CHAR8 OSVersion[40];

 CHAR8 AppVersion[40];

 CHAR8 CreationDate[10];

 CHAR8 CreationTime[10];

 CHAR8 SystemName[256]; // UTF-8

 CHAR8 TapeTitle[120]; // UTF-8

 CHAR8 pad[468]; // pad to 1024

} EFI_TAPE_HEADER;

13.7 Disk I/O Protocol

This section defines the Disk I/O protocol. This protocol is used to abstract the block accesses of the Block
I/O protocol to a more general offset-length protocol. The firmware is responsible for adding this
protocol to any Block I/O interface that appears in the system that does not already have a Disk I/O
protocol. File systems and other disk access code utilize the Disk I/O protocol.

80-119 e.g. HPUX 11.23 OS Version (ASCII)

120-159 e.g. Ignite-UX C.6.2.241 Application Version (ASCII)

160-169 e.g.1993-02-28 EFI Boot Tape creation date (UTC)
(yyyy-mm-dd ASCII)

170-179 e.g. 13:24:55 EFI Boot Tape creation time (UTC)
(hh:mm:ss in ASCII)

180-435 e.g. testsys1
(alt e.g. testsys1.xyzcorp.com)

Computer System Name (UTF-8, ref: RFC 2044)

436-555 e.g. Primary Disaster Recovery Boot Tape Title / Comment (UTF-8, ref: RFC 2044)

556-1023 reserved

Bytes (Dec) Value Purpose
UEFI Forum, Inc. March 2019 537

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_DISK_IO_PROTOCOL

Summary

This protocol is used to abstract Block I/O interfaces.

GUID

#define EFI_DISK_IO_PROTOCOL_GUID \

 {0xCE345171,0xBA0B,0x11d2,\

 {0x8e,0x4F,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number

#define EFI_DISK_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure

typedef struct _EFI_DISK_IO_PROTOCOL {

 UINT64 Revision;

 EFI_DISK_READ ReadDisk;

 EFI_DISK_WRITE WriteDisk;
} EFI_DISK_IO_PROTOCOL;

Parameters

Revision The revision to which the disk I/O interface adheres. All future
revisions must be backwards compatible. If a future version is not
backwards compatible, it is not the same GUID.

ReadDisk Reads data from the disk. See the ReadDisk() function description.

WriteDisk Writes data to the disk. See the WriteDisk() function description.

Description

The EFI_DISK_IO_PROTOCOL is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block boundaries
or alignment requirements. This is done by copying the data to/from internal buffers as needed to
provide the proper requests to the block I/O device. Outstanding write buffer data is flushed by using the
FlushBlocks() function of the EFI_BLOCK_IO_PROTOCOL on the device handle.

The firmware automatically adds an EFI_DISK_IO_PROTOCOL interface to any EFI_BLOCK_IO_PROTOCOL
interface that is produced. It also adds file system, or logical block I/O, interfaces to any
EFI_DISK_IO_PROTOCOL interface that contains any recognized file system or logical block I/O devices.
The firmware must automatically support the following required formats:

• The EFI FAT12, FAT16, and FAT32 file system type.

• The legacy master boot record partition block. (The presence of this on any block I/O device
is optional, but if it is present the firmware is responsible for allocating a logical device for
each partition).

• The extended partition record partition block.

• The El Torito logical block devices.
UEFI Forum, Inc. March 2019 538

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_DISK_IO_PROTOCOL.ReadDisk()

Summary

Reads a specified number of bytes from a device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISK_READ) (

 IN EFI_DISK_IO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN UINT64 Offset,

 IN UINTN BufferSize,

 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read from.

BufferSize The size in bytes of Buffer. The number of bytes to read from
the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description

The ReadDisk() function reads the number of bytes specified by BufferSize from the device. All the bytes
are read, or an error is returned. If there is no medium in the device, the function returns
EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the function returns
EFI_MEDIA_CHANGED.
UEFI Forum, Inc. March 2019 539

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_DISK_IO_PROTOCOL.WriteDisk()

Summary

Writes a specified number of bytes to a device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISK_WRITE) (

 IN EFI_DISK_IO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN UINT64 Offset,

 IN UINTN BufferSize,

 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL protocol description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write.

BufferSize The size in bytes of Buffer. The number of bytes to write to
the device.

Buffer A pointer to the buffer containing the data to be written.

Description

The WriteDisk() function writes the number of bytes specified by BufferSize to the device. All bytes are
written, or an error is returned. If there is no medium in the device, the function returns EFI_NO_MEDIA.
If the MediaId is not the ID of the medium currently in the device, the function returns
EFI_MEDIA_CHANGED.

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid for the
device.
UEFI Forum, Inc. March 2019 540

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

13.8 Disk I/O 2 Protocol

The Disk I/O 2 protocol defines an extension to the Disk I/O protocol to enable non-blocking /
asynchronous byte-oriented disk operation.

EFI_DISK_IO2_PROTOCOL

Summary

This protocol is used to abstract Block I/O interfaces in a non-blocking manner.

GUID

#define EFI_DISK_IO2_PROTOCOL_GUID \

 { 0x151c8eae, 0x7f2c, 0x472c, \

 {0x9e, 0x54, 0x98, 0x28, 0x19, 0x4f, 0x6a, 0x88 }}

Revision Number

#define EFI_DISK_IO2_PROTOCOL_REVISION 0x00020000

Protocol Interface Structure
typedef struct _EFI_DISK_IO2_PROTOCOL {
 UINT64 Revision;

 EFI_DISK_CANCEL_EX Cancel;

 EFI_DISK_READ_EX ReadDiskEx;

 EFI_DISK_WRITE_EX WriteDiskEx;

 EFI_DISK_FLUSH_EX FlushDiskEx;
} EFI_DISK_IO2_PROTOCOL;

Parameters
Revision The revision to which the disk I/O interface adheres. All future

revisions must be backwards compatible.

Cancel Terminate outstanding requests. See the Cancel() function
description.

ReadDiskEx Reads data from the disk. See the ReadDiskEx() function
description.

EFI_SUCCESS The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_DEVICE_ERROR The device reported an error while performing the write operation.

EFI_INVALID_PARAMETER The write request contains device addresses that are not valid for
the device.
UEFI Forum, Inc. March 2019 541

UEFI Specification, Version 2.8 Protocols — Media Access
WriteDiskEx Writes data to the disk. See the WriteDiskEx() function
description.

FlushDiskEx Flushes all modified data to the physical device. See the
FlushDiskEx() function description.

Description

The EFI_DISK_IO2_PROTOCOL is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block boundaries
or alignment requirements. This is done by copying the data to/from internal buffers as needed to
provide the proper requests to the block I/O device. Outstanding write buffer data is flushed by using the
FlushBlocksEx() function of the EFI_BLOCK_IO2_PROTOCOL on the device handle.

The firmware automatically adds an EFI_DISK_IO2_PROTOCOL interface to any
EFI_BLOCK_IO2_PROTOCOL interface that is produced. It also adds file system, or logical block I/O,
interfaces to any EFI_DISK_IO2_PROTOCOL interface that contains any recognized file system or logical
block I/O devices.

Implementations must account for cases where there is pending queued asynchronous I/O when a call is
received on a blocking protocol interface. In these cases the pending I/O will be processed and completed
before the blocking function is executed so that operation are carried out in the order they were
requested.

EFI_DISK_IO2_PROTOCOL.Cancel()

Summary

Terminate outstanding asynchronous requests to a device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISK_CANCEL_EX) (

 IN EFI_DISK_IO2_PROTOCOL *This

);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

Description

The Cancel() function will terminate any in-flight non-blocking I/O requests by signaling the
EFI_DISK_IO2_TOKEN Event and with TransactionStatus set to EFI_ABORTED. After the
Cancel() function returns it is safe to free any Token or Buffer data structures that were allocated as
part of the non-blocking I/O operation.
UEFI Forum, Inc. March 2019 542

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_DISK_IO2_PROTOCOL.ReadDiskEx()

Summary

Reads a specified number of bytes from a device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_DISK_READ_EX) (

 IN EFI_DISK_IO2_PROTOCOL *This,

 IN UINT32 MediaId,

 IN UINT64 Offset,

 IN OUT EFI_DISK_IO2_TOKEN *Token,

 IN UINTN BufferSize,

 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read from.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions" below. If
this field is NULL, synchronous/blocking IO is performed.

BufferSize The size in bytes of Buffer. The number of bytes to read from the
device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible either having implicit or explicit ownership of the buffer.

Description

The ReadDiskEx() function reads the number of bytes specified by BufferSize from the device. All
the bytes are read, or an error is returned. If there is no medium in the device, the function returns
EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the function returns
EFI_MEDIA_CHANGED.

If an error is returned from the call to ReadDiskEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled. If the call to ReadDiskEx() succeeds then the
Event will be signaled upon completion of the read or if an error occurs during the processing of the

EFI_SUCCESS All outstanding requests were successfully terminated.

EFI_DEVICE_ERROR The device reported an error while performing the cancel
operation.
UEFI Forum, Inc. March 2019 543

UEFI Specification, Version 2.8 Protocols — Media Access
request. The status of the read request can be determined from the Status field of the Token once the
event is signaled.

Related Definitions
typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;
 } EFI_DISK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is not NULL
and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the I/O request is
completed. The caller must be prepared to handle the case where
the callback associated with Event occurs before the original
asynchronous I/O request call returns.

TransactionStatus Defines whether or not the signaled event encountered an error.

Status Codes Returned

EFI_DISK_IO2_PROTOCOL.WriteDiskEx()

Summary

Writes a specified number of bytes to a device.

EFI_SUCCESS Returned from the call ReadDiskEx()
If Event is NULL (blocking I/O):
The data was read correctly from the device.
If Event is not NULL (asynchronous I/O):
The request was successfully queued for processing. Event will
be signaled upon completion.
Returned in the token after signaling Event
The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid
for the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 544

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISK_WRITE_EX) (

 IN EFI_DISK_IO2_PROTOCOL *This,

 IN UINT32 MediaId,

 IN UINT64 Offset,

 IN OUT EFI_DISK_IO2_TOKEN *Token,

 IN UINTN BufferSize,

 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write to.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions" below. If
this field is NULL, synchronous/blocking IO is performed.

BufferSize The size in bytes of Buffer. The number of bytes to write to the
device.

Buffer A pointer to the source buffer for the data. The caller is responsible.

Description

The WriteDiskEx() function writes the number of bytes specified by BufferSize to the device. All
bytes are written, or an error is returned. If there is no medium in the device, the function returns
EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the function returns
EFI_MEDIA_CHANGED.

If an error is returned from the call to WriteDiskEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled. If the call to WriteDiskEx() succeeds then
the Event will be signaled upon completion of the write or if an error occurs during the processing of the
request. The status of the write request can be determined from the Status field of the Token once the
event is signaled.
UEFI Forum, Inc. March 2019 545

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_DISK_IO2_PROTOCOL.FlushDiskEx()

Summary

Flushes all modified data to the physical device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DISK_FLUSH_EX) (

 IN EFI_DISK_IO2_PROTOCOL *This,

 IN OUT EFI_DISK_IO2_TOKEN *Token
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions" below. If
this field is NULL, synchronous/blocking IO is performed.

Description

The FlushDiskEx() function flushes all modified data to the physical device. If an error is returned
from the call to FlushDiskEx() and non-blocking I/O is being requested, the Event associated with this
request will not be signaled. If the call to FlushDiskEx() succeeds then the Event will be signaled

EFI_SUCCESS Returned from the call WriteDiskEx()

If Event is NULL (blocking I/O):

• The data was written correctly to the device.

If Event is not NULL (asynchronous I/O):

• The request was successfully queued for processing. Event
will be signaled upon completion.

Returned in the token after signaling Event
• The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_DEVICE_ERROR The device reported an error while performing the write
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid
for the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 546

UEFI Specification, Version 2.8 Protocols — Media Access
upon completion of the flush or if an error occurs during the processing of the request. The status of the
flush request can be determined from the Status field of the Token once the event is signaled.

Status Codes Returned

13.9 Block I/O Protocol

This section defines the Block I/O protocol. This protocol is used to abstract mass storage devices to allow
code running in the EFI boot services environment to access them without specific knowledge of the type
of device or controller that manages the device. Functions are defined to read and write data at a block
level from mass storage devices as well as to manage such devices in the EFI boot services environment.

EFI_BLOCK_IO_PROTOCOL

Summary

This protocol provides control over block devices.

EFI_SUCCESS Returned from the call FlushDiskEx()

If Event is NULL (blocking I/O):

• The data was flushed successfully to the device.

If Event is not NULL (asynchronous I/O):

• The request was successfully queued for processing. Event
will be signaled upon completion.

Returned in the token after signaling Event
The data was flushed successfully to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_DEVICE_ERROR The device reported an error while performing the flush
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The medium in the device has changed since the last access.

EFI_INVALID_PARAMETER Token is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 547

UEFI Specification, Version 2.8 Protocols — Media Access
GUID

#define EFI_BLOCK_IO_PROTOCOL_GUID \

 {0x964e5b21,0x6459,0x11d2,\

 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number

#define EFI_BLOCK_IO_PROTOCOL_REVISION2 0x00020001

#define EFI_BLOCK_IO_PROTOCOL_REVISION3 ((2<<16) | (31))

Protocol Interface Structure

typedef struct _EFI_BLOCK_IO_PROTOCOL {

 UINT64 Revision;

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_RESET Reset;

 EFI_BLOCK_READ ReadBlocks;

 EFI_BLOCK_WRITE WriteBlocks;

 EFI_BLOCK_FLUSH FlushBlocks;
} EFI_BLOCK_IO_PROTOCOL;

Parameters

Revision The revision to which the block IO interface adheres. All future
revisions must be backwards compatible. If a future version is not
back wards compatible it is not the same GUID.

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device. Type
EFI_BLOCK_IO_MEDIA is defined in “Related Definitions” below.

Reset Resets the block device hardware. See the Reset() function
description.

ReadBlocks Reads the requested number of blocks from the device. See the
ReadBlocks() function description.

WriteBlocks Writes the requested number of blocks to the device. See the
WriteBlocks() function description.

FlushBlocks Flushes any cache blocks. This function is optional and only needs to
be supported on block devices that cache writes. See the
FlushBlocks() function description.
UEFI Forum, Inc. March 2019 548

UEFI Specification, Version 2.8 Protocols — Media Access
Related Definitions

//***

// EFI_BLOCK_IO_MEDIA

//***

typedef struct {

 UINT32 MediaId;

 BOOLEAN RemovableMedia;

 BOOLEAN MediaPresent;

 BOOLEAN LogicalPartition;

 BOOLEAN ReadOnly;

 BOOLEAN WriteCaching;

 UINT32 BlockSize;

 UINT32 IoAlign;

 EFI_LBA LastBlock;

 EFI_LBA LowestAlignedLba; //added in Revision 2

 UINT32 LogicalBlocksPerPhysicalBlock;
//added in Revision 2

UINT32 OptimalTransferLengthGranularity;

// added in Revision 3

} EFI_BLOCK_IO_MEDIA;

//***

// EFI_LBA

//***

typedef UINT64 EFI_LBA;

The following data values in EFI_BLOCK_IO_MEDIA are read-only and are updated by the code that
produces the EFI_BLOCK_IO_PROTOCOL functions:

MediaId The current media ID. If the media changes, this value is changed.

RemovableMedia TRUE if the media is removable; otherwise, FALSE.

MediaPresent TRUE if there is a media currently present in the device; otherwise,
FALSE. This field shows the media present status as of the most
recent ReadBlocks() or WriteBlocks() call.

LogicalPartition TRUE if the EFI_BLOCK_IO_PROTOCOL was produced to abstract
partition structures on the disk. FALSE if the BLOCK_IO protocol was
produced to abstract the logical blocks on a hardware device.

ReadOnly TRUE if the media is marked read-only otherwise, FALSE. This field
shows the read-only status as of the most recent WriteBlocks()
call.

WriteCaching TRUE if the WriteBlocks() function caches write data.

BlockSize The intrinsic block size of the device. If the media changes, then this
field is updated.Returns the number of bytes per logical block. For
ATA devices, this is reported in IDENTIFY DEVICE data words 117-118
UEFI Forum, Inc. March 2019 549

UEFI Specification, Version 2.8 Protocols — Media Access
(i.e., Words per Logical Sector) (see ATA8-ACS). For SCSI devices, this
is reported in the READ CAPACITY (16) parameter data Logical Block
Length In Bytes field (see SBC-3).

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a power of
2, and the requirement is that the start address of a buffer must be
evenly divisible by IoAlign with no remainder.

LastBlock The last LBA on the device. If the media changes, then this field is
updated. For ATA devices, this is reported in IDENTIFY DEVICE data
words 60-61 (i.e., Total number of user addressable logical sectors)
(see ATA8-ACS) minus one. For SCSI devices, this is reported in the
READ CAPACITY (16) parameter data Returned Logical Block Address
field (see SBC-3) minus one.

LowestAlignedLba Only present if EFI_BLOCK_IO_PROTOCOL.Revision is greater
than or equal to EFI_BLOCK_IO_PROTOCOL_REVISION2. Returns
the first LBA that is aligned to a physical block boundary (see
Section 5.3.1). Note that this field follows the SCSI definition, not the
ATA definition. If LogicalPartition is TRUE this value will be
zero.

LogicalBlocksPerPhysicalBlock

Only present if EFI_BLOCK_IO_PROTOCOL.Revision is greater
than or equal to EFI_BLOCK_IO_PROTOCOL_REVISION2. Returns
the number of logical blocks per physical block (see Section 5.3.1).
Unlike the ATA and SCSI fields that provide the information for this
field, this field does not contain an exponential value. A value of 0
means there is either one logical block per physical block, or there
are more than one physical block per logical block. If
LogicalPartition is TRUE this value will be zero.

OptimalTransferLengthGranularity

Only present if EFI_BLOCK_IO_PROTOCOL.Revision is greater than
or equal to EFI_BLOCK_IO_PROTOCOL_REVISION3. Returns the
optimal transfer length granularity as a number of logical blocks (see
Section 5.3.1). A value of 0 means there is no reported optimal
transfer length granularity. If LogicalPartition is TRUE this
value will be zero.

Description

The LogicalPartition is TRUE if the device handle is for a partition. For media that have only one partition,
the value will always be TRUE. For media that have multiple partitions, this value is FALSE for the handle
that accesses the entire device. The firmware is responsible for adding device handles for each partition
on such media.

The firmware is responsible for adding an EFI_DISK_IO_PROTOCOL interface to every
EFI_BLOCK_IO_PROTOCOL interface in the system. The EFI_DISK_IO_PROTOCOL interface allows byte-
level access to devices.
UEFI Forum, Inc. March 2019 550

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_BLOCK_IO_PROTOCOL.Reset()

Summary

Resets the block device hardware.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_RESET) (

 IN EFI_BLOCK_IO_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

ExtendedVerification 
Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take an
extended amount of time to verify the device is operating on reset. Otherwise the reset operation is to
occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_BLOCK_IO_PROTOCOL.ReadBlocks()

Summary

Reads the requested number of blocks from the device.

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 551

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_READ) (

 IN EFI_BLOCK_IO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN UINTN BufferSize,

 OUT VOID *Buffer

);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL description.

BufferSize The size of the Buffer in bytes. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description

The ReadBlocks() function reads the requested number of blocks from the device. All the blocks are read,
or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the
current media in the device, the function returns EFI_MEDIA_CHANGED. The function must return
EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or Buffer are invalid so the caller
can probe for changes in media state.
UEFI Forum, Inc. March 2019 552

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_BLOCK_IO_PROTOCOL.WriteBlocks()

Summary

Writes a specified number of blocks to the device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_WRITE) (

 IN EFI_BLOCK_IO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN UINTN BufferSize,

 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type is defined in the
EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations. Type EFI_LBA is
defined in the EFI_BLOCK_IO_PROTOCOL description.

BufferSize The size in bytes of Buffer. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the source buffer for the data.

Description

The WriteBlocks() function writes the requested number of blocks to the device. All blocks are written, or
an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the
current media in the device, the function returns EFI_MEDIA_CHANGED. The function must return

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of

the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not on
proper alignment.
UEFI Forum, Inc. March 2019 553

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or Buffer are invalid so the caller
can probe for changes in media state.

Status Codes Returned

EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

Summary

Flushes all modified data to a physical block device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_FLUSH) (

 IN EFI_BLOCK_IO_PROTOCOL *This
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL protocol description.

Description

The FlushBlocks() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning EFI_SUCCESS
from this function. This would include any cached data the driver may have cached, and cached data the
device may have cached. A flush may cause a read request following the flush to force a device access.

EFI_SUCCESS The data were written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block

size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is not on
proper alignment.
UEFI Forum, Inc. March 2019 554

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

13.10 Block I/O 2 Protocol

The Block I/O 2 protocol defines an extension to the Block I/O protocol which enables the ability to read
and write data at a block level in a non-blocking manner.

EFI_BLOCK_IO2_PROTOCOL

Summary

This protocol provides control over block devices.

GUID

#define EFI_BLOCK_IO2_PROTOCOL_GUID \

 {0xa77b2472, 0xe282, 0x4e9f, \

 {0xa2, 0x45, 0xc2, 0xc0, 0xe2, 0x7b, 0xbc, 0xc1}}

Protocol Interface Structure

typedef struct _EFI_BLOCK_IO2_PROTOCOL {

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_RESET_EX Reset;

 EFI_BLOCK_READ_EX ReadBlocksEx;

 EFI_BLOCK_WRITE_EX WriteBlocksEx;

 EFI_BLOCK_FLUSH_EX FlushBlocksEx;
} EFI_BLOCK_IO2_PROTOCOL;

Parameters

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device. Type
EFI_BLOCK_IO_MEDIA is defined in the
EFI_BLOCK_IO_PROTOCOL section.

Reset Resets the block device hardware. See the Reset() function
description following below.

ReadBlocksEx Reads the requested number of blocks from the device. See the
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx() function
description.

WriteBlocksEx Writes the requested number of blocks to the device. See the
WriteBlocksEx() function description.

FlushBlocksEx Flushes any cache blocks. This function is optional and only needs to
be supported on block devices that cache writes. See the
FlushBlocksEx() function description.

EFI_SUCCESS All outstanding data were written correctly to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_NO_MEDIA There is no media in the device.
UEFI Forum, Inc. March 2019 555

Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_BLOCK_IO2_PROTOCOL.Reset()

Summary

Resets the block device hardware.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_RESET_EX) (

 IN EFI_BLOCK_IO2_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

ExtendedVerification
Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take
an extended amount of time to verify the device is operating on reset. Otherwise the reset operation is to
occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

The Reset() function will terminate any in-flight non-blocking I/O requests by signaling an
EFI_ABORTED in the TransactionStatus member of the EFI_BLOCK_IO2_TOKEN for the non-
blocking I/O. After the Reset() function returns it is safe to free any Token or Buffer data structures
that were allocated to initiate the non-blocking I/O requests that were in-flight for this device.

Status Codes Returned

EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx()

Summary

Reads the requested number of blocks from the device.

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.
UEFI Forum, Inc. March 2019 556

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_READ_EX) (

 IN EFI_BLOCK_IO2_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN OUT EFI_BLOCK_IO2_TOKEN *Token,

 IN UINTN BufferSize,

 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in "Related Definitions" below.

BufferSize The size of the Buffer in bytes. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description

The ReadBlocksEx() function reads the requested number of blocks from the device. All the blocks are
read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the
current media in the device, the function returns EFI_MEDIA_CHANGED. The function must return
EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or Buffer are invalid so the caller
can probe for changes in media state.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_or EFI_MEDIA_CHANGED is returned and non-blocking I/O is
being used, the Event associated with this request will not be signaled.

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;
UEFI Forum, Inc. March 2019 557

UEFI Specification, Version 2.8 Protocols — Media Access
Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the read request is
completed.

TransactionStatus Defines whether the signaled event encountered an error.

Status Codes Returned

EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx()

Summary

Writes a specified number of blocks to the device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_WRITE_EX) (

 IN EFI_BLOCK_IO2_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN OUT EFI_BLOCK_IO2_TOKEN *Token,

 IN UINTN BufferSize,

 IN VOID *Buffer

);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations. Type EFI_LBA is
defined in the EFI_BLOCK_IO2_PROTOCOL description.

EFI_SUCCESS The read request was queued if Token-> Event is not NULL. The data was
read correctly from the device if theToken-> Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size

of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not on
proper alignment.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 558

UEFI Specification, Version 2.8 Protocols — Media Access
Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx(,) "Related
Definitions".

BufferSize The size in bytes of Buffer. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the source buffer for the data.

Description

The WriteBlocksEx() function writes the requested number of blocks to the device. All blocks are written,
or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the
current media in the device, the function returns EFI_MEDIA_CHANGED. The function must return
EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or Buffer are invalid so the caller
can probe for changes in media state.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is
returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the write request is
completed.

TransactionStatus Defines whether the signaled event encountered an error.
UEFI Forum, Inc. March 2019 559

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx()

Summary

Flushes all modified data to a physical block device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLOCK_FLUSH_EX) (

 IN EFI_BLOCK_IO2_PROTOCOL *This,

 IN OUT EFI_BLOCK_IO2_TOKEN *Token,
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL protocol description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx(), "Related
Definitions" .

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;

EFI_SUCCESS The write request was queued if Event is not NULL. The data was written
correctly to the device if the Event is NULL.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size

of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is not on
proper alignment.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 560

UEFI Specification, Version 2.8 Protocols — Media Access
Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the flush request is
completed.

TransactionStatus Defines whether the signaled event encountered an error.

Description

The FlushBlocksEx() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have cached, and
cached data the device may have cached. A flush may cause a read request following the flush to force a
device access.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is
returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.

Status Codes Returned

13.11 Inline Cryptographic Interface Protocol

EFI_BLOCK_IO_CRYPTO_PROTOCOL

Summary

The UEFI Inline Cryptographic Interface protocol provides services to abstract access to inline
cryptographic capabilities.

The usage model of this protocol is similar to the one of the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL where FDE (Full Disk Encryption) solutions leave ESP
partition unprotected (unencrypted) allowing storage clients to continue using
EFI_BLOCK_IO_PROTOCOL or EFI_BLOCK_IO2_PROTOCOL protocol interfaces to load OS boot
components from ESP partition. For other partitions boot apps (including OS boot app) that are
enlightened to take advantage of inline cryptographic capability will be empowered to use this new
protocol.

EFI_SUCCESS The flush request was queued if Event is not NULL. All
outstanding data was written correctly to the device if the Event
is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
UEFI Forum, Inc. March 2019 561

UEFI Specification, Version 2.8 Protocols — Media Access
GUID

#define EFI_BLOCK_IO_CRYPTO_PROTOCOL_GUID \

 {0xa00490ba,0x3f1a,0x4b4c,\

 {0xab,0x90,0x4f,0xa9,0x97,0x26,0xa1,0xe8}}

Protocol Interface Structure

typedef struct _EFI_BLOCK_IO_CRYPTO_PROTOCOL {

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_IO_CRYPTO_RESET Reset;

 EFI_BLOCK_IO_CRYPTO_GET_CAPABILITIES GetCapabilities;

 EFI_BLOCK_IO_CRYPTO_SET_CONFIGURATION SetConfiguration;

 EFI_BLOCK_IO_CRYPTO_GET_CONFIGURATION GetConfiguration;

 EFI_BLOCK_IO_CRYPTO_READ_DEVICE_EXTENDED ReadExtended;

 EFI_BLOCK_IO_CRYPTO_WRITE_DEVICE_EXTENDED WriteExtended;

 EFI_BLOCK_IO_CRYPTO_FLUSH FlushBlocks;
} EFI_BLOCK_IO_CRYPTO_PROTOCOL;

Parameters

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device. Type
EFI_BLOCK_IO_MEDIA is defined in the
EFI_BLOCK_IO_PROTOCOL section.

Reset Reset the block device hardware.

GetCapabilities Get the current capabilities of the ICI.

SetConfiguration Set the configuration for the ICI instance.

GetConfiguration Get the configuration for the ICI instance.

ReadExtended Provide an extended version of the storage device read command.

WriteExtended Provide an extended version of the storage device write command.

FlushBlocks Flushes any cache blocks. This function is optional and only needs to
be supported on block devices that cache writes.

Related Definitions

Some functions defined for this protocol require the caller to specify the device capabilities, keys and/or
attributes of the keys to be used. These parameters must be consistent with the supported capabilities as
reported by the device.

typedef struct {

 EFI_GUID Algorithm;

 UINT64 KeySize;

 UINT64 CryptoBlockSizeBitMask;
} EFI_BLOCK_IO_CRYPTO_CAPABILITY;

Algorithm GUID of the algorithm.

KeySize Specifies KeySize in bits used with this Algorithm.

CryptoBlockSizeBitMask
UEFI Forum, Inc. March 2019 562

UEFI Specification, Version 2.8 Protocols — Media Access
Specifies bitmask of block sizes supported by this algorithm. Bit j
being set means that 2^j bytes crypto block size is supported.

#define EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_XTS \

 {0x2f87ba6a,\

 0x5c04,0x4385,0xa7,0x80,0xf3,0xbf,0x78,0xa9,0x7b,0xec}

EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_XTS GUID represents Inline Cryptographic Interface
capability supporting AES XTS crypto algorithm as described in IEEE Std 1619-2007: IEEE Standard for
Cryptographic Protection of Data on Block-Oriented Storage Devices.

typedef struct {

 EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;

 UINT64 CryptoBlockNumber;

 UINT64 CryptoBlockByteSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_XTS;

EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_XTS structure is used as CryptoIvInput parameter to the
ReadExtended and WriteExtended methods for Inline Cryptographic Interface supporting and using AES
XTS algorithm with IV input as defined for AES XTS algorithm. IO operation (read or write) range should
consist of one or more blocks of CryptoBlockByteSize size. CryptoBlockNumber is used as the AES
XTS IV for the first crypto block and is incremented by one for each consecutive crypto block in the IO
operation range.

#define EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_CBC_MICROSOFT_BITLOCKER \

{0x689e4c62,\

 0x70bf,0x4cf3,0x88,0xbb,0x33,0xb3,0x18,0x26,0x86,0x70}

EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_CBC_MICROSOFT_BITLOCKER GUID represents Inline
Cryptographic Interface capability supporting AES CBC crypto algorithm in the non-diffuser mode as
described in following Microsoft white paper, section 4: See “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading “Inline Cryptographic Interface--Bit Locker Cipher”. It is important to
note that when excluding diffuser operations (A diffuser and B diffuser) described in the above document
one should also exclude derivation of sector key and XOR-ing it with plaintext as that operation is part of
the diffuser part of the algorithm and does not belong to the AES-CBC Microsoft BitLocker algorithm
being referred to here.

typedef struct {

 EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;

 UINT64 CryptoBlockByteOffset;

 UINT64 CryptoBlockByteSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_CBC_MICROSOFT_BITLOCKER;

EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_CBC_MICROSOFT_BITLOCKER structure is used to pass as
CryptoIvInput parameter to the ReadExtended and WriteExtended methods for Inline Cryptographic
Interface supporting and using AES CBC algorithm with IV input as defined for Microsoft BitLocker Drive
Encryption. IO operation (read or write) range should consist of one or more blocks of
CryptoBlockByteSize size. CryptoBlockByteOffset is used as the AES CBC Microsoft Bitlocker
algorithm IV for the first crypto block and is incremented by CryptoBlockByteSize for each
consecutive crypto block in the IO operation range.
UEFI Forum, Inc. March 2019 563

UEFI Specification, Version 2.8 Protocols — Media Access
typedef struct {

 UINT64 InputSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT;

EFI_BLOCK_IO_CRYPTO_IV_INPUT structure is used as a common header in CryptoIvInput
parameters passed to the ReadExtended and WriteExtended methods for Inline Cryptographic Interface.
Its purpose is to pass size of the entire CryptoIvInput parameter memory buffer to the Inline
Cryptographic Interface.

Further extensions of crypto algorithm support by Inline Cryptographic Interface should follow the same
pattern established above for the AES XTS and AES CBC Microsoft BitLocker algorithms. In particular each
added crypto algorithm should:

• Define its crypto algorithm GUID using following pattern:
#define EFI_BLOCK_IO_CRYPTO_ALGO_GUID_<algo-name> {<algo-guid>}

• Define its corresponding CryptoIvInput parameter structure and describe how it is
populated for each IO operation (read / write):

typedef struct {

 EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;

 <TBD> <TBD>;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_<algo-name>;

#define EFI_BLOCK_IO_CRYPTO_INDEX_ANY 0xFFFFFFFFFFFFFFFF

typedef struct {

 BOOLEAN Supported;

 UINT64 KeyCount;

 UINT64 CapabilityCount;

 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capabilities[1];
} EFI_BLOCK_IO_CRYPTO_CAPABILITIES;

Supported Is inline cryptographic capability supported on this device.

KeyCount Maximum number of keys that can be configured at the same time.

CapabilityCount Number of supported capabilities.

Capabilities Array of supported capabilities.

typedef struct {

 UINT64 Index;

 EFI_GUID KeyOwnerGuid;

 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capability;

 VOID *CryptoKey;
} EFI_BLOCK_IO_CRYPTO_CONFIGURATION_TABLE_ENTRY;
UEFI Forum, Inc. March 2019 564

UEFI Specification, Version 2.8 Protocols — Media Access
Index Configuration table index. A special Index
EFI_BLOCK_IO_CRYPTO_INDEX_ANY can be used to set any
available entry in the configuration table.

KeyOwnerGuid Identifies the owner of the configuration table entry. Entry can also
be used with the Nil value to clear key from the configuration table
index.

Capability A supported capability to be used. The CryptoBlockSizeBitMask
field of the structure should have only one bit set from the
supported mask.

CryptoKey Pointer to the key. The size of the key is defined by the KeySize
field of the capability specified by the Capability parameter.

typedef struct {

 UINT64 Index;

 EFI_GUID KeyOwnerGuid;

 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capability;
} EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY;

Index Configuration table index.

KeyOwnerGuid Identifies the current owner of the entry.

Capability The capability to be used. The CryptoBlockSizeBitMask field of
the structure has only one bit set from the supported mask.

Description

The EFI_BLOCK_IO_CRYPTO_PROTOCOL defines a UEFI protocol that can be used by UEFI drivers and
applications to perform block encryption on a storage device, such as UFS.

The EFI_BLOCK_IO_CRYPTO_PROTOCOL instance will be on the same handle as the device path of the
inline encryption device.

While this protocol is intended to abstract the encryption process for block device access, the protocol
user does not have to be aware of the specific underlying encryption hardware.

EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset()

Summary

Resets the block device hardware.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_RESET) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
UEFI Forum, Inc. March 2019 565

UEFI Specification, Version 2.8 Protocols — Media Access
);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

ExtendedVerification

Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware may take
an extended amount of time to verify the device is operating on reset. Otherwise the reset operation is to
occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities()

Summary

Get the capabilities of the underlying inline cryptographic interface.

Prototype

typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_GET_CAPABILITIES) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 OUT EFI_BLOCK_IO_CRYPTO_CAPABILITIES *Capabilities
);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

Capabilities Pointer to the EFI_BLOCK_IO_CRYPTO_CAPABILITIES structure.

Description

The GetCapabilities() function determines whether pre-OS controllable inline crypto is supported by the
system for the current disk and, if so, returns the capabilities of the crypto engine.

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and
could not be reset.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 566

UEFI Specification, Version 2.8 Protocols — Media Access
The caller is responsible for providing the Capabilities structure with a sufficient number of entries. If the
structure is too small, the EFI_BUFFER_TOO_SMALL error code is returned and the CapabilityCount field
contains the number of entries needed to contain the capabilities.

Status Codes Returned

EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration()

Summary

Set the configuration of the underlying inline cryptographic interface.

Prototype

typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_SET_CONFIGURATION) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 IN UINT64 ConfigurationCount,
 IN EFI_BLOCK_IO_CRYPTO_CONFIGURATION_TABLE_ENTRY

*ConfigurationTable,
 OUT EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY

*ResultingTable OPTIONAL
);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

ConfigurationCountNumber of entries being configured with this call.

ConfigurationTable Pointer to a table used to populate the configuration table.

ResultingTable Optional pointer to a table that receives the newly configured
entries.

Description

The SetConfiguration() function allows the user to set the current configuration of the inline
cryptographic interface and should be called before attempting any crypto operations.

This configures the configuration table entries with algorithms, key sizes and keys. Each configured entry
can later be referred to by index at the time of storage transaction.

The configuration table index will refer to the combination of KeyOwnerGuid, Algorithm, and CryptoKey.

EFI_SUCCESS The ICI is ready for use.

EFI_BUFFER_TOO_SMALL The Capabilities structure was too small. The number of entries needed
is returned in the CapabilityCount field of the structure.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.
EFI_INVALID_PARAMETER Capabilities is NULL
UEFI Forum, Inc. March 2019 567

UEFI Specification, Version 2.8 Protocols — Media Access
KeyOwnerGuid identifies the component taking ownership of the entry. It helps components to identify
their own entries, cooperate with other owner components, and avoid conflicts. This Guid identifier is
there to help coordination between cooperating components and not a security or synchronization
feature. The Nil GUID can be used by a component to release use of entry owned. It is also used to identify
potentially available entries (see GetConfiguration).

CryptoKey specifies algorithm-specific key material to use within parameters of selected crypto capability.

This function is called infrequently – typically once, on device start, before IO starts. It
can be called at later times in cases the number of keys used on the drive is higher
than what can be configured at a time or a new key has to be added.

Components setting or changing an entry or entries for a given index or indices must
ensure that IO referencing affected indices is temporarily blocked (run-down) at the
time of change.

Indices parameters in each parameter table entry allow to set only a portion of the
available table entries in the crypto module anywhere from single entry to entire table
supported.

If corresponding table entry or entries being set are already in use by another owner the
call should be failed and none of the entries should be modified. The interface
implementation must enforce atomicity of this operation (should either succeed fully or
fail completely without modifying state). Note that components using GetConfiguration
command to discover available entries should be prepared that by the time of calling
SetConfiguration the previously available entry may have become occupied. Such
components should be prepared to re-try the sequence of operations. Alternatively
EFI_BLOCK_IO_CRYPTO_INDEX_ANY can be used to have the implementation discover
and allocate available, if any, indices atomically.

An optional ResultingTable pointer can be provided by the caller to receive the newly
configured entries. The array provided by the caller must have at least
ConfigurationCount of entries.

Status Codes Returned

EFI_SUCCESS The ICI is ready for use.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER ConfigurationTable is NULL

EFI_INVALID_PARAMETER ConfigurationCount is 0

EFI_OUT_OF_RESOURCES Could not find the requested number of available entries in the
configuration table.
UEFI Forum, Inc. March 2019 568

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()

Summary

Get the configuration of the underlying inline cryptographic interface.

Prototype

 typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_GET_CONFIGURATION) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 IN UINT64 StartIndex,

 IN UINT64 ConfigurationCount,

 IN EFI_GUID *KeyOwnerGuid OPTIONAL,

 OUT EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY

 *ConfigurationTable

);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

StartIndex Configuration table index at which to start the configuration query.

ConfigurationCountNumber of entries to return in the response table.

KeyOwnerGuid Optional parameter to filter response down to entries with a given
owner. A pointer to the Nil value can be used to return available
entries. Set to NULL when no owner filtering is required.

ConfigurationTableTable of configured configuration table entries (with no CryptoKey
returned): configuration table index, KeyOwnerGuid, Capability.
Should have sufficient space to store up to ConfigurationCount
entries.

Description

The GetConfiguration() function allows the user to get the configuration of the inline cryptographic
interface.

Retrieves, entirely or partially, the currently configured key table. Note that the keys themselves are not
retrieved, but rather just indices, owner GUIDs and capabilities.

If fewer entries than specified by ConfigurationCount are returned, the Index field of the unused
entries is set to EFI_BLOCK_IO_CRYPTO_INDEX_ANY.
UEFI Forum, Inc. March 2019 569

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended()

Summary

Reads the requested number of blocks from the device and optionally decrypts them inline.

Prototype

typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_READ_EXTENDED) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token,

 IN UINT64 BufferSize,

 OUT VOID *Buffer,

 IN UINT64 *Index OPTIONAL,

 IN VOID *CryptoIvInput OPTIONAL

);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related Definitions”
below.

BufferSize The size of the Buffer in bytes. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Index A pointer to the configuration table index. This is optional.

CryptoIvInput A pointer to a buffer that contains additional cryptographic
parameters as required by the capability referenced by the
configuration table index, such as cryptographic initialization vector.

EFI_SUCCESS The ICI is ready for use.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER Configuration table is NULL

EFI_INVALID_PARAMETER StartIndex is out of bounds
UEFI Forum, Inc. March 2019 570

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The ReadExtended() function allows the caller to perform a storage device read operation. The
function reads the requested number of blocks from the device and then if Index is specified decrypts
them inline. All the blocks are read and decrypted (if decryption requested), or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the
current media in the device, the function returns EFI_MEDIA_CHANGED.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA, or EFI_MEDIA_CHANGED is returned and non-blocking I/O is
being used, the Event associated with this request will not be signaled.

In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will also
specify a configuration table Index and CryptoIvInput when data has to be decrypted inline by the
controller after being read from the storage device. If an Index parameter is not specified, no decryption
is performed.

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO_CRYPTO_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non- blocking I/O is
performed, and Event will be signaled when the read request is
completed and data was decrypted (when Index was specified).

TransactionStatus Defines whether or not the signaled event encountered an

error.
UEFI Forum, Inc. March 2019 571

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended()

Summary

Optionally encrypts a specified number of blocks inline and then writes to the device.

Prototype
typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_WRITE_EXTENDED) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 IN UINT32 MediaId,

 IN EFI_LBA LBA,

 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token,

 IN UINT64 BufferSize,

 IN VOID *Buffer,

 IN UINT64 *Index, OPTIONAL

 IN VOID *CryptoIvInput OPTIONAL

);

Parameters

This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related Definitions”
section for ReadExtended() function above.

EFI_SUCCESS The read request was queued if Token-> Event is not NULL. The data
was read correctly from the device if the Token-> Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation and/or decryption operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the
intrinsic block size of the device.

EFI_INVALID_PARAMETER This is NULL, or the read request contains LBAs that are
not valid, or the buffer is not on proper alignment

EFI_INVALID_PARAMETER CryptoIvInput is incorrect.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 572

UEFI Specification, Version 2.8 Protocols — Media Access
BufferSize The size of the Buffer in bytes. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the source buffer for the data.

Index A pointer to the configuration table index. This is optional.

CryptoIvInput A pointer to a buffer that contains additional cryptographic

parameters as required by the capability referenced by
the configuration table index, such as cryptographic
initialization vector.

Description

The WriteExtended() function allows the caller to perform a storage device write operation. The
function encrypts the requested number of blocks inline if Index is specified and then writes them to the
device. All the blocks are encrypted (if encryption requested) and written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for
the current media in the device, the function returns EFI_MEDIA_CHANGED.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or

EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event

associated with this request will not be signaled.

In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will also
specify a configuration table Index and a CryptoIvInput when data has to be encrypted inline by the
controller before being written to the storage device. If no Index parameter is specified, no encryption is
performed.
UEFI Forum, Inc. March 2019 573

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks()

Summary
Flushes all modified data to a physical block device.

Prototype
typedef EFI_STATUS

(EFIAPI *EFI_BLOCK_IO_CRYPTO_FLUSH) (

 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,

 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token

);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related Definitions”
section for ReadExtended() function above.

Description

The FlushBlocks() function flushes all modified data to the physical block device. Any modified data
that has to be encrypted must have been already encrypted as a part of WriteExtended() operation –
inline crypto operation cannot be a part of flush operation.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have cached, and

EFI_SUCCESS The request to encrypt (optionally) and write was queued if Event is
not NULL. The data was encrypted (optionally) and written correctly
to the device if the Event is NULL.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to encrypt blocks or to
perform the write operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the
intrinsic block size of the device.

EFI_INVALID_PARAMETER This is NULL, or the write request contains LBAs that
are not valid, or the buffer is not on proper alignment.

EFI_INVALID_PARAMETER CryptoIvInput is incorrect.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 574

UEFI Specification, Version 2.8 Protocols — Media Access
cached data the device may have cached. A flush may cause a read request following the flush to force a
device access.

 If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is
returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.

Status Codes Returned

13.12 Erase Block Protocol

EFI_ERASE_BLOCK_PROTOCOL

Summary

This protocol provides the ability for a device to expose erase functionality. This optional protocol is
installed on the same handle as the EFI_BLOCK_IO_PROTOCOL or EFI_BLOCK_IO2_PROTOCOL.

GUID

#define EFI_ERASE_BLOCK_PROTOCOL_GUID \

{0x95A9A93E, 0x A86E, 0x4926, \

{0xaa, 0xef, 0x99, 0x18, 0xe7, 0x72, 0xd9, 0x87}}

Revision Number

#define EFI_ERASE_BLOCK_PROTOCOL_REVISION ((2<<16) | (60))

Protocol Interface Structure

typedef struct _EFI_ERASE_BLOCK_PROTOCOL {

 UINT64 Revision;
 UINT32 EraseLengthGranularity; 
 EFI_BLOCK_ERASE EraseBlocks; 
} EFI_ERASE_BLOCK_PROTOCOL;

Parameters

Revision The revision to which the EFI_ERASE_BLOCK_PROTOCOL adheres.
All future revisions must be backwards compatible. If a future
version is not backwards compatible, it is not the same GUID.

EFI_SUCCESS The flush request was queued if Event is not NULL. All
outstanding data was written correctly to the device if
the Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 575

UEFI Specification, Version 2.8 Protocols — Media Access
EraseLengthGranularity

Returns the erase length granularity as a number of logical blocks. A
value of 1 means the erase granularity is one logical block.

EraseBlocks Erase the requested number of blocks from the device. See the
EraseBlocks() function description.

EFI_ERASE_BLOCK_PROTOCOL.EraseBlocks()

Summary

Erase a specified number of device blocks.

Prototype

Typedef
EFI_STATUS

(EFIAPI *EFI_BLOCK_ERASE)

IN EFI_BLOCK_IO_PROTOCOL *This,

IN UINT32 MediaId,

IN EFI_LBA LBA,

IN OUT EFI_ERASE_BLOCK_TOKEN *Token,

IN UINTN Size

);

Parameters

This Indicates a pointer to the calling context. Type is defined in the
EFI_ERASE_BLOCK_PROTOCOL description.

MediaId The media ID that the erase request is for.

LBA The starting logical block address to be erased. The caller is
responsible for erasing only legitimate locations.

Type EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_ERASE_BLOCK_TOKEN is defined in "Related Definitions"
below.

Size The size in bytes to be erased. This must be a multiple of the physical
block size of the device.

Description

The EraseBlocks() function erases the requested number of device blocks. Upon the successful
execution of EraseBlocks() with an EFI_SUCCESS return code, any subsequent reads of the same
LBA range would return an initialized/formatted value.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for
the current media in the device, the function returns EFI_MEDIA_CHANGED. The function must return
EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA or Size are invalid so the caller can probe for
changes in media state.
UEFI Forum, Inc. March 2019 576

UEFI Specification, Version 2.8 Protocols — Media Access
It is the intention of the EraseBlocks() operation to be at least as performant as writing zeroes to
each of the specified LBA locations while ensuring the equivalent security.

On some devices, the granularity of the erasable units is defined by EraseLengthGranularity which
is the smallest number of consecutive blocks which can be addressed for erase. The size of the
EraseLengthGranularity is device specific and can be obtained from EFI_ERASE_BLOCK_MEDIA
structure. The fields of EFI_ERASE_MEDIA are not the same as EFI_BLOCK_IO_MEDIA, so look at the
EFI_BLOCK_IO_PROTOCOL and/or EFI_BLOCK_IO2_PROTOCOL on the handle for the complete list of
fields, if needed. For optimal performance, the starting LBA to be erased shall be
EraseLengthGranularity aligned and the Size shall be an integer multiple of an
EraseLengthGranularity.

Related Definitions

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS TransactionStatus;

} EFI_ERASE_BLOCK_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non-blocking I/O is supported, then non-blocking I/O is
performed, and Event will be signaled when the erase request is
completed.

TransactionStatus Defines whether the signaled event encountered an error.

Status Codes Returned

13.13 ATA Pass Thru Protocol

EFI_ATA_PASS_THRU_PROTOCOL
This section provides a detailed description of the EFI_ATA_PASS_THRU_PROTOCOL.

Summary

Provides services that allow ATA commands to be sent to ATA Devices attached to an ATA controller.
Packet-based commands would be sent to ATAPI devices only through the Extended SCSI Pass Thru
Protocol. While the ATA_PASS_THRU interface would expose an interface to the underlying ATA devices
on an ATA controller, EXT_SCSI_PASS_THRU is responsible for exposing a packet-based command
interface for the ATAPI devices on the same ATA controller.

EFI_SUCCESS The erase request was queued if Event is not NULL. The data was erased correctly

to the device if the Event is NULL.to the device.

EFI_WRITE_PROTECTED The device cannot be erased due to write protection.
EFI_DEVICE_ERROR The device reported an error while attempting to perform the erase operation.

EFI_INVALID_PARAMETER The erase request contains LBAs that are not valid.
EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.
UEFI Forum, Inc. March 2019 577

UEFI Specification, Version 2.8 Protocols — Media Access
GUID

#define EFI_ATA_PASS_THRU_PROTOCOL_GUID \

 {0x1d3de7f0,0x807,0x424f,\

 {0xaa,0x69,0x11,0xa5,0x4e,0x19,0xa4,0x6f}}

Protocol Interface Structure

typedef struct _EFI_ATA_PASS_THRU_PROTOCOL {

 EFI_ATA_PASS_THRU_MODE *Mode;

 EFI_ATA_PASS_THRU_PASSTHRU PassThru;

 EFI_ATA_PASS_THRU_GET_NEXT_PORT GetNextPort;

 EFI_ATA_PASS_THRU_GET_NEXT_DEVICE GetNextDevice;

 EFI_ATA_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;

 EFI_ATA_PASS_THRU_GET_DEVICE GetDevice;

 EFI_ATA_PASS_THRU_RESET_PORT ResetPort;

 EFI_ATA_PASS_THRU_RESET_DEVICE ResetDevice;
} EFI_ATA_PASS_THRU_PROTOCOL;

Parameters

Mode

A pointer to the EFI_ATA_PASS_THRU_MODE data for this ATA controller.
EFI_ATA_PASS_THRU_MODE is defined in “Related Definitions” below.

PassThru

Sends an ATA command to an ATA device that is connected to the ATA controller.
See the PassThru() function description.

GetNextPort

Retrieves the list of legal ports for ATA devices on an ATA controller. See the
GetNextPort() function description.

GetNextDevice

Retrieves the list of legal ATA devices on a specific port of an ATA controller. See the
GetNextDevice() function description.

BuildDevicePath

Allocates and builds a device path node for an ATA Device on an ATA controller. See
the BuildDevicePath() function description.

GetDevice

Translates a device path node to a port and port multiplier port. See the
GetDevice() function description.

ResetPort

Resets an ATA port or channel (PATA). This operation resets all the ATA devices
connected to the ATA port or channel. See the ResetPort() function description.
UEFI Forum, Inc. March 2019 578

UEFI Specification, Version 2.8 Protocols — Media Access
ResetDevice

Resets an ATA device that is connected to the ATA controller. See the
ResetDevice() function description.

Note: The following data values in the EFI_ATA_PASS_THRU_MODE interface are read-only.

Attributes

Additional information on the attributes of the ATA controller. See “Related
Definitions” below for the list of possible attributes.

IoAlign

Supplies the alignment requirement for any buffer used in a data transfer. IoAlign
values of 0 and 1 mean that the buffer can be placed anywhere in memory.
Otherwise, IoAlign must be a power of 2, and the requirement is that the start
address of a buffer must be evenly divisible by IoAlign with no remainder.

Related Definitions

typedef struct {

 UINT32 Attributes;

 UINT32 IoAlign;
} EFI_ATA_PASS_THRU_MODE;

#define EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001

#define EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002

#define EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface is for physical
devices on the ATA controller.

EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface is for logical
devices on the ATA controller.

EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface supports non
blocking I/O. Every EFI_ATA_PASS_THRU_PROTOCOL must support blocking I/O.
The support of non-blocking I/O is optional.
UEFI Forum, Inc. March 2019 579

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The EFI_ATA_PASS_THRU_PROTOCOL provides information about an ATA controller and the ability to
send ATA Command Blocks to any ATA device attached to that ATA controller. To send ATAPI command
blocks to ATAPI device attached to that ATA controller, use the EXT_SCSI_PASS_THRU_PROTOCOL
interface.

The ATAPI devices support a small set of the non-packet-based ATA commands. The
EFI_ATA_PASS_THRU_PROTOCOL may be used to send such ATA commands to ATAPI devices.

The printable name for the controller can be provided through the EFI_COMPONENT_NAME2_PROTOCOL
for multiple languages.

The Attributes field of the Mode member of the EFI_ATA_PASS_THRU_PROTOCOL interface tells if
the interface is for physical ATA devices or logical ATA devices. Drivers for non-RAID ATA controllers will
set both the EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical devices and logical devices will produce two
EFI_ATA_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to access the physical
devices attached to the RAID controller, and the other can be used to access the logical devices attached
to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical devices will produce one
EFI_ATA_PASS_THROUGH_PROTOCOL interface with just the EFI_ATA_PASS_THRU_LOGICAL bit set.
The interface for logical devices can also be used by a file system driver to mount the RAID volumes. An
EFI_ATA_PASS_THRU_PROTOCOL with neither EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO bit. All
EFI_ATA_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is set, then the
interface supports both blocking I/O and non-blocking I/O.

Each EFI_ATA_PASS_THRU_PROTOCOL instance must have an associated device path. Typically this will
have an ACPI device path node and a PCI device path node, although variation will exist.

Additional information about the ATA controller can be obtained from protocols attached to the same
handle as the EFI_ATA_PASS_THRU_PROTOCOL, or one of its parent handles. This would include the
device I/O abstraction used to access the internal registers and functions of the ATA controller.
UEFI Forum, Inc. March 2019 580

UEFI Specification, Version 2.8 Protocols — Media Access
This protocol may also be used for PATA devices (or devices in a PATA-compatible mode). PATA devices
are mapped to ports and port multiplier ports using the following table:

Table 116. PATA device mapping to ports and port multiplier ports

EFI_ATA_PASS_THRU_PROTOCOL.PassThru()

Summary

Sends an ATA command to an ATA device that is attached to the ATA controller. This function supports
both blocking I/O and non-blocking I/O. The blocking I/O functionality is required, and the non-blocking I/
O functionality is optional.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_PASSTHRU) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN UINT16 Port,

 IN UINT16 PortMultiplierPort,

 IN OUT EFI_ATA_PASS_THRU_COMMAND_PACKET *Packet,

 IN EFI_EVENT Event OPTIONAL

);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number of the ATA device to send the command.

PortMultiplierPort

The port multiplier port number of the ATA device to send the command. If there is
no port multiplier, then specify 0xFFFF.

Packet

A pointer to the ATA command to send to the ATA device specified by Port and
PortMultiplierPort. See “Related Definitions” below for a description of
EFI_ATA_PASS_THRU_COMMAND_PACKET.

PATA Device Connection Emulated Port Number Emulated Port Multiplier Port Number

Primary Master 0 0

Primary Slave 0 1

Secondary Master 1 0

Secondary Slave 1 1
UEFI Forum, Inc. March 2019 581

UEFI Specification, Version 2.8 Protocols — Media Access
Event

If non-blocking I/O is not supported then Event is ignored, and blocking I/O is
performed. If Event is NULL, then blocking I/O is performed. If Event is not NULL
and non blocking I/O is supported, then non-blocking I/O is performed, and Event
will be signaled when the ATA command completes.

Related Definitions

typedef struct {

 EFI_ATA_STATUS_BLOCK *Asb;

 EFI_ATA_COMMAND_BLOCK *Acb;

 UINT64 Timeout;

 VOID *InDataBuffer;

 VOID *OutDataBuffer;

 UINT32 InTransferLength;

 UINT32 OutTransferLength;

 EFI_ATA_PASS_THRU_CMD_PROTOCOL Protocol;

 EFI_ATA_PASS_THRU_LENGTH Length;

} EFI_ATA_PASS_THRU_COMMAND_PACKET;

Timeout

The timeout, in 100 ns units, to use for the execution of this ATA command. A
Timeout value of 0 means that this function will wait indefinitely for the ATA
command to execute. If Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the ATA command is greater than
Timeout.

InDataBuffer

A pointer to the data buffer to transfer between the ATA controller and the ATA
device for read and bidirectional commands. For all write and non data commands
where InTransferLength is 0 this field is optional and may be NULL. If this field is
not NULL, then it must be aligned on the boundary specified by the IoAlign field in
the EFI_ATA_PASS_THRU_MODE structure.

OutDataBuffer

A pointer to the data buffer to transfer between the ATA controller and the ATA
device for write or bidirectional commands. For all read and non data commands
where OutTransferLength is 0 this field is optional and may be NULL. If this field
is not NULL, then it must be aligned on the boundary specified by the IoAlign field
in the EFI_ATA_PASS_THRU_MODE structure.

InTransferLength

On input, the size, in bytes, of InDataBuffer. On output, the number of bytes
transferred between the ATA controller and the ATA device. If InTransferLength
is larger than the ATA controller can handle, no data will be transferred,
InTransferLength will be updated to contain the number of bytes that the ATA
controller is able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.
UEFI Forum, Inc. March 2019 582

UEFI Specification, Version 2.8 Protocols — Media Access
OutTransferLength

On Input, the size, in bytes of OutDataBuffer. On Output, the Number of bytes
transferred between ATA Controller and the ATA device. If OutTransferLength is
larger than the ATA controller can handle, no data will be transferred,
OutTransferLength will be updated to contain the number of bytes that the ATA
controller is able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

Asb

A pointer to the sense data that was generated by the execution of the ATA
command. It must be aligned to the boundary specified in the IoAlign field in the
EFI_ATA_PASS_THRU_MODE structure.

Acb

A pointer to buffer that contains the Command Data Block to send to the ATA device
specified by Port and PortMultiplierPort.

Protocol

Specifies the protocol used when the ATA device executes the command. Type
EFI_ATA_PASS_THRU_CMD_PROTOCOL is defined below.

Length

Specifies the way in which the ATA command length is encoded. Type
EFI_ATA_PASS_THRU_LENGTH is defined below.
UEFI Forum, Inc. March 2019 583

UEFI Specification, Version 2.8 Protocols — Media Access
typedef struct _EFI_ATA_COMMAND_BLOCK {

 UINT8 Reserved1[2];

 UINT8 AtaCommand;

 UINT8 AtaFeatures;

 UINT8 AtaSectorNumber;

 UINT8 AtaCylinderLow;

 UINT8 AtaCylinderHigh;

 UINT8 AtaDeviceHead;

 UINT8 AtaSectorNumberExp;

 UINT8 AtaCylinderLowExp;

 UINT8 AtaCylinderHighExp;

 UINT8 AtaFeaturesExp;

 UINT8 AtaSectorCount;

 UINT8 AtaSectorCountExp;

 UINT8 Reserved2[6];
} EFI_ATA_COMMAND_BLOCK;

typedef struct _EFI_ATA_STATUS_BLOCK {

 UINT8 Reserved1[2];

 UINT8 AtaStatus;

 UINT8 AtaError;

 UINT8 AtaSectorNumber;

 UINT8 AtaCylinderLow;

 UINT8 AtaCylinderHigh;

 UINT8 AtaDeviceHead;

 UINT8 AtaSectorNumberExp;

 UINT8 AtaCylinderLowExp;

 UINT8 AtaCylinderHighExp;

 UINT8 Reserved2;

 UINT8 AtaSectorCount;

 UINT8 AtaSectorCountExp;

 UINT8 Reserved3[6];
} EFI_ATA_STATUS_BLOCK;

typedef UINT8 EFI_ATA_PASS_THRU_CMD_PROTOCOL;

#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_HARDWARE_RESET 0x00

#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_SOFTWARE_RESET 0x01

#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_NON_DATA 0x02

#define EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_IN 0x04

#define EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_OUT 0x05

#define EFI_ATA_PASS_THRU_PROTOCOL_DMA 0x06

#define EFI_ATA_PASS_THRU_PROTOCOL_DMA_QUEUED 0x07

#define EFI_ATA_PASS_THRU_PROTOCOL_DEVICE_DIAGNOSTIC 0x08

#define EFI_ATA_PASS_THRU_PROTOCOL_DEVICE_RESET 0x09
UEFI Forum, Inc. March 2019 584

UEFI Specification, Version 2.8 Protocols — Media Access
#define EFI_ATA_PASS_THRU_PROTOCOL_UDMA_DATA_IN 0x0A

#define EFI_ATA_PASS_THRU_PROTOCOL_UDMA_DATA_OUT 0x0B

#define EFI_ATA_PASS_THRU_PROTOCOL_FPDMA 0x0C

#define EFI_ATA_PASS_THRU_PROTOCOL_RETURN_RESPONSE 0xFF

typedef UINT8 EFI_ATA_PASS_THRU_LENGTH;

#define EFI_ATA_PASS_THRU_LENGTH_BYTES 0x80

#define EFI_ATA_PASS_THRU_LENGTH_MASK 0x70

#define EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER 0x00

#define EFI_ATA_PASS_THRU_LENGTH_FEATURES 0x10

#define EFI_ATA_PASS_THRU_LENGTH_SECTOR_COUNT 0x20

#define EFI_ATA_PASS_THRU_LENGTH_TPSIU 0x30

#define EFI_ATA_PASS_THRU_LENGTH_COUNT 0x0F

Description

The PassThru() function sends the ATA command specified by Packet to the ATA device specified by
Port and PortMultiplierPort. If the driver supports non-blocking I/O and Event is not NULL, then
the driver will return immediately after the command is sent to the selected device, and will later signal
Event when the command has completed.

If the driver supports non-blocking I/O and Event is NULL, then the driver will send the command to the
selected device and block until it is complete. If the driver does not support non-blocking I/O, then the
Event parameter is ignored, and the driver will send the command to the selected device and block until
it is complete.

If Packet is successfully sent to the ATA device, then EFI_SUCCESS is returned. If Packet cannot be
sent because there are too many packets already queued up, then EFI_NOT_READY is returned. The
caller may retry Packet at a later time. If a device error occurs while sending the Packet, then
EFI_DEVICE_ERROR is returned. If a timeout occurs during the execution of Packet, then
EFI_TIMEOUT is returned.

If Port or PortMultiplierPort are not in a valid range for the ATA controller, then
EFI_INVALID_PARAMETER is returned. If InDataBuffer, OutDataBuffer or Asb do not meet the
alignment requirement specified by the IoAlign field of the EFI_ATA_PASS_THRU_MODE structure,
then EFI_INVALID_PARAMETER is returned. If any of the other fields of Packet are invalid, then
EFI_INVALID_PARAMETER is returned.

If the data buffer described by InDataBuffer and InTransferLength is too big to be transferred in a
single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The number of
bytes that can be transferred in a single command are returned in InTransferLength. If the data
buffer described by OutDataBuffer and OutTransferLength is too big to be transferred in a single
command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The number of bytes
that can be transferred in a single command are returned in OutTransferLength.
UEFI Forum, Inc. March 2019 585

UEFI Specification, Version 2.8 Protocols — Media Access
If the command described in Packet is not supported by the host adapter, then EFI_UNSUPPORTED is
returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned, then
the caller must examine Asb.

If non-blocking I/O is being used, then the status fields in Packet will not be valid until the Event
associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then Packet was
never sent, so the status fields in Packet are not valid. If non-blocking I/O is being used, the Event
associated with Packet will not be signaled.

This function will determine if data transfer is necessary based on the Acb->Protocol and Acb-
>Length fields. The Acb->AtaCommand field is ignored except to copy it into the ATA Command
register. The following table describes special programming considerations based on the protocol
specified by Acb->Protocol.

Table 117. Special programming considerations

The ATA host and the ATA device should already be configured for the PIO, DMA, and UDMA transfer
rates that are supported by the ATA controller and the ATA device. The results of changing the device’s
timings using this function are undefined.

If Packet->Length is not set to EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER, then if
EFI_ATA_PASS_THRU_LENGTH_BYTES is set in Packet->Length, then Packet-
>InTransferLength and Packet->OutTransferLength are interpreted as bytes.

If Packet->Length is not set to EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER, then if
EFI_ATA_PASS_THRU_LENGTH_BYTES is clear in Packet->Length, then Packet-
>InTransferLength and Packet->OutTransferLength are interpreted as blocks.

If Packet->Length is set to EFI_ATA_PASS_THRU_LENGTH_SECTOR_COUNT, then the transfer
length will be programmed into Acb->AtaSectorCount.

Protocol Value Description

EFI_ATA_PASS_THRU_PROTOCOL_ATA_HARD-
WARE_RESET

For PATA devices, then RST- is asserted.

For SATA devices, then COMRESET will

be issued.

EFI_ATA_PASS_THRU_PROTOCOL_ATA_SOFTWA-
RE_RESET

A software reset will be issued to the ATA
device.

EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_IN -
EFI_ATA_PASS_THRU_PROTOCOL_FPDMA

The command is sent to the ATA device. If
the value is inappropriate for the

command specified by Acb-
>AtaCommand, the results are

undefined.

EFI_ATA_PASS_THRU_RETURN_RESPONSE This command will only return the
contents of the ATA status block.
UEFI Forum, Inc. March 2019 586

UEFI Specification, Version 2.8 Protocols — Media Access
If Packet->Length is set to EFI_ATA_PASS_THRU_LENGTH_TPSIU, then the transfer length will be
programmed into the TPSIU.

• For PIO data transfers, the number of sectors to transfer is 2
 (Packet->Length &

EFI_ATA_PASS_THRU_LENGTH_COUNT).

For all commands, the contents of the ATA status block will be returned in Asb.

Status Codes Returned

EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()

Summary

Used to retrieve the list of legal port numbers for ATA devices on an ATA controller. These can either be
the list of ports where ATA devices are actually present or the list of legal port numbers for the ATA
controller. Regardless, the caller of this function must probe the port number returned to see if an ATA
device is actually present at that location on the ATA controller.

EFI_SUCCESS The ATA command was sent by the host. For bi-directional commands,
InTransferLength bytes were transferred from InDataBuffer. For write and
bi-directional commands, OutTransferLength bytes were transferred by
OutDataBuffer. See Asb for additional status information.

EFI_BAD_BUFFER_SIZE The ATA command was not executed. The number of bytes that could be
transferred is returned in InTransferLength. For write and bi-directional
commands, OutTransferLength bytes were transferred by OutDataBuffer.
See Asb for additional status information.

EFI_NOT_READY The ATA command could not be sent because there are too many ATA commands
already queued. The caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the ATA command. See Asb for
additional status information.

EFI_INVALID_PARAMETER Port, PortMultiplierPort, or the contents of Acb are invalid. The ATA
command was not sent, so no additional status information is available.

EFI_UNSUPPORTED The command described by the ATA command is not supported by the host
adapter. The ATA command was not sent, so no additional status information is
available.

EFI_TIMEOUT A timeout occurred while waiting for the ATA command to execute. See Asb for
additional status information.
UEFI Forum, Inc. March 2019 587

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_GET_NEXT_PORT) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN OUT UINT16 *Port
);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

On input, a pointer to the port number on the ATA controller. On output, a pointer to
the next port number on the ATA controller. An input value of 0xFFFF retrieves the
first port number on the ATA controller.

Description

The GetNextPort() function retrieves the port number on an ATA controller. If on input Port is
0xFFFF, then the port number of the first port on the ATA controller is returned in Port and
EFI_SUCCESS is returned.

If Port is the port number that was returned on the previous call to GetNextPort(), then the port
number of the next port on the ATA controller is returned in Port, and EFI_SUCCESS is returned.

If Port is not 0xFFFF and Port was not returned on the previous call to GetNextPort(), then
EFI_INVALID_PARAMETER is returned.

If Port is the port number of the last port on the ATA controller, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()

Summary

Used to retrieve the list of legal port multiplier port numbers for ATA devices on a port of an ATA
controller. These can either be the list of port multiplier ports where ATA devices are actually present on
port or the list of legal port multiplier ports on that port. Regardless, the caller of this function must
probe the port number and port multiplier port number returned to see if an ATA device is actually
present.

EFI_SUCCESS The next port number on the ATA controller was returned in Port.

EFI_NOT_FOUND There are no more ports on this ATA controller.

EFI_INVALID_PARAMETER Port is not 0xFFFF and Port was not returned on a previous call

to GetNextPort().
UEFI Forum, Inc. March 2019 588

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_GET_NEXT_DEVICE) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN UINT16 Port,

 IN OUT UINT16 *PortMultiplierPort
);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number present on the ATA controller.

PortMultiplierPort

On input, a pointer to the port multiplier port number of an ATA device present on
the ATA controller. If on input a PortMultiplierPort of 0xFFFF is specified,
then the port multiplier port number of the first ATA device is returned. On output, a
pointer to the port multiplier port number of the next ATA device present on an ATA
controller.

Description

The GetNextDevice() function retrieves the port multiplier port number of an ATA device present on
a port of an ATA controller.

If PortMultiplierPort points to a port multiplier port number value that was returned on a previous
call to GetNextDevice(), then the port multiplier port number of the next ATA device on the port of
the ATA controller is returned in PortMultiplierPort, and EFI_SUCCESS is returned.

If PortMultiplierPort points to 0xFFFF, then the port multiplier port number of the first ATA device
on port of the ATA controller is returned in PortMultiplierPort and EFI_SUCCESS is returned.

If PortMultiplierPort is not 0xFFFF and the value pointed to by PortMultiplierPort was not
returned on a previous call to GetNextDevice(), then EFI_INVALID_PARAMETER is returned.

If PortMultiplierPort is the port multiplier port number of the last ATA device on the port of the
ATA controller, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The port multiplier port number of the next ATA device on the port of the ATA
controller was returned in PortMultiplierPort.

EFI_NOT_FOUND There are no more ATA devices on this port of the ATA controller.

EFI_INVALID_PARAMETER PortMultiplierPort is not 0xFFFF, and PortMultiplierPort was not

returned on a previous call to GetNextDevice().
UEFI Forum, Inc. March 2019 589

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for an ATA device on an ATA controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_BUILD_DEVICE_PATH) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN UINT16 Port,

 IN UINT16 PortMultiplierPort,

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

Port specifies the port number of the ATA device for which a device path node is to
be allocated and built.

PortMultiplierPort

The port multiplier port number of the ATA device for which a device path node is to
be allocated and built. If there is no port multiplier, then specify 0xFFFF.

DevicePath

A pointer to a single device path node that describes the ATA device specified by
Port and PortMultiplierPort. This function is responsible for allocating the
buffer DevicePath with the boot service AllocatePool(). It is the caller’s
responsibility to free DevicePath when the caller is finished with DevicePath.

Description

The BuildDevicePath() function allocates and builds a single device node for the ATA device
specified by Port and PortMultiplierPort. If the ATA device specified by Port and
PortMultiplierPort is not present on the ATA controller, then EFI_NOT_FOUND is returned. If
DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there are not enough resources
to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned.

Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of
DevicePath are initialized to describe the ATA device specified by Port and PortMultiplierPort,
and EFI_SUCCESS is returned.
UEFI Forum, Inc. March 2019 590

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_ATA_PASS_THRU_PROTOCOL.GetDevice()

Summary

Used to translate a device path node to a port number and port multiplier port number.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_GET_DEVICE) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 OUT UINT16 *Port,

 OUT UINT16 *PortMultiplierPort

);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

DevicePath

A pointer to the device path node that describes an ATA device on the ATA
controller.

Port

On return, points to the port number of an ATA device on the ATA controller.

PortMultiplierPort

On return, points to the port multiplier port number of an ATA device on the ATA
controller.

Description

The GetDevice() function determines the port and port multiplier port number associated with the
ATA device described by DevicePath. If DevicePath is a device path node type that the ATA Pass Thru
driver supports, then the ATA Pass Thru driver will attempt to translate the contents DevicePath into a
port number and port multiplier port number.

If this translation is successful, then that port number and port multiplier port number are returned in
Port and PortMultiplierPort, and EFI_SUCCESS is returned.

EFI_SUCCESS The device path node that describes the ATA device specified by Port and
PortMultiplierPort was allocated and returned in DevicePath.

EFI_NOT_FOUND The ATA device specified by Port and PortMultiplierPort does not exist
on the ATA controller.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.
UEFI Forum, Inc. March 2019 591

UEFI Specification, Version 2.8 Protocols — Media Access
If DevicePath, Port, or PortMultiplierPort are NULL, then EFI_INVALID_PARAMETER is
returned.

If DevicePath is not a device path node type that the ATA Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

If DevicePath is a device path node type that the ATA Pass Thru driver supports, but there is not a valid
translation from DevicePath to a port number and port multiplier port number, then EFI_NOT_FOUND
is returned.

Status Codes Returned

EFI_ATA_PASS_THRU_PROTOCOL.ResetPort()

Summary

Resets a specific port on the ATA controller. This operation also resets all the ATA devices connected to
the port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_RESET_PORT) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN UINT16 Port
);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number on the ATA controller.

EFI_SUCCESS DevicePath was successfully translated to a port number and port multiplier
port number, and they were returned in Port and PortMultiplierPort.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER Port is NULL

EFI_INVALID_PARAMETER PortMultiplierPort is NULL

EFI_UNSUPPORTED This driver does not support the device path node type in DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a port number and port multiplier port
number does not exist.
UEFI Forum, Inc. March 2019 592

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The ResetChannel() function resets an a specific port on an ATA controller. This operation resets all
the ATA devices connected to that port. If this ATA controller does not support a reset port operation,
then EFI_UNSUPPORTED is returned.

If a device error occurs while executing that port reset operation, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of the port reset operation, then EFI_TIMEOUT is returned. If
the port reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice()

Summary

Resets an ATA device that is connected to an ATA controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ATA_PASS_THRU_RESET_DEVICE) (

 IN EFI_ATA_PASS_THRU_PROTOCOL *This,

 IN UINT16 Port,

 IN UINT16 PortMultiplierPort

);

Parameters

This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

Port represents the port number of the ATA device to be reset.

PortMultiplierPort

The port multiplier port number of the ATA device to reset. If there is no port
multiplier, then specify 0xFFFF.

Description

The ResetDevice() function resets the ATA device specified by Port and PortMultiplierPort. If
this ATA controller does not support a device reset operation, then EFI_UNSUPPORTED is returned.

If Port or PortMultiplierPort are not in a valid range for this ATA controller, then
EFI_INVALID_PARAMETER is returned.

EFI_SUCCESS The ATA controller port was reset.

EFI_UNSUPPORTED The ATA controller does not support a port reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the ATA port.

EFI_TIMEOUT A timeout occurred while attempting to reset the ATA port.
UEFI Forum, Inc. March 2019 593

UEFI Specification, Version 2.8 Protocols — Media Access
If a device error occurs while executing that device reset operation, then EFI_DEVICE_ERROR is
returned.

If a timeout occurs during the execution of the device reset operation, then EFI_TIMEOUT is returned.

If the device reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

13.14 Storage Security Command Protocol

This section defines the storage security command protocol. This protocol is used to abstract mass
storage devices to allow code running in the EFI boot services environment to send security protocol
commands to mass storage devices without specific knowledge of the type of device or controller that
manages the device. Functions are defined to send or retrieve security protocol defined data to and from
mass storage devices. This protocol shall be supported on all physical and logical storage devices
supporting the EFI_BLOCK_IO_PROTOCOL in the EFI boot services environment and one of the
following command sets (or their alternative) at the bus level:

• TRUSTED SEND/RECEIVE commands of the ATA8-ACS command set or its successor

• SECURITY PROTOCOL IN/OUT commands of the SPC-4 command set or its successor.

EFI_SUCCESS The ATA device specified by Port and PortMultiplierPort was reset

EFI_UNSUPPORTED The ATA controller does not support a device reset operation.

EFI_INVALID_PARAMETER Port or PortMultiplierPort are invalid.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the ATA device specified by
Port and PortMultiplierPort.

EFI_TIMEOUT A timeout occurred while attempting to reset the ATA device specified by Port
and PortMultiplierPort.
UEFI Forum, Inc. March 2019 594

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

Summary

This protocol provides ability to send security protocol commands to mass storage devices.

GUID

#define EFI_STORAGE_SECURITY_COMMAND_PROTOCOL_GUID \

 {0xc88b0b6d, 0x0dfc, 0x49a7,\

 {0x9c, 0xb4, 0x49, 0x7, 0x4b, 0x4c, 0x3a, 0x78}}

Protocol Interface Structure

typedef struct _EFI_STORAGE_SECURITY_COMMAND_PROTOCOL {

 EFI_STORAGE_SECURITY_RECEIVE_DATA ReceiveData;

 EFI_STORAGE_SECURITY_SEND_DATA SendData;
} EFI_STORAGE_SECURITY_COMMAND_PROTOCOL;

Parameters

ReceiveData Issues a security protocol command to the requested device that
receives data and/or the result of one or more commands sent by
SendData. See the ReceiveData() function description.

SendData Issues a security protocol command to the requested device. See the
SendData() function description.

Description

The EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is used to send security protocol commands to a
mass storage device. Two types of security protocol commands are supported. SendData sends a
command with data to a device. ReceiveData sends a command that receives data and/or the result of
one or more commands sent by SendData.

The security protocol command formats supported shall be based on the definition of the SECURITY
PROTOCOL IN and SECURITY PROTOCOL OUT commands defined in SPC-4. If the device uses the SCSI
command set, no translation is needed in the firmware and the firmware can package the parameters
into a SECURITY PROTOCOL IN or SECURITY PROTOCOL OUT command and send the command to the
device. If the device uses a non-SCSI command set, the firmware shall map the command and data
payload to the corresponding command and payload format defined in the non-SCSI command set (for
example, TRUSTED RECEIVE and TRUSTED SEND in ATA8-ACS).

The firmware shall automatically add an EFI_STORAGE_SECURITY_COMMAND_PROTOCOL for any
storage devices detected during system boot that support SPC-4, ATA8-ACS or their successors.
UEFI Forum, Inc. March 2019 595

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()

Summary

Send a security protocol command to a device that receives data and/or the result of one or more
commands sent by SendData.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_STORAGE_SECURITY_RECEIVE_DATA) (

 IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

 *This,

 IN UINT32 MediaId,

 IN UINT64 Timeout,

 IN UINT8 SecurityProtocol,

 IN UINT16 SecurityProtocolSpecificData,

 IN UINTN PayloadBufferSize,

 OUT VOID *PayloadBuffer,

 OUT UINTN *PayloadTransferSize
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is defined in the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL description.

 MediaId ID of the medium to receive data from.

 Timeout The timeout, in 100ns units, to use for the execution of the security
protocol command. A Timeout value of 0 means that this function
will wait indefinitely for the security protocol command to execute.
If Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the receive data
command is greater than Timeout.

 SecurityProtocolId

The value of the “Security Protocol” parameter of the security
protocol command to be sent.

 SecurityProtocolSpecificData

The value of the “Security Protocol Specific” parameter of the
security protocol command to be sent. This value is in big-endian
format.

 PayloadBufferSize Size in bytes of the payload data buffer.

 PayloadBuffer A pointer to a destination buffer to store the security protocol
command specific payload data for the security protocol command.
The caller is responsible for having either implicit or explicit
ownership of the buffer.

 PayloadTransferSize
UEFI Forum, Inc. March 2019 596

UEFI Specification, Version 2.8 Protocols — Media Access
A pointer to a buffer to store the size in bytes of the data written to
the payload data buffer.

Description

The ReceiveData function sends a security protocol command to the given MediaId. The security
protocol command sent is defined by SecurityProtocolId and contains the security protocol specific
data SecurityProtocolSpecificData. The function returns the data from the security protocol
command in PayloadBuffer.

For devices supporting the SCSI command set, the security protocol command is sent using the SECURITY
PROTOCOL IN command defined in SPC-4.

For devices supporting the ATA command set, the security protocol command is sent using one of the
TRUSTED RECEIVE commands defined in ATA8-ACS if PayloadBufferSize is non-zero. If the
PayloadBufferSize is zero, the security protocol command is sent using the Trusted Non-Data
command defined in ATA8-ACS.

If PayloadBufferSize is too small to store the available data from the security protocol command, the
function shall copy PayloadBufferSize bytes into the PayloadBuffer and return
EFI_WARN_BUFFER_TOO_SMALL.

If PayloadBuffer or PayloadTransferSize is NULL and PayloadBufferSize is non-zero, the
function shall return EFI_INVALID_PARAMETER.

If the given MediaId does not support security protocol commands, the function shall return
EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If the
MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

If the security protocol fails to complete within the Timeout period, the function shall return
EFI_TIMEOUT.

If the security protocol command completes without an error, the function shall return EFI_SUCCESS. If
the security protocol command completes with an error, the function shall return EFI_DEVICE_ERROR.
UEFI Forum, Inc. March 2019 597

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()

Summary

 Send a security protocol command to a device.

Prototype

typedef

 EFI_STATUS

 (EFIAPI *EFI_STORAGE_SECURITY_SEND_DATA) (

 IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

 *This,

 IN UINT32 MediaId,

 IN UINT64 Timeout,

 IN UINT8 SecurityProtocolId,

 IN UINT16 SecurityProtocolSpecificData,

 IN UINTN PayloadBufferSize,

 IN VOID *PayloadBuffer
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is defined in the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL description.

 MediaId ID of the medium to send data to.

 Timeout The timeout, in 100ns units, to use for the execution of the security
protocol command. A Timeout value of 0 means that this function
will wait indefinitely for the security protocol command to execute.
If Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the receive data
command is greater than Timeout.

 SecurityProtocolId

EFI_SUCCESS The security protocol command completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The PayloadBufferSize was too small to store the available data
from the device. The PayloadBuffer contains the truncated data.

EFI_UNSUPPORTED The given MediaId does not support security protocol commands.

EFI_DEVICE_ERROR The security protocol command completed with an error.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER The PayloadBuffer or PayloadTransferSize is NULL and

PayloadBufferSize is non-zero.

EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to
execute.
UEFI Forum, Inc. March 2019 598

UEFI Specification, Version 2.8 Protocols — Media Access
The value of the “Security Protocol” parameter of the security
protocol command to be sent.

 SecurityProtocolSpecificData

The value of the “Security Protocol Specific” parameter of the
security protocol command to be sent.

 PayloadBufferSize Size in bytes of the payload data buffer.

 PayloadBuffer A pointer to a buffer containing the security protocol command
specific payload data for the security protocol command.

Description

The SendData function sends a security protocol command containing the payload PayloadBuffer to
the given MediaId. The security protocol command sent is defined by SecurityProtocolId and
contains the security protocol specific data SecurityProtocolSpecificData. If the underlying
protocol command requires a specific padding for the command payload, the SendData function shall
add padding bytes to the command payload to satisfy the padding requirements.

For devices supporting the SCSI command set, the security protocol command is sent using the SECURITY
PROTOCOL OUT command defined in SPC-4.

For devices supporting the ATA command set, the security protocol command is sent using one of the
TRUSTED SEND commands defined in ATA8-ACS if PayloadBufferSize is non-zero. If the
PayloadBufferSize is zero, the security protocol command is sent using the Trusted Non-Data
command defined in ATA8-ACS.

If PayloadBuffer is NULL and PayloadBufferSize is non-zero, the function shall return
EFI_INVALID_PARAMETER.

If the given MediaId does not support security protocol commands, the function shall return
EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If the
MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

If the security protocol fails to complete within the Timeout period, the function shall return
EFI_TIMEOUT.

If the security protocol command completes without an error, the function shall return EFI_SUCCESS. If
the security protocol command completes with an error, the function shall return EFI_DEVICE_ERROR.
UEFI Forum, Inc. March 2019 599

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

13.15 NVM Express Pass Through Protocol

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
This section provides a detailed description of the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.

Summary

This protocol provides services that allow NVM Express commands to be sent to an NVM Express
controller or to a specific namespace in a NVM Express controller. This protocol interface is optimized for
storage.

GUID

#define EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL_GUID \

 { 0x52c78312, 0x8edc, 0x4233,\

 { 0x98, 0xf2, 0x1a, 0x1a, 0xa5, 0xe3, 0x88, 0xa5 } };

 Protocol Interface Structure

typedef struct _EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL {

 EFI_NVM_EXPRESS_PASS_THRU_MODE *Mode;

 EFI_NVM_EXPRESS_PASS_THRU_PASSTHRU PassThru;

 EFI_NVM_EXPRESS_PASS_THRU_GET_NEXT_NAMESPACE GetNextNamespace;

 EFI_NVM_EXPRESS_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;

 EFI_NVM_EXPRESS_PASS_THRU_GET_NAMESPACE GetNamespace;
} EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL;

 Parameters

Mode A pointer to the EFI_NVM_EXPRESS_PASS_THRU_MODE data for
this NVM Express controller.
EFI_NVM_EXPRESS_PASS_THRU_MODE is defined in “Related
Definitions” below.

PassThru Sends an NVM Express Command Packet to an NVM Express
controller. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()functio
n description.

EFI_SUCCESS The security protocol command completed successfully.

EFI_UNSUPPORTED The given MediaId does not support security protocol commands.

EFI_DEVICE_ERROR The security protocol command completed with an error.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER The PayloadBuffer is NULL and PayloadBufferSize is non-zero.

EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to
execute.
UEFI Forum, Inc. March 2019 600

UEFI Specification, Version 2.8 Protocols — Media Access
GetNextNamespace Retrieves the next namespace ID for this NVM Express controller.
See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespac
e()function description.

BuildDevicePath Allocates and builds a device path node for a namespace on an NVM
Express controller. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath
()function description.

GetNamespace Translates a device path node to a namespace ID. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()fu
nction description.

The following data values in the EFI_NVM_EXPRESS_PASS_THRU_MODE interface are read-only.

Attributes Additional information on the attributes of the NVM Express
controller. See “Related Definitions” below for the list of possible
attributes.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a power
of 2, and the requirement is that the start address of a buffer must
be evenly divisible by IoAlign with no remainder.

NvmeVersion Indicates the version of the NVM Express specification that the
controller implementation supports. The format of this field is
defined in the Version field of the Controller Registers in the NVM
Express Specification.

Related Definitions

typedef struct {

 UINT32 Attributes;

 UINT32 IoAlign;

 UINT32 NvmeVersion;

} EFI_NVM_EXPRESS_PASS_THRU_MODE;

#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001

#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002

#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM 0x0008

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface is
for directly addressable namespaces.

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface is
for a single volume logical namespace comprised of multiple namespaces.
UEFI Forum, Inc. March 2019 601

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
supports non-blocking I/O.

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
supports NVM command set.

Description

The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL provides information about an NVM Express
controller and the ability to send NVM Express commands to an NVM Express controller or to a specific
namespace in a NVM Express controller.

The printable name for the NVM Express controller can be provided through the
EFI_COMPONENT_NAME_PROTOCOL and the EFI_COMPONENT_NAME2_PROTOCOL for multiple
languages.

The Attributes field of the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface tells if the interface
is for physical NVM Express controllers or logical NVM Express controllers. Drivers for non-RAID NVM
Express controllers will set both the EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL, and
the EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical controllers and logical controllers will
produce two EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to access
the physical controllers attached to the RAID controller, and the other can be used to access the logical
controllers attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical controllers will produce one
EFI_NVM_EXPRESS_PASS_THROUGH_PROTOCOL interface with just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bit set. The interface for logical controllers
can also be used by a file system driver to mount the RAID volumes. An
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL with neither
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO
bit. All EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is
set, then the interface supports both blocking I/O and non-blocking I/O.

The Attributes field also contains the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM bit. If this bit is set, the controller
supports the NVM Express command set.

Each EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance must have an associated device
path. Typically this will have an ACPI device path node and a PCI device path node,
although variation will exist.
UEFI Forum, Inc. March 2019 602

UEFI Specification, Version 2.8 Protocols — Media Access
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()

 Summary

Sends an NVM Express Command Packet to an NVM Express controller or namespace. This function
supports both blocking I/O and non-blocking I/O. The blocking I/O functionality is required, and the non-
blocking I/O functionality is optional.

 Prototype

typedef EFI_STATUS

 (EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_PASSTHRU) (

 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,

 IN UINT32 NamespaceId,

 IN OUT EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *Packet,

 IN EFI_EVENT Event OPTIONAL

);

 Parameters

This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
instance. Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 13.15, above.

NamespaceId A 32 bit namespace ID as defined in the NVMe specification to which
the NVM Express Command Packet will be sent. A value of 0 denotes
the NVM Express controller, a value of all 0xFF’s (all bytes are 0xFF)
in the namespace ID specifies that the command packet should be
sent to all valid namespaces.

Packet A pointer to the NVM Express Command Packet. See “Related
Definitions” below for a description of
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET.

Event If non-blocking I/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blocking I/O is
performed. If Event is not NULL and non-blocking I/O is supported,
then non-blocking I/O is performed, and Event will be signaled
when the NVM Express Command Packet completes.
UEFI Forum, Inc. March 2019 603

UEFI Specification, Version 2.8 Protocols — Media Access
 Related Definitions

typedef struct {

 UINT64 CommandTimeout;

 VOID *TransferBuffer OPTIONAL;

 UINT32 TransferLength OPTIONAL;

 VOID *MetaDataBuffer OPTIONAL;

 UINT32 MetadataLength OPTIONAL;

 UINT8 QueueType;

 EFI_NVM_EXPRESS_COMMAND *NvmeCmd;

 EFI_NVM_EXPRESS_COMPLETION *NvmeCompletion;

} EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET;

CommandTimeout The timeout in 100 ns units to use for the execution of this NVM
Express Command Packet. A Timeout value of 0 means that this
function will wait indefinitely for the command to execute. If
Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the NVM Express
command is greater than Timeout.

TransferBuffer A pointer to the data buffer to transfer between the host and the
NVM Express controller for read, write, and bi-directional
commands. For all write and non-data commands where
TransferLength is 0 this field is optional and may be NULL. If this
field is not NULL, then it must be aligned on the boundary specified
by the IoAlign field in the EFI_NVM_EXPRESS_PASS_THRU_MODE
structure.

TransferLength On input, the size in bytes of TransferBuffer. On output, the
number of bytes transferred to or from the NVM Express controller
or namespace.

MetadataBuffer A pointer to the optional metadata buffer to transfer between the
host and the NVM Express controller. For all commands where no
metadata is transferred between the host and the controller, this
field is optional and may be NULL. If this field is not NULL, then it
must be aligned on the boundary specified by the IoAlign field in
the EFI_NVM_EXPRESS_PASS_THRU_MODE structure.

MetadataLength On input, the size in bytes of MetadataBuffer. On output, the
number of bytes transferred to or from the NVM Express controller
or namespace.

QueueType The type of the queue that the NVMe command should be posted
to. A value of 0 indicates it should be posted to the Admin
Submission Queue. A value of 1 indicates it should be posted to an I/
O Submission Queue.

NvmeCmd A pointer to an NVM Express Command Packet.

NvmeCompletion The raw NVM Express completion queue entry as defined in the
NVM Express Specification.
UEFI Forum, Inc. March 2019 604

UEFI Specification, Version 2.8 Protocols — Media Access
 Description

The PassThru()function sends the NVM Express Command Packet specified by Packet to the NVM
Express controller. If the driver supports non-blocking I/O and Event is not NULL, then the driver will
return immediately after the command is sent to the selected controller, and will later signal Event when
the command has completed.

If the driver supports non-blocking I/O and Event is NULL, then the driver will send the command to the
selected device and block until it is complete.

If the driver does not support non-blocking I/O, then the Event parameter is ignored, and the driver will
send the command to the selected device and block until it is complete.

If Packet is successfully sent to the NVM Express controller, then EFI_SUCCESS is returned.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If NamespaceId is invalid for the NVM Express controller, then EFI_INVALID_PARAMETER is returned.

If TransferBuffer or MetadataBuffer do not meet the alignment requirement specified by the
IoAlign field of the EFI_NVM_EXPRESS_PASS_THRU_MODE structure, then
EFI_INVALID_PARAMETER is returned. If the QueueType is not 0 (Admin Submission Queue) or 1 (I/O
Submission Queue), then EFI_INVALID_PARAMETER is returned. If any of the other fields of Packet
are invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by TransferBuffer and TransferLength is too big to be transferred in a
single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The number of
bytes that can be transferred in a single command are returned in TransferLength.

If EFI_SUCCESS, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned, then the caller must examine the
NvmeCompletion field in Packet.

If non-blocking I/O is being used, then the NvmeCompletion field in Packet will not be valid until the
Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER, EFI_BAD_BUFFER_SIZE, or EFI_UNSUPPORTED is
returned, then Packet was never sent, so the NvmeCompletion field in Packet is not valid. If non-
blocking I/O is being used, the Event associated with Packet will not be signaled.
UEFI Forum, Inc. March 2019 605

UEFI Specification, Version 2.8 Protocols — Media Access

 were

e

y. The

ee

NVM
tus

e
Status Codes Returned

Related Definitions

 typedef struct {

 UINT32 OpCode : 8;

 UINT32 FusedOperation : 2;

 UINT32 Reserved : 22;

 } NVME_CDW0;

//***

// FusedOperation

//***

#define NORMAL_CMD 0x00

#define FUSED_FIRST_CMD 0x01

#define FUSED_SECOND_CMD 0x02

typedef struct {

 NVME_CDW0 Cdw0;

 UINT8 Flags;

 UINT32 Nsid;

 UINT32 Cdw2;

 UINT32 Cdw3;

 UINT32 Cdw10;

 UINT32 Cdw11;

 UINT32 Cdw12;

EFI_SUCCESS The NVM Express Command Packet was sent by the host. TransferLength bytes

transferred to or from TransferBuffer. See NvmeCompletion (above) for

additional status information.

EFI_BAD_BUFFER_SIZE The NVM Express Command Packet was not executed. The number of bytes that could b

transferred is returned in TransferLength.

EFI_NOT_READY The NVM Express Command Packet could not be sent because the controller is not read
caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the NVM Express Command Packet. S

NvmeCompletion (above) for additional status information.

EFI_INVALID_PARAMETER NamespaceId or the contents of

EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET are invalid. The NVM

Express Command Packet was not sent, so no additional status information is available.

EFI_UNSUPPORTED The command described by the NVM Express Command Packet is not supported by the
Express controller. The NVM Express Command Packet was not sent so no additional sta
information is available.

EFI_TIMEOUT A timeout occurred while waiting for the NVM Express Command Packet to execute. Se

NvmeCompletion (above) for additional status information.
UEFI Forum, Inc. March 2019 606

UEFI Specification, Version 2.8 Protocols — Media Access
 UINT32 Cdw13;

 UINT32 Cdw14;

 UINT32 Cdw15;

} EFI_NVM_EXPRESS_COMMAND;

//***

// Flags

//***

#define CDW2_VALID0x01

#define CDW3_VALID0x02

#define CDW10_VALID0x04

#define CDW11_VALID0x08

#define CDW12_VALID0x10

#define CDW13_VALID0x20

#define CDW14_VALID0x40

#define CDW15_VALID0x80

//

// This structure maps to the NVM Express specification Completion
Queue Entry

//

typedef struct {

 UINT32 DW0;

 UINT32 DW1;

 UINT32 DW2;

 UINT32 DW3;

} EFI_NVM_EXPRESS_COMPLETION;

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()

Summary

Used to retrieve the next namespace ID for this NVM Express controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_GET_NEXT_NAMESPACE) (

IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,

IN OUT UINT32 *NamespaceId

);

Parameters

This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
instance.
UEFI Forum, Inc. March 2019 607

UEFI Specification, Version 2.8 Protocols — Media Access
NamespaceId On input, a pointer to a valid namespace ID on this NVM Express
controller or a pointer to the value 0xFFFFFFFF. A pointer to the
value 0xFFFFFFFF retrieves the first valid namespace ID on this
NVM Express controller.

Description

The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()function retrieves the next
valid namespace ID on this NVM Express controller. If on input the value pointed to by NamespaceId is
0xFFFFFFFF, then the first valid namespace ID defined on the NVM Express controller is returned in the
location pointed to by NamespaceId and a status of EFI_SUCCESS is returned.

If on input the value pointed to by NamespaceId is an invalid namespace ID other than 0xFFFFFFFF,
then EFI_INVALID_PARAMETER is returned.

If on input the value pointed to by NamespaceId is a valid namespace ID, then the next valid namespace
ID on the NVM Express controller is returned in the location pointed to by NamespaceId, and
EFI_SUCCESS is returned.

If the value pointed to by NamespaceId is the namespace ID of the last namespace on the NVM Express
controller, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for an NVM Express namespace on an NVM Express
controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_BUILD_DEVICE_PATH) (

IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,

IN UINT32 NamespaceId,

IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath

);

Parameters

This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
instance. Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 13.15.

NamespaceId The NVM Express namespace ID for which a device path node is to
be allocated and built.

EFI_SUCCESS The Namespace ID of the next Namespace was returned.

EFI_NOT_FOUND There are no more namespaces defined on this controller.

EFI_INVALID_PARAMETER NamespaceId is an invalid value other than 0xFFFFFFFF.
UEFI Forum, Inc. March 2019 608

UEFI Specification, Version 2.8 Protocols — Media Access
DevicePath A pointer to a single device path node that describes the NVM
Express namespace specified by NamespaceId. This function is
responsible for allocating the buffer DevicePath with the boot
service AllocatePool(). It is the caller’s responsibility to free
DevicePath when the caller is finished with DevicePath.

Description

The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates and builds
a single device path node for the NVM Express namespace specified by NamespaceId. If the
NamespaceId is not valid, then EFI_NOT_FOUND is returned. If DevicePath is NULL, then
EFI_INVALID_PARAMETER is returned. If there are not enough resources to allocate the device path
node, then EFI_OUT_OF_RESOURCES is returned. Otherwise, DevicePath is allocated with the boot
service AllocatePool(), the contents of DevicePath are initialized to describe the NVM Express
namespace specified by NamespaceId, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()

Summary

Used to translate a device path node to a namespace ID.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_GET_NAMESPACE) (

IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,

IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,

OUT UINT32 *NamespaceId

);

Parameters

This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
instance. Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 13.15.

DevicePath A pointer to the device path node that describes an NVM Express
namespace on the NVM Express controller.

NamespaceId The NVM Express namespace ID contained in the device path node.

EFI_SUCCESS The device path node that describes the NVM Express namespace specified by
NamespaceId was allocated and returned in DevicePath.

EFI_NOT_FOUND The NamespaceId is not valid.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate the DevicePath node.
UEFI Forum, Inc. March 2019 609

UEFI Specification, Version 2.8 Protocols — Media Access
Description

The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace() function determines the
namespace ID associated with the namespace described by DevicePath. If DevicePath is a device
path node type that the NVM Express Pass Thru driver supports, then the NVM Express Pass Thru driver
will attempt to translate the contents DevicePath into a namespace ID. If this translation is successful,
then that namespace ID is returned in NamespaceId, and EFI_SUCCESS is returned.

Status Codes Returned

13.16 SD MMC Pass Thru Protocol

EFI_SD_MMC_PASS_THRU_PROTOCOL
This section provides a detailed description of the EFI_SD_MMC_PASS_THRU_PROTOCOL.

The protocol provides services that allow SD/eMMC commands to be sent to an SD/eMMC controller. All
interfaces and definitions from this section apply equally to SD and eMMC controllers.

For the sake of brevity, the rest of this section refers only to SD devices and controllers and does not
specifically mention eMMC devices and controllers.

GUID

#define EFI_SD_MMC_PASS_THRU_PROTOCOL_GUID \

 { 0x716ef0d9, 0xff83, 0x4f69, \

 { 0x81, 0xe9, 0x51, 0x8b, 0xd3, 0x9a, 0x8e, 0x70 } }

Protocol Interface Structure

typedef struct _EFI_SD_MMC_PASS_THRU_PROTOCOL {

 UINTN IoAlign

 EFI_SD_MMC_PASS_THRU_PASSTHRU PassThru;

 EFI_SD_MMC_PASS_THRU_GET_NEXT_SLOT GetNextSlot;

 EFI_SD_MMC_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;

 EFI_SD_MMC_PASS_THRU_GET_SLOT_NUMBER GetSlotNumber;

 EFI_SD_MMC_PASS_THRU_RESET_DEVICE ResetDevice;

} EFI_SD_MMC_PASS_THRU_PROTOCOL;

Parameters

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a power

 EFI_INVALID_PARAMETER If DevicePath or NamespaceId are NULL, then
EFI_INVALID_PARAMETER is returned.

EFI_UNSUPPORTED If DevicePath is not a device path node type that the NVM Express Pass Thru
driver supports, then EFI_UNSUPPORTED is returned.

EFI_NOT_FOUND If DevicePath is a device path node type that the NVM Express Pass Thru
driver supports, but there is not a valid translation from DevicePath to a
namespace ID, then EFI_NOT_FOUND is returned.
UEFI Forum, Inc. March 2019 610

UEFI Specification, Version 2.8 Protocols — Media Access
of 2, and the requirement is that the start address of a buffer must
be evenly divisible by IoAlign with no remainder.

PassThru Sends SD command to the SD controller. See the PassThru()
function description.

GetNextSlot Retrieves a next slot on an SD controller. See the GetNextSlot()
function description.

BuildDevicePath Allocates and builds a device path node for an SD card on the SD
controller. See the BuildDevicePath() function description.

GetSlotNumber Retrieves the SD card slot number based on the input device path.
See the GetSlotNumber() function description.

ResetDevice Resets an SD card connected to the SD controller. See the
ResetDevice() function description.

EFI_SD_MMC_PASS_THRU_PROTOCOL.PassThru()

Summary

Sends SD command to an SD card that is attached to the SD controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SD_MMC_PASS_THRU_PASSTHRU) (

 IN EFI_SD_MMC_PASS_THRU_PROTOCOL *This,

 IN UINT8 Slot,

 IN OUT EFI_SD_MMC_PASS_THRU_COMMAND_PACKET *Packet,

 IN EFI_EVENT Event OPTIONAL

);

Parameters

This A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.

Slot The slot number of the SD card to send the command to.

Packet A pointer to the SD command data structure. See “Related
Definitions” below for a description of
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET.

Event If non-blockingI/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blockingI/O is
performed. If Event is not NULL and non-blockingI/O is supported,
then non-blockingI/O is performed, and Event will be signaled when
the SDcommand completes
UEFI Forum, Inc. March 2019 611

UEFI Specification, Version 2.8 Protocols — Media Access
Related Definitions

typedef struct {

 EFI_SD_MMC_COMMAND_BLOCK *SdMmcCmdBlk;

 EFI_SD_MMC_STATUS_BLOCK *SdMmcStatusBlk;

 UINT64 Timeout

 VOID *InDataBuffer;

 VOID *OutDataBuffer;

 UINT32 InTransferLength;

 UINT32 OutTransferLength;

 EFI_STATUS TransactionStatus;
} EFI_SD_MMC_PASS_THRU_COMMAND_PACKET;

SdMmcCmdBlk A pointer to a command specific data buffer allocated and filled by
the caller. See “Related Definitions” below for a description of
EFI_SD_MMC_COMMAND_BLOCK.

SdMmcStatusBlk A pointer to a command specific response data buffer allocated by
the caller and filled by the PassThru function. See “Related
Definitions” below for a description of
EFI_SD_MMC_STATUS_BLOCK.

Timeout The timeout, in 100 ns units, to use for the execution of this SDcommand. A
Timeout value of 0 means that this function will wait indefinitely for the
SDcommand to execute. If Timeout is greater than zero, then this
function will return EFI_TIMEOUT if the time required to execute the
SDcommand is greater than Timeout.

InDataBuffer A pointer to a buffer for the data transferred from the SD card during
processing of read and bidirectional commands. For all write and
non-data commands this field is optional and may be NULL.

OutDataBuffer A pointer to a buffer for the data to be transferred to the SD card
during processing of write or bidirectional commands. For all read
and non-data commands this field is optional and may be NULL.

InTransferLength On input, the size, in bytes, of InDataBuffer. On output, the
number of bytes transferred between the SD controller and the SD
device. If InTransferLength is larger than the SD controller can
handle, no data will be transferred, InTransferLength will be
updated to contain the number of bytes that the SD controller is able
to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SD Controller and the SD
device. If OutTransferLength is larger than the SD controller can
handle, no data will be transferred. OutTransferLength will be
updated to contain the number of bytes that the SD controller is able
to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

TransactionStatus Transaction status. When PathThru() function is used in a blocking
mode, the status must be the same as the status returned by the
PathThru() function. When PathThru() function is used in a
non-blocking mode, the field is updated with the transaction status
once transaction is completed.
UEFI Forum, Inc. March 2019 612

UEFI Specification, Version 2.8 Protocols — Media Access
Related Definitions

typedef struct {

 UNIT16 CommandIndex;

 UINT32 CommandArgument;

 UINT32 CommandType; // One of the EFI_SD_MMC_COMMAND_TYPE values

 UINT32 ResponseType; // One of the EFI_SD_MMC_RESPONSE_TYPE values

} EFI_SD_MMC_COMMAND_BLOCK;

typedef struct {

 UINT32 Resp0;

 UINT32 Resp1;

 UINT32 Resp2;

 UINT32 Resp3;

} EFI_SD_MMC_STATUS_BLOCK;

typedef enum {

 SdMmcCommandTypeBc, // Broadcast commands, no response

 SdMmcCommandTypeBcr, // Broadcast commands with response

 SdMmcCommandTypeAc, // Addressed(point-to-point) commands

 SdMmcCommandTypeAdtc // Addressed(point-to-point) data transfer

 // commands

} EFI_SD_MMC_COMMAND_TYPE;

typedef enum {

 SdMmcResponceTypeR1,

 SdMmcResponceTypeR1b,

 SdMmcResponceTypeR2,

 SdMmcResponceTypeR3,

 SdMmcResponceTypeR4,

 SdMmcResponceTypeR5,

 SdMmcResponceTypeR5b,

 SdMmcResponceTypeR6,

 SdMmcResponceTypeR7

} EFI_SD_MMC_RESPONSE_TYPE;

Description

The PassThru() function sends the SD command specified by Packet to the SD card specified by
Slot.

If Packet is successfully sent to the SD card, then EFI_SUCCESS is returned. If a device error occurs
while sending the Packet, then EFI_DEVICE_ERROR is returned. If Slot is not in a valid range for the
SD controller, then EFI_INVALID_PARAMETER is returned. If Packet defines a data command but both
InDataBuffer and OutDataBuffer are NULL, EFI_INVALID_PARAMETER is returned.
UEFI Forum, Inc. March 2019 613

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_SD_MMC_PASS_THRU_PROTOCOL.GetNextSlot()

Summary

Used to retrieve next slot numbers supported by the SD controller. The function returns information
about all available slots (populated or not-populated).

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SD_MMC_PASS_THRU_GET_NEXT_SLOT) (

 IN EFI_SD_MMC_PASS_THRU_PROTOCOL *This,

 IN OUT UINT8 *Slot

);

Parameters

This A pointer to the EFI_SD_MMMC_PASS_THRU_PROTOCOL instance.

Slot On input, a pointer to a slot number on the SD controller. On output,
a pointer to the next slot number on the SD controller. An input
value of 0xFF retrieves the first slot number on the SD controller.

Description

The GetNextSlot() function retrieves the next slot number on an SD controller. If on input Slot is
0xFF, then the slot number of the first slot on the SD controller is returned.

If Slot is a slot number that was returned on a previous call to GetNextSlot(), then the slot number
of the next slot on the SD controller is returned.

If Slot is not 0xFF and Slot was not returned on a previous call to GetNextSlot(),
EFI_INVALID_PARAMETER is returned.

If Slot is the slot number of the last slot on the SD controller, then EFI_NOT_FOUND is returned.

EFI_SUCCESS The SD Command Packet was sent by the host.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SD command
Packet.

EFI_INVALID_PARAMETER Packet, Slot, or the contents of the Packet is invalid.

EFI_INVALID_PARAMETER Packet defines a data command but both InDataBuffer and
OutDataBuffer are NULL.

EFI_NO_MEDIA SD Device not present in the Slot.

EFI_UNSUPPORTED The command described by the SD Command Packet is not supported by
the host controller.

EFI_BAD_BUFFER_SIZE The InTransferLength or OutTransferLength exceeds the limit
supported by SD card (i.e. if the number of bytes exceed the Last LBA).

EFI_DEVICE_ERROR The command was not sent due to a device error
UEFI Forum, Inc. March 2019 614

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_SD_MMC_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for an SD card on the SD controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SD_MMC_PASS_THRU_BUILD_DEVICE_PATH) (

 IN EFI_SD_MMC_PASS_THRU_PROTOCOL *This,

 IN UINT8 Slot,

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath

);

Parameters

This A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.

Slot Specifies the slot number of the SD card for which a device path
node is to be allocated and built.

DevicePath A pointer to a single device path node that describes the SD card
specified by Slot. This function is responsible for allocating the
buffer DevicePath with the boot service AllocatePool(). It is
the caller’s responsibility to free DevicePath when the caller is
finished with DevicePath.

Description

The BuildDevicePath() function allocates and builds a single device node for the SD card specified by
Slot. If the SD card specified by Slot is not present on the SD controller, then EFI_NOT_FOUND is
returned. If DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there are not enough
resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned.

Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of
DevicePath are initialized to describe the SD card specified by Slot, and EFI_SUCCESS is returned.

EFI_SUCCESS The next slot number on the SD controller was returned in Slot.

EFI_NOT_FOUND There are no more slots on this SD controller

EFI_INVALID_PARAMETER Slot is not 0xFF and Slot was not returned on a previous call to
GetNextSlot().
UEFI Forum, Inc. March 2019 615

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_SD_MMC_PASS_THRU_PROTOCOL.GetSlotNumber()

Summary

 This function retrieves an SD card slot number based on the input device path.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SD_MMC_PASS_THRU_GET_SLOT_NUMBER) (

 IN EFI_SD_MMC_PASS_THRU_PROTOCOL *This,

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 OUT UINT8 *Slot

);

Parameters

This A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.

DevicePath A pointer to the device path node that describes a SD card on the SD
controller.

Slot On return, points to the slot number of an SD card on the SD
controller.

Description

The GetSlotNumber() function retrieves slot number for the SD card specified by the DevicePath
node. If DevicePath is NULL, EFI_INVALID_PARAMETER is returned. If DevicePath is not a device
path node type that the SD Pass Thru driver supports, EFI_UNSUPPORTED is returned

Status Codes Returned

EFI_SD_MMC_PASS_THRU_PROTOCOL.ResetDevice()

Summary

Resets an SD card that is connected to the SD controller.

EFI_SUCCESS The device path node that describes the SD card specified by Slot was
allocated and returned in DevicePath.

EFI_NOT_FOUND The SD card specified by Slot does not exist on the SD controller

EFI_INVALID_PARAMETER DevicePath is NULL

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath

EFI_SUCCESS SD card slot number is returned in Slot.

EFI_INVALID_PARAMETER Slot or DevicePath is NULL.

EFI_UNSUPPORTED DevicePath is not a device path node type that the SD Pass Thru

driver supports.
UEFI Forum, Inc. March 2019 616

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SD_MMC_PASS_THRU_RESET_DEVICE) (

 IN EFI_SD_MMC_PASS_THRU_PROTOCOL *This,

 IN UINT8 Slot
);

Parameters

This A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.

Slot Specifies the slot number of the SD card to be reset.

Description

The ResetDevice() function resets the SD card specified by Slot. If this SD controller does not
support a device reset operation, EFI_UNSUPPORTED is returned. If Slot is not in a valid slot number for
this SD controller, EFI_INVALID_PARAMETER is returned.

If the device reset operation is completed, EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SD card specified by Slot was reset.

EFI_UNSUPPORTED The SD controller does not support a device reset operation.

EFI_INVALID_PARAMETER Slot number is invalid.

EFI_NO_MEDIA SD Device not present in the Slot.

EFI_DEVICE_ERROR The reset command failed due to a device error
UEFI Forum, Inc. March 2019 617

UEFI Specification, Version 2.8 Protocols — Media Access
13.17 RAM Disk Protocol

EFI_RAM_DISK_PROTOCOL

 Summary

RAM disk aware application invokes this protocol to register/unregister a specified RAM disk.

GUID
#define EFI_RAM_DISK_PROTOCOL_GUID \

 { 0xab38a0df, 0x6873, 0x44a9, \

 { 0x87, 0xe6, 0xd4, 0xeb, 0x56, 0x14, 0x84, 0x49 }}

Protocol Interface Structure

typedef struct _EFI_RAM_DISK_PROTOCOL {

 EFI_RAM_DISK_REGISTER_RAMDISK Register;

 EFI_RAM_DISK_UNREGISTER_RAMDISK Unregister;
} EFI_RAM_DISK_PROTOCOL;

Members
Register Register a RAM disk with specified buffer address, size and type.

Unregister Unregister the RAM disk specified by a device path.

Description

This protocol defines a standard interface for UEFI applications, drivers and OS loaders to register/
unregister a RAM disk.

The key points are:

• The consumer of this protocol is responsible for allocating/freeing memory used by RAM Disk if
needed and deciding the initial content, as in most scenarios only the consumer knows which
type and how much memory should be used.

EFI_RAM_DISK_PROTOCOL.Register()

Summary

 This function is used to register a RAM disk with specified address, size and type.
UEFI Forum, Inc. March 2019 618

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

 typedef
 EFI_STATUS
 (EFIAPI *EFI_RAM_DISK_REGISTER_RAMDISK) (

 IN UINT64 RamDiskBase,
 IN UINT64 RamDiskSize,
 IN EFI_GUID *RamDiskType,
 IN EFI_DEVICE_PATH *ParentDevicePath OPTIONAL,
 OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters

 RamDiskBase The base address of registered RAM disk.

 RamDiskSize The size of registered RAM disk.

 RamDiskType The type of registered RAM disk. The GUID can be any of the values
defined in Section 10.3.5.9, or a vendor defined GUID.

 ParentDevicePath Pointer to the parent device path. If there is no parent device path
then ParentDevicePath is NULL.

 DevicePath On return, points to a pointer to the device path of the RAM disk
device. If ParentDevicePath is not NULL, the returned
DevicePath is created by appending a RAM disk node to the parent
device path. If ParentDevicePath is NULL, the returned
DevicePath is a RAM disk device path without appending. This
function is responsible for allocating the buffer DevicePath with
the boot service AllocatePool().

Description

The Register function is used to register a specified RAM Disk. The consumer of this API is responsible
for allocating the space of the RAM disk and deciding the initial content of the RAM disk. The producer of
this API is responsible for installing the RAM disk device path and block I/O related protocols on the RAM
disk device handle.

RamDiskBase, RamDiskSize and RamDiskType are used to fill RAM disk device node. If
RamDiskSize is 0, then EFI_INVALID_PARAMETER is returned. If RamDiskType is NULL, then
EFI_INVALID_PARAMETER is returned.

DevicePath returns the device path of the registered RAM disk. If DevicePath is NULL, then
EFI_INVALID_PARAMETER is returned. If there are not enough resources to allocate the device path
node, then EFI_OUT_OF_RESOURCES is returned. Otherwise, DevicePath is allocated with the boot
service AllocatePool(). If ParentDevicePath is not NULL the DevicePath instance is created by
appending a RAM disk device node to the ParentDevicePath. If ParentDevicePath is NULL the
DevicePath instance is a pure RAM disk device path. If the created DevicePath instance is already
present in the handle database, then EFI_ALREADY_STARTED is returned.
UEFI Forum, Inc. March 2019 619

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

EFI_RAM_DISK_PROTOCOL.Unregister()

Summary

 This function is used to unregister a RAM disk specified by DevicePath.

Prototype

 typedef
 EFI_STATUS
 (EFIAPI *EFI_RAM_DISK_UNREGISTER_RAMDISK) (

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
);

Parameters

 DevicePath A pointer to the device path that describes a RAM Disk device.

Description

The Unregister function is used to unregister a specified RAM Disk. The producer of this protocol is
responsible for uninstalling the RAM disk device path and block I/O related protocols and freeing the
RAM disk device handle. It is the consumer of this protocol’s responsibility to free the memory used by
this RAM disk.

EFI_SUCCESS The RAM disk is registered successfully.

EFI_INVALID_PARAMETER DevicePath or RamDiskType is NULL.

EFI_INVALID_PARAMETER RamDiskSize is 0.

EFI_ALREADY_STARTED A Device Path Protocol instance to be created is already present in the
handle database.

EFI_OUT_OF_RESOURCES The RAM disk register operation fails due to resource limitation.
UEFI Forum, Inc. March 2019 620

UEFI Specification, Version 2.8 Protocols — Media Access
Status Codes Returned

13.18 Partition Information Protocol

Summary

Installed along with EFI_BLOCK_IO_PROTOCOL for logical partitions. The
PARTITION_INFORMATION_PROTOCOL provides cached partition information for MBR and GPT
partition types.

Set System to 1 for partition identified as EFI_SYSTEM_PARTITIONs, otherwise set System to 0.

Set Type to PARTITION_TYPE_OTHER for partitions that are not GPT or MBR to indicate no cached data.

GUID

#define EFI_PARTITION_INFO_PROTOCOL_GUID \
 { \
 0x8cf2f62c, 0xbc9b, 0x4821, {0x80, 0x8d, 0xec, 0x9e, \
 0xc4, 0x21, 0xa1, 0xa0} \
 }

Protocol Interface Structure

EFI_SUCCESS The RAM disk is unregistered successfully.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_UNSUPPORTED The device specified by DevicePath is not a valid ramdisk device path and
not supported by the driver.

EFI_NOT_FOUND The RAM disk pointed by DevicePath doesn’t exist.
UEFI Forum, Inc. March 2019 621

UEFI Specification, Version 2.8 Protocols — Media Access
#define EFI_PARTITION_INFO_PROTOCOL_REVISION 0x0001000
#define PARTITION_TYPE_OTHER 0x00
#define PARTITION_TYPE_MBR 0x01
#define PARTITION_TYPE_GPT 0x02

#pragma pack(1)

typedef struct {

 UINT32 Revision;
 UINT32 Type;
 UINT8 System;
 UINT8 Reserved[7];
 union {
 ///
 /// MBR data
 ///
 MBR_PARTITION_RECORD Mbr;

 ///
 /// GPT data
 ///
 EFI_PARTITION_ENTRY Gpt;
 } Info;
} EFI_PARTITION_INFO_PROTOCOL;

#pragma pack()

See Section 5.2.1 for the definition of MBR_PARTITION_RECORD.

See Section 5.3.3 for the definition of EFI_PARTITION_ENTRY.

Parameters

RevisionSet to EFI_PARTITION_INFO_PROTOCOL_REVISION
Type Partition info type (MBR, GPT, or Other).
System If 1, partition describes an EFI System Partition.
Mbr MBR information, if type is MBR.
Gpt GPT information, if type is GPT

Description

The EFI_PARTITION_INFO_PROTOCOL is a simple protocol used to cache the partition information for
potential File System Drivers.

Care must be taken by UEFI utilities that manipulate partitions. The utility must gain exclusive access to
the physical disk to cause the partition driver to be stopped before it changes the partition information. If
the exclusive request is not granted, then the utility must reset the system after changing the partition
information.

When Type is set to PARTITION_TYPE_OTHER, data in the union Info is undefined.
UEFI Forum, Inc. March 2019 622

UEFI Specification, Version 2.8 Protocols — Media Access
13.19 NVDIMM Label Protocol

EFI_NVDIMM_LABEL_PROTOCOL

This section provides a detailed description of the EFI_NVDIMM_LABEL_PROTOCOL. For a high-level

overview of the NVDIMM Label protocol see the Label Storage Area Description section.

Summary

Provides services that allow management of labels contained in a Label Storage Area that are associated
with a specific NVDIMM Device Path. The labels describe how the data on the NVDIMM is organized in to
namespaces, the layout being utilized, logical block size, unique label identifier, label state, etc.

GUID

#define EFI_NVDIMM_LABEL_PROTOCOL_GUID \
 {0xd40b6b80,0x97d5,0x4282, \
 {0xbb,0x1d,0x22,0x3a,0x16,0x91,0x80,0x58}}

Protocol Interface Structure

typedef struct _EFI_NVDIMM_LABEL_PROTOCOL {
 EFI_NVDIMM_LABEL_STORAGE_INFORMATION LabelStorageInformation;
 EFI_NVDIMM_LABEL_STORAGE_READ LabelStorageRead;
 EFI_NVDIMM_LABEL_STORAGE_WRITE LabelStorageWrite;
}

Parameters

LabelStorageInformation Reports the size of the Label Storage Area and the
maximum amount of label data that can be read in a single
call to LabelStorageRead or written in a single call to
LabelStorageWrite.

LabelStorageRead Returns the label data stored for the NVDIMM at the
requested offset and length in the Label Storage Area.

LabelStorageWrite Writes the label data stored for the NVDIMM at the
requested offset and length in the Label Storage Area.

EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageInformation()

Summary

Retrieves the Label Storage Area size and the maximum transfer size for the LabelStorageRead and
LabelStorageWrite methods that are associated with a specific NVDIMM Device Path.

Prototype

typedef 
EFI_STATUS
(EFIAPI *EFI_NVDIMM_LABEL_STORAGE_INFORMATION) (
 IN EFI_NVDIMM_LABEL_PROTOCOL *This,
 OUT UINT32 *SizeOfLabelStorageArea,
UEFI Forum, Inc. March 2019 623

UEFI Specification, Version 2.8 Protocols — Media Access
 OUT UINT32 *MaxTransferLength
);

Parameters

This A pointer to the EFI_NVDIMM_LABEL_PROTOCOL
instance.

SizeOfLabelStorageArea The size of the Label Storage Area for the NVDIMM in
bytes.

MaxTransferLength The maximum number of bytes that can be transferred in
a single call to LabelStorageRead or LabelStorageWrite.

Description

Retrieves the Label Storage Area size and the maximum transfer size for the LabelStorageRead and
LabelStorageWrite methods.

Status Codes Returned

EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageRead()

Summary

Retrieves label data for the NVDIMM for the requested byte offset and length from within the Label
Storage Area that are associated with a specific NVDIMM Device Path.

Prototype

typedef 
EFI_STATUS
(EFIAPI *EFI_NVDIMM_LABEL_STORAGE_READ) (
 IN CONSTEFI_NVDIMM_LABEL_PROTOCOL *This,
 IN UINT32 Offset,
 IN UINT32 TransferLength,
 OUT UINT8 *LabelData
);

Parameters

This A pointer to the EFI_NVDIMM_LABEL_PROTOCOL instance.
Offset The byte offset within the Label Storage Area to read from.
TransferLength Number of bytes to read from the Label Storage Area beginning

at the byte Offset specified. A TransferLength of 0 reads no data.
LabelData The return label data read at the requested offset and length

from within the Label Storage Area.

EFI_SUCCESS The size of theLabel Storage Area and maximum transfer size returned are

valid.

EFI_ACCESS_DENIED The Label Storage Area for the NVDIMM device is not currently accessible

EFI_DEVICE_ERROR A physical device error occurred and the data transfer failed to complete
UEFI Forum, Inc. March 2019 624

UEFI Specification, Version 2.8 Protocols — Media Access
Description

Retrieves the label data for the requested offset and length from within the Label Storage Area for the
NVDIMM. See the Label Index Block and Label Definitions sections below for details on the contents of
the label data.

Status Codes Returned

EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageWrite()

Summary

Writes label data for the NVDIMM for the requested byte offset and length to the Label Storage
Area that are associated with a specific NVDIMM Device Path.

Prototype

typedef 
EFI_STATUS
(EFIAPI *EFI_NVDIMM_LABEL_STORAGE_WRITE) (
 IN CONSTEFI_NVDIMM_LABEL_PROTOCOL *This,
 IN UINT32 Offset,
 IN UINT32 TransferLength,
 IN UINT8 *LabelData
);

Parameters

This A pointer to the EFI_NVDIMM_LABEL_PROTOCOL instance.
Offset The byte offset within the Label Storage Area to write to.
TransferLength Number of bytes to write to the Label Storage Area beginning at

the byte Offset specified. A TransferLength of 0 writes no data.

EFI_SUCCESS The label data from the Label Storage Area for the NVDIMM was read

successfully at the specified Offset and TransferLength and LabelData contains

valid data.

EFI_INVALID_PARAMETER Returned if any of the following are true:
- Offset > SizeOfLabelStorageArea reported in the LabelStorageInformation

return data. 
- Offset + TransferLength is > SizeOfLabelStorageArea reported in the

LabelStorageInformation return data. 
- TransferLength is > MaxTransferLength reported in the

LabelStorageInformation return data.

EFI_ACCESS_DENIED The Label Storage Area for the NVDIMM device is not currently accessible and

labels cannot be read at this time.

EFI_DEVICE_ERROR A physical device error occurred and the data transfer failed to complete
UEFI Forum, Inc. March 2019 625

UEFI Specification, Version 2.8 Protocols — Media Access
LabelBuffer The label data to write at the requested offset and length from
within the Label Storage Area.

Description

Writes the label data for the requested offset and length in to the Label Storage Area for the NVDIMM.
See the Label Index Block and Label Definitions sections below for details on the contents of the label
data.

Status Codes Returned

Label Index Block Definitions

#define EFI_NVDIMM_LABEL_INDEX_SIG_LEN 16
#define EFI_NVDIMM_LABEL_INDEX_ALIGN 256

typedef struct EFI_NVDIMM_LABEL_INDEX_BLOCK {
 CHAR8 Sig[EFI_NVDIMM_LABEL_INDEX_SIG_LEN];
 UINT8 Flags[3];
 UINT8 LabelSize;
 UINT32 Seq;
 UINT64 MyOff; 
 UINT64 MySize;
 UINT64 OtherOff;
 UINT64 LabelOff;
 UINT32 NSlot;
 UINT16 Major;
 UINT16 Minor;
 UINT64 Checksum;
 UINT8 Free[];
};

Sig

Signature of the Index Block data structure. Must be “NAMESPACE_INDEX\0”.

Flags

EFI_SUCCESS The LabelData for the Label Storage Area for the NVDIMM was

written successfully at the specified Offset and TransferLength.

EFI_INVALID_PARAMETER Returned this status if any of the following are true: 
- Offset > SizeOfLabelStorageArea reported in the

LabelStorageInformation return data. 
- Offset + LabelBufferLength is > SizeOfLabelStorageArea

reported in the LabelStorageInformation return data. 
- TransferLength is > MaxTransferLength reported in the

LabelStorageInformation return data.
EFI_ACCESS_DENIED The Label Storage Area for the NVDIMM device is not currently

accessible and labels cannot be written at this time.

EFI_DEVICE_ERROR A physical device error occurred and the data transfer failed to

complete
UEFI Forum, Inc. March 2019 626

UEFI Specification, Version 2.8 Protocols — Media Access
Boolean attributes of this Label Storage Area. There are no flag bits defined at this
time, so this field must be zero.

LabelSize

Size of each label in bytes, 128 bytes << LabelSize. 1 means 256 bytes, 2 means 512
bytes, etc. Shall be 1 or greater.

Seq

Sequence number used to identify which of the two Index Blocks is current. Only the least-significant two
bits of this field are used in the current definition, rotating through the values depicted in Figure Z: Cyclic
Sequence Numbers in Label Index Block below. The other bits must be zero.

Figure 37. Cyclic Sequence Numbers in Label Index Block

Each time an Index Block is written, the sequence number of the current Index Block is “incremented” by
moving to the next value clockwise as shown.

Since there are two Index Blocks, written alternatively with successive sequence numbers, the older
Index Block’s sequence number will be immediately behind (counter-clockwise to) the current Index
Block’s sequence number. This property is used during software initialization to identify the current Index
Block.

The sequence number 00 is used to indicate an uninitialized or invalid Index Block. Software never writes
the sequence number 00, so a correctly check-summed Index Block with this sequence number probably
indicates a critical error. When software discovers this case it treats it as an invalid Index Block indication.
If two Index Blocks with identical sequence numbers are found, software shall treat the Index Block at the
higher offset as the valid Index Block.

MyOff

The offset of this Index Block in the Label Storage Area.

MySize

The size of this Index Block in bytes. This field must be a multiple of the
EFI_NVDIMM_LABEL_INDEX_ALIGN.

OtherOff

The offset of the other Index Block paired with this one.
UEFI Forum, Inc. March 2019 627

UEFI Specification, Version 2.8 Protocols — Media Access
LabelOff

The offset of the first slot where labels are stored in this Label Storage Area.

NSlot

The total number of slots for storing labels in this Label Storage Area. The NSlot field is typically
calculated once at Label Storage Area initialization as described in the Initial Label Storage Area
Configuration description.

Major

Major version number. Value shall be 1.

Minor

Minor version number. Value shall be 2.

Checksum

64-bit Fletcher64 checksum of all fields in this Index Block. This field is considered zero when the
checksum is computed. For references to the Fletcher64 algorithm see “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading "Fletcher64 Checksum Algorithm”

Free

Array of unsigned bytes implementing a bitmask that tracks which label slots are free. A bit value of 0
indicates in use, 1 indicates free. The size of this field is the number of bytes required to hold the bitmask
with NSlot bits, padded with additional zero bytes to make the Index Block size a multiple of
EFI_NVDIMM_LABEL_INDEX_ALIGN. Any bits allocated beyond NSlot bits must be zero.

The bitmask is organized where the label slot with the lowest offset in the Label Storage Area is tracked
by the least significant bit of the first byte of the free array. Missing from the above layout is a total count
of free slots. Since the common use case for the Label Storage Area is to read all labels during software
initialization, it is recommended that software create a total free count (or in use count, or both),
maintained at run-time. Rules for maintaining the Index Blocks are described in the Label Rules
Description and Validating Index Blocks Description below. See the Initial Label Storage Area
Configuration section for a more details on how the total number of slots are calculated.
UEFI Forum, Inc. March 2019 628

UEFI Specification, Version 2.8 Protocols — Media Access
Label Definitions

#define EFI_NVDIMM_LABEL_NAME_LEN 64

// Constants for Flags field
#define EFI_NVDIMM_LABEL_FLAGS_ROLABEL 0x00000001
#define EFI_NVDIMM_LABEL_FLAGS_LOCAL 0x00000002

// This reserved flag is utilized on older implementations
// and has been deprecated. Do not use 
#define EFI_NVDIMM_LABEL_FLAGS_RESERVED 0x00000004
#define EFI_NVDIMM_LABEL_FLAGS_UPDATING 0x00000008

typedef struct EFI_NVDIMM_LABEL{
 EFI_GUID Uuid;
 CHAR8 Name[EFI_NVDIMM_LABEL_NAME_LEN];
 UINT32 Flags;
 UINT16 NLabel;
 UINT16 Position;
 UINT64 SetCookie;
 UINT64 LbaSize;
 UINT64 Dpa; 
 UINT64 RawSize;
 UINT32 Slot;
 UINT8 Alignment; 
 UINT8 Reserved[3];
 EFI_GUID TypeGuid;
 EFI_GUID AddressAbstractionGuid;
 UINT8 Reserved1[88];
 UINT64 Checksum;
};

Uuid

Unique Label Identifier UUID per RFC 4122. This field provides two functions. First, the namespace is
associated with a UUID that software can use to uniquely identify it and providing a way for the
namespace to be matched up with applications using it. Second, when multiple labels are required to
describe a namespace , the UUID is the mechanism used to group the labels together. See the additional
descriptions below describing the process for grouping the labels together by UUID, checking for missing
labels, recovering from partial label changes, etc.

Name

NULL-terminated string using UTF-8 character formatting. The Name field is optionally used by software
to store a more friendly name for the namespace. When this field is unused, it contains zeros.

If there is a name for a Local Namespace, as indicated by the EFI_NVDIMM_LABEL_FLAGS_LOCAL Flags,
the name shall be stored in the first label of the set. All Name fields in subsequent labels for that Local
Namespace are ignored.

The Name field can be set at label creation time, or updated by following the rules in the additional
descriptions below.
UEFI Forum, Inc. March 2019 629

UEFI Specification, Version 2.8 Protocols — Media Access
Flags

Boolean attributes of this namespace. See the additional description below on the use of the flags. The
following values are defined:
EFI_NVDIMM_LABEL_FLAGS_ROLABEL – The label is read-only. This indicates the namespace is exported
to a domain where configuration changes to the label are not allowed, such as a virtual machine. This
indicates that device software and manageability software should refuse to make changes to the labels.
This is a not a security mechanism, but a usability feature instead. In cases where
EFI_NVDIMM_LABEL_FLAGS_ROLABEL is set, such as virtual machine guests, attempting to make
configuration changes that affect the labels will fail (i.e. because the VM guest is not in a position to make
the change correctly). For these cases, the VMM can set the EFI_NVDIMM_LABEL_FLAGS_ROLABEL bit
on the label exposed to the guest to provide a better user experience where manageability refuses to
make changes with a friendlier error message.

EFI_NVDIMM_LABEL_FLAGS_LOCAL – When set, the complete label set is local to a single NVDIMM
Label Storage Area. When clear, the complete label set is contained on multiple NVDIMM Label Storage
Areas. If NLabel is 1, then setting this flag is optional and it is implied that the
EFI_NVDIMM_LABEL_FLAGS_LOCAL flag is set, as the complete label set is local to a single NVDIMM
Label Storage Area.

EFI_NVDIMM_LABEL_FLAGS_UPDATING – When set, the label set is being updated. During an operation
that may require updating multiple Label Storage Areas, the EFI_NVDIMM_LABEL_FLAGS_UPDATING
flag is used to make the update atomic across interruptions. Updates happen in two phases, first writing
the label with the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag set, second writing the updated label
without the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag. As described in Recovery Steps for a Non-
Local Label Set Description, this allows recovery actions during software initialization to either roll back
or roll forward the multiple Label Storage Area changes. If EFI_NVDIMM_LABEL_FLAGS_LOCAL is set, the
labels are contained in a single Label Storage Area and there is no need to set
EFI_NVDIMM_LABEL_FLAGS_UPDATING, since the label can be written in one atomic operation.

NLabel

Total number of labels describing this namespace. The NLabel field contains the number of labels
required to describe a namespace.

Position

Position of this label in list of labels for this namespace. See NLabel description above. In the non-local
case, each label is numbered as to its position in the list of labels using the Position field. For example,
the common case where a namespace requires exactly one label, NLabel will be 1 and Position will be 0.
If a namespace is built on an Interleave Set that spans multiple Label Storage Areas, each Label Storage
Area will contain a label with increasing Position values to show each labels position in the set. For Local
Namespaces, NLabel is valid only for the first label (lowest DPA) and position shall be 0 for that label. As
part of organizing and validating the labels, SW shall have organized the labels from lowest to highest
DPA so the first label in that ordered list of labels will have the lowest DPA. Position and NLabel for all
subsequent labels in that namespace shall be set to 0xFF. See the Local Namespace description in the
Validating Labels Description section for details.

SetCookie
UEFI Forum, Inc. March 2019 630

UEFI Specification, Version 2.8 Protocols — Media Access
Interleave Sets and the NVDIMMs they contain are defined in the NFIT and the Uuid in the label is used to
uniquely identify each interleave set. The SetCookie is utilized by SW to perform consistency checks on
the Interleave Set to verify the current physical device configuration matches the original physical
configuration when the labels were created for the set. The label is considered invalid if the actual label
set cookie doesn’t match the cookie stored here. The SetCookie field in each label for that namespace is
derived from data in the NVDIMM’s Serial Presence Detect (SPD). See the SetCookie Description section
below for SetCookie details. For references to the JEDEC SPD annex see “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading "JEDEC SPD Annex”

LbaSize

This is the default logical block size in bytes and may be superseded by a block size that is specified in the
AbstractionGuid. 
-A non-zero value indicates the logical block size that is being emulated. 
-A value of zero indicates an unspecified size and its meaning is implementation specific

Dpa

The DPA is the DIMM Physical address where the NVM contributing to this namespace begins on this
NVDIMM.

RawSize

The extent of the DPA contributed by this label.

Slot

Current slot in the Label Storage Area where this label is stored.

Alignment

Alignment hint used to advertise the preferred alignment of the data from within the namespace defined
by this label.

Reserved

Shall be 0

TypeGuid

Range Type GUID that describes the access mechanism for the specified DPA range. The GUIDs utilized
for the type are defined in the ACPI 6.0 specification in the NVDIMM FW Interface Table (NFIT) chapter.
Those values are utilized here to describe the Type of namespace the label is describing. See the Address
Range Type GUID field described in the System Physical Address (SPA) Range Structure table.

AddressAbstractionGuid

Identifies the address abstraction mechanism for this namespace. A value of 0 indicates no mechanism
used.

Reserved1

Shall be 0

Checksum
UEFI Forum, Inc. March 2019 631

UEFI Specification, Version 2.8 Protocols — Media Access
64-bit Fletcher64 checksum of all fields in this Label. This field is considered zero when the checksum is
computed. For references to the Fletcher64 algorithm see “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading "Fletcher64 Checksum Algorithm”

SetCookie Definition

typedef struct EFI_NVDIMM_LABEL_SET_COOKIE_INFO {
 typedef struct EFI_NVDIMM_LABEL_SET_COOKIE_MAP {
 UINT64 RegionOffset;
 UINT32 SerialNumber; 
 UINT16 VendorId; 
 UINT16 ManufacturingDate;
 UINT8 ManufacturingLocation;
 UINT8 Reserved[31];
 } Mapping[NumberOfNvdimmsInInterleaveSet];
};

 NumberOfNvdimmsInInterleaveSet

The number of NVDIMMs in the interleave set. This is 1 if EFI_NVDIMM_LABEL_FLAGS_LOCAL Flags is set
indicating a Local Namespaces.

 RegionOffset

The Region Offset field from the ACPI NFIT NVDIMM Region Mapping Structure for a given entry. This
determines the entry’s position in the set. Region offset is 0 for Local Namespaces.

 SerialNumber

The serial number of the NVDIMM, assigned by the module vendor. This field shall be set to the value of
the NVDIMM Serial Presence Detect (SPD) Module Serial Number field defined by JEDEC with byte 0 set
to SPD byte 325, byte 1 set to SPD byte 326, byte 2 set to SPD byte 327, and byte 3 set to SPD byte 328.
For references to the JEDEC SPD annex see “Links to UEFI-Related Documents” (http://uefi.org/uefi)
under the heading "JEDEC SPD Annex”

 VendorId

The identifier indicating the vendor of the NVDIMM. This field shall be set to the value of the NVDIMM
SPD Module Manufacturer ID Code field with byte 0 set to DDR4 SPD byte 320 and byte 1 set to DDR4
SPD byte 321. For references to the JEDEC SPD annex see “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading "JEDEC SPD Annex”

 ManufacturingDate

The manufacturing date of the NVDIMM, assigned by the module vendor. This field shall be set to the
value of the NVDIMM SPD Module Manufacturing Date field with byte 0 set to SPD byte 323 and byte 1
set to SPD byte 324. For references to the JEDEC SPD annex see “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading "JEDEC SPD Annex”

ManufacturingLocation
UEFI Forum, Inc. March 2019 632

UEFI Specification, Version 2.8 Protocols — Media Access
The manufacturing location from for the NVDIMM, assigned by the module vendor. This field shall be set
to the value of the NVDIMM SPD Module Manufacturing Location field (SPD byte 322). For references to
the JEDEC SPD annex see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
"JEDEC SPD Annex”

 Reserved

Shall be 0

SetCookie Description

This value is used to detect a change in the set configuration that has rendered existing data invalid and
otherwise validates that the namespace belongs to a given NVDIMM. For each set create a data structure
of the form EFI_NVDIMM_LABEL_SET_COOKIE_INFO. The SetCookie is then calculated by sorting the
Mapping[] array by RegionOffset and then taking the Fletcher64 sum of the total
EFI_NVDIMM_LABEL_SET_COOKIE_INFO structure. For references to the Fletcher64 algorithm see “Links
to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "Fletcher64 Checksum Algorithm”

Label Storage Area Description

Namespaces are defined by Labels which are stored in the Label Storage Area(s) and accessed via means
described in the Label Rules Description.

The figure below shows the organization of the Label Storage Area. A header called the Index Block
appears twice at the top of the Label Storage Area. This provides a powerfail-safe method for updating
the information in the Label Storage Area by alternating between the two Index Blocks when writing
(more details on this mechanism below).

Following the Index Blocks, an array for storing labels takes up the remainder of the Label Storage Area.
The size of the Label Storage Area is NVDIMM implementation specific. The Index Blocks contain a bitmap
which indicates which label slots are currently free and which are in use. The same powerfail-safe
mechanism used for updating the Index Blocks covers the update of labels in the Label Storage Area.

The powerfail-safe update mechanism uses the principle of avoiding writes to active metadata. Instead, a
shadow copy is updated and checksums and sequence numbers are used to make the last written copy
active (a complete description of this mechanism is in Updating an Existing Label Description).
UEFI Forum, Inc. March 2019 633

UEFI Specification, Version 2.8 Protocols — Media Access
Initial Label Storage Area Configuration

The size of an Index Block depends on how many label slots fit into the Label Storage Area. The minimum
size of an Index Block is 256 bytes and the size must be a multiple of EFI_NVDIMM_LABEL_INDEX_ALIGN
bytes. As necessary, padding with zero bytes at the end of the structure is used to meet these size
requirements. The minimum size of the Label Storage Area is large enough to hold 2 index blocks and 2
labels. As an example, for Label Storage Areas of 128KB and 256KB, the corresponding Index Block size is
256 or 512 bytes:

Before Index Blocks and labels can be utilized, the software managing the Label Storage Area must
determine the total number of labels that will be supported and utilizing the description above, calculate
the size of the Index Blocks required. Once the initial Label Storage Area is written with the first Index
Blocks (typically done when the first Label needs to be written), the total number of slots is fixed and this
initial calculation is not performed again.

Label Description

Each slot in the Label Storage Area is either free or contains an active label.

In the cases where multiple labels are used to describe a namespace, the label fields NLabel and Position
provide an ordering (“label one of two, label two of two”) so that incomplete label sets can be detected.

A namespace is described by one or more labels. Local namespaces describe one or more device physical
address ranges from a single NVDIMM while non-Local namespaces describe a single SPA range that may
have contributions from 2 or more NVDIMMs. The number of labels needed to describe a non-Local
namespace is equal to the number of NVDIMMs contributing to the SPA range, 1 per-NVDIMM. For a
Local namespace any number, up to the max number of labels supported by the Index Block / Label
Storage Area, of device physical address ranges in the given NVDIMM can be described.

Example: <= 256 bytes Example: > 256 bytes

Size of the Index

Block field up to the

free field

72 bytes Size of the Index

Block field up to the

free field

72 bytes

Bytes required for a

bitmask of 1024

labels (the number of

labels that fit into a

128KB Label Storage

Area)

128 bytes Bytes required for a

bitmask of 2048

labels (the number of

labels that fit into a

256KB Label Storage

Area)

256 bytes

Padding to meet next

increment of 256

bytes

56 bytes Padding to meet next

increment of 256

bytes

184

Total size of the Index

Block

256 bytes 512 bytes
UEFI Forum, Inc. March 2019 634

UEFI Specification, Version 2.8 Protocols — Media Access
Label Rules Description

All the algorithms related to labels in this specification assume single-threaded / non-reentrant
execution. The algorithm for updating labels guarantees that at least one slot in the Label Storage Area
will be free, ensuring it is always possible to update labels using this method.

Software shall maintain the following invariants to use the on-media data structures correctly and to
inter-operate with other software components.

At all times, the following must be true:

• The size of the Label Storage Area is known (this must be true even if no namespace metadata
has been written yet). The Label Storage Area size is queried from the NVDIMM.

• The Label Storage Area either contains no valid Index Blocks, indicating there are no labels on
the NVDIMM (all slots free), or the validation rules below produce a single, valid, Index Block.

• 2 free slots are required in order to add a Label. Having only a single free slot indicates that no
more labels can be added. Only fully written, active labels, and full-written labels with the
EFI_NVDIMM_LABEL_FLAGS_UPDATING flag are marked in-use by the Index Block.

• Write to active label slots are not allowed; all updates to labels must be done by writing to free
slots and then updating the Index Block to make them active.

Validating Index Blocks Description

The following tests shall pass before software considers Index Blocks valid:

• Both Index Blocks must be read successfully from the Label Storage Area.

• Any Index Block with an incorrect Sig field is invalid.

• Any Index Block with an incorrect Checksum is invalid.

• Any Index Block with an incorrect MyOff, MySize, or OtherOff field is invalid.

• Any Index Block with a sequence number Seq of zero is invalid.

• If two valid Index Blocks remain, after passing all the above tests, and their sequence numbers
match, the Index Block at the lower offset in the Label Storage Area is invalid.

• If two Index Blocks remain, after passing all the above tests, their sequence numbers are
compared and the block whose sequence number is the predecessor of the other (immediately
counter-clockwise to it, as shown in Figure Z: Cyclic Sequence Numbers in Label Index Block in
the Seq description) is invalid.

• If one Index Block remains, that is the current, valid block and software should make note that
the next update to the Index Block will write the other Index Block. However, if no valid Index
Blocks remain, all slots are considered free and the next update to the index will write to the
lower-addressed block location (i.e. the start of the Label Storage Area).

Validating Labels Description

The following tests shall pass before software considers individual Labels slots valid:

• The corresponding free bit for the label Slot in the Index Block Free array must be clear (i.e.
label slot is active).

• The label Checksum shall validate.
UEFI Forum, Inc. March 2019 635

UEFI Specification, Version 2.8 Protocols — Media Access
• The Slot value in the Label shall match the logical slot location of the Label.

• The SetCookie field in the label matches the expected value as described in SetCookie
Definition.

• The address range type GUID TypeGuid shall match the System Physical Address Range
Structure that describes the access mechanism for this namespace. For Hardware Block
Namespaces it shall match the GUID for the NVDIMM Block Data Window Region.

For Local Namespaces:

• If 2 or more labels share the same Dpa value, all labels with the duplicated value are
considered invalid.

• The count of all valid labels for a given namespace Uuid shall match the NLabel value in the
first label.

• The first label, the label with the lowest Dpa value, shall have Position 0 and non-zero NLabel
value.

• All labels other than the first have Position and NLabel set to 0xff.

Reading Labels Description

For a given NVDIMM, the following steps are used to read one or more labels for validation and
namespace assembly:

Pre-condition: both Index Blocks have been read and the rules in Validating Index Blocks Description
have been followed to determine the current valid Index Block.

• Check that the label at a given slot is active. Specifically bit N is clear in the Free bitmask field
where N corresponds to the logical slot number label.

• Read the label in that slot at the offset given by:
(2 * sizeof(EFI_NVDIMM_LABEL_INDEX_BLOCK) + 
 slot * sizeof(EFI_NVDIMM_LABEL))

Recovery Steps for a Non-Local Label Set Description

Given that a non-Local Label set potentially spans multiple Label Storage Areas for multiple NVDIMMs it
is not possible to guarantee that the set is updated atomically with respect to unexpected system
interruption. Recovery shall be performed before validating the set to roll the set forward to a consistent
state or invalidate / free the label slots corresponding to an inconsistent state. Note that individual Index
Block updates are safe with respect to unexpected system interruption given the sequence number
mechanism for indicating the currently active Index Block.

The sequence below describes how the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag is used when
validating a non-Local Label Set.

• Pre-condition: The labels have been read.

• For each set of labels with the same UUID, if no labels in the set are found with the
EFI_NVDIMM_LABEL_FLAGS_UPDATING flag set, then no recovery is required for that set.

• For the sets where EFI_NVDIMM_LABEL_FLAGS_UPDATING appear at least once, if the set
is incomplete (some NVDIMMs in the set do not contain a label in the Label Storage Area
with the UUID), the recovery action is to roll back the interrupted create operation that left
UEFI Forum, Inc. March 2019 636

UEFI Specification, Version 2.8 Protocols — Media Access
this state. I.e. for each NVDIMM in the set containing a label with the given UUID, delete the
label.

• For a set where EFI_NVDIMM_LABEL_FLAGS_UPDATING appears at least once and the set is
otherwise complete (each NVDIMM in the Interleave Set contains a label with the UUID, some
with EFI_NVDIMM_LABEL_FLAGS_UPDATING set, some with
EFI_NVDIMM_LABEL_FLAGS_UPDATING clear), the recovery action is to roll forward the
change that was interrupted. I.e. for each NVDIMM in the set If
EFI_NVDIMM_LABEL_FLAGS_UPDATING is set, write an updated label with
EFI_NVDIMM_LABEL_FLAGS_UPDATING clear and with the name field copied from the first
label in the set (the label with a Position field of 0).

Recovery Steps for a Local Label Set Description

Given that a Local Label set is always contained in a single Label Storage Area for a single NVDIMM, labels
are added/updated atomically, as long as there is a free Label available as outlined in Label Storage Area
Description and Label Description. EFI_NVDIMM_LABEL_FLAGS_UPDATING should not be set for Local
sets and no additional recovery is required.

Assembling Labels into Complete Sets Description

After collecting a set of labels corresponding to a given UUID and performing the recovery actions on the
set, software shall follow the steps in this section to assemble complete sets of labels representing usable
namespaces:

1. Precondition: Labels have been read and the recovery actions have been taken.

2. For each set of labels with the same Uuid

a If the set describes a non-Local namespace, it is considered complete if labels
with unique Position fields are found for every position from 0 to NLabel – 1.

b If the set describes a Local namespace, it is considered complete if a valid first
label is found, according to the validation rules, and the number of labels in the
set matches

c NLabel.

The recovery action for the case where software finds incomplete namespaces is implementation
specific.

Updating an Existing Label Description

Updating an existing label in the Label Storage Area requires the software to follow these steps:

1. Pre-conditions: the software has an updated label constructed to be written to a specific
NVDIMM’s Label Storage Area. There is at least 1 free slot in the Label Storage Area Free
bitmask..

2. The software chooses a free slot from the Index Block, fills in that slot number in the label’s
Slot field

3. The software writes the updated label to that slot in the Label Storage Area

4. The software updates the Index Block by taking the current Index Block, setting the appropriate
bit in the Free field to make the old version of the label inactive and clearing the appropriate
bit in the Free field to make the new version active, incrementing the sequence number as
shown in Figure Z: Cyclic Sequence Numbers in Label Index Block in the Seq description, and
UEFI Forum, Inc. March 2019 637

UEFI Specification, Version 2.8 Protocols — Media Access
then writing the Index Block over the inactive Index Block location (making this location the
new active Index Block if the write succeeds)

Deleting a Label Description

The software updates the Index Block by taking the current active Index Block, setting the appropriate bit
in the Free field to make the deleted label inactive, incrementing the sequence number as shown in
Figure Z: Cyclic Sequence Numbers in Label Index Block in the Seq description, and then writing the new
Index Block over the inactive Index Block location (making this location the new active Index Block if the
write succeeds)

Creating Namespaces Description

Namespace creation procedures are different for Local vs non-Local namespaces. A Local namespace is
created from 1 or more DPA ranges of a single NVDIMM, while a non-Local namespace is created from a
single range contributed from multiple NVDIMMs. Both procedures share a common flow for establishing
new labels in an Index Block.

Writing New Labels Description

Transitioning a label slot from free to active shall follow this sequence:

1. Pre-conditions: the software has a new label constructed to be written to a specific NVDIMM’s
Label Storage Area. Because of the free Label rules outlined in Label Storage Area Description
and Label Description, there are at least 2 free slots in the Label Storage Area as described in
the Label Rules Description and Label Description sections. Choose a free slot from the Index
Block, fills in that slot number in the label’s Slot field

2. Write the new label to that slot in the Label Storage Area

3. Update the Index Block by taking the current Index Block, clearing the appropriate bit in the
Free field, incrementing the sequence number as shown in Figure Z: Cyclic Sequence Numbers
in Label Index Block in the Seq description, and then writing the Index Block over the inactive
Index Block location (making this location the new active Index Block if the write succeeds)

Creating a Non-Local Namespace

When creating a new Non-Local Namespace, the software shall follow these steps:

1. Pre-conditions: the labels to be written to each NVDIMM contributing to the namespace have
been constructed, each with a unique Position field from 0 to NLabel – 1, and all labels with
the same new UUID. All Index Blocks involved have at least 2 label slots free as described in the
Label Rules Description and Label Description sections.

2. For each label in the set, the label is written with the EFI_NVDIMM_LABEL_FLAGS_UPDATING
flag set, using the flow outlined in Writing New Labels Description to its corresponding
NVDIMM / Label Storage Area.

3. For each label in the set, the label is updated with the same contents as the previous step, but
with the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag clear, using the flow outlined in
Updating an Existing Label Description.

In the case of an unexpected system interruption, the above flows leave either a partial set of labels, all
with the new UUID, with the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag set, or a complete set of labels
is left where some of them have the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag set. The recovery steps
in Recovery Steps for a Non-Local Label Set Description comprehend these two cases so that software
can determine whether the set is consistent or needs to be invalidated.
UEFI Forum, Inc. March 2019 638

UEFI Specification, Version 2.8 Protocols — Media Access
Creating a Local Namespace
Updating labels that are all on the same NVDIMM is atomic with respect to system interruption by nature
of the Index Block update rules. Since Local namespaces reside on a single NVDIMM, the
EFI_NVDIMM_LABEL_FLAGS_UPDATING flag and multi-pass update described in the previous section
are not used. Software creating new Local namespaces shall follow these steps:

1. Pre-conditions: the labels to be written to the NVDIMM Label Storage Area have been
constructed, whereby Position, NLabel and SetCookie adhere to the validation rules described
earlier, and all labels share the same UUID. The Index Blocks involved have at least NLabel + 1
label slots free, so that after the new labels are written, it will have at least 1 free label slot left.

All labels are written to free slots and made active in one step using steps similar to the flow described
above in Writing New Labels Description:

a Free slots are identified using the current Index Block, the Slot field in each label is
updated accordingly

b All new labels are written into their free slots
c The new Index Block is constructed so the new label slots are no longer marked

free, the sequence number is advanced as shown in Figure Z: Cyclic Sequence
Numbers in Label Index Block in the Seq description, and then the new Index
Block is written over the inactive Index Block location (making this location the
new active Index Block if the write succeeds)

Updating the Name of a Namespace Description

Updating Local Labels
When updating the name on a Local set the sequence outlined in Writing New Labels Description must
be followed where the Name is updated before writing the updated Label.

Updating Non Local Labels
To update the Name field associated with a non-Local Namespace, the software must follow these steps:

1. Pre-conditions: the namespace must already exist. Each NVDIMM in the namespace must have
at least 1 free slot.

2. For each NVDIMM in the namespace, the label on that NVDIMM is updated with a label with
the new Name field and the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag set. The “for each
NVDIMM ” operation in this step must start with the NVDIMM containing the label whose
Position field is zero.

3. For each NVDIMM in the namespace, the label is updated with the same contents as the
previous step, but with the EFI_NVDIMM_LABEL_FLAGS_UPDATING flag clear, using the
updating an existing label flow described above in Updating an Existing Label Description.

If the above steps are interrupted unexpectedly, the recovery steps in Recovery Steps for a Non-Local
Label Set Description handle the case where a Name update is incomplete and finish the update.
UEFI Forum, Inc. March 2019 639

UEFI Specification, Version 2.8 Protocols — Media Access
13.20 EFI UFS Device Config Protocol

EFI_UFS_DEVICE_CONFIG_PROTOCOL

 Summary

User invokes this protocol to access the UFS device descriptors/flags/attributes and configure UFS device
behavior.

GUID

#define EFI_UFS_DEVICE_CONFIG_GUID \

 { 0xb81bfab0, 0xeb3, 0x4cf9, \

 { 0x84, 0x65, 0x7f, 0xa9, 0x86, 0x36, 0x16, 0x64}}

Protocol Interface Structure

typedef struct _EFI_UFS_DEVICE_CONFIG_PROTOCOL {

 EFI_UFS_DEVICE_CONFIG_RW_DESCRIPTOR RwUfsDescriptor;

 EFI_UFS_DEVICE_CONFIG_RW_FLAG RwUfsFlag;

 EFI_UFS_DEVICE_CONFIG_RW_ATTRIBUTE RwUfsAttribute;

} EFI_UFS_DEVICE_CONFIG_PROTOCOL;

Members

RwUfsDescriptor

Read or write specified device descriptor of a UFS device.

RwUfsFlag

Read or write specified flag of a UFS device.

RwUfsAttribute

Read or write specified attribute of a UFS device.

Description

This protocol aims at defining a standard interface for UEFI drivers and applications to access UFS device
descriptors/flags/attributes and configure the UFS device behavior.

EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsDescriptor()

Summary

 This function is used to read or write specified device descriptor of a UFS device.
UEFI Forum, Inc. March 2019 640

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_UFS_DEVICE_CONFIG_RW_DESCRIPTOR) (

 IN EFI_UFS_DEVICE_CONFIG_PROTOCOL *This,

 IN BOOLEAN Read,

 IN UINT8 DescId,

 IN UINT8 Index,

 IN UINT8 Selector,

 IN OUT UINT8 Descriptor,

 IN OUT UINT32 *DescSize,

);

Parameters

 This The pointer to the EFI_UFS_DEVICE_CONFIG_PROTOCOL instance.

 Read The boolean variable to show r/w direction.

 DescId The ID of device descriptor.

 Index The Index of device descriptor.

 Selector The Selector of device descriptor.

 Descriptor The buffer of device descriptor to be read or written.

 DescSize The size of device descriptor buffer. On input, the size, in bytes, of
the data buffer specified by Descriptor. On output, the number of
bytes that were actually transferred.

Description

The RwUfsDescriptor function is used to read/write UFS device descriptors. The consumer of this API is
responsible for allocating the data buffer pointed by Descriptor.

Status Codes Returned

EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsFlag()

Summary

 This function is used to read or write specified flag of a UFS device.

EFI_SUCCESS The device descriptor is read/written successfully.

EFI_INVALID_PARAMETER This is NULL or Descriptor is NULL or DescSize is NULL.
EFI_INVALID_PARAMETER DescId, Index and Selector are invalid combination to point to a type of UFS device

descriptor.
EFI_DEVICE_ERROR The device descriptor is not read/written successfully.
UEFI Forum, Inc. March 2019 641

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_UFS_DEVICE_CONFIG_RW_FLAG) (

 IN EFI_UFS_DEVICE_CONFIG_PROTOCOL *This,

 IN BOOLEAN Read,

 IN UINT8 FlagId,

 IN OUT UINT8 *Flag,

);

Parameters

 This The pointer to the EFI_UFS_DEVICE_CONFIG_PROTOCOL instance.

 Read The boolean variable to show r/w direction.

 FlagId The ID of flag to be read or written.

 Flag The buffer to set or clear flag.

Description

The RwUfsFlag function is used to read/write UFS flag descriptors. The consumer of this API is
responsible for allocating the buffer pointed by Flag. The buffer size is 1 byte as UFS flag descriptor is just
a single Boolean value that represents a TRUE or FALSE, ‘0’ or ‘1’, ON or OFF type of value.

Status Codes Returned

EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsAttribute()

Summary

 This function is used to read or write specified attribute of a UFS device.

EFI_SUCCESS The flag descriptor is set/clear successfully.

EFI_INVALID_PARAMETER This is NULL or Flag is NULL.

EFI_INVALID_PARAMETER FlagId is an invalid UFS flag ID.
EFI_DEVICE_ERROR The flag is not set/clear successfully.
UEFI Forum, Inc. March 2019 642

UEFI Specification, Version 2.8 Protocols — Media Access
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_UFS_DEVICE_CONFIG_RW_ATTRIBUTE) (

 IN EFI_UFS_DEVICE_CONFIG_PROTOCOL *This,

 IN BOOLEAN Read,

 IN UINT8 AttrId,

 IN UINT8 Index,

 IN UINT8 Selector,

 IN OUT UINT8 *Attribute,

 IN OUT UINT32 *AttrSize,

);

Parameters

 This The pointer to the EFI_UFS_DEVICE_CONFIG_PROTOCOL instance.

 Read The boolean variable to show r/w direction.

 AttrId The ID of Attribute.

 Index The Index of Attribute.

 Selector The Selector of Attribute.

 Attribute The buffer of Attribute to be read or written.

 AttrSize The size of Attribute buffer. On input, the size, in bytes, of the data buffer

specified by Attribute. On output, the number of bytes that were actually

transferred.

Description

The RwUfsAttribute function is used to read/write UFS attributes. The consumer of this API is
responsible for allocating the data buffer pointed by Attribute.

Status Codes Returned

EFI_SUCCESS The attribute is read/written successfully.

EFI_INVALID_PARAMETER This is NULL or Attribute is NULL or AttrSize is NULL.
EFI_INVALID_PARAMETER AttrId, Index and Selector are invalid combination to point to a type of UFS

attribute.
EFI_DEVICE_ERROR The attribute is not read/written successfully.
UEFI Forum, Inc. March 2019 643

UEFI Specification, Version 2.8
14 - Protocols — PCI Bus Support

14.1 PCI Root Bridge I/O Support

Section 14.1 and Section 14.2 describe the PCI Root Bridge I/O Protocol. This protocol provides an I/O
abstraction for a PCI Root Bridge that is produced by a PCI Host Bus Controller. A PCI Host Bus Controller
is a hardware component that allows access to a group of PCI devices that share a common pool of PCI I/
O and PCI Memory resources. This protocol is used by a PCI Bus Driver to perform PCI Memory, PCI I/O,
and PCI Configuration cycles on a PCI Bus. It also provides services to perform different types of bus
mastering DMA on a PCI bus. PCI device drivers will not directly use this protocol. Instead, they will use
the I/O abstraction produced by the PCI Bus Driver. Only drivers that require direct access to the entire
PCI bus should use this protocol. In particular, this chapter defines functions for managing PCI buses,
although other bus types may be supported in a similar fashion as extensions to this specification.

All the services described in this chapter that generate PCI transactions follow the ordering rules defined
in the PCI Specification. If the processor is performing a combination of PCI transactions and system
memory transactions, then there is no guarantee that the system memory transactions will be strongly
ordered with respect to the PCI transactions. If strong ordering is required, then processor-specific
mechanisms may be required to guarantee strong ordering. Some 64-bit systems may require the use of
memory fences to guarantee ordering.

14.1.1 PCI Root Bridge I/O Overview

The interfaces provided in the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL are for performing basic
operations to memory, I/O, and PCI configuration space. The system provides abstracted access to basic
system resources to allow a driver to have a programmatic method to access these basic system
resources.

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL allows for future innovation of the platform. It abstracts
device-specific code from the system memory map. This allows system designers to make changes to the
system memory map without impacting platform independent code that is consuming basic system
resources.

A platform can be viewed as a set of processors and a set of core chipset components that may produce
one or more host buses. Figure 38 shows a platform with n processors (CPUs in the figure), and a set of
core chipset components that produce m host bridges.
UEFI Forum, Inc. March 2019 644

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 38. Host Bus Controllers

Simple systems with one PCI Host Bus Controller will contain a single instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. More complex system may contain multiple instances of this
protocol. It is important to note that there is no relationship between the number of chipset components
in a platform and the number of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instances. This protocol
abstracts access to a PCI Root Bridge from a software point of view, and it is attached to a device handle
that represents a PCI Root Bridge. A PCI Root Bridge is a chipset component(s) that produces a physical
PCI Bus. It is also the parent to a set of PCI devices that share common PCI I/O, PCI Memory, and PCI
Prefetchable Memory regions. A PCI Host Bus Controller is composed of one or more PCI Root Bridges.

A PCI Host Bridge and PCI Root Bridge are different than a PCI Segment. A PCI Segment is a collection of
up to 256 PCI busses that share the same PCI Configuration Space. Depending on the chipset, a single
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL may abstract a portion of a PCI Segment, or an entire PCI
Segment. A PCI Host Bridge may produce one or more PCI Root Bridges. When a PCI Host Bridge produces
multiple PCI Root Bridges, it is possible to have more than one PCI Segment.

PCI Root Bridge I/O Protocol instances are either produced by the system firmware or by a UEFI driver.
When a PCI Root Bridge I/O Protocol is produced, it is placed on a device handle along with an EFI Device
Path Protocol instance. Figure 39 shows a sample device handle for a PCI Root Bridge Controller that
includes an instance of the EFI_DEVICE_PATH_PROTOCOL and the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Section 14.2 describes the PCI Root Bridge I/O Protocol in
detail, and Section 14.2.1 describes how to build device paths for PCI Root Bridges. The
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL does not abstract access to the chipset-specific registers that
are used to manage a PCI Root Bridge. This functionality is hidden within the system firmware or the
driver that produces the handles that represent the PCI Root Bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1
UEFI Forum, Inc. March 2019 645

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 39. Device Handle for a PCI Root Bridge Controller

14.1.1.1 Sample PCI Architectures

The PCI Root Bridge I/O Protocol is designed to provide a software abstraction for a wide variety of PCI
architectures including the ones described in this section. This section is not intended to be an exhaustive
list of the PCI architectures that the PCI Root Bridge I/O Protocol can support. Instead, it is intended to
show the flexibility of this protocol to adapt to current and future platform designs.

Figure 40 shows an example of a PCI Host Bus with one PCI Root Bridge. This PCI Root Bridge produces
one PCI Local Bus that can contain PCI Devices on the motherboard and/or PCI slots. This would be typical
of a desktop system. A higher end desktop system might contain a second PCI Root Bridge for AGP
devices. The firmware for this platform would produce one instance of the PCI Root Bridge I/O Protocol.

Figure 40. Desktop System with One PCI Root Bridge

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge
UEFI Forum, Inc. March 2019 646

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 41 shows an example of a larger server with one PCI Host Bus and four PCI Root Bridges. The PCI
devices attached to the PCI Root Bridges are all part of the same coherency domain. This means they
share a common PCI I/O Space, a common PCI Memory Space, and a common PCI Prefetchable Memory
Space. Each PCI Root Bridge produces one PCI Local Bus that can contain PCI Devices on the motherboard
or PCI slots. The firmware for this platform would produce four instances of the PCI Root Bridge I/O
Protocol.

Figure 41. Server System with Four PCI Root Bridges

Figure 42 shows an example of a server with one PCI Host Bus and two PCI Root Bridges. Each of these PCI
Root Bridges is a different PCI Segment which allows the system to have up to 512 PCI Buses. A single PCI
Segment is limited to 256 PCI Buses. These two segments do not share the same PCI Configuration Space,
but they do share the same PCI I/O, PCI Memory, and PCI Prefetchable Memory Space. This is why it can
be described by a single PCI Host Bus. The firmware for this platform would produce two instances of the
PCI Root Bridge I/O Protocol.

OM13162

Core Chipset Components

PCI RB PCI RB PCI RB PCI RB

PCI Host Bus

PCI Bus PCI Bus PCI Bus PCI Bus
UEFI Forum, Inc. March 2019 647

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 42. Server System with Two PCI Segments

Figure 43 shows a server system with two PCI Host Buses and one PCI Root Bridge per PCI Host Bus. This
system supports up to 512 PCI Buses, but the PCI I/O, PCI Memory Space, and PCI Prefetchable Memory
Space are not shared between the two PCI Root Bridges. The firmware for this platform would produce
two instances of the PCI Root Bridge I/O Protocol.

Figure 43. Server System with Two PCI Host Buses

OM13163

PCI Segment 0

Core Chipset Components

PCI Host Bus

PCI RB

PCI Segment 1

PCI RB

OM13164

PCI Segment 0

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 1

PCI RB

PCI Host Bus 1
UEFI Forum, Inc. March 2019 648

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
14.2 PCI Root Bridge I/O Protocol

This section provides detailed information on the PCI Root Bridge I/O Protocol and its functions.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that are used to abstract accesses
to PCI controllers behind a PCI Root Bridge Controller.

GUID

#define EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \

 {0x2F707EBB,0x4A1A,0x11d4,\

 {0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}}

Protocol Interface Structure

typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {

 EFI_HANDLE
ParentHandle;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration;

 UINT32 SegmentNumber;

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Parameters

ParentHandle The EFI_HANDLE of the PCI Host Bridge of which this PCI Root Bridge
is a member.

PollMem Polls an address in memory mapped I/O space until an exit condition
is met, or a timeout occurs. See the PollMem() function
description.

PollIo Polls an address in I/O space until an exit condition is met, or a
timeout occurs. See the PollIo() function description.

Mem.Read Allows reads from memory mapped I/O space. See the Mem.Read()
function description.
UEFI Forum, Inc. March 2019 649

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Mem.Write Allows writes to memory mapped I/O space. See the Mem.Write()
function description.

Io.Read Allows reads from I/O space. See the Io.Read() function
description.

Io.Write Allows writes to I/O space. See the Io.Write() function
description.

Pci.Read Allows reads from PCI configuration space. See the Pci.Read()
function description.

Pci.Write Allows writes to PCI configuration space. See the Pci.Write()
function description.

CopyMem Allows one region of PCI root bridge memory space to be copied to
another region of PCI root bridge memory space. See the
CopyMem() function description.

Map Provides the PCI controller–specific addresses needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping. See
the AllocateBuffer() function description.

FreeBuffer Free pages that were allocated with AllocateBuffer(). See the
FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See the
Flush() function description.

GetAttributes Gets the attributes that a PCI root bridge supports setting with
SetAttributes(), and the attributes that a PCI root bridge is
currently using. See the GetAttributes() function description.

SetAttributes Sets attributes for a resource range on a PCI root bridge. See the
SetAttributes() function description.

Configuration Gets the current resource settings for this PCI root bridge. See the
Configuration() function description.

SegmentNumber The segment number that this PCI root bridge resides.

Related Definitions

//***

// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH

//***

typedef enum {

 EfiPciWidthUint8,

 EfiPciWidthUint16,

 EfiPciWidthUint32,

 EfiPciWidthUint64,

 EfiPciWidthFifoUint8,

 EfiPciWidthFifoUint16,

 EfiPciWidthFifoUint32,

 EfiPciWidthFifoUint64,
UEFI Forum, Inc. March 2019 650

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
 EfiPciWidthFillUint8,

 EfiPciWidthFillUint16,

 EfiPciWidthFillUint32,

 EfiPciWidthFillUint64,

 EfiPciWidthMaximum

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH;

//***

// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM

//***

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (

 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

//***

// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM

//***

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

//***

// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS

//***

typedef struct {

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Read;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Write;

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS;

//***

// EFI PCI Root Bridge I/O Protocol Attribute bits

//***

#define EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
UEFI Forum, Inc. March 2019 651

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
#define EFI_PCI_ATTRIBUTE_ISA_IO 0x0002

#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO 0x0004

#define EFI_PCI_ATTRIBUTE_VGA_MEMORY 0x0008

#define EFI_PCI_ATTRIBUTE_VGA_IO 0x0010

#define EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO 0x0020

#define EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO 0x0040

#define EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080

#define EFI_PCI_ATTRIBUTE_MEMORY_CACHED 0x0800

#define EFI_PCI_ATTRIBUTE_MEMORY_DISABLE 0x1000

#define EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000

#define EFI_PCI_ATTRIBUTE_ISA_IO_16 0x10000

#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000

#define EFI_PCI_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_ATTRIBUTE_ISA_IO_16
If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are
forwarded onto a PCI root bridge using a 16-bit address decoder on
address bits 0..15. Address bits 16..31 must be zero. This bit is used
to forward I/O cycles for legacy ISA devices onto a PCI root bridge.
This bit may not be combined with EFI_PCI_ATTRIBUTE_ISA_IO.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16
If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and
0x3C9 are forwarded onto a PCI root bridge using a 16-bit address
decoder on address bits 0..15. Address bits 16..31 must be zero. This
bit is used to forward I/O write cycles to the VGA palette registers
onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_ATTRIBUTE_VGA_IO_16
If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB
and 0x3C0–0x3DF are forwarded onto a PCI root bridge using a
16-bit address decoder on address bits 0..15. Address bits 16..31
must be zero. This bit is used to forward I/O cycles for a VGA
controller onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_ATTRIBUTE_VGA_IO_16 also includes the I/O range
described by EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO
If this bit is set, then the PCI I/O cycles between 0x00000000 and
0x000000FF are forwarded onto a PCI root bridge. This bit is used to
forward I/O cycles for ISA motherboard devices onto a PCI root
bridge.

EFI_PCI_ATTRIBUTE_ISA_IO
|If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF
are forwarded onto a PCI root bridge using a 10-bit address decoder
UEFI Forum, Inc. March 2019 652

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
on address bits 0..9. Address bits 10..15 are not decoded, and
address bits 16..31 must be zero. This bit is used to forward I/O
cycles for legacy ISA devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO
If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and
0x3C9 are forwarded onto a PCI root bridge using a 10 bit address
decoder on address bits 0..9. Address bits 10..15 are not decoded,
and address bits 16..31 must be zero. This bit is used to forward I/O
write cycles to the VGA palette registers onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_MEMORY
If this bit is set, then the PCI memory cycles between 0xA0000 and
0xBFFFF are forwarded onto a PCI root bridge. This bit is used to
forward memory cycles for a VGA frame buffer onto a PCI root
bridge.

EFI_PCI_ATTRIBUTE_VGA_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB
and 0x3C0-0x3DF are forwarded onto a PCI root bridge using a 10-bit
address decoder on address bits 0..9. Address bits 10..15 are not
decoded, and the address bits 16..31 must be zero. This bit is used to
forward I/O cycles for a VGA controller onto a PCI root bridge. Since
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO also includes the I/O range
described by EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO, the
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO is set.

EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and
0x3F6-0x3F7 are forwarded onto a PCI root bridge using a 16-bit
address decoder on address bits 0..15. Address bits 16..31 must be
zero. This bit is used to forward I/O cycles for a Primary IDE
controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177
and 0x376-0x377 are forwarded onto a PCI root bridge using a 16-bit
address decoder on address bits 0..15. Address bits 16..31 must be
zero. This bit is used to forward I/O cycles for a Secondary IDE
controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE
If this bit is set, then this platform supports changing the attributes
of a PCI memory range so that the memory range is accessed in a
write combining mode. By default, PCI memory ranges are not
accessed in a write combining mode.

EFI_PCI_ATTRIBUTE_MEMORY_CACHED
If this bit is set, then this platform supports changing the attributes
of a PCI memory range so that the memory range is accessed in a
cached mode. By default, PCI memory ranges are accessed
noncached.

EFI_PCI_ATTRIBUTE_MEMORY_DISABLE
If this bit is set, then this platform supports changing the attributes
UEFI Forum, Inc. March 2019 653

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
of a PCI memory range so that the memory range is disabled, and
can no longer be accessed. By default, all PCI memory ranges are
enabled.

EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE
This bit may only be used in the Attributes parameter to
AllocateBuffer(). If this bit is set, then the PCI controller that is
requesting a buffer through AllocateBuffer() is capable of producing
PCI Dual Address Cycles, so it is able to access a 64-bit address space.
If this bit is not set, then the PCI controller that is requesting a buffer
through AllocateBuffer() is not capable of producing PCI Dual
Address Cycles, so it is only able to access a 32-bit address space.

//***

// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION

//***

typedef enum {

 EfiPciOperationBusMasterRead,

 EfiPciOperationBusMasterWrite,

 EfiPciOperationBusMasterCommonBuffer,

 EfiPciOperationBusMasterRead64,

 EfiPciOperationBusMasterWrite64,

 EfiPciOperationBusMasterCommonBuffer64,

 EfiPciOperationMaximum

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION;

EfiPciOperationBusMasterRead

A read operation from system memory by a bus master that is not capable of
producing PCI dual address cycles.

EfiPciOperationBusMasterWrite

A write operation to system memory by a bus master that is not capable of
producing PCI dual address cycles.

EfiPciOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a
bus master that is not capable of producing PCI dual address cycles. The buffer is
coherent from both the processor’s and the bus master’s point of view.

EfiPciOperationBusMasterRead64

A read operation from system memory by a bus master that is capable of producing
PCI dual address cycles.

EfiPciOperationBusMasterWrite64

A write operation to system memory by a bus master that is capable of producing PCI
dual address cycles.
UEFI Forum, Inc. March 2019 654

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
EfiPciOperationBusMasterCommonBuffer64

Provides both read and write access to system memory by both the processor and a
bus master that is capable of producing PCI dual address cycles. The buffer is
coherent from both the processor’s and the bus master’s point of view.

Description

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL provides the basic Memory, I/O, PCI configuration, and
DMA interfaces that are used to abstract accesses to PCI controllers. There is one
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance for each PCI root bridge in a system. Embedded
systems, desktops, and workstations will typically only have one PCI root bridge. High-end servers may
have multiple PCI root bridges. A device driver that wishes to manage a PCI bus in a system will have to
retrieve the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance that is associated with the PCI bus to be
managed. A device handle for a PCI Root Bridge will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance and an EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance. The
PCI bus driver can look at the EFI_DEVICE_PATH_PROTOCOL instances to determine which
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to use.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three basic types
of bus mastering DMA that is supported by this protocol. These are DMA reads by a bus master, DMA
writes by a bus master, and common buffer DMA. The DMA read and write operations may need to be
broken into smaller chunks. The caller of Map() must pay attention to the number of bytes that were
mapped, and if required, loop until the entire buffer has been transferred. The following is a list of the
different bus mastering DMA operations that are supported, and the sequence of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL APIs that are used for each DMA operation type. See “Related
Definitions” above for the definition of the different DMA operation types.

DMA Bus Master Read Operation

• Call Map() for EfiPciOperationBusMasterRead or EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().

• Start the DMA Bus Master.

• Wait for DMA Bus Master to complete the read operation.

• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite or EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().

• Start the DMA Bus Master.

• Wait for DMA Bus Master to complete the write operation.

• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI
Specification Section 3.2.5.2) .

• Call Flush().

• Call Unmap().

DMA Bus Master Common Buffer Operation
UEFI Forum, Inc. March 2019 655

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
• Call AllocateBuffer() to allocate a common buffer.

• Call Map() for EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().

• The common buffer can now be accessed equally by the processor and the DMA bus master.

• Call Unmap().

• Call FreeBuffer().

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

Address The base address of the memory operations. The caller is
responsible for aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask
are ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be
of poorer granularity.

Result Pointer to the last value read from the memory location.
UEFI Forum, Inc. March 2019 656

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Description

This function provides a standard way to poll a PCI memory location. A PCI memory read operation is
performed at the PCI memory address specified by Address for the width specified by Width. The result
of this PCI memory read operation is stored in Result. This PCI memory read operation is repeated until
either a timeout of Delay 100 ns units has expired, or (Result & Mask) is equal to Value.

This function will always perform at least one PCI memory read access no matter how small Delay may
be. If Delay is zero, then Result will be returned with a status of EFI_SUCCESS even if Result does
not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and memory width restrictions that a PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 are not supported.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns. However, if the memory mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the ordering
rules defined by the processor architecture.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI Root Bridge. Returns when either the polling exit criteria is satisfied or
after a defined duration.

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 657

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Width Signifies the width of the I/O operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

Address The base address of the I/O operations. The caller is responsible for
aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask
are ignored when polling the I/O address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be
of poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is performed at
the PCI I/O address specified by Address for the width specified by Width. The result of this PCI I/O read
operation is stored in Result. This PCI I/O read operation is repeated until either a timeout of Delay
100 ns units has expired, or (Result & Mask) is equal to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If Delay is
zero, then Result will be returned with a status of EFI_SUCCESS even if Result does not match the
exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any alignment
and I/O width restrictions that the PCI Root Bridge on a platform might require. For example on some
platforms, width requests of EfiPciWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns.
UEFI Forum, Inc. March 2019 658

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge memory space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Width Signifies the width of the memory operation. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

Address The base address of the memory operation. The caller is responsible
for aligning the Address if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access PCI controller registers in the
PCI root bridge memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and memory width restrictions that a PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 659

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16, EfiPciWidthFifoUint32, or
EfiPciWidthFifoUint64, then only Buffer is incremented for each of the Count operations
performed. The read or write operation is performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16, EfiPciWidthFillUint32, or
EfiPciWidthFillUint64, then only Address is incremented for each of the Count operations
performed. The read or write operation is performed Count times from the first element of Buffer.

All the PCI read transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-mapped I/
O region being accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set,
then the transactions will follow the ordering rules defined by the processor architecture.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge I/O space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 660

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Address The base address of the I/O operation. The caller is responsible for
aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is Width size
* Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in the PCI
root bridge I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PCI root bridge on a platform might require. For example on
some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16, EfiPciWidthFifoUint32, or
EfiPciWidthFifoUint64, then only Buffer is incremented for each of the Count operations
performed. The read or write operation is performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16, EfiPciWidthFillUint32, or
EfiPciWidthFillUint64, then only Address is incremented for each of the Count operations
performed. The read or write operation is performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()

Summary

Enables a PCI driver to access PCI controller registers in a PCI root bridge’s configuration space.

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 661

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 Address,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

Address The address within the PCI configuration space for the PCI controller.
See Table 118 for the format of Address.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration registers for a
PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for any
alignment and PCI configuration width issues that a PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16, EfiPciWidthFifoUint32, or
EfiPciWidthFifoUint64, then only Buffer is incremented for each of the Count operations
performed. The read or write operation is performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16, EfiPciWidthFillUint32, or
EfiPciWidthFillUint64, then only Address is incremented for each of the Count operations
performed. The read or write operation is performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns.
UEFI Forum, Inc. March 2019 662

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 118. PCI Configuration Address

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI root bridge memory space to another region of PCI root
bridge memory space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,

 IN UINT64 DestAddress,

 IN UINT64 SrcAddress,

 IN UINTN Count
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 14.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 14.2.

DestAddress The destination address of the memory operation. The caller is
responsible for aligning the DestAddress if required.


Mnemonic

Byte
Offset

Byte
Length


Description

Register 0 1 The register number on the PCI Function.

Function 1 1 The PCI Function number on the PCI Device.

Device 2 1 The PCI Device number on the PCI Bus.

Bus 3 1 The PCI Bus number.

ExtendedRegister 4 4 The register number on the PCI Function. If this field is zero, then
the Register field is used for the register number. If this field is
nonzero, then the Register field is ignored, and the
ExtendedRegister field is used for the register number.

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 663

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
SrcAddress The source address of the memory operation. The caller is
responsible for aligning the SrcAddress if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestAddress and SrcAddress.

Description

The CopyMem() function enables a PCI driver to copy one region of PCI root bridge memory space to
another region of PCI root bridge memory space. This is especially useful for video scroll operation on a
memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and memory width restrictions that a PCI root bridge on a platform might require. For example
on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then Count read/write transactions are performed to move the contents of
the SrcAddress buffer to the DestAddress buffer. The implementation must be reentrant, and it
must handle overlapping SrcAddress and DestAddress buffers. This means that the implementation
of CopyMem() must choose the correct direction of the copy operation based on the type of overlap that
exists between the SrcAddress and DestAddress buffers. If either the SrcAddress buffer or the
DestAddress buffer crosses the top of the processor’s address space, then the result of the copy
operation is unpredictable.

The contents of the DestAddress buffer on exit from this service must match the contents of the
SrcAddress buffer on entry to this service. Due to potential overlaps, the contents of the SrcAddress
buffer may be modified by this service. The following rules can be used to guarantee the correct
behavior:

• If DestAddress > SrcAddress and DestAddress < (SrcAddress + Width size * Count), then the data
should be copied from the SrcAddress buffer to the DestAddress buffer starting from the end of
buffers and working toward the beginning of the buffers.

• Otherwise, the data should be copied from the SrcAddress buffer to the DestAddress buffer
starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns. All the PCI write transactions generated by this function will follow the write ordering and
completion rules defined in the PCI Specification. However, if the memory-mapped I/O region being
accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the
transactions will follow the ordering rules defined by the processor architecture.
UEFI Forum, Inc. March 2019 664

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses required to access system memory from a
DMA bus master.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,

 IN VOID *HostAddress,

 IN OUT UINTN *NumberOfBytes,

 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,

 OUT VOID **Mapping

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Operation Indicates if the bus master is going to read or write to system
memory. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION is defined in
Section 14.2.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use to
access the system memory’s HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in
EFI_BOOT_SERVICES.AllocatePages(). This address cannot be
used by the processor to access the contents of the buffer specified
by HostAddress.

Mapping The value to pass to Unmap() when the bus master DMA operation
is complete.

Description

The Map() function provides the PCI controller specific addresses needed to access system memory. This
function is used to map system memory for PCI bus master DMA accesses.

EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 665

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or single write data
transfer, then EfiPciOperationBusMasterRead, EfiPciOperationBusMasterRead64,
EfiPciOperationBusMasterWrite, or EfiPciOperationBusMasterWrite64 is used and the
range is unmapped to complete the operation. If performing an EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64 operation, all the data must be present in system memory
before Map() is performed. Similarly, if performing an EfiPciOperation-BusMasterWrite or
EfiPciOperationBusMasterWrite64 the data cannot be properly accessed in system memory until
Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciOperation-BusMasterCommonBuffer
or EfiPciOperationBusMasterCommonBuffer64. However, only memory allocated via the
AllocateBuffer() interface can be mapped for this type of operation.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the requested
amount. In this case, the DMA operation will have to be broken up into smaller chunks. The Map()
function will map as much of the DMA operation as it can at one time. The caller may have to loop on
Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 666

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN VOID *Mapping

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources. If the
operation was an EfiPciOperationBusMasterWrite or EfiPciOperationBusMasterWrite64,
the data is committed to the target system memory. Any resources used for the mapping are freed.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN EFI_ALLOCATE_TYPE Type,

 IN EFI_MEMORY_TYPE MemoryType,

 IN UINTN Pages,

 OUT VOID **HostAddress,

 IN UINT64 Attributes

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.1.

Type This parameter is not used and must be ignored.

EFI_SUCCESS The range was unmapped.

EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().

EFI_DEVICE_ERROR The data was not committed to the target system memory.
UEFI Forum, Inc. March 2019 667

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined in
EFI_BOOT_SERVICES.AllocatePages().

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used with
this function. If any other bits are set, then EFI_UNSUPPORTED is
returned. This function may choose to ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a hint
to the implementation that may improve the performance of the
calling driver. The implementation may choose any default for the
memory attributes including write combining, cached, both, or
neither as long as the allocated buffer can be seen equally by both
the processor and the PCI bus master.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciOperationBusMasterCommonBuffer or EfiPciOperationBusMasterCommonBuffer64
mapping. This means that the buffer allocated by this function must support simultaneous access by both
the processor and a PCI Bus Master. The device address that the PCI Bus Master uses to access the buffer
can be retrieved with a call to Map().

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is set, then when the buffer
allocated by this function is mapped with a call to Map(), the device address that is returned by Map()
must be within the 64-bit device address space of the PCI Bus Master.

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is clear, then when the buffer
allocated by this function is mapped with a call to Map(), the device address that is returned by Map()
must be within the 32-bit device address space of the PCI Bus Master.

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.
UEFI Forum, Inc. March 2019 668

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN UINTN Pages,

 IN VOID *HostAddress

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages was not
allocated with AllocateBuffer().
UEFI Forum, Inc. March 2019 669

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.1.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller specific
action must be taken to guarantee that the posted write transactions have been flushed from the PCI
controller and from all the PCI bridges into the PCI host bridge. This is typically done with a PCI read
transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the processor’s
view of system memory are guaranteed to be coherent. If the PCI posted write transactions cannot be
flushed from the PCI host bridge, then the PCI bus master and processor are not guaranteed to have a
coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()

Summary

Gets the attributes that a PCI root bridge supports setting with SetAttributes(), and the attributes
that a PCI root bridge is currently using.

EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host bridge to
system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI host
bridge due to a hardware error.
UEFI Forum, Inc. March 2019 670

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 OUT UINT64 *Supports OPTIONAL,

 OUT UINT64 *Attributes OPTIONAL

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Supports A pointer to the mask of attributes that this PCI root bridge supports
setting with SetAttributes(). The available attributes are listed in
Section 14.2. This is an optional parameter that may be NULL.

Attributes A pointer to the mask of attributes that this PCI root bridge is
currently using. The available attributes are listed in Section 14.2.
This is an optional parameter that may be NULL.

Description

The GetAttributes() function returns the mask of attributes that this PCI root bridge supports and
the mask of attributes that the PCI root bridge is currently using. If Supports is not NULL, then
Supports is set to the mask of attributes that the PCI root bridge supports. If Attributes is not NULL,
then Attributes is set to the mask of attributes that the PCI root bridge is currently using. If both
Supports and Attributes are NULL, then EFI_INVALID_PARAMETER is returned. Otherwise,
EFI_SUCCESS is returned.

If a bit is set in Supports, then the PCI root bridge supports this attribute type, and a call can be made to
SetAttributes() using that attribute type. If a bit is set in Attributes, then the PCI root bridge is
currently using that attribute type. Since a PCI host bus may be composed of more than one PCI root
bridge, different Attributes values may be returned by different PCI root bridges.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()

Summary

Sets attributes for a resource range on a PCI root bridge.

EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI root bridge
supports is returned in Supports. If Attributes is not NULL, then
the attributes that the PCI root bridge is currently using is returned in
Attributes.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
UEFI Forum, Inc. March 2019 671

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 IN UINT64 Attributes,

 IN OUT UINT64 *ResourceBase OPTIONAL,

 IN OUT UINT64 *ResourceLength OPTIONAL

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Attributes The mask of attributes to set. If the attribute bit
MEMORY_WRITE_COMBINE, MEMORY_CACHED, or
MEMORY_DISABLE is set, then the resource range is specified by
ResourceBase and ResourceLength. If MEMORY_WRITE_COMBINE,
MEMORY_CACHED, and MEMORY_DISABLE are not set, then
ResourceBase and ResourceLength are ignored, and may be NULL.
The available attributes are listed in Section 14.2.

ResourceBase A pointer to the base address of the resource range to be modified
by the attributes specified by Attributes. On return, *ResourceBase
will be set the actual base address of the resource range. Not all
resources can be set to a byte boundary, so the actual base address
may differ from the one passed in by the caller. This parameter is
only used if the MEMORY_WRITE_COMBINE bit, the
MEMORY_CACHED bit, or the MEMORY_DISABLE bit of Attributes is
set. Otherwise, it is ignored, and may be NULL.

ResourceLength A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *ResourceLength will
be set the actual length of the resource range. Not all resources can
be set to a byte boundary, so the actual length may differ from the
one passed in by the caller. This parameter is only used if the
MEMORY_WRITE_COMBINE bit, the MEMORY_CACHED bit, or the
MEMORY_DISABLE bit of Attributes is set. Otherwise, it is ignored,
and may be NULL.

Description

The SetAttributes() function sets the attributes specified in Attributes for the PCI root bridge on
the resource range specified by ResourceBase and ResourceLength. Since the granularity of setting
these attributes may vary from resource type to resource type, and from platform to platform, the actual
resource range and the one passed in by the caller may differ. As a result, this function may set the
attributes specified by Attributes on a larger resource range than the caller requested. The actual
range is returned in ResourceBase and ResourceLength. The caller is responsible for verifying that
the actual range for which the attributes were set is acceptable.

If the attributes are set on the PCI root bridge, then the actual resource range is returned in
ResourceBase and ResourceLength, and EFI_SUCCESS is returned.
UEFI Forum, Inc. March 2019 672

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
If the attributes specified by Attributes are not supported by the PCI root bridge, then
EFI_UNSUPPORTED is returned. The set of supported attributes for a PCI root bridge can be found by
calling GetAttributes().

If either ResourceBase or ResourceLength are NULL, and a resource range is required for the
attributes specified in Attributes, then EFI_INVALID_PARAMETER is returned.

If more than one resource range is required for the set of attributes specified by Attributes, then
EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

Summary

Retrieves the current resource settings of this PCI root bridge in the form of a set of ACPI resource
descriptors.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION) (

 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,

 OUT VOID **Resources

);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 14.2.

Resources A pointer to the resource descriptors that describe the current
configuration of this PCI root bridge. The storage for the resource
descriptors is allocated by this function. The caller must treat the
return buffer as read-only data, and the buffer must not be freed by

EFI_SUCCESS The set of attributes specified by Attributes for the resource range
specified by ResourceBase and ResourceLength were set on the
PCI root bridge, and the actual resource range is returned in
ResuourceBase and ResourceLength.

EFI_UNSUPPORTED A bit is set in Attributes that is not supported by the PCI Root Bridge.
The supported attribute bits are reported by GetAttributes().

EFI_INVALID_PARAMETER More than one attribute bit is set in Attributes that requires a
resource range.

EFI_INVALID_PARAMETER A resource range is required, and ResourceBase is NULL.

EFI_INVALID_PARAMETER A resource range is required, and ResourceLength is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the resource
range specified by BaseAddress and Length.
UEFI Forum, Inc. March 2019 673

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
the caller. See “Related Definitions” for the resource descriptors that
may be used.

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to describe
the current resources allocated to a PCI root bridge. These are the QWORD Address Space Descriptor,
and the End Tag. The QWORD Address Space Descriptor can describe memory, I/O, and bus number
ranges for dynamic or fixed resources. The configuration of a PCI root bridge is described with one or
more QWORD Address Space Descriptors followed by an End Tag. Table 120 and Table 119 contain these
two descriptor types.

Please see the ACPI Specification for details on the field values. The definition of the Address Space
Granularity field in the QWORD Address Space Descriptor differs from the ACPI Specification, and the
definition in Table 119 is the one that must be used.

Table 119. QWORD Address Space Descriptor

Table 120. End Tag

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type
 0 – Memory Range
 1 – I/O Range
 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this field
should be set to 32. For a 64-bit memory request, this field should be set to 64.

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset. Offset to apply to the Starting address to
convert it to a PCI address. This value is zero unless the HostAddress and
DeviceAddress for the root bridge are different.

0x26 0x08 Address Length

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.
UEFI Forum, Inc. March 2019 674

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Description

The Configuration() function retrieves a set of resource descriptors that contains the current
configuration of this PCI root bridge. If the current configuration can be retrieved, then it is returned in
Resources and EFI_SUCCESS is returned. See “Related Definitions” below for the resource descriptor
types that are supported by this function. If the current configuration cannot be retrieved, then
EFI_UNSUPPORTED is returned.

Status Codes Returned

14.2.1 PCI Root Bridge Device Paths

An EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must be installed on a handle for its services to be available
to drivers. In addition to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the bus
hierarchy in the system, additional device path nodes may precede this ACPI Device Path Node. A
desktop system will typically contain only one PCI Root Bridge, so there would be one handle with a
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH_PROTOCOL A server system may
contain multiple PCI Root Bridges, so it would contain a handle for each PCI Root Bridge present, and on
each of those handles would be an EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an
EFI_DEVICE_PATH_PROTOCOL. In all cases, the contents of the ACPI Device Path Nodes for PCI Root
Bridges must match the information present in the ACPI tables for that system.

Table 121 shows an example device path for a PCI Root Bridge in a desktop system. Today, a desktop
system typically contains one PCI Root Bridge. This device path consists of an ACPI Device Path Node, and
a Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. For a system with only one PCI Root Bridge, the _UID value is usually 0x0000. The shorthand
notation for this device path is ACPI(PNP0A03,0).

Table 121. PCI Root Bridge Device Path for a Desktop System

EFI_SUCCESS The current configuration of this PCI root bridge was returned in

Resources.

EFI_UNSUPPORTED The current configuration of this PCI root bridge could not be retrieved.

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 675

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 122 through Table 125 show example device paths for the PCI Root Bridges in a server system with
four PCI Root Bridges. Each of these device paths consists of an ACPI Device Path Node, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root Bridges. The
only difference between each of these device paths is the _UID field. The shorthand notation for these
four device paths is ACPI(PNP0A03,0), ACPI(PNP0A03,1), ACPI(PNP0A03,2), and
ACPI(PNP0A03,3).

Table 122. PCI Root Bridge Device Path for Bridge #0 in a Server System

Table 123. PCI Root Bridge Device Path for Bridge #1 in a Server System

Table 124. PCI Root Bridge Device Path for Bridge #2 in a Server System

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0001 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes
UEFI Forum, Inc. March 2019 676

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 125. PCI Root Bridge Device Path for Bridge #3 in a Server System

Table 126 shows an example device path for a PCI Root Bridge using an Expanded ACPI Device Path. This
device path consists of an Expanded ACPI Device Path Node, and a Device Path End Structure. The _UID
and _CID fields must match the ACPI table description of the PCI Root Bridge. For a system with only one
PCI Root Bridge, the _UID value is usually 0x0000. The shorthand notation for this device path is
ACPI(12345678,0,PNP0A03).

Table 126. PCI Root Bridge Device Path Using Expanded ACPI Device Path

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0002 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0003 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x02 Sub type – Expanded ACPI Device Path

0x02 0x02 0x10 Length – 0x10 bytes

0x04 0x04 0x1234,
0x5678

_HID-device specific

0x08 0x04 0x0000 _UID

0x0C 0x04 0x41D0,
0x0A03

_CID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded
in the low order bytes. The compression method is described in the ACPI
Specification.

0x10 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x11 0x01 0xFF Sub type – End of Entire Device Path

0x12 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 677

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
14.3 PCI Driver Model

Section 14.3 and Section 14.4 describe the PCI Driver Model. This includes the behavior of PCI Bus
Drivers, the behavior of a PCI Device Drivers, and a detailed description of the PCI I/O Protocol. The PCI
Bus Driver manages PCI buses present in a system, and PCI Device Drivers manage PCI controllers present
on PCI buses. The PCI Device Drivers produce an I/O abstraction that can be used to boot an EFI
compliant operating system.

This document provides enough material to implement a PCI Bus Driver, and the tools required to design
and implement a PCI Device Drivers. It does not provide any information on specific PCI devices.

The material contained in this section is designed to extend this specification and the UEFI Driver Model
in a way that supports PCI device drivers and PCI bus drivers. These extensions are provided in the form
of PCI-specific protocols. This section provides the information required to implement a PCI Bus Driver in
system firmware. The section also contains the information required by driver writers to design and
implement PCI Device Drivers that a platform may need to boot a UEFI-compliant OS.

The PCI Driver Model described here is intended to be a foundation on which a PCI Bus Driver and a wide
variety of PCI Device Drivers can be created.

14.3.1 PCI Driver Initialization

There are very few differences between a PCI Bus Driver and PCI Device Driver in the entry point of the
driver. The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image has been
found, it can be loaded into system memory with the Boot Service
EFI_BOOT_SERVICES.LoadImage(). LoadImage() loads a PE/COFF formatted image into system
memory. A handle is created for the driver, and a Loaded Image Protocol instance is placed on that
handle. A handle that contains a Loaded Image Protocol instance is called an Image Handle. At this point,
the driver has not been started. It is just sitting in memory waiting to be started. Figure 44 shows the
state of an image handle for a driver after LoadImage() has been called.

Figure 44. Image Handle

After a driver has been loaded with the Boot Service EFI_BOOT_SERVICES.LoadImage(), it must be
started with the Boot Service EFI_BOOT_SERVICES.StartImage(). This is true of all types of
applications and drivers that can be loaded and started on an UEFI compliant system. The entry point for
a driver that follows the UEFI Driver Model must follow some strict rules. First, it is not allowed to touch
any hardware. Instead, it is only allowed to install protocol instances onto its own Image Handle. A driver

Image Handle

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

OM13148

EFI_LOADED_IMAGE_PROTOCOL
UEFI Forum, Inc. March 2019 678

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
that follows the UEFI Driver Model is required to install an instance of the Driver Binding Protocol onto its
own Image Handle. It may optionally install the Driver Diagnostics Protocol or the Component Name
Protocol. In addition, if a driver wishes to be unloadable it may optionally update the Loaded Image
Protocol to provide its own Unload() function. Finally, if a driver needs to perform any special
operations when the Boot Service EFI_BOOT_SERVICES is called (see Services — Boot Services), the driver
may optionally create an event with a notification function that is triggered when the Boot Service
ExitBootServices() is called. An Image Handle that contains a Driver Binding Protocol instance is
known as a Driver Image Handle. Figure 45 shows a possible configuration for the Image Handle from
Figure 44 after the Boot Service StartImage() has been called.

Figure 45. PCI Driver Image Handle

14.3.1.1 Driver Diagnostics Protocol

If a PCI Bus Driver or a PCI Device Driver requires diagnostics, then an
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL must be installed on the image handle in the entry point for
the driver. This protocol contains functions to perform diagnostics on a controller. The
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is not allowed to interact with the user. Instead, it must
return status information through a buffer. The functions of this protocol will be invoked by a platform
management utility.

14.3.1.2 Component Name Protocol

Both a PCI Bus Driver and a PCI Device Driver are able to produce user readable names for the PCI drivers
and/or the set of PCI controllers that the PCI drivers are managing. This is accomplished by installing an
instance of the EFI_COMPONENT_NAME2_PROTOCOL on the image handle of the driver. This protocol
can produce driver and controller names in the form of a string in one of several languages. This protocol

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_LOADED_IMAGE_PROTOCOL

Image Handle

EFI _DRIVER _FAM ILY_OVERRIDE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional

Optional

Optional
UEFI Forum, Inc. March 2019 679

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
can be used by a platform management utility to display user readable names for the drivers and
controllers present in a system. Please see the EFI Driver Model Specification for details on the
EFI_COMPONENT_NAME2_PROTOCOL.

14.3.1.3 Driver Family Override Protocol

If a PCI Bus Driver or PCI Device Driver always wants the PCI driver delivered in a PCI Option ROM to
manage the PCI controller associated with the PCI Option ROM, then the Driver Family Override Protocol
must not be produced.

If a PCI Bus Driver or PCI Device Driver always wants the PCI driver with the highest Version value in the
Driver Binding Protocol to manage all the PCI Controllers in the same family of PCI controllers, then the
Driver Family Override Protocol must be produced on the same handle as the Driver Binding Protocol.

14.3.2 PCI Bus Drivers

A PCI Bus Driver manages PCI Host Bus Controllers that can contain one or more PCI Root Bridges.
Figure 46 shows an example of a desktop system that has one PCI Host Bus Controller with one PCI Root
Bridge.

Figure 46. PCI Host Bus Controller

The PCI Host Bus Controller in Figure 46 is abstracted in software with the PCI Root Bridge I/O Protocol. A
PCI Bus Driver will manage handles that contain this protocol. Figure 47 shows an example device handle
for a PCI Host Bus Controller. It contains a Device Path Protocol instance and a PCI Root Bridge I/O
Protocol Instance.

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge
UEFI Forum, Inc. March 2019 680

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 47. Device Handle for a PCI Host Bus Controller

14.3.2.1 Driver Binding Protocol for PCI Bus Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the PCI Bus Driver can manage a device handle. A PCI Bus Driver can only
manage device handles that contain the Device Path Protocol and the PCI Root Bridge I/O Protocol, so a
PCI Bus Driver must look for these two protocols on the device handle that is being tested.

The Start() function tells the PCI Bus Driver to start managing a device handle. The device handle
should support the protocols shown in Figure 47. The PCI Root Bridge I/O Protocols provides access to
the PCI I/O, PCI Memory, PCI Prefetchable Memory, and PCI DMA functions. The PCI Controllers behind a
PCI Root Bridge may exist on one or more PCI Buses. The standard mechanism for expanding the number
of PCI Buses on a single PCI Root Bridge is to use PCI to PCI Bridges. Once a PCI Enumerator configures
these bridges, they are invisible to software. As a result, the PCI Bus Driver flattens the PCI Bus hierarchy
when it starts managing a device handle that represents a PCI Host Controller. Figure 48 shows the
physical tree structure for a set of PCI Device denoted by A, B, C, D, and E. Device A and C are PCI to PCI
Bridges.

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL
UEFI Forum, Inc. March 2019 681

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 48. Physical PCI Bus Structure

Figure 49 shows the tree structure generated by a PCI Bus Driver before and after Start() is called. This
is a logical view of set of PCI controller, and not a physical view. The physical tree is flattened, so any PCI
to PCI bridge devices are invisible. In this example, the PCI Bus Driver finds the five child PCI Controllers
on the PCI Bus from Figure 48. A device handle is created for every PCI Controller including all the PCI to
PCI Bridges. The arrow with the dashed line coming into the PCI Host Bus Controller represents a link to
the PCI Host Bus Controller's parent. If the PCI Host Bus Controller is a Root Bus Controller, then it will not
have a parent. The PCI Driver Model does not require that a PCI Host Bus Controller be a Root Bus
Controller. A PCI Host Bus Controller can be present at any location in the tree, and the PCI Bus Driver
should be able to manage the PCI Host Bus Controller.

OM13166

PCI Bus 1

PCI ROOT BRIDGE

A - PPB B C - PPB

D

PCI Bus 2

E

UEFI Forum, Inc. March 2019 682

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 49. Connecting a PCI Bus Driver

The PCI Bus Driver has the option of creating all of its children in one call to Start(), or spreading it
across several calls to Start(). In general, if it is possible to design a bus driver to create one child at a
time, it should do so to support the rapid boot capability in the UEFI Driver Model. Each of the child
device handles created in Start() must contain a Device Path Protocol instance, a PCI I/O protocol
instance, and optionally a Bus Specific Driver Override Protocol instance. The PCI I/O Protocol is
described in Section 14.4. The format of device paths for PCI Controllers is described in Section 2.6, and
details on the Bus Specific Driver Override Protocol can be found in the EFI Driver Model Specification.
Figure 50 shows an example child device handle that is created by a PCI Bus Driver for a PCI Controller.

Figure 50. Child Handle Created by a PCI Bus Driver

A PCI Bus Driver must perform several steps to manage a PCI Host Bus Controller, as follows:

• Initialize the PCI Host Bus Controller.

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

OM13167

PCI Controller Device Handle

Optional

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
UEFI Forum, Inc. March 2019 683

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
• If the PCI buses have not been initialized by a previous agent, perform PCI Enumeration on all
the PCI Root Bridges that the PCI Host Bus Controller contains. This involves assigning a PCI bus
number, allocating PCI I/O resources, PCI Memory resources, and PCI Prefetchable Memory
resources.

• Discover all the PCI Controllers on all the PCI Root Bridges. If a PCI Controller is a PCI to PCI
Bridge, then the I/O and Memory bits in the Control register of the PCI Configuration Header
should be placed in the enabled state. The Bus Master bit in the Control Register may be
enabled by default or enabled or disabled based on the needs of downstream devices for DMA
access during the boot process. The PCI Bus Driver should disable the I/O, Memory, and Bus
Master bits for PCI Controllers that respond to legacy ISA resources (e.g. VGA). It is a PCI Device
Driver’s responsibility to enable the I/O, Memory, and Bus Master bits (if they are not already
enabled by the PCI bus driver) of the Control register as required with a call to the
Attributes() service when the PCI Device Driver is started. A similar call to the Attributes()
service should be made when the PCI Device Driver is stopped to restore original Attributes()
state, including the I/O, Memory, and Bus Master bits of the Control register.

• Create a device handle for each PCI Controller found. If a request is being made to start only
one PCI Controller, then only create one device handle.

• Install a Device Path Protocol instance and a PCI I/O Protocol instance on the device handle
created for each PCI Controller.

• If the PCI Controller has a PCI Option ROM, then allocate a memory buffer that is the same size
as the PCI Option ROM, and copy the PCI Option ROM contents to the memory buffer.

• If the PCI Option ROM contains any UEFI drivers, then attach a Bus Specific Driver Override
Protocol to the device handle of the PCI Controller that is associated with the PCI Option ROM.

The Stop() function tells the PCI Bus Driver to stop managing a PCI Host Bus Controller. The Stop()
function can destroy one or more of the device handles that were created on a previous call to Start().
If all of the child device handles have been destroyed, then Stop() will place the PCI Host Bus Controller
in a quiescent state. The functionality of Stop() mirrors Start(), as follows:

1. Complete all outstanding transactions to the PCI Host Bus Controller.

2. If the PCI Host Bus Controller is being stopped, then place it in a quiescent state.

3. If one or more child handles are being destroyed, then:

a Uninstall all the protocols from the device handles for the PCI Controllers found
in Start().

b Free any memory buffers allocated for PCI Option ROMs.
c Destroy the device handles for the PCI controllers created in Start().

14.3.2.2 PCI Enumeration

The PCI Enumeration process is a platform-specific operation that depends on the properties of the
chipset that produces the PCI bus. As a result, details on PCI Enumeration are outside the scope of this
document. A PCI Bus Driver requires that PCI Enumeration has been performed, so it either needs to have
been done prior to the PCI Bus Driver starting, or it must be part of the PCI Bus Driver’s implementation.
UEFI Forum, Inc. March 2019 684

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
14.3.3 PCI Device Drivers

PCI Device Drivers manage PCI Controllers. Device handles for PCI Controllers are created by PCI Bus
Drivers. A PCI Device Driver is not allowed to create any new device handles. Instead, it attaches protocol
instance to the device handle of the PCI Controller. These protocol instances are I/O abstractions that
allow the PCI Controller to be used in the preboot environment. The most common I/O abstractions are
used to boot an EFI compliant OS.

14.3.3.1 Driver Binding Protocol for PCI Device Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the PCI Device Driver can manage a device handle. A PCI Device Driver can
only manage device handles that contain the Device Path Protocol and the PCI I//O Protocol, so a PCI
Device Driver must look for these two protocols on the device handle that is being tested. In addition, it
needs to check to see if the device handle represents a PCI Controller that the PCI Device Driver knows
how to manage. This is typically done by using the services of the PCI I/O Protocol to read the PCI
Configuration Header for the PCI Controller, and looking at the VendorId, DeviceId, and
SubsystemId fields.

The Start() function tells the PCI Device Driver to start managing a PCI Controller. A PCI Device Driver is
not allowed to create any new device handles. Instead, it installs one or more addition protocol instances
on the device handle for the PCI Controller. A PCI Device Driver is not allowed to modify the resources
allocated to a PCI Controller. These resource allocations are owned by the PCI Bus Driver or some other
firmware component that initialized the PCI Bus prior to the execution of the PCI Bus Driver. This means
that the PCI BARs (Base Address Registers) and the configuration of any PCI to PCI bridge controllers must
not be modified by a PCI Device Driver. A PCI Bus Driver will leave a PCI Device in a disabled safe initial
state. A PCI Device Driver should save the original Attributes() state. It is a PCI Device Driver's
responsibility to call Attributes() to enable the I/O, Memory, and Bus Master decodes if they are not
already enabled by the PCI bus driver.

The Stop() function mirrors the Start() function, so the Stop() function completes any outstanding
transactions to the PCI Controller and removes the protocol interfaces that were installed in Start().
Figure 51 shows the device handle for a PCI Controller before and after Start() is called. In this
example, a PCI Device Driver is adding the Block I/O Protocol to the device handle for the PCI Controller.
It is also a PCI Device Driver’s responsibility to restore original Attributes() state, including the I/O,
Memory, and Bus Master decodes by calling Attributes().
UEFI Forum, Inc. March 2019 685

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 51. Connecting a PCI Device Driver

14.4 EFI PCI I/O Protocol

This section provides a detailed description of the EFI_PCI_IO_PROTOCOL. This protocol is used by
code, typically drivers, running in the EFI boot services environment to access memory and I/O on a PCI
controller. In particular, functions for managing devices on PCI buses are defined here.

The interfaces provided in the EFI_PCI_IO_PROTOCOL are for performing basic operations to memory,
I/O, and PCI configuration space. The system provides abstracted access to basic system resources to
allow a driver to have a programmatic method to access these basic system resources. The main goal of
this protocol is to provide an abstraction that simplifies the writing of device drivers for PCI devices. This
goal is accomplished by providing the following features:

• A driver model that does not require the driver to search the PCI busses for devices to manage.
Instead, drivers are provided the location of the device to manage or have the capability to be
notified when a PCI controller is discovered.

• A device driver model that abstracts the I/O addresses, Memory addresses, and PCI
Configuration addresses from the PCI device driver. Instead, BAR (Base Address Register)
relative addressing is used for I/O and Memory accesses, and device relative addressing is used
for PCI Configuration accesses. The BAR relative addressing is specified in the PCI I/O services
as a BAR index. A PCI controller may contain a combination of 32-bit and 64-bit BARs. The BAR
index represents the logical BAR number in the standard PCI configuration header starting

OM13168

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

Stop() : Closes PCI I/O

Start() : Opens PCI I/O

Installed by Start()
Uninstalled by Stop()
UEFI Forum, Inc. March 2019 686

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
from the first BAR. The BAR index does not represent an offset into the standard PCI
Configuration Header because those offsets will vary depending on the combination and order
of 32-bit and 64-bit BARs.

• The Device Path for the PCI device can be obtained from the same device handle that the
EFI_PCI_IO_PROTOCOL resides.

• The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Number of the PCI
device if they are required. The general idea is to abstract these details away from the PCI
device driver. However, if these details are required, then they are available.

• Details on any nonstandard address decoding that is not covered by the PCI device's Base
Address Registers.

• Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI device is a
member.

• A copy of the PCI Option ROM if it is present in system memory.

• Functions to perform bus mastering DMA. This includes both packet based DMA and common
buffer DMA.

EFI_PCI_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that a driver uses to access its PCI
controller.
UEFI Forum, Inc. March 2019 687

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
GUID

#define EFI_PCI_IO_PROTOCOL_GUID \

 {0x4cf5b200,0x68b8,0x4ca5,\

 {0x9e,0xec,0xb2,0x3e,0x3f,0x50,0x02,0x9a}}

Protocol Interface Structure

typedef struct _EFI_PCI_IO_PROTOCOL {

 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;

 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;

 EFI_PCI_IO_PROTOCOL_ACCESS Mem;

 EFI_PCI_IO_PROTOCOL_ACCESS Io;

 EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;

 EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;

 EFI_PCI_IO_PROTOCOL_MAP Map;

 EFI_PCI_IO_PROTOCOL_UNMAP Unmap;

 EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;

 EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;

 EFI_PCI_IO_PROTOCOL_FLUSH Flush;

 EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;

 EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;

 EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;

 EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;

 UINT64 RomSize;

 VOID *RomImage;

} EFI_PCI_IO_PROTOCOL;

Parameters

PollMem Polls an address in PCI memory space until an exit condition is met,
or a timeout occurs. See the PollMem() function description.

PollIo Polls an address in PCI I/O space until an exit condition is met, or a
timeout occurs. See the PollIo() function description.

Mem.Read Allows BAR relative reads to PCI memory space. See the
Mem.Read() function description.

Mem.Write Allows BAR relative writes to PCI memory space. See the
Mem.Write() function description.

Io.Read Allows BAR relative reads to PCI I/O space. See the Io.Read()
function description.

Io.Write Allows BAR relative writes to PCI I/O space. See the Io.Write()
function description.

Pci.Read Allows PCI controller relative reads to PCI configuration space. See
the Pci.Read() function description.

Pci.Write Allows PCI controller relative writes to PCI configuration space. See
the Pci.Write() function description.

CopyMem Allows one region of PCI memory space to be copied to another
region of PCI memory space. See the CopyMem() function
description.
UEFI Forum, Inc. March 2019 688

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Map Provides the PCI controller–specific address needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping. See
the AllocateBuffer() function description.

FreeBuffer Frees pages that were allocated with AllocateBuffer(). See the
FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See the
Flush() function description.

GetLocation Retrieves this PCI controller’s current PCI bus number, device
number, and function number. See the GetLocation() function
description.

Attributes Performs an operation on the attributes that this PCI controller
supports. The operations include getting the set of supported
attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes. See the
Attributes() function description.

GetBarAttributes Gets the attributes that this PCI controller supports setting on a BAR
using SetBarAttributes(), and retrieves the list of resource
descriptors for a BAR. See the GetBarAttributes() function
description.

SetBarAttributes Sets the attributes for a range of a BAR on a PCI controller. See the
SetBarAttributes() function description.

RomSize The size, in bytes, of the ROM image.

RomImage A pointer to the in memory copy of the ROM image. The PCI Bus
Driver is responsible for allocating memory for the ROM image, and
copying the contents of the ROM to memory. The contents of this
buffer are either from the PCI option ROM that can be accessed
through the ROM BAR of the PCI controller, or it is from a platform-
specific location. The Attributes() function can be used to
determine from which of these two sources the RomImage buffer
was initialized.
UEFI Forum, Inc. March 2019 689

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Related Definitions

//***

// EFI_PCI_IO_PROTOCOL_WIDTH

//***

typedef enum {

 EfiPciIoWidthUint8,

 EfiPciIoWidthUint16,

 EfiPciIoWidthUint32,

 EfiPciIoWidthUint64,

 EfiPciIoWidthFifoUint8,

 EfiPciIoWidthFifoUint16,

 EfiPciIoWidthFifoUint32,

 EfiPciIoWidthFifoUint64,

 EfiPciIoWidthFillUint8,

 EfiPciIoWidthFillUint16,

 EfiPciIoWidthFillUint32,

 EfiPciIoWidthFillUint64,

 EfiPciIoWidthMaximum

} EFI_PCI_IO_PROTOCOL_WIDTH;

#define EFI_PCI_IO_PASS_THROUGH_BAR 0xff

//***

// EFI_PCI_IO_PROTOCOL_POLL_IO_MEM

//***

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

//***

// EFI_PCI_IO_PROTOCOL_IO_MEM

//***

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_IO_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,
UEFI Forum, Inc. March 2019 690

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
 IN UINTN Count,

 IN OUT VOID *Buffer

);

//***

// EFI_PCI_IO_PROTOCOL_ACCESS

//***

typedef struct {

 EFI_PCI_IO_PROTOCOL_IO_MEM Read;

 EFI_PCI_IO_PROTOCOL_IO_MEM Write;

} EFI_PCI_IO_PROTOCOL_ACCESS;

//***

// EFI_PCI_IO_PROTOCOL_CONFIG

//***

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT32 Offset,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

//***

// EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS

//***

typedef struct {

 EFI_PCI_IO_PROTOCOL_CONFIG Read;

 EFI_PCI_IO_PROTOCOL_CONFIG Write;

} EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS;

//***

// EFI PCI I/O Protocol Attribute bits

//***

#define EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001

#define EFI_PCI_IO_ATTRIBUTE_ISA_IO 0x0002

#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO 0x0004

#define EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY 0x0008

#define EFI_PCI_IO_ATTRIBUTE_VGA_IO 0x0010

#define EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO 0x0020

#define EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO 0x0040

#define EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080

#define EFI_PCI_IO_ATTRIBUTE_IO 0x0100

#define EFI_PCI_IO_ATTRIBUTE_MEMORY 0x0200

#define EFI_PCI_IO_ATTRIBUTE_BUS_MASTER 0x0400

#define EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED 0x0800
UEFI Forum, Inc. March 2019 691

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE 0x1000

#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE 0x2000

#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM 0x4000

#define EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000

#define EFI_PCI_IO_ATTRIBUTE_ISA_IO_16 0x10000

#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000

#define EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_IO_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to
the PCI controller using a 16-bit address decoder on address bits 0..15. Address bits
16..31 must be zero. This bit is used to forward I/O cycles for legacy ISA devices. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles. This bit may not be combined with
EFI_PCI_IO_ATTRIBUTE_ISA_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the
VGA palette registers on a PCI controller. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles. This bit may not be
combined with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–0x3DF
are forwarded to the PCI controller using a 16-bit address decoder on address bits
0..15. Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a
VGA controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller
and all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI
Controller are configured to forward these PCI I/O cycles. This bit may not be
combined with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO

If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded to the PCI controller. This bit is used to forward I/O cycles for ISA
motherboard devices. If this bit is set, then the PCI Host Bus Controller and all the PCI
to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.
UEFI Forum, Inc. March 2019 692

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
EFI_PCI_IO_ATTRIBUTE_ISA_IO

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to
the PCI controller using a 10-bit address decoder on address bits 0..9. Address bits
10..15 are not decoded, and address bits 16..31 must be zero. This bit is used to
forward I/O cycles for legacy ISA devices. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers on a PCI controller. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded to the PCI controller. This bit is used to forward memory cycles for a VGA
frame buffer on a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI Memory cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-0x3DF
are forwarded to the PCI controller using a 10-bit address decoder on address bits
0..9. Address bits 10..15 are not decoded, and the address bits 16..31 must be zero.
This bit is used to forward I/O cycles for a VGA controller to a PCI controller. If this bit
is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles. Since EFI_PCI_IO_ATTRIBUTE_VGA_IO also includes the I/O range described
by EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO is set.

EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7
are forwarded to a PCI controller using a 16-bit address decoder on address bits
0..15. Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a
Primary IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377
are forwarded to a PCI controller using a 16-bit address decoder on address bits
0..15. Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a
Secondary IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus
UEFI Forum, Inc. March 2019 693

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. This bit is
used to improve the write performance to a memory buffer on a PCI controller. By
default, PCI memory ranges are not accessed in a write combining mode.

EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI
memory ranges are accessed noncached.

EFI_PCI_IO_ATTRIBUTE_IO

If this bit is set, then the PCI device will decode the PCI I/O cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_MEMORY

If this bit is set, then the PCI device will decode the PCI Memory cycles that the
device is configured to decode.

EFI_PCI_IO_ATTRIBUTE_BUS_MASTER

If this bit is set, then the PCI device is allowed to act as a bus master on the PCI bus.

EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By
default, all PCI memory ranges are enabled.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE

If this bit is set, then the PCI controller is an embedded device that is typically a
component on the system board. If this bit is clear, then this PCI controller is part of
an adapter that is populating one of the systems PCI slots.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM

If this bit is set, then the PCI option ROM described by the RomImage and RomSize
fields is not from ROM BAR of the PCI controller. If this bit is clear, then the
RomImage and RomSize fields were initialized based on the PCI option ROM found
through the ROM BAR of the PCI controller.

EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE

If this bit is set, then the PCI controller is capable of producing PCI Dual Address
Cycles, so it is able to access a 64-bit address space. If this bit is not set, then the PCI
controller is not capable of producing PCI Dual Address Cycles, so it is only able to
access a 32-bit address space.

If this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges
between the PCI Host Bus Controller and the PCI Controller are capable of producing
PCI Dual Address Cycles. If any of them is not capable of producing PCI Dual Address
Cycles, attempt to perform Set or Enable operation using Attributes() function
with this bit set will fail with the EFI_UNSUPPORTED error code.
UEFI Forum, Inc. March 2019 694

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
//***

// EFI_PCI_IO_PROTOCOL_OPERATION

//***

typedef enum {

 EfiPciIoOperationBusMasterRead,

 EfiPciIoOperationBusMasterWrite,

 EfiPciIoOperationBusMasterCommonBuffer,

 EfiPciIoOperationMaximum

} EFI_PCI_IO_PROTOCOL_OPERATION;

EfiPciIoOperationBusMasterRead

A read operation from system memory by a bus master.

EfiPciIoOperationBusMasterWrite

A write operation to system memory by a bus master.

EfiPciIoOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a
bus master. The buffer is coherent from both the processor’s and the bus master’s
point of view.

Description

The EFI_PCI_IO_PROTOCOL provides the basic Memory, I/O, PCI configuration, and DMA interfaces
that are used to abstract accesses to PCI controllers. There is one EFI_PCI_IO_PROTOCOL instance for
each PCI controller on a PCI bus. A device driver that wishes to manage a PCI controller in a system will
have to retrieve the EFI_PCI_IO_PROTOCOL instance that is associated with the PCI controller. A device
handle for a PCI controller will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_IO_PROTOCOL instance.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three basic types
of bus mastering DMA that is supported by this protocol. These are DMA reads by a bus master, DMA
writes by a bus master, and common buffer DMA. The DMA read and write operations may need to be
broken into smaller chunks. The caller of Map() must pay attention to the number of bytes that were
mapped, and if required, loop until the entire buffer has been transferred. The following is a list of the
different bus mastering DMA operations that are supported, and the sequence of
EFI_PCI_IO_PROTOCOL interfaces that are used for each DMA operation type.

DMA Bus Master Read Operation

Call Map() for EfiPciIoOperationBusMasterRead.

Program the DMA Bus Master with the DeviceAddress returned by Map().

Start the DMA Bus Master.

Wait for DMA Bus Master to complete the read operation.

Call Unmap().

DMA Bus Master Write Operation
UEFI Forum, Inc. March 2019 695

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Call Map() for EfiPciOperationBusMasterWrite.

Program the DMA Bus Master with the DeviceAddress returned by Map().

Start the DMA Bus Master.

Wait for DMA Bus Master to complete the write operation.

Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI Specification
Section 3.2.5.2) .

Call Flush().

Call Unmap().

DMA Bus Master Common Buffer Operation

Call AllocateBuffer() to allocate a common buffer.

Call Map() for EfiPciIoOperationBusMasterCommonBuffer.

Program the DMA Bus Master with the DeviceAddress returned by Map().

The common buffer can now be accessed equally by the processor and the DMA bus master.

Call Unmap().

Call FreeBuffer().

EFI_PCI_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI controller. Returns when either the polling exit criteria is satisfied
or after a defined duration.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.
UEFI Forum, Inc. March 2019 696

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR
can be used to bypass the BAR relative addressing and pass Offset to
the PCI Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

Offset The offset within the selected BAR to start the memory operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask
are ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be
of poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI memory location. A PCI memory read operation is
performed at the PCI memory address specified by BarIndex and Offset for the width specified by
Width. The result of this PCI memory read operation is stored in Result. This PCI memory read
operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result & Mask) is
equal to Value.

This function will always perform at least one memory access no matter how small Delay may be. If
Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result does not match
the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and memory width restrictions that a PCI controller on a platform might require. For example
on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns. However, if the memory mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the ordering
rules defined by the processor architecture.
UEFI Forum, Inc. March 2019 697

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI controller. Returns when either the polling exit criteria is satisfied or
after a defined duration.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,

 IN UINT64 Mask,

 IN UINT64 Value,

 IN UINT64 Delay,

 OUT UINT64 *Result

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Width Signifies the width of the I/O operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the I/O operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

Offset The offset within the selected BAR to start the I/O operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask
are ignored when polling the I/O address.

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the BarIndex of this PCI controller.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 698

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be
of poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is performed at
the PCI I/O address specified by BarIndex and Offset for the width specified by Width. The result of
this PCI I/O read operation is stored in Result. This PCI I/O read operation is repeated until either a
timeout of Delay 100 ns units has expired, or (Result & Mask) is equal to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If Delay is
0, then Result will be returned with a status of EFI_SUCCESS even if Result does not match the exit
criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any alignment
and I/O width restrictions that the PCI controller on a platform might require. For example on some
platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI read transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.Mem.Read() 
EFI_PCI_IO_PROTOCOL.Mem.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI memory space.

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the PCI BAR specified by BarIndex.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 699

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR
can be used to bypass the BAR relative addressing and pass Offset to
the PCI Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

Offset The offset within the selected BAR to start the memory operation.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access controller registers in the PCI
memory space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment and I/
O width issues which the bus, device, platform, or type of I/O might require. For example on some
platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is incremented for
each of the Count operations performed. The read or write operation is performed Count times on the
same Address.
UEFI Forum, Inc. March 2019 700

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is incremented
for each of the Count operations performed. The read or write operation is performed Count times
from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns. All the PCI write transactions generated by this function will follow the write ordering and
completion rules defined in the PCI Specification. However, if the memory-mapped I/O region being
accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the
transactions will follow the ordering rules defined by the processor architecture.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.Io.Read() 
EFI_PCI_IO_PROTOCOL.Io.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI I/O space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 BarIndex,

 IN UINT64 Offset,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.

BarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the I/O operation to perform. This allows all drivers

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not

valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 701

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
to use BAR relative addressing. The legal range for this field is 0..5.
However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

Offset The offset within the selected BAR to start the I/O operation.

Count The number of I/O operations to perform. Bytes moved is Width size
* Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in PCI I/O
space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment and I/
O width issues which the bus, device, platform, or type of I/O might require. For example on some
platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is incremented for
each of the Count operations performed. The read or write operation is performed Count times on the
same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is incremented
for each of the Count operations performed. The read or write operation is performed Count times
from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns.
UEFI Forum, Inc. March 2019 702

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.Pci.Read()
EFI_PCI_IO_PROTOCOL.Pci.Write()

Summary

Enable a PCI driver to access PCI controller registers in PCI configuration space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT32 Offset,

 IN UINTN Count,

 IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.

Offset The offset within the PCI configuration space for the PCI controller.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration registers for
the PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for any
alignment and I/O width issues which the bus, device, platform, or type of I/O might require. For example
on some platforms, width requests of EfiPciIoWidthUint64 do not work.

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not valid
for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 703

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the Count
operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is incremented for
each of the Count operations performed. The read or write operation is performed Count times on the
same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is incremented
for each of the Count operations performed. The read or write operation is performed Count times
from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI memory space to another region of PCI memory space.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_COPY_MEM) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,

 IN UINT8 DestBarIndex,

 IN UINT64 DestOffset,

 IN UINT8 SrcBarIndex,

 IN UINT64 SrcOffset,

 IN UINTN Count

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not valid
for the PCI configuration header of the PCI controller.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 704

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 14.4.

DestBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

DestOffset The destination offset within the BAR specified by DestBarIndex to
start the memory writes for the copy operation. The caller is
responsible for aligning the DestOffset if required.

SrcBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 14.4.

SrcOffset The source offset within the BAR specified by SrcBarIndex to start
the memory reads for the copy operation. The caller is responsible
for aligning the SrcOffset if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestOffset and SrcOffset.

Description

The CopyMem() function enables a PCI driver to copy one region of PCI memory space to another region
of PCI memory space on a PCI controller. This is especially useful for video scroll operations on a memory
mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and memory width restrictions that a PCI controller on a platform might require. For example
on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32, or
EfiPciIoWidthUint64, then Count read/write transactions are performed to move the contents of
the SrcOffset buffer to the DestOffset buffer. The implementation must be reentrant, and it must
handle overlapping SrcOffset and DestOffset buffers. This means that the implementation of
CopyMem() must choose the correct direction of the copy operation based on the type of overlap that
exists between the SrcOffset and DestOffset buffers. If either the SrcOffset buffer or the
DestOffset buffer crosses the top of the processor’s address space, then the result of the copy
operation is unpredictable.

The contents of the DestOffset buffer on exit from this service must match the contents of the SrcOffset
buffer on entry to this service. Due to potential overlaps, the contents of the SrcOffset buffer may be
modified by this service. The following rules can be used to guarantee the correct behavior:
UEFI Forum, Inc. March 2019 705

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
• If DestOffset > SrcOffset and DestOffset < (SrcOffset + Width size * Count), then the data should
be copied from the SrcOffset buffer to the DestOffset buffer starting from the end of buffers
and working toward the beginning of the buffers.

• Otherwise, the data should be copied from the SrcOffset buffer to the DestOffset buffer
starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before this function
returns. All the PCI write transactions generated by this function will follow the write ordering and
completion rules defined in the PCI Specification. However, if the memory-mapped I/O region being
accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the
transactions will follow the ordering rules defined by the processor architecture.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses needed to access system memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_MAP) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,

 IN VOID *HostAddress,

 IN OUT UINTN *NumberOfBytes,

 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,

 OUT VOID **Mapping

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Operation Indicates if the bus master is going to read or write to system
memory. Type EFI_PCI_IO_PROTOCOL_OPERATION is defined in
Section 14.4.

EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid.

EFI_UNSUPPORTED DestBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED SrcBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by DestOffset, Width, and Count is not
valid for the PCI BAR specified by DestBarIndex.

EFI_UNSUPPORTED The address range specified by SrcOffset, Width, and Count is not
valid for the PCI BAR specified by SrcBarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 706

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use to
access the hosts HostAddress. Type EFI_PHYSICAL_ADDRESS is
defined in EFI_BOOT_SERVICES.AllocatePool(). This address
cannot be used by the processor to access the contents of the buffer
specified by HostAddress.

Mapping A resulting value to pass to Unmap().

Description

The Map() function provides the PCI controller–specific addresses needed to access system memory.
This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiPciIoOperationBusMasterRead or EfiPciIoOperation-BusMasterWrite is
used and the range is unmapped to complete the operation. If performing an
EfiPciIoOperationBusMasterRead operation, all the data must be present in system memory
before the Map() is performed. Similarly, if performing an EfiPciIoOperation-BusMasterWrite,
the data cannot be properly accessed in system memory until Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciIoOperation-
BusMasterCommonBuffer. However, only memory allocated via the AllocateBuffer() interface
can be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the requested
amount. In this case, the DMA operation will have to be broken up into smaller chunks. The Map()
function will map as much of the DMA operation as it can at one time. The caller may have to loop on
Map() and Unmap() in order to complete a large DMA transfer.
UEFI Forum, Inc. March 2019 707

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_UNMAP) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN VOID *Mapping

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources. If the
operation was an EfiPciIoOperationBusMasterWrite, the data is committed to the target system
memory. Any resources used for the mapping are freed.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciIoOperationBusMasterCommonBuffer mapping.

EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_SUCCESS The range was unmapped.

EFI_DEVICE_ERROR The data was not committed to the target system memory.
UEFI Forum, Inc. March 2019 708

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_ALLOCATE_TYPE Type,

 IN EFI_MEMORY_TYPE MemoryType,

 IN UINTN Pages,

 OUT VOID **HostAddress,

 IN UINT64 Attributes

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined in
EFI_BOOT_SERVICES.AllocatePages().

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
and EFI_PCI_ATTRIBUTE_MEMORY_CACHED may be used with this
function. If any other bits are set, then EFI_UNSUPPORTED is
returned. This function may choose to ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a hint to
the implementation that may improve the performance of the
calling driver. The implementation may choose any default for the
memory attributes including write combining, cached, both, or
neither as long as the allocated buffer can be seen equally by both
the processor and the PCI bus master.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciIoOperationBusMasterCommonBuffer mapping. This means that the buffer allocated by this
function must support simultaneous access by both the processor and a PCI Bus Master. The device
address that the PCI Bus Master uses to access the buffer can be retrieved with a call to Map().

If the current attributes of the PCI controller has the
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit set, then when the buffer allocated by this
function is mapped with a call to Map(), the device address that is returned by Map() must be within the
64-bit device address space of the PCI Bus Master. The attributes for a PCI controller can be managed by
calling Attributes().
UEFI Forum, Inc. March 2019 709

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
If the current attributes for the PCI controller has the
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit clear, then when the buffer allocated by this
function is mapped with a call to Map(), the device address that is returned by Map() must be within the
32-bit device address space of the PCI Bus Master. The attributes for a PCI controller can be managed by
calling Attributes().

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer() .

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_FREE_BUFFER) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN UINTN Pages,

 IN VOID *HostAddress

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
UEFI Forum, Inc. March 2019 710

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_FLUSH) (

 IN EFI_PCI_IO_PROTOCOL *This

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller specific
action must be taken to guarantee that the posted write transactions have been flushed from the PCI
controller and from all the PCI bridges into the PCI host bridge. This is typically done with a PCI read
transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the processor’s
view of system memory are guaranteed to be coherent. If the PCI posted write transactions cannot be
flushed from the PCI host bridge, then the PCI bus master and processor are not guaranteed to have a
coherent view of system memory, and EFI_DEVICE_ERROR is returned.

EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages was not
allocated with AllocateBuffer().
UEFI Forum, Inc. March 2019 711

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.GetLocation()

Summary

Retrieves this PCI controller’s current PCI bus number, device number, and function number.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) (

 IN EFI_PCI_IO_PROTOCOL *This,

 OUT UINTN *SegmentNumber,

 OUT UINTN *BusNumber,

 OUT UINTN *DeviceNumber,

 OUT UINTN *FunctionNumber

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

SegmentNumber The PCI controller’s current PCI segment number.

BusNumber The PCI controller’s current PCI bus number.

DeviceNumber The PCI controller’s current PCI device number.

FunctionNumber The PCI controller’s current PCI function number.

Description

The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge. This is
specified by a PCI segment number, PCI bus number, PCI device number, and PCI function number. These
values can be used with the PCI Root Bridge I/O Protocol to perform PCI configuration cycles on the PCI
controller, or any of its peer PCI controller’s on the same PCI Host Bridge.

EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host bridge to
system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI host
bridge due to a hardware error.
UEFI Forum, Inc. March 2019 712

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.Attributes()

Summary

Performs an operation on the attributes that this PCI controller supports. The operations include getting
the set of supported attributes, retrieving the current attributes, setting the current attributes, enabling
attributes, and disabling attributes.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_ATTRIBUTES) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION Operation,

 IN UINT64 Attributes,

 OUT UINT64 *Result OPTIONAL

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Operation The operation to perform on the attributes for this PCI controller.
Type EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION is defined
in “Related Definitions” below.

Attributes The mask of attributes that are used for Set, Enable, and Disable
operations. The available attributes are listed in Section 14.4.

Result A pointer to the result mask of attributes that are returned for the
Get and Supported operations. This is an optional parameter that
may be NULL for the Set, Enable, and Disable operations. The
available attributes are listed in Section 14.4.

EFI_SUCCESS The PCI controller location was returned.

EFI_INVALID_PARAMETER SegmentNumber is NULL.

EFI_INVALID_PARAMETER BusNumber is NULL.

EFI_INVALID_PARAMETER DeviceNumber is NULL.

EFI_INVALID_PARAMETER FunctionNumber is NULL.
UEFI Forum, Inc. March 2019 713

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Related Definitions

//***

// EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION

//***

typedef enum {

 EfiPciIoAttributeOperationGet,

 EfiPciIoAttributeOperationSet,

 EfiPciIoAttributeOperationEnable,

 EfiPciIoAttributeOperationDisable,

 EfiPciIoAttributeOperationSupported,

 EfiPciIoAttributeOperationMaximum

} EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION;

EfiPciIoAttributeOperationGet

Retrieve the PCI controller’s current attributes, and return them in Result. If Result is
NULL, then EFI_INVALID_PARAMER is returned. For this operation, Attributes is
ignored.

EfiPciIoAttributeOperationSet

Set the PCI controller’s current attributes to Attributes. If a bit is set in Attributes that
is not supported by this PCI controller or one of its parent bridges, then
EFI_UNSUPPORTED is returned. For this operation, Result is an optional parameter
that may be NULL.

EfiPciIoAttributeOperationEnable

Enable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in Attributes that
is not supported by this PCI controller or one of its parent bridges, then
EFI_UNSUPPORTED is returned. For this operation, Result is an optional parameter
that may be NULL.

EfiPciIoAttributeOperationDisable

Disable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in Attributes that
is not supported by this PCI controller or one of its parent bridges, then
EFI_UNSUPPORTED is returned. For this operation, Result is an optional parameter
that may be NULL.

EfiPciIoAttributeOperationSupported

Retrieve the PCI controller's supported attributes, and return them in Result. If Result
is NULL, then EFI_INVALID_PARAMER is returned. For this operation, Attributes is
ignored.

Description

The Attributes() function performs an operation on the attributes associated with this PCI controller.
If Operation is greater than or equal to the maximum operation value, then
EFI_INVALID_PARAMETER is returned. If Operation is Get or Supported, and Result is NULL, then
EFI_INVALID_PARAMETER is returned. If Operation is Set, Enable, or Disable for an attribute that
UEFI Forum, Inc. March 2019 714

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
is not supported by the PCI controller, then EFI_UNSUPPORTED is returned. Otherwise, the operation is
performed as described in “Related Definitions” and EFI_SUCCESS is returned. It is possible for this
function to return EFI_UNSUPPORTED even if the PCI controller supports the attribute. This can occur
when the PCI root bridge does not support the attribute. For example, if VGA I/O and VGA Memory
transactions cannot be forwarded onto PCI root bridge #2, then a request by a PCI VGA driver to enable
the VGA_IO and VGA_MEMORY bits will fail even though a PCI VGA controller behind PCI root bridge #2 is
able to decode these transactions.

This function will also return EFI_UNSUPPORTED if more than one PCI controller on the same PCI root
bridge has already successfully requested one of the ISA addressing attributes. For example, if one PCI
VGA controller had already requested the VGA_IO and VGA_MEMORY attributes, then a second PCI VGA
controller on the same root bridge cannot succeed in requesting those same attributes. This restriction
applies to the ISA-, VGA-, and IDE-related attributes.

Status Codes Returned

EFI_PCI_IO_PROTOCOL.GetBarAttributes()

Summary

Gets the attributes that this PCI controller supports setting on a BAR using SetBarAttributes(), and
retrieves the list of resource descriptors for a BAR.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN UINT8 BarIndex,

 OUT UINT64 *Supports OPTIONAL,

 OUT VOID **Resources OPTIONAL

);

EFI_SUCCESS The operation on the PCI controller's attributes was completed. If the
operation was Get or Supported, then the attribute mask is returned in
Result.

EFI_INVALID_PARAMETER Operation is greater than or equal to
EfiPciIoAttributeOperationMaximum.

EFI_INVALID_PARAMETER Operation is Get and Result is NULL.

EFI_INVALID_PARAMETER Operation is Supported and Result is NULL.

EFI_UNSUPPORTED Operation is Set, and one or more of the bits set in Attributes are
not supported by this PCI controller or one of its parent bridges.

EFI_UNSUPPORTED Operation is Enable, and one or more of the bits set in Attributes
are not supported by this PCI controller or one of its parent bridges.

EFI_UNSUPPORTED Operation is Disable, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of its parent
bridges.
UEFI Forum, Inc. March 2019 715

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for resource range. The legal range for this field is
0..5.

Supports A pointer to the mask of attributes that this PCI controller supports
setting for this BAR with SetBarAttributes(). The list of attributes is
listed in Section 14.4. This is an optional parameter that may be
NULL.

Resources A pointer to the resource descriptors that describe the current
configuration of this BAR of the PCI controller. This buffer is
allocated for the caller with the Boot Service
EFI_BOOT_SERVICES.AllocatePool(). It is the caller’s
responsibility to free the buffer with the Boot Service
EFI_BOOT_SERVICES.FreePool(). See “Related Definitions”
below for the resource descriptors that may be used. This is an
optional parameter that may be NULL.

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to describe
the current resources allocated to BAR of a PCI Controller. These are the QWORD Address Space
Descriptor, and the End Tag. The QWORD Address Space Descriptor can describe memory, I/O, and bus
number ranges for dynamic or fixed resources. The configuration of a BAR of a PCI Controller is described
with one or more QWORD Address Space Descriptors followed by an End Tag. Table 127 and Table 128
contain these two descriptor types. Please see the ACPI Specification for details on the field values. The
ACPI Specification does not define how to the use the Address Translation Offset for non-bridge devices.
The UEFI Specification is extending the definition of Address Translation Offset to support systems that
have different mapping for HostAddress and DeviceAddress. The definition of the Address Space
Granularity field in the QWORD Address Space Descriptor differs from the ACPI Specification and the
definition in Table 127 is the one that must be used.
UEFI Forum, Inc. March 2019 716

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 127. QWORD Address Space Descriptor

Table 128. End Tag

Description

The GetBarAttributes() function returns in Supports the mask of attributes that the PCI controller
supports setting for the BAR specified by BarIndex. It also returns in Resources a list of resource
descriptors for the BAR specified by BarIndex. Both Supports and Resources are optional
parameters. If both Supports and Resources are NULL, then EFI_INVALID_PARAMETER is returned.
It is the caller’s responsibility to free Resources with the Boot Service
EFI_BOOT_SERVICES.FreePool() when the caller is done with the contents of Resources. If there
are not enough resources to allocate Resources, then EFI_OUT_OF_RESOURCES is returned.

If a bit is set in Supports, then the PCI controller supports this attribute type for the BAR specified by
BarIndex, and a call can be made to SetBarAttributes() using that attribute type.

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type
 0 – Memory Range
 1 – I/O Range
 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this field
should be set to 32. For a 64-bit memory request, this field should be set to 64.

0x0E 0x08 Address Range Minimum. Starting address of BAR.

0x16 0x08 Address Range Maximum. Ending address of BAR.

0x1E 0x08 Address Translation Offset. Offset to apply to the Starting address of a BAR to
convert it to a PCI address. This value is zero unless the HostAddress and
DeviceAddress for the BAR are different.

0x26 0x08 Address Length

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.
UEFI Forum, Inc. March 2019 717

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Status Codes Returned

EFI_PCI_IO_PROTOCOL.SetBarAttributes()

Summary

Sets the attributes for a range of a BAR on a PCI controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES) (

 IN EFI_PCI_IO_PROTOCOL *This,

 IN UINT64 Attributes,

 IN UINT8 BarIndex,

 IN OUT UINT64 *Offset,

 IN OUT UINT64 *Length

);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 14.4.

Attributes The mask of attributes to set for the resource range specified by
BarIndex, Offset, and Length.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the resource range. The legal range for this field
is 0..5.

Offset A pointer to the BAR relative base address of the resource range to
be modified by the attributes specified by Attributes. On return,
*Offset will be set to the actual base address of the resource range.
Not all resources can be set to a byte boundary, so the actual base
address may differ from the one passed in by the caller.

Length A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *Length will be set to
the actual length of the resource range. Not all resources can be set
to a byte boundary, so the actual length may differ from the one
passed in by the caller.

EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI controller
supports are returned in Supports. If Resources is not NULL, then
the resource descriptors that the PCI controller is currently using are
returned in Resources.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate Resources.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
UEFI Forum, Inc. March 2019 718

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Description

The SetBarAttributes() function sets the attributes specified in Attributes for the PCI controller
on the resource range specified by BarIndex, Offset, and Length. Since the granularity of setting
these attributes may vary from resource type to resource type, and from platform to platform, the actual
resource range and the one passed in by the caller may differ. As a result, this function may set the
attributes specified by Attributes on a larger resource range than the caller requested. The actual
range is returned in Offset and Length. The caller is responsible for verifying that the actual range for
which the attributes were set is acceptable.

If the attributes are set on the PCI controller, then the actual resource range is returned in Offset and
Length, and EFI_SUCCESS is returned. Many of the attribute types also require that the state of the PCI
Host Bus Controller and the state of any PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller to be modified. This function will only return EFI_SUCCESS is all of these state changes
are made. The PCI Controller may support a combination of attributes, but unless the PCI Host Bus
Controller and the PCI to PCI bridges also support that same combination of attributes, then this call will
return an error.

If the attributes specified by Attributes, or the resource range specified by BarIndex, Offset, and
Length are not supported by the PCI controller, then EFI_UNSUPPORTED is returned. The set of
supported attributes for the PCI controller can be found by calling GetBarAttributes().

If either Offset or Length is NULL then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

14.4.1 PCI Device Paths

An EFI_PCI_IO_PROTOCOL must be installed on a handle for its services to be available to PCI device
drivers. In addition to the EFI_PCI_IO_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle (see chapter 9).

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the bus
hierarchy in the system, additional device path nodes may precede this ACPI Device Path Node. A PCI
device path is described with PCI Device Path Nodes. There will be one PCI Device Path node for the PCI

EFI_SUCCESS The set of attributes specified by Attributes for the resource range
specified by BarIndex, Offset, and Length were set on the PCI
controller, and the actual resource range is returned in Offset and
Length.

EFI_UNSUPPORTED The set of attributes specified by Attributes is not supported by the
PCI controller for the resource range specified by BarIndex, Offset,
and Length.

EFI_INVALID_PARAMETER Offset is NULL.

EFI_INVALID_PARAMETER Length is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the resource
range specified by BarIndex, Offset, and Length.
UEFI Forum, Inc. March 2019 719

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
controller itself, and one PCI Device Path Node for each PCI to PCI Bridge that is between the PCI
controller and the PCI Root Bridge.

Table 129 shows an example device path for a PCI controller that is located at PCI device number 0x07
and PCI function 0x00, and is directly attached to a PCI root bridge. This device path consists of an ACPI
Device Path Node, a PCI Device Path Node, and a Device Path End Structure. The _HID and _UID must
match the ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0).

Table 129. PCI Device 7, Function 0 on PCI Root Bridge 0

Table 130 shows an example device path for a PCI controller that is located behind a PCI to PCI bridge at
PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge is directly attached to a PCI root
bridge, and it is at PCI device number 0x05 and PCI function 0x00. This device path consists of an ACPI
Device Path Node, two PCI Device Path Nodes, and a Device Path End Structure. The _HID and _UID must
match the ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0).

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 720

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 130. PCI Device 7, Function 0 behind PCI to PCI bridge

14.4.2 PCI Option ROMs

EFI takes advantage of both the PCI Firmware Specification and the PE/COFF Specification to store EFI
images in a PCI Option ROM. There are several rules that must be followed when constructing a PCI
Option ROM:

• A PCI Option ROM can be no larger than 16 MiB.

• A PCI Option ROM may contain one or more images.

• Each image must being on a 512-byte boundary.

• Each image must be an even multiple of 512 bytes in length. This means that images that are
not an even multiple of 512 bytes in length must be padded to the next 512-byte boundary.

• Legacy Option ROM images begin with a Standard PCI Expansion ROM Header (Table 131).

• EFI Option ROM images begin with an EFI PCI Expansion ROM Header (Table 135).

• Each image must contain a PCIR data structure in the first 64 KiB of the image.

• The image data for an EFI Option ROM image must begin in the first 64 KiB of the image.

• The image data for an EFI Option ROM image must be a PE/COFF image or a compressed PE/
COFF image following the UEFI Compression Algorithm, and referencing Appendix H for the
Compression Source Code.

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 721

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
• The PCIR data structure must begin on a 4-byte boundary.

• If the PCI Option ROM contains a Legacy Option ROM image, it must be the first image.

• The images are placed in the PCI Option ROM in order from highest to lowest priority. This
priority is used to build the ordered list of Driver Image Handles that are produced by the Bus
Specific Driver Override Protocol for a PCI Controller.

• When PCI device provides an EFI option ROM that is signed in accordance with Chapter 27, use
of UEFI Compression Algorithm storage option is preferred. When performing signature
validation upon compressed driver, the size returned by
EFI_DECOMPRESS_PROTOCOL.GetInfo()will be used as driver size and input to signature
validation process. Thus any post-driver padding required to reach exact multiple of 512 bytes
per Figure 52 is ignored by signature validation.

• When PCI device provides an EFI option ROM that is signed in accordance with Chapter 27 and
stored uncompressed, the end of the driver for signature validation will be the assumed to be
the 512-byte boundary indicated by the ‘Initialization Size’ value in the EFI PCI Expansion ROM
Header (see Table 133). As the signed driver may not exactly fill the indicated ‘Initialization Size’,
it is recommended that the value ‘Offset to EFI Image’ (also Table 133) be adjusted to ensure
the last byte of the signed, uncompressed driver, coincides with the end of the ROM as
indicated by ‘Initialization Size’. And any required padding bytes are to be inserted ahead of the
signed uncompressed driver image.

There are several options available when building a PCI option ROM for a PCI adapter. A PCI Option ROM
can choose to support only a legacy PC-AT platform, only an EFI compliant platform, or both. This
flexibility allows a migration path from adapters that support only legacy PC-AT platforms, to adapters
that support both PC-AT platforms and EFI compliant platforms, to adapters that support only EFI
compliant platforms. The following is a list of the image combinations that may be placed in a PCI option
ROM. This is not an exhaustive list. Instead, it provides what will likely be the most common PCI option
ROM layouts. EFI complaint system firmware must work with all of these PCI option ROM layouts, plus
any other layouts that are possible within the PCI Firmware Specification. The format of a Legacy Option
ROM image is defined in the PCI Firmware Specification.

• Legacy Option ROM image

• IA-32 UEFI driver

• x64 UEFI driver

• AArch32 UEFI driver

• AArch64 UEFI driver

• Legacy Option ROM image + x64 UEFI driver

• Legacy Option ROM image + x64 UEFI driver + AArch64 UEFI driver

• x64 UEFI driver + AArch64 UEFI driver

• Itanium Processor Family UEFI driver

• EBC Driver

In addition to combinations of UEFI drivers with different processor binding, it is also possible to include
multiple drivers of different function but the same processor binding. When processing option ROM
UEFI Forum, Inc. March 2019 722

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
contents, all drivers of appropriate processor binding type must be loaded and added to ordered list of
drivers previously mentioned.

It is also possible to place a application written to this specification in a PCI Option ROM. However, the
PCI Bus Driver will ignore these images. The exact mechanism by which applications can be loaded and
executed from a PCI Option ROM is outside the scope of this document.

Table 131. Standard PCI Expansion ROM Header (Example from PCI Firmware Specification 3.0)

Table 132. PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)

Table 133. EFI PCI Expansion ROM Header

Offset Byte Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02-0x17 22 XX Reserved per processor architecture unique data

0x18-0x19 2 XX Pointer to PCIR Data Structure

Code Type Description

0x00 IA-32, PC-AT compatible

0x01 Open Firmware standard for PCI

0x02 Hewlett-Packard PA RISC

0x03 EFI Image

0x04-0xFF Reserved


Offset

Byte
Length


Value


Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size includes this
header.

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX Subsystem value for EFI image header

0x0a 2 XX Machine type from EFI image header

0x0c 2 XX Compression type
0x0000 - The image is uncompressed
0x0001 - The image is compressed. See the UEFI Compression Algorithm
and Appendix H.
0x0002 - 0xFFFF - Reserved

0x0e 8 0x00 Reserved

0x16 2 XX Offset to EFI Image

0x18 2 XX Offset to PCIR Data Structure
UEFI Forum, Inc. March 2019 723

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
14.4.2.1 PCI Bus Driver Responsibilities

A PCI Bus Driver must scan a PCI Option ROM for PCI Device Drivers. If a PCI Option ROM is found during
PCI Enumeration, then a copy of the PCI Option ROM is placed in a memory buffer. The PCI Bus Driver will
use the memory copy of the PCI Option ROM to search for UEFI drivers after PCI Enumeration. The PCI
Bus Driver will search the list of images in a PCI Option ROM for the ones that have a Code Type of 0x03 in
the PCIR Data Structure, and a Signature of 0xEF1 in the EFI PCI Expansion ROM Header. Then, it will
examine the Subsystem Type of the EFI PCI Expansion ROM Header. If the Subsystem Type is
IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER(11) or
IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER(12), then the PCI Bus Driver can load the PCI Device Driver
from the PCI Option ROM. The Offset to EFI Image Header field of the EFI PCI Expansion ROM Header is
used to get a pointer to the beginning of the PE/COFF image in the PCI Option ROM. The PE/COFF image
may have been compressed using the UEFI Compression Algorithm. If it has been compressed, then the
PCI Bus Driver must decompress the driver to a memory buffer. The Boot Service
EFI_BOOT_SERVICES.LoadImage() can then be used to load the driver. All UEFI driver images
discovered in the PCI Option ROM and meeting these requirements must be processed and loaded via
LoadImage(). If the platform does not support the Machine Type of the driver, then LoadImage()
may fail.

It is the PCI Bus Driver's responsibility to verify that the Expansion ROM Header and PCIR Data Structure
are valid. It is the responsibly of the Boot Service LoadImage() to verify that the PE/COFF image is valid.
The Boot Service LoadImage() may fail for several reasons including a corrupt PE/COFF image or an
unsupported Machine Type.

If a PCI Option ROM contains one or more UEFI images, then the PCI Bus Driver must install an instance of
the EFI_LOAD_FILE2_PROTOCOL on the PCI controller handle. Then, when the PCI Bus Driver loads a
PE/COFF image from a PCI Option ROM using the Boot Service LoadImage(), the PCI Bus Driver must
provide the device path of the image being loaded. The device path of an image loaded from a PCI Option
ROM must be the device path to the PCI Controller to which the PCI Option ROM is attached followed by
a Relative Offset Range node. The Starting Offset field of the Relative Offset Range node must be the byte
offset from the beginning of the PCI Option ROM to the beginning of the EFI Option ROM image, and the
Ending Offset field of the Relative Offset Range node must be the byte offset from the beginning of the
PCI Option ROM to the end of the EFI Option ROM image. The table below shows an example device path
for an EFI driver loaded from a PCI Option ROM. The EFI Driver starts at offset 0x8000 into the PCI Option
ROM and is 0x2000 bytes long. The shorthand notation for this device path is:

PciRoot(0)/PCI(5,0)/PCI(7,0)/ Offset(0x8000,0x9FFF)
UEFI Forum, Inc. March 2019 724

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 134. Device Path for an EFI Driver loaded from PCI Option ROM

The PCI Option ROM search may produce one or more Driver Image Handles for the PCI Controller that is
associated with the PCI Option ROM. The PCI Bus Driver is responsible for producing a Bus Specific Driver
Override Protocol instance for every PCI Controller has a PCI Option ROM that contains one or more UEFI
Drivers. The Bus Specific Driver Override Protocol produces an ordered list of Driver Image Handles. The
order that the UEFI Drivers are placed in the PCI Option ROM is the order of Driver Image Handles that
must be returned by the Bus Specific Driver Override Protocol. This gives the party that builds the PCI
Option ROM control over the order that the drivers are used in the Boot Service
EFI_BOOT_SERVICES.ConnectController().

14.4.2.2 PCI Device Driver Responsibilities

A PCI Device Driver should not be designed to care where it is stored. It can reside in a PCI Option ROM,
the system's motherboard ROM, a hard drive, a CD-ROM drive, etc. All PCI Device Drivers are compiled
and linked to generate a PE/COFF image. When a PE/COFF image is placed in a PCI Option ROM, it must

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x04 Generic Device Path Header – Type Media Device Path

0x19 0x01 0x08 Sub type – Relative Offset Range

0x1A 0x02 0x14 Length – 0x14 bytes

0x1C 0x08 0x8000 Start Address – Offset into PCI Option ROM

0x24 0x08 0x9FFF End Address – Offset into PCI Option ROM

0x2C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x2D 0x01 0xFF Sub type – End of Entire Device Path

0x2E 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 725

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
follow the rules outlined in Section 14.4.2. The recommended image layout is to insert an EFI PCI
Expansion ROM Header and a PCIR Data Structure in front of the PE/COFF image, and pad the entire
image up to the next 512-byte boundary. Figure 52 shows the format of a single PCI Device Driver that
can be added to a PCI Option ROM.

Following are recommended layouts and flow charts for various types of driver signage and compression
states for PCI device driver images. Figure 52 shows an unsigned layout.

Figure 52. Unsigned PCI Driver Image Layout

Figure 53 and Figure 54 show a signed and compressed PCI device driver image flow chart and layout,
respectively.

OM13169

PCI Device Driver Image (Unsigned)

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

PE/COFF Image of PCI Device Driver

Padding to next 512-byte boundary
UEFI Forum, Inc. March 2019 726

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 53. Signed and Compressed PCI Driver Image Flow

PCI Device Driver Image

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

Compressed Image of PCI Device Driver

Padding to next 512-byte boundary
UEFI Forum, Inc. March 2019 727

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 54. Signed and Compressed PCI Driver Image Layout

Figure 55 and Figure 56 show a signed but not compressed flow chart and a signed and uncompressed
PCI device driver image layout, respectively.
UEFI Forum, Inc. March 2019 728

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 55. Signed but not Compressed PCI Driver Image Flow

U N S IG N E D
D R IV E R

S IG N D R IV E R
IM A G E

P R IV A T E
K E Y

C A LC U LA T E
P A D D IN G A N D

A D JU S T O F F S E T T O
E F I IM A G E

S IG N E D B U T N O T C O M P R E S S E D

C O M B IN E W IT H
P C IR T O F O R M

R O M IM A G E
UEFI Forum, Inc. March 2019 729

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Figure 56. Signed and Uncompressed PCI Driver Image Layout

The field values for the EFI PCI Expansion ROM Header and the PCIR Data Structure would be as follows in
this recommended PCI Driver image layout. An image must start at a 512-byte boundary, and the end of
the image must be padded to the next 512-byte boundary.

PCI Device Driver Image
 (Signed and NOT Compressed)

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

 Adjust Driver to End on 512 Boundary

Uncompressed Image of Signed PCI Device Driver

Offset to EFI Image

Initialization Size x 512
UEFI Forum, Inc. March 2019 730

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
Table 135. Recommended PCI Device Driver Layout


Offset

Byte
Length


Value


Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size includes this
header

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX
0x0B
0x0C

Subsystem Value from the PCI Driver's PE/COFF Image Header
Subsystem Value for an EFI Boot Service Driver
Subsystem Value for an EFI Runtime Driver

0x0a 2 XX
0x014C
0x0200
0x0EBC
0x8664
0x01c2
0xAA64

Machine type from the PCI Driver's PE/COFF Image Header
IA-32 Machine Type
Itanium processor type
EFI Byte Code (EBC) Machine Type
X64 Machine Type
ARM Machine Type
ARM 64-bit Machine Type

0x0C 2 XXXX
0x0000
0x0001

Compression Type
Uncompressed
Compressed following the UEFI Compression Algorithm.

0x0E 8 0x00 Reserved

0x16 2 0x0034 Offset to EFI Image

0x18 2 0x001C Offset to PCIR Data Structure

0x1A 2 0x0000 Padding to align PCIR Data Structure on a 4 byte boundary

0x1C 4 'PCIR' PCIR Data Structure Signature

0x20 2 XXXX Vendor ID from the PCI Controller's Configuration Header

0x22 2 XXXX Device ID from the PCI Controller's Configuration Header

0x24 2 0x0000 Reserved

0x26 2 0x0018 The length if the PCIR Data Structure in bytes

0x28 1 0x00 PCIR Data Structure Revision. Value for PCI 2.2 Option ROM

0x29 3 XXXX Class Code from the PCI Controller's Configuration Header

0x2C 2 XXXX Code Image Length in units of 512 bytes. Same as Initialization Size

0x2E 2 XXXX Revision Level of the Code/Data. This field is ignored

0x30 1 0x03 Code Type

0x31 1 XX Indicator. Bit 7 clear means another image follows. Bit 7 set means that this
image is the last image in the PCI Option ROM. Bits 0–6 are reserved.

0x00
0x80

Additional images follow this image in the PCI Option ROM
This image is the last image in the PCI Option ROM

0x32 2 0x0000 Reserved

0x34 X XXXX The beginning of the PCI Device Driver's PE/COFF Image
UEFI Forum, Inc. March 2019 731

UEFI Specification, Version 2.8 Protocols — PCI Bus Support
14.4.3 Nonvolatile Storage

A PCI adapter may contain some form of nonvolatile storage. Since there are no standard access
mechanisms for nonvolatile storage on PCI adapters, the PCI I/O Protocol does not provide any services
for nonvolatile storage. However, a PCI Device Driver may choose to implement its own access
mechanisms. If there is a private channel between a PCI Controller and a nonvolatile storage device, a PCI
Device Driver can use it for configuration options or vital product data.

Note: The fields RomImage and RomSize in the PCI I/O Protocol do not provide direct access to the PCI
Option ROM on a PCI adapter. Instead, they provide access to a copy of the PCI Option ROM in
memory. If the contents of the RomImage are modified, only the memory copy is updated. If a
vendor wishes to update the contents of a PCI Option ROM, they must provide their own utility or
driver to perform this task. There is no guarantee that the BAR for the PCI Option ROM is valid at
the time that the utility or driver may execute, so the utility or driver must provide the code
required to gain write access to the PCI Option ROM contents. The algorithm for gaining write
access to a PCI Option ROM is both platform specific and adapter specific, so it is outside the
scope of this document.

14.4.4 PCI Hot-Plug Events

It is possible to design a PCI Bus Driver to work with PCI Bus that conforms to the PCI Hot-Plug
Specification. There are two levels of functionality that could be provided in the preboot environment.
The first is to initialize the PCI Hot-Plug capable bus so it can be used by an operating system that also
conforms to the PCI Hot-Plug Specification. This only affects the PCI Enumeration that is performed in
either the PCI Bus Driver’s initialization, or a firmware component that executes prior to the PCI Bus
Driver’s initialization. None of the PCI Device Drivers need to be aware of the fact that a PCI Controller
may exist in a slot that is capable of a hot-plug event. Also, the addition, removal, and replacement of PCI
adapters in the preboot environment would not be allowed.

The second level of functionality is to actually implement the full hot-plug capability in the PCI Bus Driver.
This is not recommended because it adds a great deal of complexity to the PCI Bus Driver design with very
little added value. However, there is nothing about the PCI Driver Model that would preclude this
implementation. It would require using an event based periodic timer to monitor the hot-plug capable
slots, and take advantage of the EFI_BOOT_SERVICES.ConnectController()and
EFI_BOOT_SERVICES.DisconnectController() Boot Services to dynamically start and stop the
drivers that manage the PCI controller that is being added, removed, or replaced. If the
EFI_BOOT_SERVICES.DisconnectController() Boot Service fails it must be retried via a periodic
timer.
UEFI Forum, Inc. March 2019 732

UEFI Specification, Version 2.8
15 - Protocols — SCSI Driver Models and Bus Support

The intent of this chapter is to specify a method of providing direct access to SCSI devices. These
protocols provide services that allow a generic driver to produce the Block I/O protocol for SCSI disk
devices, and allows an EFI utility to issue commands to any SCSI device. The main reason to provide such
an access is to enable S.M.A.R.T. functionality during POST (i.e., issuing Mode Sense, Mode Select, and
Log Sense to SCSI devices). This is accomplished by using a generic API such as SCSI Pass Thru. The use of
this method will enable additional functionality in the future without modifying the EFI SCSI Pass Thru
driver. SCSI Pass Thru is not limited to SCSI channels. It is applicable to all channel technologies that
utilize SCSI commands such as SCSI, ATAPI, and Fibre Channel. This chapter describes the SCSI Driver
Model. This includes the behavior of SCSI Bus Drivers, the behavior of SCSI Device Drivers, and a detailed
description of the SCSI I/O Protocol. This chapter provides enough material to implement a SCSI Bus
Driver, and the tools required to design and implement SCSI Device Drivers. It does not provide any
information on specific SCSI devices.

15.1 SCSI Driver Model Overview

The EFI SCSI Driver Stack includes the SCSI Pass Thru Driver, SCSI Bus Driver and individual SCSI Device
Drivers.

SCSI Pass Thru Driver: A SCSI Pass Through Driver manages a SCSI Host Controller that contains one or
more SCSI Buses. It creates SCSI Bus Controller Handles for each SCSI Bus, and attaches Extended SCSI
Pass Thru Protocol and Device Path Protocol to each handle the driver produced. Please refer to
Section 15.7 and Appendix G for details about the Extended SCSI Pass Thru Protocol.

SCSI Bus Driver: A SCSI Bus Driver manages a SCSI Bus Controller Handle that is created by SCSI Pass Thru
Driver. It creates SCSI Device Handles for each SCSI Device Controller detected during SCSI Bus
Enumeration, and attaches SCSI I/O Protocol and Device Path Protocol to each handle the driver
produced.

SCSI Device Driver: A SCSI Device Driver manages one kind of SCSI Device. Device handles for SCSI
Devices are created by SCSI Bus Drivers. A SCSI Device Driver could be a bus driver itself, and may create
child handles. But most SCSI Device Drivers will be device drivers that do not create new handles. For the
pure device driver, it attaches protocol instance to the device handle of the SCSI Device. These protocol
instances are I/O abstractions that allow the SCSI Device to be used in the pre-boot environment. The
most common I/O abstractions are used to boot an EFI compliant OS.

15.2 SCSI Bus Drivers

A SCSI Bus Driver manages a SCSI Bus Controller Handle. A SCSI Bus Controller Handle is created by a SCSI
Pass Thru Driver and is abstracted in software with the Extended SCSI Pass Thru Protocol. A SCSI Bus
Driver will manage handles that contain this protocol. Figure 57 shows an example device handle for a
SCSI Bus handle. It contains a Device Path Protocol instance and a Extended SCSI Pass Thru Protocol
Instance.
UEFI Forum, Inc. March 2019 733

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Figure 57. Device Handle for a SCSI Bus Controller

15.2.1 Driver Binding Protocol for SCSI Bus Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the SCSI Bus Driver can manage a device handle. A SCSI Bus Driver can only
manage device handle that contain the Device Path Protocol and the Extended SCSI Pass Thru Protocol,
so a SCSI Bus Driver must look for these two protocols on the device handle that is being tested.

The Start() function tells the SCSI Bus Driver to start managing a device handle. The device handle
should support the protocols shown in Figure 57. The Extended SCSI Pass Thru Protocol provides
information about a SCSI Channel and the ability to communicate with any SCSI devices attached to that
SCSI Channel.

The SCSI Bus Driver has the option of creating all of its children in one call to Start(), or spreading it
across several calls to Start(). In general, if it is possible to design a bus driver to create one child at a
time, it should do so to support the rapid boot capability in the UEFI Driver Model. Each of the child
device handles created in Start() must contain a Device Path Protocol instance, and a SCSI I/O protocol
instance. The SCSI I/O Protocol is described in Section 15.4 and Section 14.4. The format of device paths
for SCSI Devices is described in Section 15.5. Figure 58 shows an example child device handle that is
created by a SCSI Bus Driver for a SCSI Device.

Figure 58. Child Handle Created by a SCSI Bus Driver

A SCSI Bus Driver must perform several steps to manage a SCSI Bus.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_PASS_THRU_PROTOCOL

Device Handle

EFI_ DEVICE_ PATH_ PROTOCOL

EFI_EXT_SCSI_PASS_THRU_PROTOCOL

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_IO_PROTOCOL
UEFI Forum, Inc. March 2019 734

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
1. Scan for the SCSI Devices on the SCSI Channel that connected to the SCSI Bus Controller. If a
request is being made to scan only one SCSI Device, then only looks for the one specified.
Create a device handle for the SCSI Device found.

2. Install a Device Path Protocol instance and a SCSI I/O Protocol instance on the device handle
created for each SCSI Device.

The Stop() function tells the SCSI Bus Driver to stop managing a SCSI Bus. The Stop() function can
destroy one or more of the device handles that were created on a previous call to Start(). If all of the
child device handles have been destroyed, then Stop() will place the SCSI Bus Controller in a quiescent
state. The functionality of Stop() mirrors Start().

15.2.2 SCSI Enumeration

The purpose of the SCSI Enumeration is only to scan for the SCSI Devices attached to the specific SCSI
channel. The SCSI Bus driver need not allocate resources for SCSI Devices (like PCI Bus Drivers do), nor
need it connect a SCSI Device with its Device Driver (like USB Bus Drivers do). The details of the SCSI
Enumeration is implementation specific, thus is out of the scope of this document.

15.3 SCSI Device Drivers

SCSI Device Drivers manage SCSI Devices. Device handles for SCSI Devices are created by SCSI Bus Drivers.
A SCSI Device Driver could be a bus driver itself, and may create child handles. But most SCSI Device
Drivers will be device drivers that do not create new handles. For the pure device driver, it attaches
protocol instance to the device handle of the SCSI Device. These protocol instances are I/O abstractions
that allow the SCSI Device to be used in the pre-boot environment. The most common I/O abstractions
are used to boot an EFI compliant OS.

15.3.1 Driver Binding Protocol for SCSI Device Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the SCSI Device Driver can manage a device handle. A SCSI Device Driver can
only manage device handle that contain the Device Path Protocol and the SCSI I//O Protocol, so a SCSI
Device Driver must look for these two protocols on the device handle that is being tested. In addition, it
needs to check to see if the device handle represents a SCSI Device that SCSI Device Driver knows how to
manage. This is typically done by using the services of the SCSI I/O Protocol to see whether the device
information retrieved is supported by the device driver.

The Start() function tells the SCSI Device Driver to start managing a SCSI Device. A SCSI Device Driver
could be a bus driver itself, and may create child handles. But most SCSI Device Drivers will be device
drivers that do not create new handles. For the pure device driver, it installs one or more addition
protocol instances on the device handle for the SCSI Device.

The Stop() function mirrors the Start() function, so the Stop() function completes any outstanding
transactions to the SCSI Device and removes the protocol interfaces that were installed in Start().

15.4 EFI SCSI I/O Protocol

This section defines the EFI SCSI I/O protocol. This protocol is used by code, typically drivers, running in
the EFI boot services environment to access SCSI devices. In particular, functions for managing devices on
SCSI buses are defined here.
UEFI Forum, Inc. March 2019 735

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
The interfaces provided in the EFI_SCSI_IO_PROTOCOL are for performing basic operations to access
SCSI devices.

EFI_SCSI_IO_PROTOCOL
This section provides a detailed description of the EFI_SCSI_IO_PROTOCOL.

Summary

Provides services to manage and communicate with SCSI devices.

GUID

#define EFI_SCSI_IO_PROTOCOL_GUID \

 {0x932f47e6,0x2362,0x4002,\

 {0x80,0x3e,0x3c,0xd5,0x4b,0x13,0x8f,0x85}}

Protocol Interface Structure

typedef struct _EFI_SCSI_IO_PROTOCOL {

 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE GetDeviceType;

 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION GetDeviceLocation;

 EFI_SCSI_IO_PROTOCOL_RESET_BUS ResetBus;

 EFI_SCSI_IO_PROTOCOL_RESET_DEVICE ResetDevice;

 EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND ExecuteScsiCommand;

 UINT32 IoAlign;
} EFI_SCSI_IO_PROTOCOL;

Parameters

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a power
of 2, and the requirement is that the start address of a buffer must
be evenly divisible by IoAlign with no remainder.

GetDeviceType Retrieves the information of the device type which the SCSI device
belongs to. See GetDeviceType().

GetDeviceLocation Retrieves the device location information in the SCSI bus. See
GetDeviceLocation().

ResetBus Resets the entire SCSI bus the SCSI device attaches to. See
ResetBus().

ResetDevice Resets the SCSI Device that is specified by the device handle the SCSI
I/O protocol attaches. See ResetDevice().

ExecuteScsiCommandSends a SCSI command to the SCSI device and waits for the
execution completion until an exit condition is met, or a timeout
occurs. See ExecuteScsiCommand().

Description

The EFI_SCSI_IO_PROTOCOL provides the basic functionalities to access and manage a SCSI Device.
There is one EFI_SCSI_IO_PROTOCOL instance for each SCSI Device on a SCSI Bus. A device driver that
wishes to manage a SCSI Device in a system will have to retrieve the EFI_SCSI_IO_PROTOCOL instance
UEFI Forum, Inc. March 2019 736

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
that is associated with the SCSI Device. A device handle for a SCSI Device will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance and an EFI_SCSI_IO_PROTOCOL instance.

EFI_SCSI_IO_PROTOCOL.GetDeviceType()

Summary

Retrieves the device type information of the SCSI Device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE) (

 IN EFI_SCSI_IO_PROTOCOL *This,

 OUT UINT8 *DeviceType
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in EFI_SCSI_IO_PROTOCOL.

DeviceType A pointer to the device type information retrieved from the SCSI
Device. See “Related Definitions” for the possible returned values of
this parameter.

Description

This function is used to retrieve the SCSI device type information. This function is typically used for SCSI
Device Drivers to quickly recognize whether the SCSI Device could be managed by it.

If DeviceType is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device type is
returned in DeviceType and EFI_SUCCESS is returned.
UEFI Forum, Inc. March 2019 737

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Related Definitions

//Defined in the SCSI Primary Commands standard (e.g., SPC-4)

//

#define EFI_SCSI_IO_TYPE_DISK 0x00 // Disk device

#define EFI_SCSI_IO_TYPE_TAPE 0x01 // Tape device

#define EFI_SCSI_IO_TYPE_PRINTER 0x02 // Printer

#define EFI_SCSI_IO_TYPE_PROCESSOR 0x03 // Processor

#define EFI_SCSI_IO_TYPE_WORM 0x04 // Write-once read-multiple

#define EFI_SCSI_IO_TYPE_CDROM 0x05 // CD or DVD device

#define EFI_SCSI_IO_TYPE_SCANNER 0x06 // Scanner device

#define EFI_SCSI_IO_TYPE_OPTICAL 0x07 // Optical memory device

#define EFI_SCSI_IO_TYPE_MEDIUMCHANGER 0x08 // Medium Changer device

#define EFI_SCSI_IO_TYPE_COMMUNICATION 0x09 // Communications device

#define MFI_SCSI_IO_TYPE_A 0x0A // Obsolete

#define MFI_SCSI_IO_TYPE_B 0x0B // Obsolete

#define MFI_SCSI_IO_TYPE_RAID 0x0C // Storage array controller

 // device (e.g., RAID)

#define MFI_SCSI_IO_TYPE_SES 0x0D // Enclosure services device

#define MFI_SCSI_IO_TYPE_RBC 0x0E // Simplified direct-access

 // device (e.g., magnetic

 // disk)

#define MFI_SCSI_IO_TYPE_OCRW 0x0F // Optical card reader/

 // writer device

#define MFI_SCSI_IO_TYPE_BRIDGE 0x10 // Bridge Controller

 // Commands

#define MFI_SCSI_IO_TYPE_OSD 0x11 // Object-based Storage

 // Device

#define EFI_SCSI_IO_TYPE_RESERVED_LOW 0x12 // Reserved (low)

#define EFI_SCSI_IO_TYPE_RESERVED_HIGH 0x1E // Reserved (high)

#define EFI_SCSI_IO_TYPE_UNKNOWN 0x1F // Unknown no device type

Status Codes Returned

EFI_SCSI_IO_PROTOCOL.GetDeviceLocation()

Summary

Retrieves the SCSI device location in the SCSI channel.

EFI_SUCCESS Retrieves the device type information successfully.

EFI_INVALID_PARAMETER The DeviceType is NULL.
UEFI Forum, Inc. March 2019 738

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION) (

 IN EFI_SCSI_IO_PROTOCOL *This,

 IN OUT UINT8 **Target,

 OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in EFI_SCSI_IO_PROTOCOL.

Target A pointer to the Target Array which represents the ID of a SCSI
device on the SCSI channel.

Lun A pointer to the Logical Unit Number of the SCSI device on the SCSI
channel.

Description

This function is used to retrieve the SCSI device location in the SCSI bus. The device location is
determined by a (Target, Lun) pair. This function allows a SCSI Device Driver to retrieve its location on the
SCSI channel, and may use the Extended SCSI Pass Thru Protocol to access the SCSI device directly.

If Target or Lun is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device location is
returned in Target and Lun, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SCSI_IO_PROTOCOL.ResetBus()

Summary

Resets the SCSI Bus that the SCSI Device is attached to.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_BUS) (

 IN EFI_SCSI_IO_PROTOCOL *This

);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in EFI_SCSI_IO_PROTOCOL.

EFI_SUCCESS Retrieves the device location successfully.

EFI_INVALID_PARAMETER Target or Lun is NULL.
UEFI Forum, Inc. March 2019 739

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Description

This function provides the mechanism to reset the whole SCSI bus that the specified SCSI Device is
connected to. Some SCSI Host Controller may not support bus reset, if so, EFI_UNSUPPORTED is
returned. If a device error occurs while executing that bus reset operation, then EFI_DEVICE_ERROR is
returned. If a timeout occurs during the execution of the bus reset operation, then EFI_TIMEOUT is
returned. If the bus reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SCSI_IO_PROTOCOL.ResetDevice()

Summary

Resets the SCSI Device that is specified by the device handle that the SCSI I/O Protocol is attached.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_DEVICE) (

 IN EFI_SCSI_IO_PROTOCOL *This

);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in EFI_SCSI_IO_PROTOCOL.

Description

This function provides the mechanism to reset the SCSI Device. If the SCSI bus does not support a device
reset operation, then EFI_UNSUPPORTED is returned. If a device error occurs while executing that device
reset operation, then EFI_DEVICE_ERROR is returned. If a timeout occurs during the execution of the
device reset operation, then EFI_TIMEOUT is returned. If the device reset operation is completed, then
EFI_SUCCESS is returned.

EFI_SUCCESS The SCSI bus is reset successfully.

EFI_DEVICE_ERROR Errors encountered when resetting the SCSI bus.

EFI_UNSUPPORTED The bus reset operation is not supported by the SCSI Host Controller.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI bus.
UEFI Forum, Inc. March 2019 740

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand()

Summary

Sends a SCSI Request Packet to the SCSI Device for execution.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND) (

 IN EFI_SCSI_IO_PROTOCOL *This,

 IN OUT EFI_SCSI_IO_SCSI_REQUEST_PACKET *Packet,

 IN EFI_EVENT Event OPTIONAL

);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in EFI_SCSI_IO_PROTOCOL.

Packet The SCSI request packet to send to the SCSI Device specified by the
device handle. See “Related Definitions” for a description of
EFI_SCSI_IO_SCSI_REQUEST_PACKET.

Event If the SCSI bus where the SCSI device is attached does not support
non-blocking I/O, then Event is ignored, and blocking I/O is
performed. If Event is NULL, then blocking I/O is performed. If Event
is not NULL and non-blocking I/O is supported, then non-blocking I/O
is performed, and Event will be signaled when the SCSI Request
Packet completes.

EFI_SUCCESS Reset the SCSI Device successfully.

EFI_DEVICE_ERROR Errors are encountered when resetting the SCSI Device.

EFI_UNSUPPORTED The SCSI bus does not support a device reset operation.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI Device.
UEFI Forum, Inc. March 2019 741

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Related Definitions

typedef struct {

 UINT64 Timeout;

 VOID *InDataBuffer;

 VOID *OutDataBuffer;

 VOID *SenseData;

 VOID *Cdb;

 UINT32 InTransferLength;

 UINT32 OutTransferLength;

 UINT8 CdbLength;

 UINT8 DataDirection;

 UINT8 HostAdapterStatus;

 UINT8 TargetStatus;

 UINT8 SenseDataLength;

} EFI_SCSI_IO_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function will
wait indefinitely for the SCSI Request Packet to execute. If Timeout
is greater than zero, then this function will return EFI_TIMEOUT if
the time required to execute the SCSI Request Packet is greater than
Timeout.

DataBuffer A pointer to the data buffer to transfer from or to the SCSI device.

InDataBuffer A pointer to the data buffer to transfer between the SCSI controller
and the SCSI device for SCSI READ command. For all SCSI WRITE
Commands this must point to NULL.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI controller
and the SCSI device for SCSI WRITE command. For all SCSI READ
commands this field must point to NULL.

SenseData A pointer to the sense data that was generated by the execution of
the SCSI Request Packet.

Cdb A pointer to buffer that contains the Command Data Block to send to
the SCSI device.

InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the
number of bytes transferred between the SCSI controller and the
SCSI device. If InTransferLength is larger than the SCSI controller
can handle, no data will be transferred, InTransferLength will
be updated to contain the number of bytes that the SCSI controller is
able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the SCSI
device. If OutTransferLength is larger than the SCSI controller
can handle, no data will be transferred, OutTransferLength will
be updated to contain the number of bytes that the SCSI controller is
able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.
UEFI Forum, Inc. March 2019 742

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
CdbLength The length, in bytes, of the buffer Cdb. The standard values are 6, 10,
12, and 16, but other values are possible if a variable length CDB is
used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A value of
2 is Reserved for Bi-Directional SCSI commands. For example
XDREADWRITE. All other values are reserved, and must not be used.

HostAdapterStatus The status of the SCSI Host Controller that produces the SCSI bus
where the SCSI device attached when the SCSI Request Packet was
executed on the SCSI Controller. See the possible values listed
below.

TargetStatus The status returned by the SCSI device when the SCSI Request Packet
was executed. See the possible values listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On output,
the number of bytes written to the SenseData buffer.

//

// DataDirection

//

#define EFI_SCSI_IO_DATA_DIRECTION_READ 0

#define EFI_SCSI_IO_DATA_DIRECTION_WRITE 1

#define EFI_SCSI_IO_DATA_DIRECTION_BIDIRECTIONAL 2

//

// HostAdapterStatus

//

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OK 0x00

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT 0x0b

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_RESET 0x0e

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_FREE 0x13

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OTHER 0x7f

//

// TargetStatus

//

#define EFI_SCSI_IO_STATUS_TARGET_GOOD 0x00

#define EFI_SCSI_IO_STATUS_TARGET_CHECK_CONDITION 0x02

#define EFI_SCSI_IO_STATUS_TARGET_CONDITION_MET 0x04

#define EFI_SCSI_IO_STATUS_TARGET_BUSY 0x08

#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE 0x10
UEFI Forum, Inc. March 2019 743

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14

#define EFI_SCSI_IO_STATUS_TARGET_RESERVATION_CONFLICT 0x18

#define EFI_SCSI_IO_STATUS_TARGET_COMMAND_TERMINATED 0x22

#define EFI_SCSI_IO_STATUS_TARGET_QUEUE_FULL 0x28

Description

This function sends the SCSI Request Packet specified by Packet to the SCSI Device.

If the SCSI Bus supports non-blocking I/O and Event is not NULL, then this function will return
immediately after the command is sent to the SCSI Device, and will later signal Event when the
command has completed. If the SCSI Bus supports non-blocking I/O and Event is NULL, then this
function will send the command to the SCSI Device and block until it is complete. If the SCSI Bus does not
support non-blocking I/O, the Event parameter is ignored, and the function will send the command to
the SCSI Device and block until it is complete.

If Packet is successfully sent to the SCSI Device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then EFI_NOT_READY
is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If any field of Packet is invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by DataBuffer and TransferLength is too big to be transferred in a
single command, then EFI_BAD_BUFFER_SIZE is returned. The number of bytes actually transferred is
returned in TransferLength.

If the command described in Packet is not supported by the SCSI Host Controller that produces the SCSI
bus, then EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned,
then the caller must examine the status fields in Packet in the following precedence order:
HostAdapterStatus followed by TargetStatus followed by SenseDataLength, followed by
SenseData. If non-blocking I/O is being used, then the status fields in Packet will not be valid until the
Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then Packet was
never sent, so the status fields in Packet are not valid. If non-blocking I/O is being used, the Event
associated with Packet will not be signaled.

Status Codes Returned

EFI_SUCCESS The SCSI Request Packet was sent by the host. For read and bi-
directional commands, InTransferLength bytes were
transferred to InDataBuffer. For write and bi-directional
commands, OutTransferLength bytes were transferred from
OutDataBuffer. See HostAdapterStatus,
TargetStatus, SenseDataLength, and SenseData in that
order for additional status information.
UEFI Forum, Inc. March 2019 744

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
15.5 SCSI Device Paths

An EFI_SCSI_IO_PROTOCOL must be installed on a handle for its services to be available to SCSI device
drivers. In addition to the EFI_SCSI_IO_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Section 10 for detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

The SCSI Driver Model defined in this document can support the SCSI channel generated or emulated by
multiple architectures, such as Parallel SCSI, ATAPI, Fibre Channel, InfiniBand, and other future channel
types. In this section, there are four example device paths provided, including SCSI device path, ATAPI
device path, Fibre Channel device path and InfiniBand device path.

15.5.1 SCSI Device Path Example

Table 136 shows an example device path for a SCSI device controller on a desktop platform. This SCSI
device controller is connected to a SCSI channel that is generated by a PCI SCSI host controller. The PCI
SCSI host controller generates a single SCSI channel, it is located at PCI device number 0x07 and PCI
function 0x00, and is directly attached to a PCI root bridge. The SCSI device controller is assigned SCSI Id
2, and its LUN is 0.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. For read and bi-
directional commands, the number of bytes that could be
transferred is returned in InTransferLength. For write and
bi-directional commands, the number of bytes that could be
transferred is returned in OutTransferLength.See
HostAdapterStatus and TargetStatus in that order for
additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are too
many SCSI Command Packets already queued. The caller may
retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI
Request Packet. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for
additional status information.

EFI_INVALID_PARAMETER The contents of CommandPacket are invalid. The SCSI Request
Packet was not sent, so no additional status information is
available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not
supported by the SCSI initiator (i.e., SCSI Host Controller). The
SCSI Request Packet was not sent, so no additional status
information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to
execute. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for
additional status information.
UEFI Forum, Inc. March 2019 745

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a SCSI Node, and a
Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/SCSI(2,0).

Table 136. SCSI Device Path Examples

15.5.2 ATAPI Device Path Example

Table 137 shows an example device path for an ATAPI device on a desktop platform. This ATAPI device is
connected to the IDE bus on Primary channel, and is configured as the Master device on the channel. The
IDE bus is generated by the IDE controller that is a PCI device. It is located at PCI device number 0x1F and
PCI function 0x01, and is directly attached to a PCI root bridge.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an ATAPI Node,
and a Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI
Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/ATA(Primary,Master,0).

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – SCSI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x02 0x0002 Target ID on the SCSI bus (PUN)

0x18 0x02 0x0000 Logical Unit Number (LUN)

0x1A 0x01 0xff Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 746

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Table 137. ATAPI Device Path Examples

15.5.3 Fibre Channel Device Path Example

Table 138 shows an example device path for an SCSI device that is connected to a Fibre Channel Port on a
desktop platform. The Fibre Channel Port is a PCI device that is located at PCI device number 0x08 and
PCI function 0x00, and is directly attached to a PCI root bridge. The Fibre Channel Port is addressed by the
World Wide Number, and is assigned as X (X is a 64bit value); the SCSI device’s Logical Unit Number is 0.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a Fibre Channel
Device Path Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(8,0)/Fibre(X,0).

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x01 Sub type – ATAPI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x01 0x00 PrimarySecondary – Set to zero for primary or one for secondary.

0x17 0x01 0x00 SlaveMaster – set to zero for master or one for slave.

0x18 0x02 0x0000 Logical Unit Number,LUN.

0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 747

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Table 138. Fibre Channel Device Path Examples

15.5.4 InfiniBand Device Path Example

Table 139 shows an example device path for a SCSI device in an InfiniBand Network. This SCSI device is
connected to a single SCSI channel generated by a SCS Host Adapter, and the SCSI Host Adapter is an end
node in the InfiniBand Network. The SCSI Host Adapter is a PCI device that is located at PCI device
number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. The SCSI device is
addressed by the (IOU X, IOC Y, DeviceId Z) in the InfiniBand Network. (X, Y, Z are EUI-64 compliant
identifiers).

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an InfiniBand
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table description of the
PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/Infiniband(X,Y,Z).

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x08 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – Fibre Channel

0x14 0x02 0x24 Length – 0x24 bytes

0x16 0x04 0x00 Reserved

0x1A 0x08 X Fibre Channel World Wide Number

0x22 0x08 0x00 Fibre Channel Logical Unit Number (LUN).

0x2A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x2B 0x01 0xFF Sub type – End of Entire Device Path

0x2C 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 748

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Table 139. InfiniBand Device Path Examples

15.6 SCSI Pass Thru Device Paths

An EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be installed on a handle for its services to be available
to UEFI drivers and applications. In addition to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Section 10 for a detailed
description of the EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s point of
view. This includes the list of busses that lie between the processor and the SCSI controller. The EFI
Specification takes advantage of the ACPI Specification to name system components. For the following
set of examples, a PCI SCSI controller is assumed. The examples will show a SCSI controller on the root PCI
bus, and a SCSI controller behind a PCI-PCI bridge. In addition, an example of a multichannel SCSI
controller will be shown.

Table 140 shows an example device path for a single channel PCI SCSI controller that is located at PCI
device number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This device path
consists of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path End Structure. The _HID

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x09 Sub type – InfiniBand

0x14 0x02 0x20 Length – 0x20 bytes

0x16 0x04 0x00 Reserved

0x1A 0x08 X 64bit node GUID of the IOU

0x22 0x08 Y 64bit GUID of the IOC

0x2A 0x08 Z 64bit persistent ID of the device.

0x32 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x33 0x01 0xFF Sub type – End of Entire Device Path

0x34 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 749

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
and _UID must match the ACPI table description of the PCI Root Bridge. The shorthand notation for this
device path is:

ACPI(PNP0A03,0)/PCI(7,0).

Table 140. Single Channel PCI SCSI Controller

Table 141 shows an example device path for a single channel PCI SCSI controller that is located behind a
PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge is directly
attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function 0x00. This device path
consists of an ACPI Device Path Node, two PCI Device Path Nodes, and a Device Path End Structure. The
_HID and _UID must match the ACPI table description of the PCI Root Bridge. The shorthand notation for
this device path is:

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0).

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 750

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Table 141. Single Channel PCI SCSI Controller behind a PCI Bridge

Table 142 shows an example device path for channel #3 of a four channel PCI SCSI controller that is
located behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge
is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function 0x00. This
device path consists of an ACPI Device Path Node, two PCI Device Path Nodes, a Controller Node, and a
Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation of the device paths for all four of the SCSI channels are listed below.
Table 142 shows the last device path listed.

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(0)

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(1)

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(2)

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(3)

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 751

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Table 142. Channel #3 of a PCI SCSI Controller behind a PCI Bridge

15.7 Extended SCSI Pass Thru Protocol

This section defines the Extended SCSI Pass Thru Protocol. This protocol allows information about a SCSI
channel to be collected, and allows SCSI Request Packets to be sent to any SCSI devices on a SCSI channel
even if those devices are not boot devices. This protocol is attached to the device handle of each SCSI
channel in a system that the protocol supports, and can be used for diagnostics. It may also be used to
build a Block I/O driver for SCSI hard drives and SCSI CD-ROM or DVD drives to allow those devices to
become boot devices. As ATAPI cmds are derived from SCSI cmds, the above statements also are
applicable for ATAPI devices attached to a ATA controller. Packet-based commands(ATAPI cmds) would
be sent to ATAPI devices only through the Extended SCSI Pass Thru Protocol.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL
This section provides a detailed description of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

Byte
Offset

Byte
Length


Data


Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x19 0x01 0x05 Sub type – Controller

0x1A 0x02 0x08 Length – 0x08 bytes

0x1C 0x04 0x0003 Controller Number

0x20 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x21 0x01 0xFF Sub type – End of Entire Device Path

0x22 0x02 0x04 Length – 0x04 bytes
UEFI Forum, Inc. March 2019 752

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Summary

Provides services that allow SCSI Pass Thru commands to be sent to SCSI devices attached to a SCSI
channel. It also allows packet-based commands (ATAPI cmds) to be sent to ATAPI devices attached to a
ATA controller.

GUID

#define EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID \

 {0x143b7632, 0xb81b, 0x4cb7,\

 {0xab, 0xd3, 0xb6, 0x25, 0xa5, 0xb9, 0xbf, 0xfe}}

Protocol Interface Structure

 typedef struct _EFI_EXT_SCSI_PASS_THRU_PROTOCOL {

 EFI_EXT_SCSI_PASS_THRU_MODE *Mode;

 EFI_EXT_SCSI_PASS_THRU_PASSTHRU PassThru;

 EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN GetNextTargetLun;

 EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;

 EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN GetTargetLun;

 EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL ResetChannel;

 EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN ResetTargetLun;

 EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGE GetNextTarget;
 } EFI_EXT_SCSI_PASS_THRU_PROTOCOL;

Parameters

Mode A pointer to the EFI_EXT_SCSI_PASS_THRU_MODE data for this
SCSI channel. EFI_EXT_SCSI_PASS_THRU_MODE is defined in
“Related Definitions” below.

PassThru Sends a SCSI Request Packet to a SCSI device that is Connected to the
SCSI channel. See the PassThru() function description.

GetNextTargetLun Retrieves the list of legal Target IDs and LUNs for the SCSI devices on
a SCSI channel. See the GetNextTargetLun() function
description.

BuildDevicePath Allocates and builds a device path node for a SCSI Device on a SCSI
channel. See the BuildDevicePath() function description.

GetTargetLun Translates a device path node to a Target ID and LUN. See the
GetTargetLun() function description.

ResetChannel Resets the SCSI channel. This operation resets all the SCSI devices
connected to the SCSI channel. See the ResetChannel() function
description.

ResetTargetLun Resets a SCSI device that is connected to the SCSI channel. See the
ResetTargetLun() function description.

GetNextTartget Retrieves the list of legal Target IDs for the SCSI devices on a SCSI
channel. See the GetNextTarget() function description.

The following data values in the EFI_EXT_SCSI_PASS_THRU_MODE interface are read-only.

AdapterId The Target ID of the host adapter on the SCSI channel.
UEFI Forum, Inc. March 2019 753

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Attributes Additional information on the attributes of the SCSI channel. See
“Related Definitions” below for the list of possible attributes.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a power
of 2, and the requirement is that the start address of a buffer must
be evenly divisible by IoAlign with no remainder.

Related Definitions

typedef struct {

 UINT32 AdapterId;

 UINT32 Attributes;

 UINT32 IoAlign;
} EFI_EXT_SCSI_PASS_THRU_MODE;

#define TARGET_MAX_BYTES0x10

#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001

#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002

#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is for
physical devices on the SCSI channel.

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is for
logical devices on the SCSI channel.

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface
supports non blocking I/O. Every EFI_EXT_SCSI_PASS_THRU_PROTOCOL must
support blocking I/O. The support of nonblocking I/O is optional.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL provides information about a SCSI channel and the ability
to send SCI Request Packets to any SCSI device attached to that SCSI channel. The information includes
the Target ID of the host controller on the SCSI channel and the attributes of the SCSI channel.

The printable name for the SCSI controller, and the printable name of the SCSI channel can be provided
through the EFI_COMPONENT_NAME2_PROTOCOL for multiple languages.

The Attributes field of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface tells if the interface is
for physical SCSI devices or logical SCSI devices. Drivers for non-RAID SCSI controllers will set both the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical devices and logical devices will produce two
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
UEFI Forum, Inc. March 2019 754

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to access the
physical devices attached to the RAID controller, and the other can be used to access the logical devices
attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical devices will produce one
EFI_EXT_SCSI_PASS_THROUGH_PROTOCOL interface with just the
EFI_EXT_SCSI_PASS_THRU_LOGICAL bit set. The interface for logical devices can also be used by a
file system driver to mount the RAID volumes. An EFI_EXT_SCSI_PASS_THRU_PROTOCOL with neither
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO bit. All
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is set, then the
interface support both blocking I/O and nonblocking I/O.

Each EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance must have an associated device path. Typically
this will have an ACPI device path node and a PCI device path node, although variation will exist. For a
SCSI controller that supports only one channel per PCI bus/device/function, it is recommended, but not
required, that an additional Controller device path node (for controller 0) be appended to the device
path.

For a SCSI controller that supports multiple channels per PCI bus/device/function, it is required that a
Controller device path node be appended for each channel.

Additional information about the SCSI channel can be obtained from protocols attached to the same
handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL, or one of its parent handles. This would include
the device I/O abstraction used to access the internal registers and functions of the SCSI controller.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()

Summary

Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function supports
both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the nonblocking I/O
functionality is optional.
UEFI Forum, Inc. March 2019 755

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_PASSTHRU) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN UINT8 *Target,

 IN UINT64 Lun,

 IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet,

 IN EFI_EVENT Event OPTIONAL
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Target The Target is an array of size TARGET_MAX_BYTES and it represents
the id of the SCSI device to send the SCSI Request Packet. Each
transport driver may chose to utilize a subset of this size to suit the
needs of transport target representation. For example, a Fibre
Channel driver may use only 8 bytes (WWN) to represent an FC
target.

Lun The LUN of the SCSI device to send the SCSI Request Packet.

Packet A pointer to the SCSI Request Packet to send to the SCSI device
specified by Target and Lun. See “Related Definitions” below for a
description of
EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET.

Event If nonblocking I/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blocking I/O is
performed. If Event is not NULL and non blocking I/O is supported,
then nonblocking I/O is performed, and Event will be signaled when
the SCSI Request Packet completes.
UEFI Forum, Inc. March 2019 756

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Related Definitions

typedef struct {

 UINT64 Timeout;

 VOID *InDataBuffer;

 VOID *OutDataBuffer;

 VOID *SenseData;

 VOID *Cdb;

 UINT32 InTransferLength;

 UINT32 OutTransferLength;

 UINT8 CdbLength;

 UINT8 DataDirection;

 UINT8 HostAdapterStatus;

 UINT8 TargetStatus;

 UINT8 SenseDataLength;
} EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function will
wait indefinitely for the SCSI Request Packet to execute. If Timeout
is greater than zero, then this function will return EFI_TIMEOUT if
the time required to execute the SCSI Request Packet is greater than
Timeout.

InDataBuffer A pointer to the data buffer to transfer between the SCSI controller
and the SCSI device for read and bidirectional commands. For all
write and non data commands where InTransferLength is 0 this
field is optional and may be NULL. If this field is not NULL, then it
must be aligned on the boundary specified by the IoAlign field in
the EFI_EXT_SCSI_PASS_THRU_MODE structure.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI controller
and the SCSI device for write or bidirectional commands. For all read
and non data commands where OutTransferLength is 0 this field
is optional and may be NULL. If this field is not NULL, then it must be
aligned on the boundary specified by the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

SenseData A pointer to the sense data that was generated by the execution of
the SCSI Request Packet. If SenseDataLength is 0, then this field is
optional and may be NULL. It is strongly recommended that a sense
data buffer of at least 252 bytes be provided to guarantee the entire
sense data buffer generated from the execution of the SCSI Request
Packet can be returned. If this field is not NULL, then it must be
aligned to the boundary specified in the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

Cdb A pointer to buffer that contains the Command Data Block to send to
the SCSI device specified by Target and Lun.

InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the
number of bytes transferred between the SCSI controller and the
UEFI Forum, Inc. March 2019 757

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
SCSI device. If InTransferLength is larger than the SCSI controller
can handle, no data will be transferred, InTransferLength will
be updated to contain the number of bytes that the SCSI controller is
able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the SCSI
device. If OutTransferLength is larger than the SCSI controller
can handle, no data will be transferred, OutTransferLength will
be updated to contain the number of bytes that the SCSI controller is
able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are 6, 10,
12, and 16, but other values are possible if a variable length CDB is
used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A value of
2 is Reserved for Bi-Directional SCSI commands. For example
XDREADWRITE. All other values are reserved, and must not be used.

HostAdapterStatus The status of the host adapter specified by This when the SCSI
Request Packet was executed on the target device. See the possible
values listed below. If bit 7 of this field is set, then
HostAdapterStatus is a vendor defined error code.

TargetStatus The status returned by the device specified by Target and Lun
when the SCSI Request Packet was executed. See the possible values
listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On output,
the number of bytes written to the SenseData buffer.
UEFI Forum, Inc. March 2019 758

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
//

// DataDirection

//

#define EFI_EXT_SCSI_DATA_DIRECTION_READ 0

#define EFI_EXT_SCSI_DATA_DIRECTION_WRITE 1

#define EFI_EXT_SCSI_DATA_DIRECTION_BIDIRECTIONAL 2

//

// HostAdapterStatus

//

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK 0x00

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT 0x0b

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_RESET 0x0e

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_FREE 0x13

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OTHER 0x7f

//

// TargetStatus

//

#define EFI_EXT_SCSI_STATUS_TARGET_GOOD 0x00

#define EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION 0x02

#define EFI_EXT_SCSI_STATUS_TARGET_CONDITION_MET 0x04

#define EFI_EXT_SCSI_STATUS_TARGET_BUSY 0x08

#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE 0x10

#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14

#define EFI_EXT_SCSI_STATUS_TARGET_RESERVATION_CONFLICT 0x18

#define EFI_EXT_SCSI_STATUS_TARGET_TASK_SET_FULL 0x28

#define EFI_EXT_SCSI_STATUS_TARGET_ACA_ACTIVE 0x30

#define EFI_EXT_SCSI_STATUS_TARGET_TASK_ABORTED 0x40

Description

The PassThru() function sends the SCSI Request Packet specified by Packet to the SCSI device
specified by Target and Lun. If the driver supports nonblocking I/O and Event is not NULL, then the
driver will return immediately after the command is sent to the selected device, and will later signal
Event when the command has completed.

If the driver supports nonblocking I/O and Event is NULL, then the driver will send the command to the
selected device and block until it is complete.

If the driver does not support nonblocking I/O, then the Event parameter is ignored, and the driver will
send the command to the selected device and block until it is complete.
UEFI Forum, Inc. March 2019 759

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
If Packet is successfully sent to the SCSI device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then EFI_NOT_READY is
returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If a device is not present but the target/LUN address in the packet are valid, then EFI_TIMEOUT is
returned, and HostStatus is set to EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND.

If Target or Lun are not in a valid range for the SCSI channel, then EFI_INVALID_PARAMETER is
returned. If InDataBuffer, OutDataBuffer or SenseData do not meet the alignment requirement
specified by the IoAlign field of the EFI_EXT_SCSI_PASS_THRU_MODE structure, then
EFI_INVALID_PARAMETER is returned. If any of the other fields of Packet are invalid, then
EFI_INVALID_PARAMETER is returned.

If the data buffer described by InDataBuffer and InTransferLength is too big to be transferred in a
single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The number of
bytes that can be transferred in a single command are returned in InTransferLength.

If the data buffer described by OutDataBuffer and OutTransferLength is too big to be transferred
in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The number
of bytes that can be transferred in a single command are returned in OutTransferLength.

If the command described in Packet is not supported by the host adapter, then EFI_UNSUPPORTED is
returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned,
then the caller must examine the status fields in Packet in the following precedence order:
HostAdapterStatus followed by TargetStatus followed by SenseDataLength, followed by
SenseData.

If nonblocking I/O is being used, then the status fields in Packet will not be valid until the Event
associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then Packet was
never sent, so the status fields in Packet are not valid. If nonblocking I/O is being used, the Event
associated with Packet will not be signaled.

Note: Some examples of SCSI read commands are READ, INQUIRY, and MODE_SENSE.

Note: Some examples of SCSI write commands are WRITE and MODE_SELECT.

Note: An example of a SCSI non data command is TEST_UNIT_READY.
UEFI Forum, Inc. March 2019 760

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()

Summary

Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These can either
be the list SCSI devices that are actually present on the SCSI channel, or the list of legal Target Ids and
LUNs for the SCSI channel. Regardless, the caller of this function must probe the Target ID and LUN
returned to see if a SCSI device is actually present at that location on the SCSI channel.

EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional
commands, InTransferLength bytes were transferred from
InDataBuffer. For write and bi-directional commands,
OutTransferLength bytes were transferred by OutDataBuffer. See
HostAdapterStatus, TargetStatus, SenseDataLength, and
SenseData in that order for additional status information.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. The number of bytes that could
be transferred is returned in InTransferLength. For write and bi-
directional commands, OutTransferLength bytes were transferred by
OutDataBuffer. See HostAdapterStatus, TargetStatus, and in
that order for additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are too many
SCSI Request Packets already queued. The caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request Packet.
See HostAdapterStatus, TargetStatus, SenseDataLength, and
SenseData in that order for additional status information.

EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket are invalid. The
SCSI Request Packet was not sent, so no additional status information is
available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not supported by
the host adapter. This includes the case of Bi-directional SCSI commands
not supported by the implementation. The SCSI Request Packet was not
sent, so no additional status information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to execute.
See HostAdapterStatus, TargetStatus, SenseDataLength,
and SenseData in that order for additional status information.
UEFI Forum, Inc. March 2019 761

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN OUT UINT8 **Target,

 IN OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Target On input, a pointer to a legal Target ID (an array of size
TARGET_MAX_BYTES) for a SCSI device present on the SCSI
channel. On output, a pointer to the next legal Target ID (an array of
TARGET_MAX_BYTES) of a SCSI device on a SCSI channel. An input
value of 0xFF’s (all bytes in the array are 0xFF) in the Target array
retrieves the first legal Target ID for a SCSI device present on a SCSI
channel.

Lun On input, a pointer to the LUN of a SCSI device present on the SCSI
channel. On output, a pointer to the LUN of the next SCSI device ID
on a SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() function retrieves a list of legal
Target ID and LUN of a SCSI channel. If on input a Target is specified by all 0xFF in the Target array, then
the first legal Target ID and LUN for a SCSI device on a SCSI channel is returned in Target and Lun, and
EFI_SUCCESS is returned.

If Target and Lun is a Target ID and LUN value that was returned on a previous call to
GetNextTargetLun(), then the next legal Target ID and LUN for a SCSI device on the SCSI channel is
returned in Target and Lun, and EFI_SUCCESS is returned.

If Target array is not all 0xFF’s and Target and Lun were not returned on a previous call to
GetNextTargetLun(), then EFI_INVALID_PARAMETER is returned.

If Target and Lun are the Target ID and LUN of the last SCSI device on the SCSI channel, then
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI
channel was returned in Target and Lun.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xFF’s, and Target and Lun were not returned
on a previous call to GetNextTargetLun().
UEFI Forum, Inc. March 2019 762

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for a SCSI device on a SCSI channel.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN UINT8 *Target,

 IN UINT64 Lun

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Target The Target is an array of size TARGET_MAX_BYTES and it specifies
the Target ID of the SCSI device for which a device path node is to be
allocated and built. Transport drivers may chose to utilize a subset of
this size to suit the representation of targets. For example, a Fibre
Channel driver may use only 8 bytes (WWN) in the array to represent
a FC target.

Lun The LUN of the SCSI device for which a device path node is to be
allocated and built.

DevicePath A pointer to a single device path node that describes the SCSI device
specified by Target and Lun. This function is responsible for
allocating the buffer DevicePath with the boot service
AllocatePool(). It is the caller’s responsibility to free
DevicePath when the caller is finished with DevicePath.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates and builds a
single device path node for the SCSI device specified by Target and Lun. If the SCSI device specified by
Target and Lun are not present on the SCSI channel, then EFI_NOT_FOUND is returned. If
DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there are not enough resources
to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned. Otherwise, DevicePath
is allocated with the boot service AllocatePool(), the contents of DevicePath are initialized to
describe the SCSI device specified by Target and Lun, and EFI_SUCCESS is returned.
UEFI Forum, Inc. March 2019 763

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()

Summary

Used to translate a device path node to a Target ID and LUN.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath

 OUT UINT8 **Target,

 OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

DevicePath A pointer to the device path node that describes a SCSI device on the
SCSI channel.

Target A pointer to the Target Array which represents the ID of a SCSI
device on the SCSI channel.

Lun A pointer to the LUN of a SCSI device on the SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun() function determines the Target ID
and LUN associated with the SCSI device described by DevicePath. If DevicePath is a device path
node type that the SCSI Pass Thru driver supports, then the SCSI Pass Thru driver will attempt to translate
the contents DevicePath into a Target ID and LUN. If this translation is successful, then that Target ID
and LUN are returned in Target and Lun, and EFI_SUCCESS is returned.

If DevicePath, Target, or Lun are NULL, then EFI_INVALID_PARAMETER is returned.

If DevicePath is not a device path node type that the SCSI Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

EFI_SUCCESS The device path node that describes the SCSI device specified by

Target and Lun was allocated and returned in DevicePath.

EFI_NOT_FOUND The SCSI devices specified by Target and Lun does not exist on the

SCSI channel.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.
UEFI Forum, Inc. March 2019 764

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
If DevicePath is a device path node type that the SCSI Pass Thru driver supports, but there is not a valid
translation from DevicePath to a Target ID and LUN, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()

Summary

Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel() function resets a SCSI channel. This
operation resets all the SCSI devices connected to the SCSI channel. If this SCSI channel does not support
a reset operation, then EFI_UNSUPPORTED is returned.

If a device error occurs while executing that channel reset operation, then EFI_DEVICE_ERROR is
returned.

If a timeout occurs during the execution of the channel reset operation, then EFI_TIMEOUT is returned.
If the channel reset operation is completed, then EFI_SUCCESS is returned.

EFI_SUCCESS DevicePath was successfully translated to a Target ID and

LUN, and they were returned in Target and Lun.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER Target is NULL

EFI_INVALID_PARAMETER Lun is NULL

EFI_UNSUPPORTED This driver does not support the device path node type in

DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a Target ID and LUN

does not exist.
UEFI Forum, Inc. March 2019 765

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()

Summary

Resets a SCSI logical unit that is connected to a SCSI channel.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN UINT8 *Target,

 IN UINT64 Lun
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Target The Target is an array of size TARGET_MAX_BYTE and it represents
the target port ID of the SCSI device containing the SCSI logical unit
to reset. Transport drivers may chose to utilize a subset of this array
to suit the representation of their targets. For example a Fibre
Channel driver may use only 8 bytes in the array (WWN) to represent
a FC target.

Lun The LUN of the SCSI device to reset.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun() function resets the SCSI logical
unit specified by Target and Lun. If this SCSI channel does not support a target reset operation, then
EFI_UNSUPPORTED is returned.

If Target or Lun are not in a valid range for this SCSI channel, then EFI_INVALID_PARAMETER is
returned.

If a device error occurs while executing that logical unit reset operation, then EFI_DEVICE_ERROR is
returned.

If a timeout occurs during the execution of the logical unit reset operation, then EFI_TIMEOUT is
returned.

If the logical unit reset operation is completed, then EFI_SUCCESS is returned.

EFI_SUCCESS The SCSI channel was reset.

EFI_UNSUPPORTED The SCSI channel does not support a channel reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI channel.
UEFI Forum, Inc. March 2019 766

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

Summary

Used to retrieve the list of legal Target IDs for SCSI devices on a SCSI channel. These can either be the list
SCSI devices that are actually present on the SCSI channel, or the list of legal Target IDs for the SCSI
channel. Regardless, the caller of this function must probe the Target ID returned to see if a SCSI device is
actually present at that location on the SCSI channel.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET) (

 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

 IN OUT UINT8 **Target,
);

Parameters

This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 15.7.

Target On input, a pointer to the Target ID (an array of size
TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
channel. An input value of 0xFF’s (all bytes in the array are 0xFF) in
the Target array retrieves the Target ID of the first SCSI device
present on a SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() function retrieves the Target ID of a
SCSI device present on a SCSI channel. If on input a Target is specified by all 0xF in the Target array, then
the Target ID of the first SCSI device is returned in Target and EFI_SUCCESS is returned.

If Target is a Target ID value that was returned on a previous call to GetNextTarget(), then the
Target ID of the next SCSI device on the SCSI channel is returned in Target, and EFI_SUCCESS is
returned.

EFI_SUCCESS The SCSI device specified by Target and Lun was reset

EFI_UNSUPPORTED The SCSI channel does not support a target reset operation.

EFI_INVALID_PARAMETER Target or Lun are invalid.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI device

specified by Target and Lun.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI device

specified by Target and Lun.
UEFI Forum, Inc. March 2019 767

UEFI Specification, Version 2.8 Protocols — SCSI Driver Models and Bus Support
If Target array is not all 0xFF’s and Target were not returned on a previous call to
GetNextTarget(), then EFI_INVALID_PARAMETER is returned.

If Target is the Target ID of the last SCSI device on the SCSI channel, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The Target ID of the next SCSI device on the SCSI
channel was returned in Target.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xFF’s, and Target were not returned on a
previous call to GetNextTarget().
UEFI Forum, Inc. March 2019 768

UEFI Specification, Version 2.8
16 - Protocols — iSCSI Boot

16.1 Overview

The iSCSI protocol defines a transport for SCSI data over TCP/IP. It also provides an interoperable solution
that takes advantage of existing internet infrastructure, management facilities, and addresses distance
limitations. The iSCSI protocol specification was developed by the Internet Engineering Task Force (IETF)
and is SCSI Architecture Model-2 (SAM-2) compliant. iSCSI encapsulates block-oriented SCSI commands
into iSCSI Protocol Data Units (PDU) that traverse the network over TCP/IP. iSCSI defines a Session, the
initiator and target nexus (I-T nexus), which could be a bundle of one or more TCP connections.

Similar to other existing mass storage protocols like Fibre Channel and parallel SCSI, boot over iSCSI is an
important functionality. This document will attempt to capture the various cases for iSCSI boot and
common up with generic EFI protocol changes to address them.

16.1.1 iSCSI UEFI Driver Layering

iSCSI UEFI Drivers may exist in two different forms:

• iSCSI UEFI Driver on a NIC:

The driver will be layered on top of the networking layers. It will use the DHCP, IP,
and TCP and packet level interface protocols of the UEFI networking stack. The driver
will use an iSCSI software initiator.

• iSCSI UEFI Driver on a Host Bus Adapter (HBA) that may use an offloading engine such as TOE
(or any other TCP offload card):

The driver will be layered on top of the TOE TCP interfaces. It will use the DHCP, IP,
TCP protocols of the TOE. The driver will present itself as a SCSI device driver using
interfaces such as EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

To help in detecting iSCSI UEFI Drivers and their capabilities, the iSCSI UEFI driver handle must include an
instance of the EFI_ADAPTER_INFORMATION_PROTOCOL with a
EFI_ADAPTER_INFO_NETWORK_BOOT structure.

16.2 EFI iSCSI Initiator Name Protocol

This protocol sets and obtains the iSCSI Initiator Name. The iSCSI Initiator Name protocol builds a default
iSCSI name. The iSCSI name configures using the programming interfaces defined below. Successive
configuration of the iSCSI initiator name overwrites the previously existing name. Once overwritten, the
previous name will not be retrievable. Setting an iSCSI name string that is zero length is illegal. The
maximum size of the iSCSI Initiator Name is 224 bytes (including the NULL terminator).

EFI_ISCSI_INITIATOR_NAME_PROTOCOL

Summary

iSCSI Initiator Name Protocol for setting and obtaining the iSCSI Initiator Name.
UEFI Forum, Inc. March 2019 769

UEFI Specification, Version 2.8 Protocols — iSCSI Boot
GUID

#define EFI_ISCSI_INITIATOR_NAME_PROTOCOL_GUID \

 {0x59324945, 0xec44, 0x4c0d, \

 {0xb1, 0xcd, 0x9d, 0xb1, 0x39, 0xdf, 0x07, 0x0c}}

Protocol Interface Structure

typedef struct _EFI_ISCSI_INITIATOR_NAME_PROTOCOL {

 EFI_ISCSI_INITIATOR_NAME_GET Get;

 EFI_ISCSI_INITIATOR_NAME_SET Set;
} EFI_ISCSI_INITIATOR_NAME_PROTOCOL;

Parameters

Get Used to retrieve the iSCSI Initiator Name.

Set Used to set the iSCSI Initiator Name.

Description

The EFI_ISCSI_INIT_NAME_PROTOCOL provides the ability to get and set the iSCSI Initiator Name.

EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()

Summary

Retrieves the current set value of iSCSI Initiator Name.

Prototype

typedef EFI_STATUS

(EFIAPI *EFI_ISCSI_INITIATOR_NAME_GET) (

 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer

);

Parameters

This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer / Actual size of the
variable data buffer.

Buffer Pointer to the buffer for data to be read. The data is a null-
terminated UTF-8 encoded string. The maximum length is 223
characters, including the null-terminator.

Description

This function will retrieve the iSCSI Initiator Name from Non-volatile memory.
UEFI Forum, Inc. March 2019 770

UEFI Specification, Version 2.8 Protocols — iSCSI Boot
Status Codes Returned

EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

Summary

Sets the iSCSI Initiator Name.

Prototype

typedef EFI_STATUS

(EFIAPI *EFI_ISCSI_INITIATOR_NAME_SET) (

 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer
);

Parameters

This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL instance

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written. The data is a null-
terminated UTF-8 encoded string. The maximum length is 223
characters, including the null-terminator.

Description

This function will set the iSCSI Initiator Name into Non-volatile memory.

EFI_SUCCESS Data was successfully retrieved into the provided buffer and the
BufferSize was sufficient to handle the iSCSI initiator name

EFI_BUFFER_TOO_SMALL BufferSize is too small for the result. BufferSize will be updated with
the size required to complete the request. Buffer will not be affected.

EFI_INVALID_PARAMETER BufferSize is NULL. BufferSize and Buffer will not be affected.

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be affected.

EFI_DEVICE_ERROR The iSCSI initiator name could not be retrieved due to a hardware error.
UEFI Forum, Inc. March 2019 771

UEFI Specification, Version 2.8 Protocols — iSCSI Boot
Status Codes Returned

EFI_SUCCESS Data was successfully stored by the protocol

EFI_UNSUPPORTED Platform policies do not allow for data to be written

EFI_INVALID_PARAMETER BufferSize exceeds the maximum allowed limit. BufferSize will be
updated with the maximum size required to complete the request.

EFI_INVALID_PARAMETER Buffersize is NULL. BufferSize and Buffer will not be affected

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be affected.

EFI_DEVICE_ERROR The data could not be stored due to a hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data

EFI_PROTOCOL_ERROR Input iSCSI initiator name does not adhere to RFC 3720 (and other
related protocols)
UEFI Forum, Inc. March 2019 772

UEFI Specification, Version 2.8
17 - Protocols — USB Support

17.1 USB2 Host Controller Protocol

Section 17.1 and Section 17.1.1 describe the USB2 Host Controller Protocol. This protocol provides an I/O
abstraction for a USB2 Host Controller. The USB2 Host Controller is a hardware component that
interfaces to a Universal Serial Bus (USB). It moves data between system memory and devices on the USB
by processing data structures and generating transactions on the USB. This protocol is used by a USB Bus
Driver to perform all data transaction over the Universal Serial Bus. It also provides services to manage
the USB root hub that is integrated into the USB Host Controller. USB device drivers do not use this
protocol directly. Instead, they use the I/O abstraction produced by the USB Bus Driver. This protocol
should only be used by drivers that require direct access to the USB bus.

17.1.1 USB Host Controller Protocol Overview

The USB Host Controller Protocol is used by code, typically USB bus drivers, running in the EFI boot
services environment, to perform data transactions over a USB bus. In addition, it provides an abstraction
for the root hub of the USB bus.

The interfaces provided in the EFI_USB2_HC_PROTOCOL are used to manage data transactions on a USB
bus. It also provides control methods for the USB root hub. The EFI_USB2_HC_PROTOCOL is designed to
support both USB 1.1 and USB 2.0 – compliant host controllers.

The EFI_USB2_HC_PROTOCOL abstracts basic functionality that is designed to operate with the EHCI,
UHCI and OHCI standards. By using this protocol, a single USB bus driver can be implemented without
knowing if the underlying USB host controller conforms to the XHCI, EHCI, OHCI or the UHCI standards.

Each instance of the EFI_USB2_HC_PROTOCOL corresponds to a USB host controller in a platform. The
protocol is attached to the device handle of a USB host controller that is created by a device driver for the
USB host controller’s parent bus type. For example, a USB host controller that is implemented as a PCI
device would require a PCI device driver to produce an instance of the EFI_USB2_HC_PROTOCOL.

EFI_USB2_HC_PROTOCOL

Summary

Provides basic USB host controller management, basic data transactions over USB bus, and USB root hub
access.

GUID

#define EFI_USB2_HC_PROTOCOL_GUID \

 {0x3e745226,0x9818,0x45b6,\

 {0xa2,0xac,0xd7,0xcd,0x0e,0x8b,0xa2,0xbc}}

Protocol Interface Structure

typedef struct _EFI_USB2_HC_PROTOCOL {

 EFI_USB2_HC_PROTOCOL_GET_CAPABILITY GetCapability;

 EFI_USB2_HC_PROTOCOL_RESET Reset;

 EFI_USB2_HC_PROTOCOL_GET_STATE GetState;
UEFI Forum, Inc. March 2019 773

UEFI Specification, Version 2.8 Protocols — USB Support
 EFI_USB2_HC_PROTOCOL_SET_STATE SetState;

 EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER ControlTransfer;

 EFI_USB2_HC_PROTOCOL_BULK_TRANSFER BulkTransfer;

 EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER
AsyncInterruptTransfer;

 EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER
SyncInterruptTransfer;

 EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER
IsochronousTransfer;

 EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER
AsyncIsochronousTransfer;

 EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS
GetRootHubPortStatus;

 EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE
SetRootHubPortFeature;

 EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE
ClearRootHubPortFeature;

 UINT16 MajorRevision;

 UINT16 MinorRevision;

} EFI_USB2_HC_PROTOCOL;

Parameters

GetCapability Retrieves the capabilities of the USB host controller. See the
GetCapability() function description.

Reset Software reset of USB. See the Reset() function description.

GetState Retrieves the current state of the USB host controller. See the
GetState() function description.

SetState Sets the USB host controller to a specific state. See the SetState()
function description.

ControlTransfer Submits a control transfer to a target USB device. See the
ControlTransfer() function description.

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB device. See the
BulkTransfer() function description.

AsyncInterruptTransfer 
Submits an asynchronous interrupt transfer to an interrupt endpoint
of a USB device. See the AsyncInterruptTransfer() function
description.

SyncInterruptTransfer 
Submits a synchronous interrupt transfer to an interrupt endpoint of
a USB device. See the SyncInterruptTransfer() function
description.

IsochronousTransfer Submits isochronous transfer to an isochronous endpoint of a USB
device. See the IsochronousTransfer() function description.

AsyncIsochronousTransfer
Submits nonblocking USB isochronous transfer. See the
AsyncIsochronousTransfer() function description.
UEFI Forum, Inc. March 2019 774

UEFI Specification, Version 2.8 Protocols — USB Support
GetRootHubPortStatus 
Retrieves the status of the specified root hub port. See the
GetRootHubPortStatus() function description.

SetRootHubPortFeature 
Sets the feature for the specified root hub port. See the
SetRootHubPortFeature() function description.

ClearRootHubPortFeature
Clears the feature for the specified root hub port. See the
ClearRootHubPortFeature() function description.

MajorRevision The major revision number of the USB host controller. The revision
information indicates the release of the Universal Serial Bus
Specification with which the host controller is compliant.

MinorRevision The minor revision number of the USB host controller. The revision
information indicates the release of the Universal Serial Bus
Specification with which the host controller is compliant.

Description

The EFI_USB2_HC_PROTOCOL provides USB host controller management, basic data transactions over a
USB bus, and USB root hub access. A device driver that wishes to manage a USB bus in a system retrieves
the EFI_USB2_HC_PROTOCOL instance that is associated with the USB bus to be managed. A device
handle for a USB host controller will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance, and
an EFI_USB2_HC_PROTOCOL instance.

EFI_USB2_HC_PROTOCOL.GetCapability()

Summary

Retrieves the Host Controller capabilities.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_CAPABILITY) (

 IN EFI_USB2_HC_PROTOCOL *This,

 OUT UINT8 *MaxSpeed,

 OUT UINT8 *PortNumber,

 OUT UINT8 *Is64BitCapable

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

MaxSpeed Host controller data transfer speed; see “Related Definitions” below
for a list of supported transfer speed values.

PortNumber Number of the root hub ports.

Is64BitCapable TRUE if controller supports 64-bit memory addressing, FALSE
otherwise.
UEFI Forum, Inc. March 2019 775

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

#define EFI_USB_SPEED_FULL 0x0000

#define EFI_USB_SPEED_LOW 0x0001

#define EFI_USB_SPEED_HIGH 0x0002

#define EFI_USB_SPEED_SUPER 0x0003

Description

This function is used to retrieve the host controller capabilities. MaxSpeed indicates the maximum data
transfer speed the controller is capable of; this information is needed for the subsequent transfers.
PortNumber is the number of root hub ports, it is required by the USB bus driver to perform bus
enumeration. Is64BitCapable indicates that controller is capable of 64-bit memory access so that the
host controller software can use memory blocks above 4 GiB for the data transfers.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.Reset()

Summary

Provides software reset for the USB host controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_RESET) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT16 Attributes

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

Attributes A bit mask of the reset operation to perform. See “Related
Definitions” below for a list of the supported bit mask values.

EFI_USB_SPEED_LOW Low speed USB device; data bandwidth is up to 1.5 Mb/s. Supported by
USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_FULL Full speed USB device; data bandwidth is up to 12 Mb/s. Supported by
USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_HIGH High speed USB device; data bandwidth is up to 480 Mb/s. Supported by
USB 2.0 EHCI host controllers.

EFI_USB_SPEED_SUPER Super speed USB device; data bandwidth is up to 4.8Gbs. Supported by
USB 3.0 XHCI host controllers.

EFI_SUCCESS The host controller capabilities were retrieved successfully.

EFI_INVALID_PARAMETER MaxSpeed or PortNumber or Is64BitCapable is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the capabilities.
UEFI Forum, Inc. March 2019 776

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

#define EFI_USB_HC_RESET_GLOBAL 0x0001

#define EFI_USB_HC_RESET_HOST_CONTROLLER 0x0002

#define EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG 0x0004

#define EFI_USB_HC_RESET_HOST_WITH_DEBUG 0x0008

EFI_USB_HC_RESET_GLOBAL

If this bit is set, a global reset signal will be sent to the USB bus. This resets all of the
USB bus logic, including the USB host controller hardware and all the devices
attached on the USB bus.

EFI_USB_HC_RESET_HOST_CONTROLLER

If this bit is set, the USB host controller hardware will be reset. No reset signal will be
sent to the USB bus.

EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG

If this bit is set, then a global reset signal will be sent to the USB bus. This resets all of
the USB bus logic, including the USB host controller and all of the devices attached
on the USB bus. If this is an XHCI or EHCI controller and the debug port has been
configured, then this will still reset the host controller.

EFI_USB_HC_RESET_HOST_WITH_DEBUG

If this bit is set, the USB host controller hardware will be reset. If this is an XHCI or
EHCI controller and the debug port has been configured, then this will still reset the
host controller.

Description

This function provides a software mechanism to reset a USB host controller. The type of reset is specified
by the Attributes parameter. If the type of reset specified by Attributes is not valid, then
EFI_INVALID_PARAMETER is returned. If the reset operation is completed, then EFI_SUCCESS is
returned. If the type of reset specified by Attributes is not currently supported by the host controller
hardware, EFI_UNSUPPORTD is returned. If a device error occurs during the reset operation, then
EFI_DEVICE_ERROR is returned.

Note: For XHCI or EHCI controllers, the EFI_USB_HC_RESET_GLOBAL and
EFI_USB_HC_RESET_HOST_CONTROLLER types of reset do not actually reset the bus if the debug port
has been configured. In these cases, the function will return EFI_ACCESS_DENIED.
UEFI Forum, Inc. March 2019 777

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes Returned

EFI_USB2_HC_PROTOCOL.GetState()

Summary

Retrieves current state of the USB host controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_STATE) (

 IN EFI_USB2_HC_PROTOCOL *This,

 OUT EFI_USB_HC_STATE *State

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

State A pointer to the EFI_USB_HC_STATE data structure that indicates
current state of the USB host controller. Type EFI_USB_HC_STATE is
defined in “Related Definitions.”

Related Definitions

typedef enum {

 EfiUsbHcStateHalt,

 EfiUsbHcStateOperational,

 EfiUsbHcStateSuspend,

 EfiUsbHcStateMaximum

} EFI_USB_HC_STATE;

EfiUsbHcStateHalt

The host controller is in halt state. No USB transactions can occur while in this state.
The host controller can enter this state for three reasons:

• After host controller hardware reset.

• Explicitly set by software.

EFI_SUCCESS The reset operation succeeded.

EFI_INVALID_PARAMETER Attributes is not valid.

EFI_UNSUPPORTED The type of reset specified by Attributes is not currently supported
by the host controller hardware.

EFI_ACCESS_DENIED Reset operation is rejected due to the debug port being configured and

active; only EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG or

EFI_USB_HC_RESET_HOST_WITH_DEBUG reset Attributes

can be used to perform reset operation for this host controller.

EFI_DEVICE_ERROR An error was encountered while attempting to perform the reset
operation.
UEFI Forum, Inc. March 2019 778

UEFI Specification, Version 2.8 Protocols — USB Support
• Triggered by a fatal error such as consistency check failure.
EfiUsbHcStateOperational

The host controller is in an operational state. When in this state, the host controller
can execute bus traffic. This state must be explicitly set to enable the USB bus traffic.

EfiUsbHcStateSuspend

The host controller is in the suspend state. No USB transactions can occur while in
this state. The host controller enters this state for the following reasons:

• Explicitly set by software.

• Triggered when there is no bus traffic for 3 microseconds.

Description

This function is used to retrieve the USB host controller’s current state. The USB Host Controller Protocol
publishes three states for USB host controller, as defined in “Related Definitions” below. If State is
NULL, then EFI_INVALID_PARAMETER is returned. If a device error occurs while attempting to retrieve
the USB host controllers current state, then EFI_DEVICE_ERROR is returned. Otherwise, the USB host
controller’s current state is returned in State, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.SetState()

Summary

Sets the USB host controller to a specific state.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_STATE) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN EFI_USB_HC_STATE State

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

State Indicates the state of the host controller that will be set. See the
definition and description of the type EFI_USB_HC_STATE in the
GetState() function description.

EFI_SUCCESS The state information of the host controller was returned in State.

EFI_INVALID_PARAMETER State is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the host
controller’s current state.
UEFI Forum, Inc. March 2019 779

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This function is used to explicitly set a USB host controller’s state. There are three states defined for the
USB host controller. These are the halt state, the operational state and the suspend state. Figure 59
illustrates the possible state transitions:

Figure 59. Software Triggered State Transitions of a USB Host Controller

If the state specified by State is not valid, then EFI_INVALID_PARAMETER is returned. If a device error
occurs while attempting to place the USB host controller into the state specified by State, then
EFI_DEVICE_ERROR is returned. If the USB host controller is successfully placed in the state specified by
State, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.ControlTransfer()

Summary

Submits control transfer to a target USB device.

EFI_SUCCESS The USB host controller was successfully placed in the state specified by

State.

EFI_INVALID_PARAMETER State is invalid.

EFI_DEVICE_ERROR Failed to set the state specified by State due to device error.

OM13170

Halt State Suspend State

Operational State
UEFI Forum, Inc. March 2019 780

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 DeviceAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN EFI_USB_DEVICE_REQUEST *Request,

 IN EFI_USB_DATA_DIRECTION TransferDirection,

 IN OUT VOID *Data OPTIONAL,

 IN OUT UINTN *DataLength OPTIONAL,

 IN UINTN TimeOut,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,

 OUT UINT32 *TransferResult

);

Related Definitions

typedef struct {

 UINT8 TranslatorHubAddress,

 UINT8 TranslatorPortNumber
} EFI_USB2_HC_TRANSACTION_TRANSLATOR;

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

DeviceSpeed Indicates device speed. See “Related Definitions” in GetCapability()
for a list of the supported values.

MaximumPacketLength
Indicates the maximum packet size that the default control transfer
endpoint is capable of sending or receiving.

Request A pointer to the USB device request that will be sent to the USB
device. Refer to UsbControlTransfer() (Section 17.2.4) for the
definition of this function type.

TransferDirection Specifies the data direction for the transfer. There are three values
available, EfiUsbDataIn, EfiUsbDataOut and EfiUsbNoData. Refer to
UsbControlTransfer() (Section 17.2.4) for the definition of this
function type.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually transferred.

Translator A pointer to the transaction translator data. See “Description” for
the detailed information of this data structure.
UEFI Forum, Inc. March 2019 781

UEFI Specification, Version 2.8 Protocols — USB Support
TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

TransferResult A pointer to the detailed result information generated by this
control transfer. Refer to UsbControlTransfer() (Section 17.2.4)
for transfer result types (EFI_USB_ERR_x).

Description

This function is used to submit a control transfer to a target USB device specified by DeviceAddress.
Control transfers are intended to support configuration/command/status type communication flows
between host and USB device.

There are three control transfer types according to the data phase. If the TransferDirection
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase is present in the
control transfer. If the TransferDirection parameter is EfiUsbDataOut, then Data specifies the
data to be transmitted to the device, and DataLength specifies the number of bytes to transfer to the
device. In this case, there is an OUT DATA stage followed by a SETUP stage. If the TransferDirection
parameter is EfiUsbDataIn, then Data specifies the data to be received from the device, and
DataLength specifies the number of bytes to receive from the device. In this case there is an IN DATA
stage followed by a SETUP stage.

Translator is necessary to perform split transactions on low-speed or full-speed devices connected to
a high-speed hub. Such transaction require the device connection information: device address and the
port number of the hub that device is connected to. This information is passed through the fields of
EFI_USB2_HC_TRANSACTION_TRANSLATOR structure. See “Related Definitions” for the structure field
names. Translator is passed as NULL for the USB1.1 host controllers transfers or when the transfer is
requested for high-speed device connected to USB2.0 controller.

If the control transfer has completed successfully, then EFI_SUCCESS is returned. If the transfer cannot
be completed within the timeout specified by TimeOut, then EFI_TIMEOUT is returned. If an error other
than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the detailed
error code will be returned in the TransferResult parameter.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• TransferDirection is invalid.

• TransferDirection, Data, and DataLength do not match one of the three control
transfer types described above.

• Request pointer is NULL.

• MaximumPacketLength is not valid. If DeviceSpeed is EFI_USB_SPEED_LOW, then
MaximumPacketLength must be 8. If DeviceSpeed is EFI_USB_SPEED_FULL or
EFI_USB_SPEED_HIGH, then MaximumPacketLength must be 8, 16, 32, or 64. If
DeviceSpeed is EFI_USB_SPEED_SUPER, then MaximumPacketLength must be 512.

• TransferResult pointer is NULL.

• Translator is NULL while the requested transfer requires split transaction. The conditions of
the split transactions are described above in “Description” section.
UEFI Forum, Inc. March 2019 782

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes Returned

EFI_USB2_HC_PROTOCOL.BulkTransfer()

Summary

Submits bulk transfer to a bulk endpoint of a USB device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_BULK_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,

 IN UINT8 EndPointAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN UINT8 DataBuffersNumber,

 IN OUT VOID *Data[EFI_USB_MAX_BULK_BUFFER_NUM],

 IN OUT UINTN *DataLength,

 IN OUT UINT8 *DataToggle,

 IN UINTN TimeOut,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,

 OUT UINT32 *TransferResult

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction
of the target USB device. Each endpoint address supports data
transfer in one direction except the control endpoint (whose default
endpoint address is 0). It is the caller’s responsibility to make sure
that the EndPointAddress represents a bulk endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL,EFI_USB_SPEED_HIGH or
EFI_USB_SPEED_SUPER..

EFI_SUCCESS The control transfer was completed successfully.

EFI_OUT_OF_RESOURCES The control transfer could not be completed due to a lack of resources.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The control transfer failed due to timeout.

EFI_DEVICE_ERROR The control transfer failed due to host controller or device error. Caller

should check TransferResult for detailed error information.
UEFI Forum, Inc. March 2019 783

UEFI Specification, Version 2.8 Protocols — USB Support
MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving.

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.

DataLength When input, indicates the size, in bytes, of the data buffers specified
by Data. When output, indicates the actually transferred data size.

DataToggle A pointer to the data toggle value. On input, it indicates the initial
data toggle value the bulk transfer should adopt; on output, it is
updated to indicate the data toggle value of the subsequent bulk
transfer.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

TransferResult A pointer to the detailed result information of the bulk transfer.
Refer to UsbControlTransfer() (Section 17.2.4) for transfer
result types (EFI_USB_ERR_x).

Description

This function is used to submit bulk transfer to a target endpoint of a USB device. The target endpoint is
specified by DeviceAddress and EndpointAddress. Bulk transfers are designed to support devices
that need to communicate relatively large amounts of data at highly variable times where the transfer
can use any available bandwidth. Bulk transfers can be used only by full-speed and high-speed devices.

High-speed bulk transfers can be performed using multiple data buffers. The number of buffers that are
actually prepared for the transfer is specified by DataBuffersNumber. For full-speed bulk transfers this
value is ignored.

Data represents a list of pointers to the data buffers. For full-speed bulk transfers only the data pointed
by Data[0] shall be used. For high-speed transfers depending on DataLength there several data
buffers can be used. The total number of buffers must not exceed EFI_USB_MAX_BULK_BUFFER_NUM.
See “Related Definitions” for the EFI_USB_MAX_BULK_BUFFER_NUM value.

The data transfer direction is determined by the endpoint direction that is encoded in the
EndPointAddress parameter. Refer to USB Specification, Revision 2.0 on the Endpoint Address
encoding.

The DataToggle parameter is used to track target endpoint’s data sequence toggle bits. The USB
provides a mechanism to guarantee data packet synchronization between data transmitter and receiver
across multiple transactions. The data packet synchronization is achieved with the data sequence toggle
bits and the DATA0/DATA1 PIDs. A bulk endpoint’s toggle sequence is initialized to DATA0 when the
endpoint experiences a configuration event. It toggles between DATA0 and DATA1 in each successive
data transfer. It is host’s responsibility to track the bulk endpoint’s data toggle sequence and set the
correct value for each data packet. The input DataToggle value points to the data toggle value for the
first data packet of this bulk transfer; the output DataToggle value points to the data toggle value for
UEFI Forum, Inc. March 2019 784

UEFI Specification, Version 2.8 Protocols — USB Support
the last successfully transferred data packet of this bulk transfer. The caller should record the data toggle
value for use in subsequent bulk transfers to the same endpoint.

If the bulk transfer is successful, then EFI_SUCCESS is returned. If USB transfer cannot be completed
within the timeout specified by Timeout, then EFI_TIMEOUT is returned. If an error other than timeout
occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the detailed status code is
returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not valid; the legal values are EFI_USB_SPEED_FULL,
EFI_USB_SPEED_HIGH, or EFI_USB_SPEED_SUPER.

• MaximumPacketLength is not valid. The legal value of this parameter is 64 or less for full-
speed, 512 or less for high-speed, and 1024 or less for super-speed transactions.

• DataToggle points to a value other than 0 and 1.

• TransferResult is NULL.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()

Summary

Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device.

EFI_SUCCESS The bulk transfer was completed successfully.

EFI_OUT_OF_RESOURCES The bulk transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The bulk transfer failed due to timeout.

EFI_DEVICE_ERROR The bulk transfer failed due to host controller or device error. Caller
should check TransferResult for detailed error information.
UEFI Forum, Inc. March 2019 785

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 DeviceAddress,

 IN UINT8 EndPointAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN BOOLEAN IsNewTransfer,

 IN OUT UINT8 *DataToggle,

 IN UINTN PollingInterval OPTIONAL,

 IN UINTN DataLength OPTIONAL,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator OPTIONAL,

 IN EFI_ASYNC_USB_TRANSFER_CALLBACK CallBackFunction OPTIONAL,

 IN VOID *Context OPTIONAL

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction
of the target USB device. Each endpoint address supports data
transfer in one direction except the control endpoint (whose default
endpoint address is zero). It is the caller’s responsibility to make sure
that the EndPointAddress represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
EFI_USB2_HC_PROTOCOL.ControlTransfer() for a list of the
supported values.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving.

IsNewTransfer If TRUE, an asynchronous interrupt pipe is built between the host
and the target interrupt endpoint. If FALSE, the specified
asynchronous interrupt pipe is canceled. If TRUE, and an interrupt
transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

DataToggle A pointer to the data toggle value. On input, it is valid when
IsNewTransfer is TRUE, and it indicates the initial data toggle
value the asynchronous interrupt transfer should adopt. On output,
it is valid when IsNewTransfer is FALSE, and it is updated to
indicate the data toggle value of the subsequent asynchronous
interrupt transfer.

PollingInterval Indicates the interval, in milliseconds, that the asynchronous
interrupt transfer is polled. This parameter is required when
IsNewTransfer is TRUE.
UEFI Forum, Inc. March 2019 786

UEFI Specification, Version 2.8 Protocols — USB Support
DataLength Indicates the length of data to be received at the rate specified by
PollingInterval from the target asynchronous interrupt
endpoint. This parameter is only required when IsNewTransfer is
TRUE.

Translator A pointer to the transaction translator data.

CallBackFunction The Callback function. This function is called at the rate specified by
PollingInterval. This parameter is only required when
IsNewTransfer is TRUE. Refer to
UsbAsyncInterruptTransfer() (Section 17.2.4) for the
definition of this function type.

Context The context that is passed to the CallBackFunction. This is an
optional parameter and may be NULL.

Description

This function is used to submit asynchronous interrupt transfer to a target endpoint of a USB device. The
target endpoint is specified by DeviceAddress and EndpointAddress. In the USB Specification,
Revision 2.0, interrupt transfer is one of the four USB transfer types. In the EFI_USB2_HC_PROTOCOL,
interrupt transfer is divided further into synchronous interrupt transfer and asynchronous interrupt
transfer.

An asynchronous interrupt transfer is typically used to query a device’s status at a fixed rate. For
example, keyboard, mouse, and hub devices use this type of transfer to query their interrupt endpoints
at a fixed rate. The asynchronous interrupt transfer is intended to support the interrupt transfer type of
“submit once, execute periodically.” Unless an explicit request is made, the asynchronous transfer will
never retire.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is specified by
PollingInterval, the size of the receive buffer is specified by DataLength, and the callback function
is specified by CallBackFunction. Context specifies an optional context that is passed to the
CallBackFunction each time it is called. The CallBackFunction is intended to provide a means for
the host to periodically process interrupt transfer data.

If IsNewTransfer is TRUE, and an interrupt transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data transfer direction indicated by EndPointAddress is other than EfiUsbDataIn.

• IsNewTransfer is TRUE and DataLength is 0.

• IsNewTransfer is TRUE and DataToggle points to a value other than 0 and 1.

• IsNewTransfer is TRUE and PollingInterval is not in the range 1..255.

• IsNewTransfer requested where an interrupt transfer exists for the target end point.
UEFI Forum, Inc. March 2019 787

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes Returned

EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()

Summary

Submits synchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 DeviceAddress,

 IN UINT8 EndPointAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN OUT VOID *Data,

 IN OUT UINTN *DataLength,

 IN OUT UINT8 *DataToggle,

 IN UINTN TimeOut,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator
 OUT UINT32 *TransferResult

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction
of the target USB device. Each endpoint address supports data
transfer in one direction except the control endpoint (whose default
endpoint address is zero). It is the caller’s responsibility to make sure
that the EndPointAddress represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
ControlTransfer() for a list of the supported values.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving.

EFI_SUCCESS The asynchronous interrupt transfer request has been successfully
submitted or canceled.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above. When an interrupt transfer exists for
the target end point and a new transfer is requested,
EFI_INVALID_PARAMETER is returned.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
UEFI Forum, Inc. March 2019 788

UEFI Specification, Version 2.8 Protocols — USB Support
Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data. On
output, the number of bytes transferred.

DataToggle A pointer to the data toggle value. On input, it indicates the initial
data toggle value the synchronous interrupt transfer should adopt;
on output, it is updated to indicate the data toggle value of the
subsequent synchronous interrupt transfer.

TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

Translator A pointer to the transaction translator data.

TransferResult A pointer to the detailed result information from the synchronous
interrupt transfer. Refer to UsbControlTransfer()
(Section 17.2.4) for transfer result types (EFI_USB_ERR_x).

Description

This function is used to submit a synchronous interrupt transfer to a target endpoint of a USB device. The
target endpoint is specified by DeviceAddress and EndpointAddress. In the USB Specification,
Revision2.0, interrupt transfer is one of the four USB transfer types. In the EFI_USB2_HC_PROTOCOL,
interrupt transfer is divided further into synchronous interrupt transfer and asynchronous interrupt
transfer.

The synchronous interrupt transfer is designed to retrieve small amounts of data from a USB device
through an interrupt endpoint. A synchronous interrupt transfer is only executed once for each request.
This is the most significant difference from the asynchronous interrupt transfer.

If the synchronous interrupt transfer is successful, then EFI_SUCCESS is returned. If the USB transfer
cannot be completed within the timeout specified by Timeout, then EFI_TIMEOUT is returned. If an
error other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the
detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• MaximumPacketLength is not valid. The legal value of this parameter should be 3072 or less
for high-speed device, 64 or less for a full-speed device; for a slow device, it is limited to 8 or
less. For the full-speed device, it should be 8, 16, 32, or 64; for the slow device, it is limited to 8.

• DataToggle points to a value other than 0 and 1.

• TransferResult is NULL.
UEFI Forum, Inc. March 2019 789

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes Returned

EFI_USB2_HC_PROTOCOL.IsochronousTransfer()

Summary

Submits isochronous transfer to an isochronous endpoint of a USB device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 DeviceAddress,

 IN UINT8 EndPointAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN UINT8 DataBuffersNumber,

 IN OUT VOID *Data[EFI_USB_MAX_ISO_BUFFER_NUM],

 IN UINTN DataLength,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,

 OUT UINT32 *TransferResult

);

Related Definitions

#define EFI_USB_MAX_ISO_BUFFER_NUM 7

#define EFI_USB_MAX_ISO_BUFFER_NUM1 2

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction
of the target USB device. Each endpoint address supports data
transfer in one direction except the control endpoint (whose default
endpoint address is 0). It is the caller’s responsibility to make sure
that the EndPointAddress represents an isochronous endpoint.

EFI_SUCCESS The synchronous interrupt transfer was completed successfully.

EFI_OUT_OF_RESOURCES The synchronous interrupt transfer could not be submitted due to lack of
resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The synchronous interrupt transfer failed due to timeout.

EFI_DEVICE_ERROR The synchronous interrupt transfer failed due to host controller or device
error. Caller should check TransferResult for detailed error
information.
UEFI Forum, Inc. March 2019 790

UEFI Specification, Version 2.8 Protocols — USB Support
DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL, EFI_USB_SPEED_HIGH, or
EFI_USB_SPEED_SUPER.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is used
to reserve the bus time in the schedule, required for the per-frame
data payloads. The pipe may, on an ongoing basis, actually use less
bandwidth than that reserved.

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TransferResult A pointer to the detail result information of the isochronous
transfer. Refer to UsbControlTransfer() (Section 17.2.4) for
transfer result types (EFI_USB_ERR_x).

Description

This function is used to submit isochronous transfer to a target endpoint of a USB device. The target
endpoint is specified by DeviceAddress and EndpointAddress. Isochronous transfers are used when
working with isochronous date. It provides periodic, continuous communication between the host and a
device. Isochronous transfers can be used only by full-speed, high-speed, and super-speed devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of buffers
that are actually prepared for the transfer is specified by DataBuffersNumber. For full-speed
isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the data
pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split transactions
depending on DataLength there several data buffers can be used. For the high-speed isochronous
transfers the total number of buffers must not exceed EFI_USB_MAX_ISO_BUFFER_NUM. For split
transactions performed on full-speed device by high-speed host controller the total number of buffers is
limited to EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” for the
EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1 values.

If the isochronous transfer is successful, then EFI_SUCCESS is returned. The isochronous transfer is
designed to be completed within one USB frame time, if it cannot be completed, EFI_TIMEOUT is
returned. If an error other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is
returned and the detailed status code will be returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not one of the supported values listed above.
UEFI Forum, Inc. March 2019 791

UEFI Specification, Version 2.8 Protocols — USB Support
• MaximumPacketLength is invalid. MaximumPacketLength must be 1023 or less for full-
speed devices, and 1024 or less for high-speed and super-speed devices.

• TransferResult is NULL.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()

Summary

Submits nonblocking isochronous transfer to an isochronous endpoint of a USB device.

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 DeviceAddress,

 IN UINT8 EndPointAddress,

 IN UINT8 DeviceSpeed,

 IN UINTN MaximumPacketLength,

 IN UINT8 DataBuffersNumber,

 IN OUT VOID *Data[EFI_USB_MAX_ISO_BUFFER_NUM],

 IN UINTN DataLength,

 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,

 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,

 IN VOID *Context OPTIONAL

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction
of the target USB device. Each endpoint address supports data

EFI_SUCCESS The isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The isochronous transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The isochronous transfer cannot be completed within the one USB
frame time.

EFI_DEVICE_ERROR The isochronous transfer failed due to host controller or device error.

Caller should check TransferResult for detailed error

information.

EFI_UNSUPPORTED The implementation doesn’t support an Isochronous transfer function.
UEFI Forum, Inc. March 2019 792

UEFI Specification, Version 2.8 Protocols — USB Support
transfer in one direction except the control endpoint (whose default
endpoint address is zero). It is the caller’s responsibility to make sure
that the EndPointAddress represents an isochronous endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL, EFI_USB_SPEED_HIGH, or
EFI_USB_SPEED_SUPER.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is used
to reserve the bus time in the schedule, required for the per-frame
data payloads. The pipe may, on an ongoing basis, actually use less
bandwidth than that reserved.

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

IsochronousCallbackThe Callback function. This function is called if the requested
isochronous transfer is completed. Refer to
UsbAsyncInterruptTransfer() (Section 17.2.4) for the
definition of this function type.

Context Data passed to the IsochronousCallback function. This is an
optional parameter and may be NULL.

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous transfer
request through this function, this function will return immediately. When the isochronous transfer
completes, the IsochronousCallback function will be triggered, the caller can know the transfer
results. If the transfer is successful, the caller can get the data received or sent in this callback function.

The target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous transfers are
used when working with isochronous date. It provides periodic, continuous communication between the
host and a device. Isochronous transfers can be used only by full-speed, high-speed, and super-speed
devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of buffers
that are actually prepared for the transfer is specified by DataBuffersNumber. For full-speed
isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the data
pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split transactions
depending on DataLength there several data buffers can be used. For the high-speed isochronous
transfers the total number of buffers must not exceed EFI_USB_MAX_ISO_BUFFER_NUM. For split
transactions performed on full-speed device by high-speed host controller the total number of buffers is
limited to EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” in IsochronousTransfer()
section for the EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1 values.
UEFI Forum, Inc. March 2019 793

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not one of the supported values listed above.

• MaximumPacketLength is invalid. MaximumPacketLength must be 1023 or less for full-
speed devices and 1024 or less for high-speed and super-speed devices.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()

Summary

Retrieves the current status of a USB root hub port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 PortNumber,

 OUT EFI_USB_PORT_STATUS *PortStatus

);

Parameters

This A pointer to theEFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

PortNumber Specifies the root hub port from which the status is to be retrieved.
This value is zero based. For example, if a root hub has two ports,
then the first port is numbered 0, and the second port is
numbered 1.

PortStatus A pointer to the current port status bits and port status change bits.
The type EFI_USB_PORT_STATUS is defined in “Related
Definitions” below.

EFI_SUCCESS The asynchronous isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The asynchronous isochronous transfer could not be submitted due to
lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_UNSUPPORTED The implementation doesn’t support Isochronous transfer function
UEFI Forum, Inc. March 2019 794

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

typedef struct {

 UINT16 PortStatus;

 UINT16 PortChangeStatus;

} EFI_USB_PORT_STATUS;

//**

// EFI_USB_PORT_STATUS.PortStatus bit definition

//**

#define USB_PORT_STAT_CONNECTION 0x0001

#define USB_PORT_STAT_ENABLE 0x0002

#define USB_PORT_STAT_SUSPEND 0x0004

#define USB_PORT_STAT_OVERCURRENT 0x0008

#define USB_PORT_STAT_RESET 0x0010

#define USB_PORT_STAT_POWER 0x0100

#define USB_PORT_STAT_LOW_SPEED 0x0200

#define USB_PORT_STAT_HIGH_SPEED 0x0400

#define USB_PORT_STAT_SUPER_SPEED 0x0800

#define USB_PORT_STAT_OWNER 0x2000

//**

// EFI_USB_PORT_STATUS.PortChangeStatus bit definition

//**

#define USB_PORT_STAT_C_CONNECTION 0x0001

#define USB_PORT_STAT_C_ENABLE 0x0002

#define USB_PORT_STAT_C_SUSPEND 0x0004

#define USB_PORT_STAT_C_OVERCURRENT 0x0008

#define USB_PORT_STAT_C_RESET 0x0010

PortStatus Contains current port status bitmap. The root hub port status bitmap
is unified with the USB hub port status bitmap. See Table 143 for a
reference, which is borrowed from Chapter 11, Hub Specification, of
USB Specification, Revision 1.1.

PortChangeStatus Contains current port status change bitmap. The root hub port
change status bitmap is unified with the USB hub port status bitmap.
See Table 144 for a reference, which is borrowed from Chapter 11,
Hub Specification, of USB Specification, Revision 1.1.

Table 143. USB Hub Port Status Bitmap

Bit Description

0 Current Connect Status: (USB_PORT_STAT_CONNECTION) This field reflects whether or not a device is
currently connected to this port.
 0 = No device is present
 1 = A device is present on this port
UEFI Forum, Inc. March 2019 795

UEFI Specification, Version 2.8 Protocols — USB Support
Table 144. Hub Port Change Status Bitmap

1 Port Enable / Disabled: (USB_PORT_STAT_ENABLE) Ports can be enabled by software only. Ports can be
disabled by either a fault condition (disconnect event or other fault condition) or by software.
 0 = Port is disabled
 1 = Port is enabled

2 Suspend: (USB_PORT_STAT_SUSPEND) This field indicates whether or not the device on this port is
suspended.
 0 = Not suspended
 1 = Suspended

3 Over-current Indicator: (USB_PORT_STAT_OVERCURRENT) This field is used to indicate that the current
drain on the port exceeds the specified maximum.
 0 = All no over-current condition exists on this port
 1 = An over-current condition exists on this port

4 Reset: (USB_PORT_STAT_RESET) Indicates whether port is in reset state.
 0 = Port is not in reset state
 1 = Port is in reset state

5-7 Reserved
These bits return 0 when read.

8 Port Power: (USB_PORT_STAT_POWER) This field reflects a port’s logical, power control state.
 0 = This port is in the Powered-off state
 1 = This port is not in the Powered-off state

9 Low Speed Device Attached: (USB_PORT_STAT_LOW_SPEED) This is relevant only if a device is attached.
 0 = Full-speed device attached to this port
 1 = Low-speed device attached to this port

10 High Speed Device Attached: (USB_PORT_STAT_HIGH_SPEED) This field indicates whether the connected
device is high-speed device
 0 = High-speed device is not attached to this port
 1 = High-speed device attached to this port
NOTE: this bit has precedence over Bit 9; if set, bit 9 must be ignored.

11 Super Speed Device Attached: (USB_PORT_STAT_SUPER_SPEED) This field indicates whether the connected
device is a super-speed device.
 0 = Super-speed device is not attached to this port.
 1 = Super-speed device is attached to this port.
NOTE: This bit bas precedence over Bit 9 and Bit 10; if set bits 9,10 must be ignored.

12 Reserved.
Bit returns 0 when read.

13 The host controller owns the specified port.
 0 = Controller does not own the port.
 1 = Controller owns the port

14-15 Reserved
These bits return 0 when read.

Bit Description

Bit Description
UEFI Forum, Inc. March 2019 796

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This function is used to retrieve the status of the root hub port specified by PortNumber.

EFI_USB_PORT_STATUS describes the port status of a specified USB port. This data structure is
designed to be common to both a USB root hub port and a USB hub port.

The number of root hub ports attached to the USB host controller can be determined with the function
GetRootHubPortStatus(). If PortNumber is greater than or equal to the number of ports returned
by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is returned. Otherwise, the status of
the USB root hub port is returned in PortStatus, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()

Summary

Sets a feature for the specified root hub port.

0 Connect Status Change: (USB_PORT_STAT_C_CONNECTION) Indicates a change has occurred in the port’s
Current Connect Status.
 0 = No change has occurred to Current Connect status
 1 = Current Connect status has changed

1 Port Enable /Disable Change: (USB_PORT_STAT_C _ENABLE)
 0 = No change
 1 = Port enabled/disabled status has changed

2 Suspend Change: (USB_PORT_STAT_C _SUSPEND) This field indicates a change in the host-visible suspend
state of the attached device.
 0 = No change
 1 = Resume complete

3 Over-Current Indicator Change: (USB_PORT_STAT_C_OVERCURRENT)
 0 = No change has occurred to Over-Current Indicator
 1 = Over-Current Indicator has changed

4 Reset Change: (USB_PORT_STAT_C_RESET) This field is set when reset processing on this port is complete.
 0 = No change
 1 = Reset complete

5-15 Reserved.
These bits return 0 when read.

EFI_SUCCESS The status of the USB root hub port specified by PortNumber was
returned in PortStatus.

EFI_INVALID_PARAMETER PortNumber is invalid.
UEFI Forum, Inc. March 2019 797

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE) (

 IN EFI_USB2_HC_PROTOCOL *This,

 IN UINT8 PortNumber,

 IN EFI_USB_PORT_FEATURE PortFeature

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

PortNumber Specifies the root hub port whose feature is requested to be set. This
value is zero based. For example, if a root hub has two ports, then
the first port is number 0, and the second port is numbered 1.

PortFeature Indicates the feature selector associated with the feature set
request. The port feature indicator is defined in “Related
Definitions” and Table 145 below.

Related Definitions

typedef enum {

 EfiUsbPortEnable = 1,

 EfiUsbPortSuspend = 2,

 EfiUsbPortReset = 4,

 EfiUsbPortPower = 8,

 EfiUsbPortOwner = 13,

 EfiUsbPortConnectChange = 16,

 EfiUsbPortEnableChange = 17,

 EfiUsbPortSuspendChange = 18,

 EfiUsbPortOverCurrentChange = 19,

 EfiUsbPortResetChange = 20

} EFI_USB_PORT_FEATURE;

The feature values specified in the enumeration variable have special meaning. Each value indicates its
bit index in the port status and status change bitmaps, if combines these two bitmaps into a 32-bit
bitmap. The meaning of each port feature is listed in Table 145.

Table 145. USB Port Features


Port Feature For SetRootHubPortFeature


For ClearRootHubPortFeature

EfiUsbPortEnable Enable the given port of the root
hub.

Disable the given port of the root hub.

EfiUsbPortSuspend Put the given port into suspend
state.

Restore the given port from the previous
suspend state.
UEFI Forum, Inc. March 2019 798

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This function sets the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Setting a feature enables that feature or starts a process associated with that feature. For
the meanings about the defined features, please refer to Table 143 and Table 144.

The number of root hub ports attached to the USB host controller can be determined with the function
GetRootHubPortStatus(). If PortNumber is greater than or equal to the number of ports returned
by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is returned. If PortFeature is not
EfiUsbPortEnable, EfiUsbPortSuspend, EfiUsbPortReset nor EfiUsbPortPower, then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EfiUsbPortReset Reset the given port of the root
hub.

Clear the RESET signal for the given port of
the root hub.

EfiUsbPortPower Power the given port. Shutdown the power from the given port.

EfiUsbPortOwner N/A. Releases the port ownership of this port to
companion host controller.

EfiUsbPortConnectChange N/A. Clear USB_PORT_STAT_C_CONNECTION bit
of the given port of the root hub.

EfiUsbPortEnableChange N/A. Clear USB_PORT_STAT_C_ENABLE bit of
the given port of the root hub.

EfiUsbPortSuspendChange N/A. Clear USB_PORT_STAT_C_SUSPEND bit of
the given port of the root hub.

EfiUsbPortOverCurrentChange N/A. Clear USB_PORT_STAT_C_OVERCURRENT
bit of the given port of the root hub.

EfiUsbPortResetChange N/A. Clear USB_PORT_STAT_C_RESET bit of the
given port of the root hub.

EFI_SUCCESS The feature specified by PortFeature was set for the USB root hub
port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid for this function.
UEFI Forum, Inc. March 2019 799

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

Summary

Clears a feature for the specified root hub port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE) (

 IN EFI_USB2_HC_PROTOCOL *This

 IN UINT8 PortNumber,

 IN EFI_USB_PORT_FEATURE PortFeature

);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 17.1.

PortNumber Specifies the root hub port whose feature is requested to be cleared.
This value is zero-based. For example, if a root hub has two ports,
then the first port is number 0, and the second port is numbered 1.

PortFeature Indicates the feature selector associated with the feature clear
request. The port feature indicator (EFI_USB_PORT_FEATURE) is
defined in the “Related Definitions” section of the
SetRootHubPortFeature() function description and in
Table 145.

Description

This function clears the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Clearing a feature disables that feature or stops a process associated with that feature. For
the meanings about the defined features, refer to Table 143 and Table 144.

The number of root hub ports attached to the USB host controller can be determined with the function
GetRootHubPortStatus(). If PortNumber is greater than or equal to the number of ports returned
by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is returned. If PortFeature is not
EfiUsbPortEnable, EfiUsbPortSuspend, EfiUsbPortPower, EfiUsbPortConnectChange,
EfiUsbPortResetChange, EfiUsbPortEnableChange, EfiUsbPortSuspendChange, or
EfiUsbPortOverCurrentChange, then EFI_INVALID_PARAMETER is returned.
UEFI Forum, Inc. March 2019 800

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes Returned

17.2 USB Driver Model

17.2.1 Scope

Section 17.2 describes the USB Driver Model. This includes the behavior of USB Bus Drivers, the behavior
of a USB Device Drivers, and a detailed description of the EFI USB I/O Protocol. This document provides
enough material to implement a USB Bus Driver, and the tools required to design and implement USB
Device Drivers. It does not provide any information on specific USB devices.

The material contained in this section is designed to extend this specification and the UEFI Driver Model
in a way that supports USB device drivers and USB bus drivers. These extensions are provided in the form
of USB specific protocols. This document provides the information required to implement a USB Bus
Driver in system firmware. The document also contains the information required by driver writers to
design and implement USB Device Drivers that a platform may need to boot a UEFI-compliant OS.

The USB Driver Model described here is intended to be a foundation on which a USB Bus Driver and a
wide variety of USB Device Drivers can be created. USB Driver Model Overview

The USB Driver Stack includes the USB Bus Driver, USB Host Controller Driver, and individual USB device
drivers.

Figure 60. USB Bus Controller Handle

In the USB Bus Driver Design, the USB Bus Controller is managed by two drivers. One is USB Host
Controller Driver, which consumes its parent bus EFI_XYZ_IO_PROTOCOL, and produces
EFI_USB2_HC_PROTOCOL and attaches it to the Bus Controller Handle. The other one is USB Bus Driver,
which consumes EFI_USB2_HC_PROTOCOL, and performs bus enumeration. Figure 60 shows protocols
that are attached to the USB Bus Controller Handle. Detailed descriptions are presented in the following
sections.

EFI_SUCCESS The feature specified by PortFeature was cleared for the USB root hub
port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid.

OM13171

USB Bus Controller Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_USB2_HC_PROTOCOL
UEFI Forum, Inc. March 2019 801

UEFI Specification, Version 2.8 Protocols — USB Support
17.2.2 USB Bus Driver

USB Bus Driver performs periodic Enumeration on the USB Bus. In USB bus enumeration, when a new
USB controller is found, the bus driver does some standard configuration for that new controller, and
creates a device handle for it. The EFI_USB_IO_PROTOCOL and the EFI_DEVICE_PATH_PROTOCOL are
attached to the device handle so that the USB controller can be accessed. The USB Bus Driver is also
responsible for connecting USB device drivers to USB controllers. When a USB device is detached from a
USB bus, the USB bus driver will stop that USB controller, and uninstall the EFI_USB_IO_PROTOCOL and
the EFI_DEVICE_PATH_PROTOCOL from that handle. A detailed description is given in Section 17.2.2.3.

17.2.2.1 USB Bus Driver Entry Point

Like all other device drivers, the entry point for a USB Bus Driver attaches the
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Bus Driver.

17.2.2.2 Driver Binding Protocol for USB Bus Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the USB Bus Driver can manage a device handle. A USB Bus Driver can only
manage a device handle that contains EFI_USB2_HC_PROTOCOL.

The general idea is that the USB Bus Driver is a generic driver. Since there are several types of USB Host
Controllers, an EFI_USB2_HC_PROTOCOL is used to abstract the host controller interface. Actually, a
USB Bus Driver only requires an EFI_USB2_HC_PROTOCOL.

The Start() function tells the USB Bus Driver to start managing the USB Bus. In this function, the USB
Bus Driver creates a device handle for the root hub, and creates a timer to monitor root hub connection
changes.

The Stop() function tells the USB Bus Driver to stop managing a USB Host Bus Controller. The Stop()
function simply deconfigures the devices attached to the root hub. The deconfiguration is a recursive
process. If the device to be deconfigured is a USB hub, then all USB devices attached to its downstream
ports will be deconfigured first, then itself. If all of the child devices handles have been destroyed then
the EFI_USB2_HC_PROTOCOL is closed. Finally, the Stop()unction will then place the USB Host Bus
Controller in a quiescent state.

17.2.2.3 USB Hot-Plug Event

Hot-Plug is one of the most important features provided by USB. A USB bus driver implements this
feature through two methods. There are two types of hubs defined in the USB specification. One is the
USB root hub, which is implemented in the USB Host controller. A timer event is created for the root hub.
The other one is a USB Hub. An event is created for each hub that is correctly configured. All these events
are associated with the same trigger which is USB bus numerator.

When USB bus enumeration is triggered, the USB Bus Driver checks the source of the event. This is
required because the root hub differs from standard USB hub in checking the hub status. The status of a
root hub is retrieved through the EFI_USB2_HC_PROTOCOL, and that status of a standard USB hub is
retrieved through a USB control transfer. A detailed description of the enumeration process is presented
in the next section.
UEFI Forum, Inc. March 2019 802

UEFI Specification, Version 2.8 Protocols — USB Support
17.2.2.4 USB Bus Enumeration

When the periodic timer or the hubs notify event is signaled, the USB Bus Driver will perform
bus numeration.

1. Determine if the event is from the root hub or a standard USB hub.

2. Determine the port on which the connection change event occurred.

3. Determine if it is a connection change or a disconnection change.

4. If a connect change is detected, then a new device has been attached. Perform the following:

a Reset and enable that port.

b Configure the new device.

c Parse the device configuration descriptors; get all of its interface descriptors (i.e., all USB
controllers), and configure each interface.

d Create a new handle for each interface (USB Controller) within the USB device. Attach the
EFI_DEVICE_PATH_PROTOCOL, and the EFI_USB_IO_PROTOCOL to each handle.

e Connect the USB Controller to a USB device driver with the Boot Service
EFI_BOOT_SERVICES.ConnectController() if applicable.

f If the USB Controller is a USB hub, create a Hub notify event which is associated with the
USB Bus Enumerator, and submit an Asynchronous Interrupt Transfer Request (See
Section 17.2.4).

5. If a disconnect change, then a device has been detached from the USB Bus. Perform the
following:

a If the device is not a USB Hub, then find and deconfigure the USB Controllers within the
device. Then, stop each USB controller with
EFI_BOOT_SERVICES.DisconnectController(), and uninstall the
EFI_DEVICE_PATH_PROTOCOL and the EFI_USB_IO_PROTOCOL from the controller’s
handle. If the EFI_BOOT_SERVICES.DisconnectController() call fails this process
must be retried on a subsequent timer tick.

b If the USB controller is USB hub controller, first find and deconfigure all its downstream
USB devices (this is a recursive process, since there may be additional USB hub controllers
on the downstream ports), then deconfigure USB hub controller itself.

17.2.3 USB Device Driver

A USB Device Driver manages a USB Controller and produces a device abstraction for use by a preboot
application.

17.2.3.1 USB Device Driver Entry Point

Like all other device drivers, the entry point for a USB Device Driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Device Driver.

17.2.3.2 Driver Binding Protocol for USB Device Drivers

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
UEFI Forum, Inc. March 2019 803

UEFI Specification, Version 2.8 Protocols — USB Support
The Supported() tests to see if the USB Device Driver can manage a device handle. This function checks
to see if a controller can be managed by the USB Device Driver. This is done by opening the
EFI_USB_IO_PROTOCOL bus abstraction on the USB Controller handle, and using the
EFI_USB_IO_PROTOCOL services to determine if this USB Controller matches the profile that the USB
Device Driver is capable of managing.

The Start() function tells the USB Device Driver to start managing a USB Controller. It opens the
EFI_USB_IO_PROTOCOL instance from the handle for the USB Controller. This protocol instance is used
to perform USB packet transmission over the USB bus. For example, if the USB controller is USB
keyboard, then the USB keyboard driver would produce and install the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL to the USB controller handle.

The Stop() function tells the USB Device Driver to stop managing a USB Controller. It removes the I/O
abstraction protocol instance previously installed in Start() from the USB controller handle. It then
closes the EFI_USB_IO_PROTOCOL.

17.2.4 USB I/O Protocol

This section provides a detailed description of the EFI_USB_IO_PROTOCOL. This protocol is used by
code, typically drivers, running in the EFI boot services environment to access USB devices like USB
keyboards, mice and mass storage devices. In particular, functions for managing devices on USB buses
are defined here.

The interfaces provided in the EFI_USB_IO_PROTOCOL are for performing basic operations to access
USB devices. Typically, USB devices are accessed through the four different transfers types:

Controller Transfer Typically used to configure the USB device into an operation mode.

Interrupt Transfer Typically used to get periodic small amount of data, like USB
keyboard and mouse.

Bulk Transfer Typically used to transfer large amounts of data like reading blocks
from USB mass storage devices.

Isochronous Transfer Typically used to transfer data at a fixed rate like voice data.

This protocol also provides mechanisms to manage and configure USB devices and controllers.

EFI_USB_IO_PROTOCOL

Summary

Provides services to manage and communicate with USB devices.

GUID

#define EFI_USB_IO_PROTOCOL_GUID \

 {0x2B2F68D6,0x0CD2,0x44cf,\

 {0x8E,0x8B,0xBB,0xA2,0x0B,0x1B,0x5B,0x75}}

Protocol Interface Structure

typedef struct _EFI_USB_IO_PROTOCOL {

 EFI_USB_IO_CONTROL_TRANSFER UsbControlTransfer;

 EFI_USB_IO_BULK_TRANSFER UsbBulkTransfer;
UEFI Forum, Inc. March 2019 804

UEFI Specification, Version 2.8 Protocols — USB Support
 EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER
UsbAsyncInterruptTransfer;

 EFI_USB_IO_SYNC_INTERRPUT_TRANSFER UsbSyncInterruptTransfer

 EFI_USB_IO_ISOCHRONOUS_TRANSFER UsbIsochronousTransfer;

 EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER

UsbAsyncIsochronousTransfer;

 EFI_USB_IO_GET_DEVICE_DESCRIPTOR UsbGetDeviceDescriptor;

 EFI_USB_IO_GET_CONFIG_DESCRIPTOR UsbGetConfigDescriptor;

 EFI_USB_IO_GET_INTERFACE_DESCRIPTOR
UsbGetInterfaceDescriptor;

 EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR UsbGetEndpointDescriptor;

 EFI_USB_IO_GET_STRING_DESCRIPTOR UsbGetStringDescriptor;

 EFI_USB_IO_GET_SUPPORTED_LANGUAGES UsbGetSupportedLanguages;

 EFI_USB_IO_PORT_RESET UsbPortReset;

} EFI_USB_IO_PROTOCOL;

Parameters

UsbControlTransfer Accesses the USB Device through USB Control Transfer Pipe. See the
UsbControlTransfer() function description.

UsbBulkTransfer Accesses the USB Device through USB Bulk Transfer Pipe. See the
UsbBulkTransfer() function description.

UsbAsyncInterruptTransfer
Non-block USB interrupt transfer. See the
UsbAsyncInterruptTransfer() function description.

UsbSyncInterruptTransfer
Accesses the USB Device through USB Synchronous 
Interrupt Transfer Pipe. See the UsbSyncInterruptTransfer()
function description.

UsbIsochronousTransfer
Accesses the USB Device through USB Isochronous Transfer Pipe.
See the UsbIsochronousTransfer() function description.

UsbAsyncIsochronousTransfer
Nonblock USB isochronous transfer. See the
UsbAsyncIsochronousTransfer() function description.

UsbGetDeviceDescriptor
Retrieves the device descriptor of a USB device. See the
UsbGetDeviceDescriptor() function description.

UsbGetConfigDescriptor
Retrieves the activated configuration descriptor of a USB device. See
the UsbGetConfigDescriptor()function description.

UsbGetInterfaceDescriptor
Retrieves the interface descriptor of a USB Controller. See the
UsbGetInterfaceDescriptor() function description.

UsbGetEndpointDescriptor
Retrieves the endpoint descriptor of a USB Controller. See the
UsbGetEndpointDescriptor() function description.
UEFI Forum, Inc. March 2019 805

UEFI Specification, Version 2.8 Protocols — USB Support
UsbGetStringDescriptor 
Retrieves the string descriptor inside a USB Device. See the
UsbGetStringDescriptor() function description.

UsbGetSupportedLanguages
Retrieves the array of languages that the USB device supports. See
the UsbGetSupportedLanguages() function description.

UsbPortReset Resets and reconfigures the USB controller. See the
UsbPortReset() function description.

Description

The EFI_USB_IO_PROTOCOL provides four basic transfers types described in the USB 1.1 Specification.
These include control transfer, interrupt transfer, bulk transfer and isochronous transfer. The
EFI_USB_IO_PROTOCOL also provides some basic USB device/controller management and
configuration interfaces. A USB device driver uses the services of this protocol to manage USB devices.

EFI_USB_IO_PROTOCOL.UsbControlTransfer()

Summary

This function is used to manage a USB device with a control transfer pipe. A control transfer is typically
used to perform device initialization and configuration.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_CONTROL_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN EFI_USB_DEVICE_REQUEST *Request,

 IN EFI_USB_DATA_DIRECTION Direction,

 IN UINT32 Timeout,

 IN OUT VOID *Data OPTIONAL,

 IN UINTN DataLength OPTIONAL,

 OUT UINT32 *Status

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

Request A pointer to the USB device request that will be sent to the USB
device. See “Related Definitions” below.

Direction Indicates the data direction. See “Related Definitions” below for this
type.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
UEFI Forum, Inc. March 2019 806

UEFI Specification, Version 2.8 Protocols — USB Support
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

DataLength The size, in bytes, of the data buffer specified by Data.

Status A pointer to the result of the USB transfer.

Related Definitions

typedef enum {

 EfiUsbDataIn,

 EfiUsbDataOut,

 EfiUsbNoData

} EFI_USB_DATA_DIRECTION;

//

// Error code for USB Transfer Results

//

#define EFI_USB_NOERROR 0x0000

#define EFI_USB_ERR_NOTEXECUTE 0x0001

#define EFI_USB_ERR_STALL 0x0002

#define EFI_USB_ERR_BUFFER 0x0004

#define EFI_USB_ERR_BABBLE 0x0008

#define EFI_USB_ERR_NAK 0x0010

#define EFI_USB_ERR_CRC 0x0020

#define EFI_USB_ERR_TIMEOUT 0x0040

#define EFI_USB_ERR_BITSTUFF 0x0080

#define EFI_USB_ERR_SYSTEM 0x0100

typedef struct {

 UINT8 RequestType;

 UINT8 Request;

 UINT16 Value;

 UINT16 Index;

 UINT16 Length;

} EFI_USB_DEVICE_REQUEST;

RequestType The field identifies the characteristics of the specific request.

Request This field specifies the particular request.

Value This field is used to pass a parameter to USB device that is specific to
the request.

Index This field is also used to pass a parameter to USB device that is
specific to the request.

Length This field specifies the length of the data transferred during the
second phase of the control transfer. If it is 0, then there is no data
phase in this transfer.
UEFI Forum, Inc. March 2019 807

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This function allows a USB device driver to communicate with the USB device through a Control Transfer.
There are three control transfer types according to the data phase. If the Direction parameter is
EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase exists for the control transfer.
If the Direction parameter is EfiUsbDataOut, then Data specifies the data to be transmitted to the
device, and DataLength specifies the number of bytes to transfer to the device. In this case there is an
OUT DATA stage followed by a SETUP stage. If the Direction parameter is EfiUsbDataIn, then Data
specifies the data that is received from the device, and DataLength specifies the number of bytes to
receive from the device. In this case there is an IN DATA stage followed by a SETUP stage. After the USB
transfer has completed successfully, EFI_SUCCESS is returned. If the transfer cannot be completed due
to timeout, then EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB
transfer, then EFI_DEVICE_ERROR is returned and the detailed status code is returned in Status.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbBulkTransfer()

Summary

This function is used to manage a USB device with the bulk transfer pipe. Bulk Transfers are typically used
to transfer large amounts of data to/from USB devices.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_BULK_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 DeviceEndpoint,

 IN OUT VOID *Data,

 IN OUT UINTN *DataLength,

 IN UINTN Timeout,

 OUT UINT32 *Status

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

EFI_SUCCESS The control transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter Direction is not valid.

EFI_INVALID_PARAMETER Request is NULL.

EFI-INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The control transfer fails due to timeout.

EFI_DEVICE_ERROR The transfer failed. The transfer status is returned in Status.
UEFI Forum, Inc. March 2019 808

UEFI Specification, Version 2.8 Protocols — USB Support
DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not a BULK endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data. On
output, the number of bytes that were actually transferred.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Status This parameter indicates the USB transfer status.

Description

This function allows a USB device driver to communicate with the USB device through Bulk Transfer. The
transfer direction is determined by the endpoint direction. If the USB transfer is successful, then
EFI_SUCCESS is returned. If USB transfer cannot be completed within the Timeout frame,
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code will be returned in the Status parameter.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. An Asynchronous Interrupt
Transfer is typically used to query a device’s status at a fixed rate. For example, keyboard, mouse, and
hub devices use this type of transfer to query their interrupt endpoints at a fixed rate.

EFI_SUCCESS The bulk transfer has been successfully executed.

EFI_INVALID_PARAMETER If DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The bulk transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.
UEFI Forum, Inc. March 2019 809

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 DeviceEndpoint,

 IN BOOLEAN IsNewTransfer,

 IN UINTN PollingInterval OPTIONAL,

 IN UINTN DataLength OPTIONAL,

 IN EFI_ASYNC_USB_TRANSFER_CALLBACK InterruptCallBack OPTIONAL,

 IN VOID *Context OPTIONAL

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an INTERRUPT endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

IsNewTransfer If TRUE, a new transfer will be submitted to USB controller. If FALSE,
the interrupt transfer is deleted from the device’s interrupt transfer
queue. If TRUE, and an interrupt transfer exists for the target end
point, then EFI_INVALID_PARAMETER is returned.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed. This parameter is required when IsNewTransfer is TRUE.
The value must be between 1 to 255, otherwise
EFI_INVALID_PARAMETER is returned. The units are in milliseconds.

DataLength Specifies the length, in bytes, of the data to be received from the
USB device. This parameter is only required when IsNewTransfer is
TRUE.

Context Data passed to the InterruptCallback function. This is an optional
parameter and may be NULL.

InterruptCallback The Callback function. This function is called if the asynchronous
interrupt transfer is completed. This parameter is required when
IsNewTransfer is TRUE. See “Related Definitions” for the definition
of this type.
UEFI Forum, Inc. March 2019 810

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

typedef

EFI_STATUS

(EFIAPI * EFI_ASYNC_USB_TRANSFER_CALLBACK) (

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context,

 IN UINT32 Status

);

Data Data received or sent via the USB Asynchronous Transfer, if the
transfer completed successfully.

DataLength The length of Data received or sent via the Asynchronous Transfer, if
transfer successfully completes.

Context Data passed from UsbAsyncInterruptTransfer() request.

Status Indicates the result of the asynchronous transfer.

Description

This function allows a USB device driver to communicate with a USB device with an Interrupt Transfer.
Asynchronous Interrupt transfer is different than the other four transfer types because it is a nonblocking
transfer. The interrupt endpoint is queried at a fixed rate, and the data transfer direction is always in the
direction from the USB device towards the system.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is specified by
PollingInterval, the size of the receive buffer is specified by DataLength, and the callback function
is specified by InterruptCallback. If IsNewTransfer is TRUE, and an interrupt transfer exists for
the target end point, then EFI_INVALID_PARAMETER is returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

Status Code Returned

Examples

Below is an example of how an asynchronous interrupt transfer is used. The example shows how a USB
Keyboard Device Driver can periodically receive data from interrupt endpoint.

EFI_SUCCESS The asynchronous USB transfer request has been successfully executed.

EFI_DEVICE_ERROR The asynchronous USB transfer request failed. When an interrupt transfer
exists for the target end point and a new transfer is requested,
EFI_INVALID_PARAMETER is returned.
UEFI Forum, Inc. March 2019 811

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USB_IO_PROTOCOL *UsbIo;

EFI_STATUS Status;

USB_KEYBOARD_DEV *UsbKeyboardDevice;

EFI_USB_INTERRUPT_CALLBACK KeyboardHandle;

. . .

Status = UsbIo->UsbAsyncInterruptTransfer(

 UsbIo,

UsbKeyboardDevice->IntEndpointAddress,

TRUE,

UsbKeyboardDevice->IntPollingInterval,

8,

KeyboardHandler,

UsbKeyboardDevice

);

. . .

//

// The following is the InterruptCallback function. If there is

// any results got from Asynchronous Interrupt Transfer,

// this function will be called.

//

EFI_STATUS

KeyboardHandler(

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context,

 IN UINT32 Result
)

{

 USB_KEYBOARD_DEV *UsbKeyboardDevice;

 UINTN I;

 if(EFI_ERROR(Result))

 {

 //

 // Something error during this transfer,

 // just to some recovery work

 //

 . . .

 . . .

 return EFI_DEVICE_ERROR;

 }

 UsbKeyboardDevice = (USB_KEYBOARD_DEV *)Context;

UEFI Forum, Inc. March 2019 812

UEFI Specification, Version 2.8 Protocols — USB Support
 for(I = 0; I < DataLength; I++)

 {

 ParsedData(Data[I]);

 . . .

}

return EFI_SUCCESS;

}

EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. The difference between
UsbAsyncInterruptTransfer() and UsbSyncInterruptTransfer() is that the Synchronous
interrupt transfer will only be executed one time. Once it returns, regardless of its status, the interrupt
request will be deleted in the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_SYNC_INTERRUPT_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 DeviceEndpoint,

 IN OUT VOID *Data,

 IN OUT UINTN *DataLength,

 IN UINTN Timeout,

 OUT UINT32 *Status

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an INTERRUPT endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength On input, then size, in bytes, of the buffer Data. On output, the
amount of data actually transferred.

Timeout The time out, in milliseconds, for this transfer. If Timeout is 0, then
the caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned. If the transfer is
not completed in this time frame, then EFI_TIMEOUT is returned.
UEFI Forum, Inc. March 2019 813

UEFI Specification, Version 2.8 Protocols — USB Support
Status This parameter indicates the USB transfer status.

Description

This function allows a USB device driver to communicate with a USB device through a synchronous
interrupt transfer. The UsbSyncInterruptTransfer() differs from
UsbAsyncInterruptTransfer() described in the previous section in that it is a blocking transfer
request. The caller must wait for the function return, either successfully or unsuccessfully.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An Isochronous transfer
is typically used to transfer streaming data.

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_USB_IO_ISOCHRONOUS_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 DeviceEndpoint,

 IN OUT VOID *Data,

 IN UINTN DataLength,

 OUT UINT32 *Status

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an ISOCHRONOUS endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter

EFI_SUCCESS The sync interrupt transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.
UEFI Forum, Inc. March 2019 814

UEFI Specification, Version 2.8 Protocols — USB Support
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength The size, in bytes, of the data buffer specified by Data.

Status This parameter indicates the USB transfer status.

Description

This function allows a USB device driver to communicate with a USB device with an Isochronous Transfer.
The type of transfer is different than the other types because the USB Bus Driver will not attempt to
perform error recovery if transfer fails. If the USB transfer is completed successfully, then EFI_SUCCESS
is returned. The isochronous transfer is designed to be completed within 1 USB frame time, if it cannot be
completed, EFI_TIMEOUT is returned. If the transfer fails due to other reasons, then
EFI_DEVICE_ERROR is returned and the detailed error status is returned in Status. If the data length
exceeds the maximum payload per USB frame time, then it is this function’s responsibility to divide the
data into a set of smaller packets that fit into a USB frame time. If all the packets are transferred
successfully, then EFI_SUCCESS is returned.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An asynchronous
Isochronous transfer is a nonblocking USB isochronous transfer.

EFI_SUCCESS The isochronous transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within the 1 USB frame time.

EFI_DEVICE_ERROR The transfer failed due to the reason other than timeout, The error status
is returned in Status.

EFI_UNSUPPORTED The implementation doesn’t support an Isochronous transfer function.
UEFI Forum, Inc. March 2019 815

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 DeviceEndpoint,

 IN OUT VOID *Data,

 IN UINTN DataLength,

 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,

 IN VOID *Context OPTIONAL

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an ISOCHRONOUS endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device
or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Context Data passed to the IsochronoisCallback() function. This is an
optional parameter and may be NULL.

IsochronousCallback
The IsochronousCallback() function. This function is called if
the requested isochronous transfer is completed. See the “Related
Definitions” section of the UsbAsyncInterruptTransfer()
function description.

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous transfer
request through this function, this function will return immediately. When the isochronous transfer
completes, the IsochronoisCallback() function will be triggered, the caller can know the transfer
results. If the transfer is successful, the caller can get the data received or sent in this callback function.
UEFI Forum, Inc. March 2019 816

UEFI Specification, Version 2.8 Protocols — USB Support
Status Code Returned

EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()

Summary

Retrieves the USB Device Descriptor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_DEVICE_DESCRIPTOR) (

 IN EFI_USB_IO_PROTOCOL *This,

 OUT EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

DeviceDescriptor A pointer to the caller allocated USB Device Descriptor. See “Related
Definitions” for a detailed description.

EFI_SUCCESS The asynchronous isochronous transfer has been successfully submitted
to the system.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be submitted due to a lack of resources.

EFI_UNSUPPORTED The implementation doesn’t support an asynchronous Isochronous
transfer function.
UEFI Forum, Inc. March 2019 817

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

//

// See USB1.1 for detail description.

//

typedef struct {

 UINT8 Length;

 UINT8 DescriptorType;

 UINT16 BcdUSB;

 UINT8 DeviceClass;

 UINT8 DeviceSubClass;

 UINT8 DeviceProtocol;

 UINT8 MaxPacketSize0;

 UINT16 IdVendor;

 UINT16 IdProduct;

 UINT16 BcdDevice;

 UINT8 StrManufacturer;

 UINT8 StrProduct;

 UINT8 StrSerialNumber;

 UINT8 NumConfigurations;

} EFI_USB_DEVICE_DESCRIPTOR;

Description

This function is used to retrieve information about USB devices. This information includes the device
class, subclass, and the number of configurations the USB device supports. If DeviceDescriptor is
NULL, then EFI_INVALID_PARAMETER is returned. If the USB device descriptor is not found, then
EFI_NOT_FOUND is returned. Otherwise, the device descriptor is returned in DeviceDescriptor, and
EFI_SUCCESS is returned.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()

Summary

Retrieves the USB Device Configuration Descriptor.

EFI_SUCCESS The device descriptor was retrieved successfully.

EFI_INVALID_PARAMETER DeviceDescriptor is NULL.

EFI_NOT_FOUND The device descriptor was not found. The device may not be configured.
UEFI Forum, Inc. March 2019 818

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_CONFIG_DESCRIPTOR) (

 IN EFI_USB_IO_PROTOCOL *This,

 OUT EFI_USB_CONFIG_DESCRIPTOR *ConfigurationDescriptor

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

ConfigurationDescriptor
A pointer to the caller allocated USB Active Configuration Descriptor.
See “Related Definitions” for a detailed description.

Related Definitions

//

// See USB1.1 for detail description.

//

typedef struct {

 UINT8 Length;

 UINT8 DescriptorType;

 UINT16 TotalLength;

 UINT8 NumInterfaces;

 UINT8 ConfigurationValue;

 UINT8 Configuration;

 UINT8 Attributes;

 UINT8 MaxPower;

} EFI_USB_CONFIG_DESCRIPTOR;

Description

This function is used to retrieve the active configuration that the USB device is currently using. If
ConfigurationDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
controller does not contain an active configuration, then EFI_NOT_FOUND is returned. Otherwise, the
active configuration is returned in ConfigurationDescriptor, and EFI_SUCCESS is returned.
UEFI Forum, Inc. March 2019 819

UEFI Specification, Version 2.8 Protocols — USB Support
Status Code Returned

EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()

Summary

Retrieves the Interface Descriptor for a USB Device Controller. As stated earlier, an interface within a USB
device is equivalently to a USB Controller within the current configuration.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_INTERFACE_DESCRIPTOR) (

 IN EFI_USB_IO_PROTOCOL *This,

 OUT EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

InterfaceDescriptorA pointer to the caller allocated USB Interface Descriptor within the
configuration setting. See “Related Definitions” for a detailed
description.

Related Definitions

//

// See USB1.1 for detail description.

//

typedef struct {

 UINT8 Length;

 UINT8 DescriptorType;

 UINT8 InterfaceNumber;

 UINT8 AlternateSetting;

 UINT8 NumEndpoints;

 UINT8 InterfaceClass;

 UINT8 InterfaceSubClass;

 UINT8 InterfaceProtocol;

 UINT8 Interface;

} EFI_USB_INTERFACE_DESCRIPTOR;

Description

This function is used to retrieve the interface descriptor for the USB controller. If
InterfaceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB controller

EFI_SUCCESS The active configuration descriptor was retrieved successfully.

EFI_INVALID_PARAMETER ConfigurationDescriptor is NULL.

EFI_NOT_FOUND An active configuration descriptor cannot be found. The device may not
be configured.
UEFI Forum, Inc. March 2019 820

UEFI Specification, Version 2.8 Protocols — USB Support
does not contain an interface descriptor, then EFI_NOT_FOUND is returned. Otherwise, the interface
descriptor is returned in InterfaceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()

Summary

Retrieves an Endpoint Descriptor within a USB Controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT8 EndpointIndex,

 OUT EFI_USB_ENDPOINT_DESCRIPTOR *EndpointDescriptor

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

EndpointIndex Indicates which endpoint descriptor to retrieve. The valid range is
0..15.

EndpointDescriptorA pointer to the caller allocated USB Endpoint Descriptor of a USB
controller. See “Related Definitions” for a detailed description.

EFI_SUCCESS The interface descriptor retrieved successfully.

EFI_INVALID_PARAMETER InterfaceDescriptor is NULL.

EFI_NOT_FOUND The interface descriptor cannot be found. The device may not be
correctly configured.
UEFI Forum, Inc. March 2019 821

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

//

// See USB1.1 for detail description.

//

typedef struct {

 UINT8 Length;

 UINT8 DescriptorType;

 UINT8 EndpointAddress;

 UINT8 Attributes;

 UINT16 MaxPacketSize;

 UINT8 Interval;

} EFI_USB_ENDPOINT_DESCRIPTOR;

Description

This function is used to retrieve an endpoint descriptor within a USB controller. If EndpointIndex is not
in the range 0..15, then EFI_INVALID_PARAMETER is returned. If EndpointDescriptor is NULL, then
EFI_INVALID_PARAMETER is returned. If the endpoint specified by EndpointIndex does not exist
within the USB controller, then EFI_NOT_FOUND is returned. Otherwise, the endpoint descriptor is
returned in EndpointDescriptor, and EFI_SUCCESS is returned.

Status Code Returned

Examples

The following code fragment shows how to retrieve all the endpoint descriptors from a USB controller.

EFI_SUCCESS The endpoint descriptor was retrieved successfully.

EFI_INVALID_PARAMETER EndpointIndex is not valid.

EFI_INVALID_PARAMETER EndpointDescriptor is NULL.

EFI_NOT_FOUND The endpoint descriptor cannot be found. The device may not be
correctly configured.
UEFI Forum, Inc. March 2019 822

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USB_IO_PROTOCOL *UsbIo;

EFI_USB_INTERFACE_DESCRIPTOR InterfaceDesc;

EFI_USB_ENDPOINT_DESCRIPTOR EndpointDesc;

UINTN Index;

Status = UsbIo->GetInterfaceDescriptor (

 UsbIo,

 &InterfaceDesc

);

. . .

for(Index = 0; Index < InterfaceDesc.NumEndpoints; Index++) {

 Status = UsbIo->GetEndpointDescriptor(

 UsbIo,

 Index,

 &EndpointDesc

);

. . .
}

EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()

Summary

Retrieves a string stored in a USB Device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_STRING_DESCRIPTOR) (

 IN EFI_USB_IO_PROTOCOL *This,

 IN UINT16 LangID,

 IN UINT8 StringID,

 OUT CHAR16 **String

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

LangID The Language ID for the string being retrieved. See the
UsbGetSupportedLanguages() function description for a more
detailed description.

StringID The ID of the string being retrieved.

String A pointer to a buffer allocated by this function with
EFI_BOOT_SERVICES.AllocatePool() to store the string. If this
function returns EFI_SUCCESS, it stores the string the caller wants to
get. The caller should release the string buffer with
EFI_BOOT_SERVICES.FreePool() after the string is not used any
more.
UEFI Forum, Inc. March 2019 823

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This function is used to retrieve strings stored in a USB device. The string to retrieve is identified by a
language and an identifier. The language is specified by LangID, and the identifier is specified by
StringID. If the string is found, it is returned in String, and EFI_SUCCESS is returned. If the string
cannot be found, then EFI_NOT_FOUND is returned. The string buffer is allocated by this function with
AllocatePool(). The caller is responsible for calling FreePool() for String when it is no longer
required.

Status Code Returned

EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()

Summary

Retrieves all the language ID codes that the USB device supports.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_GET_SUPPORTED_LANGUAGES) (

 IN EFI_USB_IO_PROTOCOL *This,

 OUT UINT16 **LangIDTable,

 OUT UINT16 *TableSize

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

LangIDTable Language ID for the string the caller wants to get. This is a 16-bit ID
defined by Microsoft. This buffer pointer is allocated and maintained
by the USB Bus Driver, the caller should not modify its contents.

TableSize The size, in bytes, of the table LangIDTable.

Description

Retrieves all the language ID codes that the USB device supports.

EFI_SUCCESS The string was retrieved successfully.

EFI_NOT_FOUND The string specified by LangID and StringID was not found.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate the return buffer String.
UEFI Forum, Inc. March 2019 824

UEFI Specification, Version 2.8 Protocols — USB Support
Status Code Returned

EFI_USB_IO_PROTOCOL.UsbPortReset()

Summary

Resets and reconfigures the USB controller. This function will work for all USB devices except USB Hub
Controllers.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USB_IO_PORT_RESET) (

 IN EFI_USB_IO_PROTOCOL *This

);

Parameters

This A pointer to the EFI_USB_IO_PROTOCOL instance. Type
EFI_USB_IO_PROTOCOL is defined in Section 17.2.4.

Description

This function provides a reset mechanism by sending a RESET signal from the parent hub port. A
reconfiguration process will happen (that includes setting the address and setting the configuration). This
reset function does not change the bus topology. A USB hub controller cannot be reset using this
function, because it would impact the downstream USB devices. So if the controller is a USB hub
controller, then EFI_INVALID_PARAMETER is returned.

Status Code Returned

17.3 USB Function Protocol

This section describes the USB Function Protocol, enabling a USB Function device with a UEFI driver that
implements the protocol to communicate with a a USB Host device.

The USB Function Protocol provides an I/O abstraction for a USB Controller operating in Function mode
(also commonly referred to as Device, Peripheral, or Target mode) and the mechanisms by which the USB
Function can communicate with the USB Host. It is used by other UEFI drivers or applications to perform
data transactions and basic USB controller management over a USB Function port.

This simple protocol only supports USB 2.0 bulk transfers on systems with a single configuration and a
single interface. It does not support isochronous or interrupt transfers, alternate interfaces, or USB 3.0
functionality. Future revisions of this protocol may support these or additional features.

EFI_SUCCESS The support languages were retrieved successfully.

EFI_SUCCESS The USB controller was reset.

EFI_INVALID_PARAMETER If the controller specified by This is a USB hub.

EFI_DEVICE_ERROR An error occurred during the reconfiguration process.
UEFI Forum, Inc. March 2019 825

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USBFN_IO_PROTOCOL

Summary

Provides basic data transactions and basic USB controller management for a USB Function port.

GUID

// {32D2963A-FE5D-4f30-B633-6E5DC55803CC}

#define EFI_USBFN_IO_PROTOCOL_GUID \

 {0x32d2963a, 0xfe5d, 0x4f30,\

 {0xb6, 0x33, 0x6e, 0x5d, 0xc5, 0x58, 0x3, 0xcc}};

Revision Number

#define EFI_USBFN_IO_PROTOCOL_REVISION 0x00010001

Protocol Interface Structure

typedef struct _EFI_USBFN_IO_PROTOCOL {

 UINT32 Revision;

 EFI_USBFN_IO_DETECT_PORT DetectPort;
 EFI_USBFN_IO_CONFIGURE_ENABLE_ENDPOINTS \

 ConfigureEnableEndpoints;
 EFI_USBFN_IO_GET_ENDPOINT_MAXPACKET_SIZE \

 GetEndpointMaxPacketSize;
 EFI_USBFN_IO_GET_DEVICE_INFO GetDeviceInfo;
 EFI_USBFN_IO_GET_VENDOR_ID_PRODUCT_ID \

 GetVendorIdProductId;

 EFI_USBFN_IO_ABORT_TRANSFER AbortTransfer;
 EFI_USBFN_IO_GET_ENDPOINT_STALL_STATE \

 GetEndpointStallState;
 EFI_USBFN_IO_SET_ENDPOINT_STALL_STATE \

 SetEndpointStallState;

 EFI_USBFN_IO_EVENTHANDLER EventHandler;

 EFI_USBFN_IO_TRANSFER Transfer;
 EFI_USBFN_IO_GET_MAXTRANSFER_SIZE \

 GetMaxTransferSize;

 EFI_USBFN_IO_ALLOCATE_TRANSFER_BUFFER AllocateTransferBuffer;
 EFI_USBFN_IO_FREE_TRANSFER_BUFFER FreeTransferBuffer;

 EFI_USBFN_IO_START_CONTROLLER StartController;

 EFI_USBFN_IO_STOP_CONTROLLER StopController;

 EFI_USBFN_IO_SET_ENDPOINT_POLICY SetEndpointPolicy;
 EFI_USBFN_IO_GET_ENDPOINT_POLICY GetEndpointPolicy;
} EFI_USBFN_IO_PROTOCOL;
UEFI Forum, Inc. March 2019 826

UEFI Specification, Version 2.8 Protocols — USB Support
Parameters

Revision The revision to which the EFI_USBFN_IO_PROTOCOL adheres. All
future revisions must be backwards compatible. If a future version is
not backwards compatible, a different GUID must be used.

DetectPort Returns information about the USB port type. See
EFI_USBFN_IO_PROTOCOL.DetectPort(), "Related
Definitions"for more details.

ConfigureEnableEndpoints

Initializes all endpoints based on supplied device and configuration
descriptors. Enables the device by setting the run/stop bit.

GetEndpointMaxPacketSize

Returns the maximum packet size of the specified endpoint.

GetDeviceInfo Returns device specific information based on the supplied identifier
as a Unicode string.

GetVendorIdProductId

Returns the vendor-id and product-id of the device.

AbortTransfer Aborts the transfer on the specified endpoint.

GetEndpointStallState

Returns the stall state on the specified endpoint.

SetEndpointStallState

Sets or clears the stall state on the specified endpoint.

EventHandler This function is called repeatedly to get information on USB bus
states, receive-completion and transmit-completion events on the
endpoints, and notification on setup packet on endpoint 0.

Transfer This function handles transferring data to or from the host on the
specified endpoint, depending on the direction specified.

GetMaxTransferSizeThe maximum supported transfer size in bytes.

AllocateTransferBuffer

Allocates a transfer buffer of the specified size that satisfies the
controller requirements.

FreeTransferBufferDeallocates the memory allocated for the transfer buffer by
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()functi
on.

StartController This function initializes the hardware and the internal data
structures. The port must not be activated by this function.

StopController This function disables the device by deactivating the port.

SetEndpointPolicy This function sets the configuration policy for the specified non-
control endpoint. There are a few calling restrictions for this
function. See the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() function
definition for more details.

GetEndpointPolicy This functions retrieves the configuration policy for the specified
non-control endpoint.
UEFI Forum, Inc. March 2019 827

UEFI Specification, Version 2.8 Protocols — USB Support
Description

This protocol provides basic data transactions and USB controller management for a USB Function port. It
provides a lightweight communication mechanism between a USB Host and a USB Function in the UEFI
environment.

Like other UEFI device drivers, the entry point for a USB function driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of EFI_USBFN_IO_PROTOCOL driver.

The driver binding protocol contains three services, Supported, Start and Stop.

The Supported function must test to see if this driver supports a given controller.

The Start function must supply power to the USB controller if needed, initialize hardware and internal
data structures, and then return. The port must not be activated by this function.

The Stop function must disable the USB controller and power it off if needed.

EFI_USBFN_IO_PROTOCOL.DetectPort()

Summary

Returns information about what USB port type was attached.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_DETECT_PORT) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT EFI_USBFN_PORT_TYPE *PortType
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

PortType Returns the USB port type. Refer to the Related Definitions.

 for this function below for details.

Description

Returns information about the USB port type attached. Refer to the "Related Definitions" below for
further details.
UEFI Forum, Inc. March 2019 828

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes

Related Definitions

typedef enum _EFI_USBFN_PORT_TYPE {
 EfiUsbUnknownPort = 0,
 EfiUsbStandardDownstreamPort,
 EfiUsbChargingDownstreamPort,
 EfiUsbDedicatedChargingPort,
 EfiUsbInvalidDedicatedChargingPort
} EFI_USBFN_PORT_TYPE;

Unknown Port Driver internal default port type, this is never returned by the driver
with a success status code.

Standard Downstream Port

Standard USB host; refer to USB Battery Charging Specification,
Revision 1.2 in Section Q.1 for details and the link.

Charging Downstream Port

Standard USB host with special charging properties; refer to USB
Battery Charging Specification, Revision 1.2 in Section Q.1 for the
details and link.

Dedicated Charging Port

A wall-charger, not USB host; refer to USB Battery Charging
Specification, Revision 1.2, Section Q.1 for details and the link.

Invalid Dedicated Charging Port –

Neither a USB host nor a dedicated charging port as defined by the
USB Battery Charging Specification, Revision 1.2. (See Section Q.1 for
details and the link.) An example is a USB charger that raises the
voltages on D+/D-, causing the charger to look like an SDP even
though it will never issue a setup packet to the upstream facing port.

EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints()

Summary

Configures endpoints based on supplied device and configuration descriptors.

Prototype

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request or there is no
USB port attached to the device.
UEFI Forum, Inc. March 2019 829

UEFI Specification, Version 2.8 Protocols — USB Support
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_CONFIGURE_ENABLE_ENDPOINTS) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USB_DEVICE_INFO *DeviceInfo
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

DeviceInfo A pointer to EFI_USBFN_DEVICE_INFO instance. Refer to the
"Related Definitions" for this function below for details.

Description

Assuming that the hardware has already been initialized, this function configures the endpoints using the
device information supplied by DeviceInfo, activates the port, and starts receiving USB events.

This function must ignore the bMaxPacketSize0 field of the Standard Device Descriptor and the
wMaxPacketSize field of the Standard Endpoint Descriptor that are made available through
DeviceInfo.

Status Codes

Related Definitions

typedef struct {

 EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor;

 EFI_USB_ENDPOINT_DESCRIPTOR **EndpointDescriptorTable;
} EFI_USB_INTERFACE_INFO;

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_OUT_OF_RESOURCES The request could not be completed due to lack of resources.
UEFI Forum, Inc. March 2019 830

UEFI Specification, Version 2.8 Protocols — USB Support
typedef struct {
 EFI_USB_CONFIG_DESCRIPTOR *ConfigDescriptor;

 EFI_USB_INTERFACE_INFO **InterfaceInfoTable;
} EFI_USB_CONFIG_INFO;

typedef struct {

 EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor;

 EFI_USB_CONFIG_INFO **ConfigInfoTable;
} EFI_USB_DEVICE_INFO;

USB_DEVICE_DESCRIPTOR, USB_CONFIG_DESCRIPTOR, USB_INTERFACE_DESCRIPTOR, and
USB_ENDPOINT_DESCRIPTOR are defined in Section 17.2.4.

EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()

Summary

Returns the maximum packet size of the specified endpoint type for the supplied bus speed.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_ENDPOINT_MAXPACKET_SIZE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USB_ENDPOINT_TYPE EndpointType,
 IN EFI_USB_BUS_SPEED BusSpeed,
 OUT UINT16 *MaxPacketSize
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointType Endpoint type as defined as EFI_USB_ENDPOINT_TYPE in the
"Related Definitions" for this function below for details.

BusSpeed Bus speed as defined as EFI_USB_BUS_SPEED in the "Related
Definitions" for the EventHandle function for details.

MaxPacketSize The maximum packet size, in bytes, of the specified endpoint type.

Description

Returns the maximum packet size of the specified endpoint type for the supplied bus speed. If the
BusSpeed is UsbBusSpeedUnknown, the maximum speed the underlying controller supports is
assumed.

This protocol currently does not support isochronous or interrupt transfers. Future revisions of this
protocol may eventually support it.
UEFI Forum, Inc. March 2019 831

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes

Related Definitions
typedef enum _EFI_USB_ENDPOINT_TYPE
{
 UsbEndpointControl = 0x00,
 // UsbEndpointIsochronous = 0x01,
 UsbEndpointBulk = 0x02,
 // UsbEndpointInterrupt = 0x03
} EFI_USB_ENDPOINT_TYPE;

EFI_USBFN_IO_PROTOCOL.GetDeviceInfo()

Summary

Returns device specific information based on the supplied identifier as a Unicode string.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_DEVICE_INFO) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USBFN_DEVICE_INFO_ID Id,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer OPTIONAL
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Id The requested information id. Refer to the "Related Definitions" for
this function below for details.

BufferSize On input, the size of the Buffer in bytes. On output, the amount of
data returned in Buffer in bytes.

Buffer A pointer to a buffer to return the requested information as a
Unicode string.

Description

Returns device specific information based on the supplied identifier as a Unicode string. If the supplied
Buffer isn’t large enough, or is NULL, the method fails with EFI_BUFFER_TOO_SMALL and the required
size is returned through BufferSize. All returned strings are in Unicode format.

An Id of EfiUsbDeviceInfoUnknown is treated as an invalid parameter.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 832

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes

Related Definitions
typedef enum _EFI_USBFN_DEVICE_INFO_ID 
{
 EfiUsbDeviceInfoUnknown = 0,
 EfiUsbDeviceInfoSerialNumber,
 EfiUsbDeviceInfoManufacturerName,
 EfiUsbDeviceInfoProductName
} EFI_USBFN_DEVICE_INFO_ID;

EFI_USBFN_IO_PROTOCOL.GetVendorIdProductId()

Summary

Returns the vendor-id and product-id of the device.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_VENDOR_ID_PRODUCT_ID) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT UINT16 *Vid,
 OUT UINT16 *Pid
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL.instance.

Vid Returned vendor-id of the device.

Pid Returned product-id of the device.

Description

Returns vendor-id and product-id of the device.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
• BufferSize is NULL.
• *BufferSize is not 0 and Buffer is NULL.
• Id in invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
*BufferSize has been updated with the size needed to hold the request string.
UEFI Forum, Inc. March 2019 833

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes

Related Definitions

Vendor IDs (VIDs) are 16-bit numbers that represent the device’s vendor company and are assigned and
maintained by the USB-IF. Product IDs (PIDs) are 16-bit numbers assigned by each vendor to the device.

EFI_USBFN_IO_PROTOCOL.AbortTransfer()

Summary

Aborts the transfer on the specified endpoint.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_ABORT_TRANSFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint on which the ongoing transfer needs to be
canceled.

Direction Direction of the endpoint. Refer to the "Related Definitions" for this
function (below) for details.

Description

Aborts the transfer on the specified endpoint. This function should fail with EFI_INVALID_PARAMETER
if the specified direction is incorrect for the endpoint.

Status Codes

Related Definitions

typedef enum _EFI_USBFN_ENDPOINT_DIRECTION 
{
 EfiUsbEndpointDirectionHostOut = 0,

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_NOT_FOUND Unable to return the vendor-id or the product-id

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 834

UEFI Specification, Version 2.8 Protocols — USB Support
 EfiUsbEndpointDirectionHostIn,
 EfiUsbEndpointDirectionDeviceTx = EfiUsbEndpointDirectionHostIn,
 EfiUsbEndpointDirectionDeviceRx = EfiUsbEndpointDirectionHostOut
} EFI_USBFN_ENDPOINT_DIRECTION;

EFI_USBFN_IO_PROTOCOL.GetEndpointStallState()

Summary

Returns the stall state on the specified endpoint.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_ENDPOINT_STALL_STATE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN OUT BOOLEAN *State
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
EFI_USBFN_IO_PROTOCOL.AbortTransfer() for details.

State Boolean, true value indicates that the endpoint is in a stalled state,
false otherwise.

Description

Returns the stall state on the specified endpoint. This function would fail with
EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.

Status Codes

EFI_USBFN_IO_PROTOCOL.SetEndpointStallState()

Summary

Sets or clears the stall state on the specified endpoint.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 835

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_SET_ENDPOINT_STALL_STATE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN BOOLEAN State
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint.

Direction Direction of the endpoint. Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.AbortTransfer() function for
details.

State Requested stall state on the specified endpoint. True value causes
the endpoint to stall; false value clears an existing stall.

Description

Sets or clears the stall state on the specified endpoint. This function would fail with
EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 836

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.EventHandler()

Summary

This function is called repeatedly to get information on USB bus states, receive-completion and transmit-
completion events on the endpoints, and notification on setup packet on endpoint 0.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_EVENTHANDLER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT EFI_USBFN_MESSAGE *Message,
 IN OUT UINTN *PayloadSize,
 OUT EFI_USBFN_MESSAGE_PAYLOAD *Payload
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Message Indicates the event that initiated this notification. Refer to the
"Related Definitions" for this function (below) for all possible types.

PayloadSize On input, the size of the memory pointed by Payload. On output,
the amount of data returned in Payload.

Payload A pointer to EFI_USBFN_MESSAGE_PAYLOAD instance to return
additional payload for current message. Refer to the "Related
Definitions" for this function (below) for details on the type.

Description

This function is called repeatedly to get information on USB bus states, receive-completion and transmit-
completion events on the endpoints, and notification on setup packet on endpoint 0. A class driver must
call EFI_USBFN_IO_PROTOCOL.EventHandler() repeatedly to receive updates on the transfer status
and number of bytes transferred on various endpoints. Refer to Figure 61 for details.
UEFI Forum, Inc. March 2019 837

UEFI Specification, Version 2.8 Protocols — USB Support
A few messages have an associated payload that is returned in the supplied buffer. The following table
describes various messages and their payload:

Table 146. Payload-associated Messages and Descriptions

Status Codes

Message Payload Description

EfiUsbMsgSetupPacket EFI_USB_DEVICE_REQUEST SETUP packet was received.

EfiUsbMsgEndpointStatusChangedRx EFI_USBFN_TRANSFER_RESUL
T

Some of the requested data has been
transmitted to the host. It is the
responsibility of the class driver to
determine if any remaining data needs
to be re-sent. The Buffer supplied t o

EFI_USBFN_IO_PROTOCOL.T
ransfer() must be same as the

Buffer field of the payload.

EfiUsbMsgEndpointStatusChangedTx EFI_USBFN_TRANSFER_RESUL
T

Some of the requested data has been
received from the host. It is the
responsibility of the class driver to
determine if it needs to wait for any
remaining data. The Buffer supplied
to

EFI_USBFN_IO_PROTOCOL.T
ransfer() must be same as the

Buffer field of the payload.

EfiUsbMsgBusEventReset None A RESET bus event was signaled.

EfiUsbMsgBusEventDetach None A DETACH bus event was signaled.

EfiUsbMsgBusEventAttach None An ATTACH bus event was signaled.

EfiUsbMsgBusEventSuspend None A SUSPEND bus event was signaled.

EfiUsbMsgBusEventResume None A RESUME bus event was signaled.

EfiUsbMsgBusEventSpeed EFI_USB_BUS_SPEED A Bus speed update was signaled.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_BUFFER_TOO_SMALL The Supplied buffer is not large enough to hold the message payload.
UEFI Forum, Inc. March 2019 838

UEFI Specification, Version 2.8 Protocols — USB Support
Related Definitions

typedef enum _EFI_USBFN_MESSAGE {

 //

 // Nothing

 //

 EfiUsbMsgNone = 0,

 //

 // SETUP packet is received, returned Buffer contains

 // EFI_USB_DEVICE_REQUEST struct

 //

 EfiUsbMsgSetupPacket,

 //
 // Indicates that some of the requested data has been

 // received from the host. It is the responsibility of the 
 // class driver to determine if it needs to wait for any

 // remaining data. Returned Buffer contains

 // EFI_USBFN_TRANSFER_RESULT struct containing endpoint

 // number, transfer status and count of bytes received.

 //

 EfiUsbMsgEndpointStatusChangedRx,

 //

 // Indicates that some of the requested data has been

 // transmitted to the host. It is the responsibility of the

 // class driver to determine if anyremaining data needs to be

 // resent. Returned Buffer contains

 // EFI_USBFN_TRANSFER_RESULT struct containing endpoint

 // number, transferstatus andcount of bytes sent.

 //

 EfiUsbMsgEndpointStatusChangedTx,

 //
 // DETACH bus event signaled
 //
 EfiUsbMsgBusEventDetach,

 //
 // ATTACH bus event signaled
 //
 EfiUsbMsgBusEventAttach,

 //
 // RESET bus event signaled
 //
 EfiUsbMsgBusEventReset,
 //
 // SUSPEND bus event signaled
UEFI Forum, Inc. March 2019 839

UEFI Specification, Version 2.8 Protocols — USB Support
 //
 EfiUsbMsgBusEventSuspend,

 //
 // RESUME bus event signaled
 //
 EfiUsbMsgBusEventResume,

 //
 // Bus speed updated, returned buffer indicated bus speed

 // using following enumeration named EFI_USB_BUS_SPEED

 //
 EfiUsbMsgBusEventSpeed

} EFI_USBFN_MESSAGE;

typedef enum _EFI_USBFN_TRANSFER_STATUS {
 UsbTransferStatusUnknown = 0,
 UsbTransferStatusComplete,
 UsbTransferStatusAborted,
 UsbTransferStatusActive,
 UsbTransferStatusNone
} EFI_USBFN_TRANSFER_STATUS;

typedef struct _EFI_USBFN_TRANSFER_RESULT {
 UINTN BytesTransferred;
 EFI_USBFN_TRANSFER_STATUS TransferStatus;
 UINT8 EndpointIndex;
 EFI_USBFN_ENDPOINT_DIRECTION Direction;
 VOID *Buffer;
} EFI_USBFN_TRANSFER_RESULT;

typedef enum _EFI_USB_BUS_SPEED {
 UsbBusSpeedUnknown = 0,
 UsbBusSpeedLow,
 UsbBusSpeedFull,
 UsbBusSpeedHigh,
 UsbBusSpeedSuper,
 UsbBusSpeedMaximum = UsbBusSpeedSuper
} EFI_USB_BUS_SPEED;

typedef union _EFI_USBFN_MESSAGE_PAYLOAD {
 EFI_USB_DEVICE_REQUEST udr;
 EFI_USBFN_TRANSFER_RESULT utr;
UEFI Forum, Inc. March 2019 840

UEFI Specification, Version 2.8 Protocols — USB Support
 EFI_USB_BUS_SPEED ubs;
} EFI_USBFN_MESSAGE_PAYLOAD;

EFI_USBFN_IO_PROTOCOL.Transfer()

Summary

This function handles transferring data to or from the host on the specified endpoint, depending on the
direction specified.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_USBFN_IO_TRANSFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN OUT UINTN *BufferSize,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint on which TX or RX transfer needs to take
place.

Direction Direction of the endpoint. Refer to the "Related Definitions" of the
EFI_USBFN_IO_PROTOCOL.AbortTransfer()

 function for details.

BufferSize If Direction is EfiUsbEndpointDirectionDeviceRx: On input, the
size of the Buffer in bytes. On output, the amount of data returned
in Buffer in bytes.

If Direction is EfiUsbEndpointDirectionDeviceTx: On input, the
size of the Buffer in bytes. On output, the amount of data
transmitted in bytes.

Buffer If Direction is EfiUsbEndpointDirectionDeviceRx: The Buffer to
return the received data.

If Direction is EfiUsbEndpointDirectionDeviceTx: The Buffer that
contains the data to be transmitted.

Note: This buffer is allocated and freed using the EFI_USBFN_IO_PROTOCOL.AbortTransfer()
and EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() functions. The caller of this
function must not free or reuse the buffer until EfiUsbMsgEndpointStatusChangedRx or
EfiUsbMsgEndpointStatusChangedTx message was received along with the address of the
transfer buffer as part of the message payload. Refer to the function definition for
UEFI Forum, Inc. March 2019 841

UEFI Specification, Version 2.8 Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.EventHandler() for more information on various messages and
their payloads.

Description

This function handles transferring data to or from the host on the specified endpoint, depending on the
direction specified.

A class driver must call EFI_USBFN_IO_PROTOCOL.EventHandler() repeatedly to receive updates
on the transfer status and the number of bytes transferred on various endpoints. Upon an update of the
transfer status, the Buffer field of the EFI_USBFN_TRANSFER_RESULT structure (as described in the
function description for EFI_USBFN_IO_PROTOCOL.EventHandler()) must be initialized with the
Buffer pointer that was supplied to this method.

The overview of the call sequence is illustrated in the Figure 61.

This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect for the
endpoint.

Status codes

EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize()

Summary

Returns the maximum supported transfer size.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_MAXTRANSFER_SIZE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT UINTN *MaxTransferSize
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Direction Description

EfiUsbEndpointDirectionDeviceTx Start a transmit transfer on the specified endpoint and return
immediately.

EfiUsbEndpointDirectionDeviceRx Start a receive transfer on the specified endpoint and return
immediately with available data.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 842

UEFI Specification, Version 2.8 Protocols — USB Support
MaxTransferSize The maximum supported transfer size, in bytes.

Description

Returns the maximum number of bytes that the underlying controller can accommodate in a single
transfer.

Status Codes

EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()

Summary

Allocates a transfer buffer of the specified size that satisfies the controller requirements.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_ALLOCATE_TRANSFER_BUFFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Size The number of bytes to allocate for the transfer buffer.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Description

The AllocateTransferBuffer()function allocates a memory region of Size bytes and returns the
address of the allocated memory that satisfies the underlying controller requirements in the location
referenced by Buffer.

The allocated transfer buffer must be freed using a matching call to
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() function.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
UEFI Forum, Inc. March 2019 843

UEFI Specification, Version 2.8 Protocols — USB Support
Status Codes

EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()

Summary

Deallocates the memory allocated for the transfer buffer by the
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer() function.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_FREE_TRANSFER_BUFFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Buffer A pointer to the transfer buffer to deallocate.

Description

The EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() function deallocates the memory specified
by Buffer. The Buffer that is freed must have been allocated by
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer().

Status Codes

EFI_USBFN_IO_PROTOCOL.StartController()

Summary

This function supplies power to the USB controller if needed and initializes the hardware and the internal
data structures. The port must not be activated by this function

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_OUT_OF_RESOURCES The requested transfer buffer could not be allocated.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.
UEFI Forum, Inc. March 2019 844

UEFI Specification, Version 2.8 Protocols — USB Support
Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_START_CONTROLLER) (
 IN EFI_USBFN_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Description

This function starts the hardware by supplying power to the USB controller if needed, and initializing the
hardware and internal data structures. The port must not be activated by this function.

Status codes

EFI_USBFN_IO_PROTOCOL.StopController()

Summary

This function stops the USB hardware device.

Prototype

typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_STOP_CONTROLLER) (
 IN EFI_USBFN_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Description
This function stops the USB hardware device

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.
UEFI Forum, Inc. March 2019 845

UEFI Specification, Version 2.8 Protocols — USB Support
Status codes

EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()

Summary

This function sets the configuration policy for the specified non-control endpoint. Refer to the description
for calling restrictions.

Prototype

typedef
EFI_STATUS 
(EFIAPI * EFI_USBFN_SET_ENDPOINT_POLICY) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN EFI_USBFN_POLICY_TYPE PolicyType,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the non-control endpoint for which the policy needs to be
set.

Direction Direction of the endpoint. Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.AbortTransfer() function for
details.

PolicyType Policy type the user is trying to set for the specified non-control
endpoint. Refer to "Related Definitions" for this function below for
details.

BufferSize The size of the Buffer in bytes.

Buffer The new value for the policy parameter that PolicyType specifies.
Refer to "Related Definitions" for this function below for details.

Description

This function sets the configuration policy for the specified non-control endpoint. This function can only
be called before EFI_USBFN_IO_PROTOCOL.StartController() or after
EFI_USBFN_IO_PROTOCOL.StopController() has been called.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.
UEFI Forum, Inc. March 2019 846

UEFI Specification, Version 2.8 Protocols — USB Support
Status codes

Related Definitions

typedef enum _EFI_USBFN_POLICY_TYPE
{
 EfiUsbPolicyUndefined = 0,
 EfiUsbPolicyMaxTransactionSize,
 EfiUsbPolicyZeroLengthTerminationSupport,
 EfiUsbPolicyZeroLengthTermination
} EFI_USBFN_POLICY_TYPE;

EfiUsbPolicyUndefined

Invalid policy value that must never be used across driver boundary.
If used, the function must not return a success status code.

EfiUsbPolicyMaxTransactionSize

EfiUsbPolicyMaxTransactionSize is only used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(). It provides
the size of the largest single transaction (delivery of service to an
endpoint) supported by a controller. It must be greater than or equal
to the maximum transfer size that can be retrieved by calling
EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize().

EfiUsbPolicyZeroLengthTerminationSupport

EfiUsbPolicyZeroLengthTerminationSupport is only used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(). It is TRUE if
the USB controller is capable of automatically handling zero length
packets when the transfer size is a multiple of USB maximum packet
size and FALSE if it is not supported by the controller.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_UNSUPPORTED Changing this policy value is not supported.

GetEndpointPolicy SetEndpointPolicy

BufferSize 4 bytes, sizeof(UINT32) Not applicable

Return Status EFI_STATUS EFI_UNSUPPORTED

GetEndpointPolicy SetEndpointPolicy

BufferSize 1 byte, sizeof (BOOLEAN) Not applicable

Return Status EFI_STATUS EFI_UNSUPPORTED
UEFI Forum, Inc. March 2019 847

UEFI Specification, Version 2.8 Protocols — USB Support
EfiUsbPolicyZeroLengthTermination

When used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(), a TRUE
value is returned if the USB controller hardware is configured to
automatically handle zero length packets when the transfer size is a
multiple of USB maximum packet size; a FALSE value is returned if
the controller hardware is not configured to do this.

Using EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() to set
the EfiUsbPolicyZeroLengthTermination policy is only applicable to
USB controller hardware capable of supporting automatic zero
length packet termination. When this value is set to TRUE, the
controller must be configured to handle zero length termination for
the specified endpoint. When this value is set to FALSE, the
controller must be configured to not handle zero length termination
for the specified endpoint.

The USB controller’s default policy must not enable automatic zero
length packet termination, even if the hardware is capable of
supporting it.

EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy()

Summary

This function retrieves the configuration policy for the specified non-control endpoint. There are no
associated calling restrictions for this function.

Prototype

typedef
EFI_STATUS 
(EFIAPI * EFI_USBFN_GET_ENDPOINT_POLICY) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN EFI_USBFN_POLICY_TYPE PolicyType,
 IN OUT UINTN *BufferSize,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the non-control endpoint for which the policy needs to be
set.

GetEndpointPolicy SetEndpointPolicy

BufferSize 1 byte, sizeof (BOOLEAN) 1 byte, sizeof (BOOLEAN)

Return Status EFI_STATUS EFI_STATUS
UEFI Forum, Inc. March 2019 848

UEFI Specification, Version 2.8 Protocols — USB Support
Direction Direction of the endpoint. Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.AbortTransfer() function for
details.

PolicyType Policy type the user is trying to retrieve for the specified non-control
endpoint. Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() function for
details.

BufferSize On input, the size of Buffer in bytes. On output, the amount of data
returned in Buffer in bytes.

Buffer A pointer to a buffer to return requested endpoint policy value.
Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() function for
size requirements of various policy types.

Description

This function retrieves the configuration policy for the specified non-control endpoint. This function has
no calling restrictions.

Status codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_UNSUPPORTED The specified policy value is not supported.

EFI_BUFFER_TOO_SMALL Supplied buffer is not large enough to hold requested policy value.
UEFI Forum, Inc. March 2019 849

UEFI Specification, Version 2.8 Protocols — USB Support
USB Function Sequence Diagram

Figure 61. Sequence of Operations with Endpoint Policy Changes

Class Driver USBFn DriverUEFI Boot Service

ConfigureEnableEndpoints()

App

Initialize()

Write()

Setup Packet
Handling

Transfer(EfiUsbEndpointDirectionDeviceTx)

Read()

EventHandler()

Transfer(EfiUsbEndpointDirectionDeviceRx)

EventHandler()

GetMaxTransferSize()

AllocateTransferBuffer()

EventHandler()

StopController()

GetEndpointPolicy()

StartController()

SetEndpointPolicy()
UEFI Forum, Inc. March 2019 850

UEFI Specification, Version 2.8
18 - Protocols — Debugger Support

This chapter describes a minimal set of protocols and associated data structures necessary to enable the
creation of source level debuggers for EFI. It does not fully define a debugger design. Using the services
described in this document, it should also be possible to implement a variety of debugger solutions.

18.1 Overview

Efficient UEFI driver and application development requires the availability of source level debugging
facilities. Although completely on-target debuggers are clearly possible, UEFI debuggers are generally
expected to be remotely hosted. That is to say, the debugger itself will be split between two machines,
which are the host and target. A majority of debugger code runs on the host that is typically responsible
for disassembly, symbol management, source display, and user interface. Similarly, a smaller piece of
code runs on the target that establishes the communication to the host and proxies requests from the
host. The on-target code is known as the “debug agent.”

The debug agent design is subdivided further into two parts, which are the processor/platform
abstraction and the debugger host specific communication grammar. This specification describes
architectural interfaces for the former only. Specific implementations for various debugger host
communication grammars can be created that make use of the facilities described in this specification.

The processor/platform abstraction is presented as a pair of protocol interfaces, which are the Debug
Support protocol and the Debug Port protocol.

The Debug Support protocol abstracts the processor’s debugging facilities, namely a mechanism to
manage the processor’s context via caller-installable exception handlers.

The Debug Port protocol abstracts the device that is used for communication between the host and
target. Typically this will be a 16550 serial port, 1394 device, or other device that is nominally a serial
stream.

Furthermore, a table driven, quiescent, memory-only mechanism for determining the base address of
PE32+ images is provided to enable the debugger host to determine where images are located
in memory.

Aside from timing differences that occur because of running code associated with the debug agent and
user initiated changes to the machine context, the operation of the on-target debugger component must
be transparent to the rest of the system. In addition, no portion of the debug agent that runs in interrupt
context may make any calls to EFI services or other protocol interfaces.

The services described in this document do not comprise a complete debugger, rather they provide a
minimal abstraction required to implement a wide variety of debugger solutions.

18.2 EFI Debug Support Protocol

This section defines the EFI Debug Support protocol which is used by the debug agent.

18.2.1 EFI Debug Support Protocol Overview

The debug-agent needs to be able to gain control of the machine when certain types of events occur; i.e.,
breakpoints, processor exceptions, etc. Additionally, the debug agent must also be able to periodically
UEFI Forum, Inc. March 2019 851

UEFI Specification, Version 2.8 Protocols — Debugger Support
gain control during operation of the machine to check for asynchronous commands from the host. The
EFI Debug Support protocol services enable these capabilities.

The EFI Debug Support protocol interfaces produce callback registration mechanisms which are used by
the debug agent to register functions that are invoked either periodically or when specific processor
exceptions. When they are invoked by the Debug Support driver, these callback functions are passed the
current machine context record. The debug agent may modify this context record to change the machine
context which is restored to the machine after the callback function returns. The debug agent does not
run in the same context as the rest of UEFI and all modifications to the machine context are deferred until
after the callback function returns.

It is expected that there will typically be two instances of the EFI Debug Support protocol in the system.
One associated with the native processor instruction set (IA-32, x64, ARM, RISC-V, or Itanium processor
family), and one for the EFI virtual machine that implements EFI byte code (EBC).

While multiple instances of the EFI Debug Support protocol are expected, there must never be more than
one for any given instruction set.

EFI_DEBUG_SUPPORT_PROTOCOL

Summary

This protocol provides the services to allow the debug agent to register callback functions that are called
either periodically or when specific processor exceptions occur.

GUID

#define EFI_DEBUG_SUPPORT_PROTOCOL_GUID \

 {0x2755590C,0x6F3C,0x42FA,\

 {0x9E,0xA4,0xA3,0xBA,0x54,0x3C,0xDA,0x25}}

Protocol Interface Structure

typedef struct {

 EFI_INSTRUCTION_SET_ARCHITECTURE Isa;

 EFI_GET_MAXIMUM_PROCESSOR_INDEX GetMaximumProcessorIndex;

 EFI_REGISTER_PERIODIC_CALLBACK RegisterPeriodicCallback;

 EFI_REGISTER_EXCEPTION_CALLBACK RegisterExceptionCallback;

 EFI_INVALIDATE_INSTRUCTION_CACHE InvalidateInstructionCache;

} EFI_DEBUG_SUPPORT_PROTOCOL;

Parameters

Isa Declares the processor architecture for this instance of the EFI
Debug Support protocol.
UEFI Forum, Inc. March 2019 852

UEFI Specification, Version 2.8 Protocols — Debugger Support
GetMaximumProcessorIndex

Returns the maximum processor index value that may be used with
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallbac
k() and
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallba
ck(). See the
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorInde
x() function description.

RegisterPeriodicCallback

Registers a callback function that will be invoked periodically and
asynchronously to the execution of EFI. See the
RegisterPeriodicCallback() function description.

RegisterExceptionCallback

Registers a callback function that will be called each time the
specified processor exception occurs. See the
RegisterExceptionCallback() function description.

InvalidateInstructionCache

Invalidate the instruction cache of the processor. This is required by
processor architectures where instruction and data caches are not
coherent when instructions in the code under debug has been
modified by the debug agent. See
theEFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstruction
Cache() function description.

Related Definitions

Refer to the Microsoft PE/COFF Specification revision 6.2 or later for IMAGE_FILE_MACHINE definitions.

Note: At the time of publication of this specification, the latest revision of the PE/COFF specification
was 6.2. The definition of IMAGE_FILE_MACHINE_EBC is not included in revision 6.2 of the PE/
COFF specification. It will be added in a future revision of the PE/COFF specification.

//

// Machine type definition

//

typedef enum {

 IsaIa32 = IMAGE_FILE_MACHINE_I386, // 0x014C

 IsaX64 = IMAGE_FILE_MACHINE_X64, // 0x8664

 IsaIpf = IMAGE_FILE_MACHINE_IA64, // 0x0200

 IsaEbc = IMAGE_FILE_MACHINE_EBC, // 0x0EBC

 IsaArm = IMAGE_FILE_MACHINE_ARMTHUMB_MIXED // 0x1C2

 IsaAArch64 = IMAGE_FILE_MACHINE_AARCH64 // 0xAA64

 IsaRISCV32 = IMAGE_FILE_MACHINE_RISCV32 // 0x5032

 IsaRISCV64 = IMAGE_FILE_MACHINE_RISCV64 // 0x5064

 IsaRISCV128 = IMAGE_FILE_MACHINE_RISCV128 // 0x5128

} EFI_INSTRUCTION_SET_ARCHITECTURE;
UEFI Forum, Inc. March 2019 853

UEFI Specification, Version 2.8 Protocols — Debugger Support
Description

The EFI Debug Support protocol provides the interfaces required to register debug agent callback
functions and to manage the processor’s instruction stream as required. Registered callback functions
are invoked in interrupt context when the specified event occurs.

The driver that produces the EFI Debug Support protocol is also responsible for saving the machine
context prior to invoking a registered callback function and restoring it after the callback function returns
prior to returning to the code under debug. If the debug agent has modified the context record, the
modified context must be used in the restore operation.

Furthermore, if the debug agent modifies any of the code under debug (to set a software breakpoint for
example), it must call the InvalidateInstructionCache() function for the region of memory that
has been modified.

EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()

Summary

Returns the maximum value that may be used for the ProcessorIndex parameter in
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback() and
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GET_MAXIMUM_PROCESSOR_INDEX) (

 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,

 OUT UINTN *MaxProcessorIndex
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type
EFI_DEBUG_SUPPORT_PROTOCOL is defined in this section.

MaxProcessorIndex Pointer to a caller-allocated UINTN in which the maximum
supported processor index is returned.

Description

The GetMaximumProcessorIndex() function returns the maximum processor index in the output
parameter MaxProcessorIndex. This value is the largest value that may be used in the
ProcessorIndex parameter for both RegisterPeriodicCallback() and
RegisterExceptionCallback(). All values between 0 and MaxProcessorIndex must be
supported by RegisterPeriodicCallback() and RegisterExceptionCallback().

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by GetMaximumProcessorIndex(). The implementation behavior when an
invalid parameter is passed is not defined by this specification.
UEFI Forum, Inc. March 2019 854

UEFI Specification, Version 2.8 Protocols — Debugger Support
Status Codes Returned

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()

Summary

Registers a function to be called back periodically in interrupt context.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REGISTER_PERIODIC_CALLBACK) (

 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,

 IN UINTN ProcessorIndex,

 IN EFI_PERIODIC_CALLBACK PeriodicCallback
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type
EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 18.2.

ProcessorIndex Specifies which processor the callback function applies to.

PeriodicCallback A pointer to a function of type PERIODIC_CALLBACK that is the
main periodic entry point of the debug agent. It receives as a
parameter a pointer to the full context of the interrupted execution
thread.

Related Definitions

typedef

VOID (*EFI_PERIODIC_CALLBACK) (

 IN OUT EFI_SYSTEM_CONTEXT SystemContext

);

// Universal EFI_SYSTEM_CONTEXT definition

typedef union {

 EFI_SYSTEM_CONTEXT_EBC *SystemContextEbc;

 EFI_SYSTEM_CONTEXT_IA32 *SystemContextIa32;

 EFI_SYSTEM_CONTEXT_X64 *SystemContextX64;

 EFI_SYSTEM_CONTEXT_IPF *SystemContextIpf;

 EFI_SYSTEM_CONTEXT_ARM *SystemContextArm;

 EFI_SYSTEM_CONTEXT_AARCH64 *SystemContextAArch64;

 EFI_SYSTEM_CONTEXT_RISCV32 *SystemContextRiscV32;

 EFI_SYSTEM_CONTEXT_RISCV64 *SystemContextRiscV64;

 EFI_SYSTEM_CONTEXT_RISCV128 *SystemContextRiscv128;
} EFI_SYSTEM_CONTEXT;

EFI_SUCCESS The function completed successfully.
UEFI Forum, Inc. March 2019 855

UEFI Specification, Version 2.8 Protocols — Debugger Support
// System context for virtual EBC processors

typedef struct {

 UINT64 R0, R1, R2, R3, R4, R5, R6, R7;

 UINT64 Flags;

 UINT64 ControlFlags;

 UINT64 Ip;

} EFI_SYSTEM_CONTEXT_EBC;

// System context for RISC-V 32

typedef struct {

 // Integer registers

 UINT32 X0, X1, X2, X3, X4, X5, X6, X7;

 UINT32 X8, X9, X10, X11, X12, X13, X14, X15;

 UINT32 X16, X17, X18, X19, X20, X21, X22, X23;

 UINT32 X24, X25, X25, X27, X28, X29, X30, X31;

 // Floating registers

 UINT64 F0, F1, F2, F3, F4, F5, F6, F7;

 UINT64 F8, F9, F10, F11, F12, F13, F14, F15;

 UINT64 F16, F17, F18, F19, F20, F21, F22, F23;

 UINT64 F24, F25, F25, F27, F28, F29, F30, F31;

} EFI_SYSTEM_CONTEXT_RISCV32;

// System context for RISC-V 64

typedef struct {

 // Integer registers

 UINT64 X0, X1, X2, X3, X4, X5, X6, X7;

 UINT64 X8, X9, X10, X11, X12, X13, X14, X15;

 UINT64 X16, X17, X18, X19, X20, X21, X22, X23;

 UINT64 X24, X25, X25, X27, X28, X29, X30, X31;

 // Floating registers

 UINT128 F0, F1, F2, F3, F4, F5, F6, F7;

 UINT128 F8, F9, F10, F11, F12, F13, F14, F15;

 UINT128 F16, F17, F18, F19, F20, F21, F22, F23;

 UINT128 F24, F25, F25, F27, F28, F29, F30, F31;

} EFI_SYSTEM_CONTEXT_RISCV64;

 // System context for RISC-V 128

typedef struct {

 // Integer registers

 UINT128 X0, X1, X2, X3, X4, X5, X6, X7;

 UINT128 X8, X9, X10, X11, X12, X13, X14, X15;
UEFI Forum, Inc. March 2019 856

UEFI Specification, Version 2.8 Protocols — Debugger Support
 UINT128 X16, X17, X18, X19, X20, X21, X22, X23;

 UINT128 X24, X25, X25, X27, X28, X29, X30, X31;

 // Floating registers

 UINT128 F0, F1, F2, F3, F4, F5, F6, F7;

 UINT128 F8, F9, F10, F11, F12, F13, F14, F15;

 UINT128 F16, F17, F18, F19, F20, F21, F22, F23;

 UINT128 F24, F25, F25, F27, F28, F29, F30, F31;

} EFI_SYSTEM_CONTEXT_RISCV128;

Note: When the context record field is larger than the register being stored in it, the upper bits of the
context record field are unused and ignored

// System context for IA-32 processors

typedef struct {

 UINT32 ExceptionData; // ExceptionData is

 // additional data pushed

 // on the stack by some

 // types of IA-32

 // exceptions
 EFI_FX_SAVE_STATE_IA32 FxSaveState;

 UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;

 UINT32 Cr0, Cr1 /* Reserved */, Cr2, Cr3, Cr4;

 UINT32 Eflags;

 UINT32 Ldtr, Tr;

 UINT32 Gdtr[2], Idtr[2];

 UINT32 Eip;

 UINT32 Gs, Fs, Es, Ds, Cs, Ss;

 UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax;

} EFI_SYSTEM_CONTEXT_IA32;

// FXSAVE_STATE - FP / MMX / XMM registers

typedef struct {

 UINT16 Fcw;

 UINT16 Fsw;

 UINT16 Ftw;

 UINT16 Opcode;

 UINT32 Eip;

 UINT16 Cs;

 UINT16 Reserved1;

 UINT32 DataOffset;

 UINT16 Ds;

 UINT8 Reserved2[10];

 UINT8 St0Mm0[10], Reserved3[6];

 UINT8 St1Mm1[10], Reserved4[6];
UEFI Forum, Inc. March 2019 857

UEFI Specification, Version 2.8 Protocols — Debugger Support
 UINT8 St2Mm2[10], Reserved5[6];

 UINT8 St3Mm3[10], Reserved6[6];

 UINT8 St4Mm4[10], Reserved7[6];

 UINT8 St5Mm5[10], Reserved8[6];

 UINT8 St6Mm6[10], Reserved9[6];

 UINT8 St7Mm7[10], Reserved10[6];

 UINT8 Xmm0[16];

 UINT8 Xmm1[16];

 UINT8 Xmm2[16];

 UINT8 Xmm3[16];

 UINT8 Xmm4[16];

 UINT8 Xmm5[16];

 UINT8 Xmm6[16];

 UINT8 Xmm7[16];

 UINT8 Reserved11[14 * 16];

} EFI_FX_SAVE_STATE_IA32

// System context for x64 processors

typedef struct {

 UINT64 ExceptionData; // ExceptionData is

 // additional data pushed
 // on the stack by some
 // types of x64 64-bit
 // mode exceptions
 EFI_FX_SAVE_STATE_X64 FxSaveState;

 UINT64 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;

 UINT64 Cr0, Cr1 /* Reserved */, Cr2, Cr3, Cr4, Cr8;

 UINT64 Rflags;

 UINT64 Ldtr, Tr;

 UINT64 Gdtr[2], Idtr[2];

 UINT64 Rip;

 UINT64 Gs, Fs, Es, Ds, Cs, Ss;

 UINT64 Rdi, Rsi, Rbp, Rsp, Rbx, Rdx, Rcx, Rax;

 UINT64 R8, R9, R10, R11, R12, R13, R14, R15;

} EFI_SYSTEM_CONTEXT_X64;

 // FXSAVE_STATE – FP / MMX / XMM registers

typedef struct {

 UINT16 Fcw;

 UINT16 Fsw;

 UINT16 Ftw;

 UINT16 Opcode;

 UINT64 Rip;

 UINT64 DataOffset;

 UINT8 Reserved1[8];

 UINT8 St0Mm0[10], Reserved2[6];

 UINT8 St1Mm1[10], Reserved3[6];
UEFI Forum, Inc. March 2019 858

UEFI Specification, Version 2.8 Protocols — Debugger Support
 UINT8 St2Mm2[10], Reserved4[6];

 UINT8 St3Mm3[10], Reserved5[6];

 UINT8 St4Mm4[10], Reserved6[6];

 UINT8 St5Mm5[10], Reserved7[6];

 UINT8 St6Mm6[10], Reserved8[6];

 UINT8 St7Mm7[10], Reserved9[6];

 UINT8 Xmm0[16];

 UINT8 Xmm1[16];

 UINT8 Xmm2[16];

 UINT8 Xmm3[16];

 UINT8 Xmm4[16];

 UINT8 Xmm5[16];

 UINT8 Xmm6[16];

 UINT8 Xmm7[16];

 UINT8 Reserved11[14 * 16];

} EFI_FX_SAVE_STATE_X64;

// System context for Itanium processor family

typedef struct {

 UINT64 Reserved;

 UINT64 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,

 R11, R12, R13, R14, R15, R16, R17, R18, R19, R20,

 R21, R22, R23, R24, R25, R26, R27, R28, R29, R30,

 R31;

 UINT64 F2[2], F3[2], F4[2], F5[2], F6[2],

 F7[2], F8[2], F9[2], F10[2], F11[2],

 F12[2], F13[2], F14[2], F15[2], F16[2],

 F17[2], F18[2], F19[2], F20[2], F21[2],

 F22[2], F23[2], F24[2], F25[2], F26[2],

 F27[2], F28[2], F29[2], F30[2], F31[2];

 UINT64 Pr;

 UINT64 B0, B1, B2, B3, B4, B5, B6, B7;

 // application registers

 UINT64 ArRsc, ArBsp, ArBspstore, ArRnat;

 UINT64 ArFcr;

 UINT64 ArEflag, ArCsd, ArSsd, ArCflg;

 UINT64 ArFsr, ArFir, ArFdr;

 UINT64 ArCcv;

 UINT64 ArUnat;

 UINT64 ArFpsr;
UEFI Forum, Inc. March 2019 859

UEFI Specification, Version 2.8 Protocols — Debugger Support
 UINT64 ArPfs, ArLc, ArEc;

 // control registers

 UINT64 CrDcr, CrItm, CrIva, CrPta, CrIpsr, CrIsr;

 UINT64 CrIip, CrIfa, CrItir, CrIipa, CrIfs, CrIim;

 UINT64 CrIha;

 // debug registers

 UINT64 Dbr0, Dbr1, Dbr2, Dbr3, Dbr4, Dbr5, Dbr6, Dbr7;

 UINT64 Ibr0, Ibr1, Ibr2, Ibr3, Ibr4, Ibr5, Ibr6, Ibr7;

 // virtual registers

 UINT64 IntNat;// nat bits for R1-R31

} EFI_SYSTEM_CONTEXT_IPF;

//

// ARM processor context definition

//

typedef struct {

 UINT32 R0;

 UINT32 R1;

 UINT32 R2;

 UINT32 R3;

 UINT32 R4;

 UINT32 R5;

 UINT32 R6;

 UINT32 R7;

 UINT32 R8;

 UINT32 R9;

 UINT32 R10;

 UINT32 R11;

 UINT32 R12;

 UINT32 SP;

 UINT32 LR;

 UINT32 PC;

 UINT32 CPSR;

 UINT32 DFSR;

 UINT32 DFAR;

 UINT32 IFSR;

} EFI_SYSTEM_CONTEXT_ARM;

//

///

/// AARCH64 processor context definition.

///

typedef struct {
UEFI Forum, Inc. March 2019 860

UEFI Specification, Version 2.8 Protocols — Debugger Support
// General Purpose Registers

 UINT64 X0;

 UINT64 X1;

 UINT64 X2;

 UINT64 X3;

 UINT64 X4;

 UINT64 X5;

 UINT64 X6;

 UINT64 X7;

 UINT64 X8;

 UINT64 X9;

 UINT64 X10;

 UINT64 X11;

 UINT64 X12;

 UINT64 X13;

 UINT64 X14;

 UINT64 X15;

 UINT64 X16;

 UINT64 X17;

 UINT64 X18;

 UINT64 X19;

 UINT64 X20;

 UINT64 X21;

 UINT64 X22;

 UINT64 X23;

 UINT64 X24;

 UINT64 X25;

 UINT64 X26;

 UINT64 X27;

 UINT64 X28;

 UINT64 FP; // x29 - Frame Pointer

 UINT64 LR; // x30 - Link Register

 UINT64 SP; // x31 - Stack Pointer

// FP/SIMD Registers

 UINT64 V0[2];

 UINT64 V1[2];

 UINT64 V2[2];

 UINT64 V3[2];

 UINT64 V4[2];

 UINT64 V5[2];

 UINT64 V6[2];

 UINT64 V7[2];

 UINT64 V8[2];

 UINT64 V9[2];

 UINT64 V10[2];

 UINT64 V11[2];

 UINT64 V12[2];
UEFI Forum, Inc. March 2019 861

UEFI Specification, Version 2.8 Protocols — Debugger Support
 UINT64 V13[2];

 UINT64 V14[2];

 UINT64 V15[2];

 UINT64 V16[2];

 UINT64 V17[2];

 UINT64 V18[2];

 UINT64 V19[2];

 UINT64 V20[2];

 UINT64 V21[2];

 UINT64 V22[2];

 UINT64 V23[2];

 UINT64 V24[2];

 UINT64 V25[2];

 UINT64 V26[2];

 UINT64 V27[2];

 UINT64 V28[2];

 UINT64 V29[2];

 UINT64 V30[2];

 UINT64 V31[2];

 UINT64 ELR; // Exception Link Register

 UINT64 SPSR; // Saved Processor Status Register

 UINT64 FPSR; // Floating Point Status Register

 UINT64 ESR; // Exception syndrome register

 UINT64 FAR; // Fault Address Register

} EFI_SYSTEM_CONTEXT_AARCH64;

Description

The RegisterPeriodicCallback() function registers and enables the on-target debug agent’s
periodic entry point. To unregister and disable calling the debug agent’s periodic entry point, call
RegisterPeriodicCallback() passing a NULL PeriodicCallback parameter.

The implementation must handle saving and restoring the processor context to/from the system context
record around calls to the registered callback function.

If the interrupt is also used by the firmware for the EFI time base or some other use, two rules must be
observed. First, the registered callback function must be called before any EFI processing takes place.
Second, the Debug Support implementation must perform the necessary steps to pass control to the
firmware’s corresponding interrupt handler in a transparent manner.

There is no quality of service requirement or specification regarding the frequency of calls to the
registered PeriodicCallback function. This allows the implementation to mitigate a potential adverse
impact to EFI timer based services due to the latency induced by the context save/restore and the
associated callback function.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterPeriodicCallback(). The implementation behavior when an
invalid parameter is passed is not defined by this specification.
UEFI Forum, Inc. March 2019 862

UEFI Specification, Version 2.8 Protocols — Debugger Support
Status Codes Returned

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()

Summary

Registers a function to be called when a given processor exception occurs.

Prototype

typedef

EFI_STATUS

(EFIAPI *REGISTER_EXCEPTION_CALLBACK) (

 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,

 IN UINTN ProcessorIndex,

 IN EFI_EXCEPTION_CALLBACK ExceptionCallback,

 IN EFI_EXCEPTION_TYPE ExceptionType
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type
EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 18.2.

ProcessorIndex Specifies which processor the callback function applies to.

ExceptionCallback A pointer to a function of type EXCEPTION_CALLBACK that is called
when the processor exception specified by ExceptionType occurs.
Passing NULL unregisters any previously registered function
associated with ExceptionType.

ExceptionType Specifies which processor exception to hook.

EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL PeriodicCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.
UEFI Forum, Inc. March 2019 863

UEFI Specification, Version 2.8 Protocols — Debugger Support
Related Definitions

typedef

VOID (*EFI_EXCEPTION_CALLBACK) (

 IN EFI_EXCEPTION_TYPE ExceptionType,

 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef INTN EFI_EXCEPTION_TYPE;

// EBC Exception types

#define EXCEPT_EBC_UNDEFINED0

#define EXCEPT_EBC_DIVIDE_ERROR 1

#define EXCEPT_EBC_DEBUG 2

#define EXCEPT_EBC_BREAKPOINT 3

#define EXCEPT_EBC_OVERFLOW 4

#define EXCEPT_EBC_INVALID_OPCODE 5

#define EXCEPT_EBC_STACK_FAULT 6

#define EXCEPT_EBC_ALIGNMENT_CHECK 7

#define EXCEPT_EBC_INSTRUCTION_ENCODING 8

#define EXCEPT_EBC_BAD_BREAK 9

#define EXCEPT_EBC_SINGLE_STEP 10

// IA-32 Exception types

#define EXCEPT_IA32_DIVIDE_ERROR 0

#define EXCEPT_IA32_DEBUG 1

#define EXCEPT_IA32_NMI 2

#define EXCEPT_IA32_BREAKPOINT 3

#define EXCEPT_IA32_OVERFLOW 4

#define EXCEPT_IA32_BOUND 5

#define EXCEPT_IA32_INVALID_OPCODE 6

#define EXCEPT_IA32_DOUBLE_FAULT 8

#define EXCEPT_IA32_INVALID_TSS 10

#define EXCEPT_IA32_SEG_NOT_PRESENT 11

#define EXCEPT_IA32_STACK_FAULT 12

#define EXCEPT_IA32_GP_FAULT 13

#define EXCEPT_IA32_PAGE_FAULT 14

#define EXCEPT_IA32_FP_ERROR 16

#define EXCEPT_IA32_ALIGNMENT_CHECK 17

#define EXCEPT_IA32_MACHINE_CHECK 18

#define EXCEPT_IA32_SIMD 19

//

// X64 Exception types

//

#define EXCEPT_X64_DIVIDE_ERROR 0

#define EXCEPT_X64_DEBUG 1
UEFI Forum, Inc. March 2019 864

UEFI Specification, Version 2.8 Protocols — Debugger Support
#define EXCEPT_X64_NMI 2

#define EXCEPT_X64_BREAKPOINT 3

#define EXCEPT_X64_OVERFLOW 4

#define EXCEPT_X64_BOUND 5

#define EXCEPT_X64_INVALID_OPCODE 6

#define EXCEPT_X64_DOUBLE_FAULT 8

#define EXCEPT_X64_INVALID_TSS 10

#define EXCEPT_X64_SEG_NOT_PRESENT 11

#define EXCEPT_X64_STACK_FAULT 12

#define EXCEPT_X64_GP_FAULT 13

#define EXCEPT_X64_PAGE_FAULT 14

#define EXCEPT_X64_FP_ERROR 16

#define EXCEPT_X64_ALIGNMENT_CHECK 17

#define EXCEPT_X64_MACHINE_CHECK 18

#define EXCEPT_X64_SIMD 19

// Itanium Processor Family Exception types

#define EXCEPT_IPF_VHTP_TRANSLATION 0

#define EXCEPT_IPF_INSTRUCTION_TLB 1

#define EXCEPT_IPF_DATA_TLB 2

#define EXCEPT_IPF_ALT_INSTRUCTION_TLB 3

#define EXCEPT_IPF_ALT_DATA_TLB 4

#define EXCEPT_IPF_DATA_NESTED_TLB 5

#define EXCEPT_IPF_INSTRUCTION_KEY_MISSED 6

#define EXCEPT_IPF_DATA_KEY_MISSED 7

#define EXCEPT_IPF_DIRTY_BIT 8

#define EXCEPT_IPF_INSTRUCTION_ACCESS_BIT 9

#define EXCEPT_IPF_DATA_ACCESS_BIT 10

#define EXCEPT_IPF_BREAKPOINT 11

#define EXCEPT_IPF_EXTERNAL_INTERRUPT 12

// 13 - 19 reserved

#define EXCEPT_IPF_PAGE_NOT_PRESENT 20

#define EXCEPT_IPF_KEY_PERMISSION 21

#define EXCEPT_IPF_INSTRUCTION_ACCESS_RIGHTS 22

#define EXCEPT_IPF_DATA_ACCESS_RIGHTS 23

#define EXCEPT_IPF_GENERAL_EXCEPTION 24

#define EXCEPT_IPF_DISABLED_FP_REGISTER 25

#define EXCEPT_IPF_NAT_CONSUMPTION 26

#define EXCEPT_IPF_SPECULATION 27

// 28 reserved

#define EXCEPT_IPF_DEBUG 29

#define EXCEPT_IPF_UNALIGNED_REFERENCE 30

#define EXCEPT_IPF_UNSUPPORTED_DATA_REFERENCE 31

#define EXCEPT_IPF_FP_FAULT 32

#define EXCEPT_IPF_FP_TRAP 33

#define EXCEPT_IPF_LOWER_PRIVILEGE_TRANSFER_TRAP 34
UEFI Forum, Inc. March 2019 865

UEFI Specification, Version 2.8 Protocols — Debugger Support
#define EXCEPT_IPF_TAKEN_BRANCH 35

#define EXCEPT_IPF_SINGLE_STEP 36

// 37 - 44 reserved

#define EXCEPT_IPF_IA32_EXCEPTION 45

#define EXCEPT_IPF_IA32_INTERCEPT 46

#define EXCEPT_IPF_IA32_INTERRUPT 47

//

// ARM processor exception types

//

#define EXCEPT_ARM_RESET 0

#define EXCEPT_ARM_UNDEFINED_INSTRUCTION 1

#define EXCEPT_ARM_SOFTWARE_INTERRUPT 2

#define EXCEPT_ARM_PREFETCH_ABORT 3

#define EXCEPT_ARM_DATA_ABORT 4

#define EXCEPT_ARM_RESERVED 5

#define EXCEPT_ARM_IRQ 6

#define EXCEPT_ARM_FIQ 7

//

// For coding convenience, define the maximum valid ARM

// exception.

//

#define MAX_ARM_EXCEPTION EXCEPT_ARM_FIQ

///

/// AARCH64 processor exception types.

///

#define EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS 0

#define EXCEPT_AARCH64_IRQ 1

#define EXCEPT_AARCH64_FIQ 2

#define EXCEPT_AARCH64_SERROR 3

///

/// For coding convenience, define the maximum valid

/// AARCH64 exception.

///

#define MAX_AARCH64_EXCEPTION EXCEPT_AARCH64_SERROR

///

/// RISC-V processor exception types.

///

#define EXCEPT_RISCV_INST_MISALIGNED 0

#define EXCEPT_RISCV_INST_ACCESS_FAULT 1

#define EXCEPT_RISCV_ILLEGAL_INST 2

#define EXCEPT_RISCV_BREAKPOINT 3

#define EXCEPT_RISCV_LOAD_ADDRESS_MISALIGNED 4

#define EXCEPT_RISCV_LOAD_ACCESS_FAULT 5

#define EXCEPT_RISCV_STORE_AMO_ADDRESS_MISALIGNED 6

#define EXCEPT_RISCV_STORE_AMO_ACCESS_FAULT 7
UEFI Forum, Inc. March 2019 866

UEFI Specification, Version 2.8 Protocols — Debugger Support
#define EXCEPT_RISCV_ENV_CALL_FROM_UMODE 8

#define EXCEPT_RISCV_ENV_CALL_FROM_SMODE 9

#define EXCEPT_RISCV_ENV_CALL_FROM_HMODE 10

#define EXCEPT_RISCV_ENV_CALL_FROM_MMODE 11

///

/// RISC-V processor interrupt types.

///

#define EXCEPT_RISCV_USER_SOFTWARE_INT0

#define EXCEPT_RISCV_SUPERVISOR_SOFTWARE_INT1

#define EXCEPT_RISCV_HYPERVISOR_SOFTWARE_INT2

#define EXCEPT_RISCV_MACHINE_SOFTWARE_INT3

#define EXCEPT_RISCV_USER_TIMER_INT4

#define EXCEPT_RISCV_SUPERVISOR_TIMER_INT5

#define EXCEPT_RISCV_HYPERVISOR_TIMER_INT6

#define EXCEPT_RISCV_MACHINE_TIMER_INT7

#define EXCEPT_RISCV_USER_EXTERNAL_INT8

#define EXCEPT_RISCV_SUPERVISOR_EXTERNAL_INT9

#define EXCEPT_RISCV_HYPERVISOR_EXTERNAL_INT10

#define EXCEPT_RISCV_MACHINE_EXTERNAL_INT11

Description

The RegisterExceptionCallback() function registers and enables an exception callback function
for the specified exception. The specified exception must be valid for the instruction set architecture. To
unregister the callback function and stop servicing the exception, call
RegisterExceptionCallback() passing a NULL ExceptionCallback parameter.

The implementation must handle saving and restoring the processor context to/from the system context
record around calls to the registered callback function. No chaining of exception handlers is allowed.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior when an
invalid parameter is passed is not defined by this specification.

Status Codes Returned

EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

Summary

Invalidates processor instruction cache for a memory range. Subsequent execution in this range causes a
fresh memory fetch to retrieve code to be executed.

EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL ExceptionCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.
UEFI Forum, Inc. March 2019 867

UEFI Specification, Version 2.8 Protocols — Debugger Support
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INVALIDATE_INSTRUCTION_CACHE) (

 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,

 IN UINTN ProcessorIndex,

 IN VOID *Start,

 IN UINT64 Length
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type
EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 18.2.

ProcessorIndex Specifies which processor’s instruction cache is to be invalidated.

Start Specifies the physical base of the memory range to be invalidated.

Length Specifies the minimum number of bytes in the processor’s
instruction cache to invalidate.

Description

Typical operation of a debugger may require modifying the code image that is under debug. This can
occur for many reasons, but is typically done to insert/remove software break instructions. Some
processor architectures do not have coherent instruction and data caches so modifications to the code
image require that the instruction cache be explicitly invalidated in that memory region.

The InvalidateInstructionCache() function abstracts this operation from the debug agent and
provides a general purpose capability to invalidate the processor’s instruction cache.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback(). The
implementation behavior when an invalid parameter is passed is not defined by this specification.

Status Codes Returned

18.3 EFI Debugport Protocol

This section defines the EFI Debugport protocol. This protocol is used by debug agent to communicate
with the remote debug host.

18.3.1 EFI Debugport Overview

Historically, remote debugging has typically been done using a standard UART serial port to connect the
host and target. This is obviously not possible in a legacy reduced system that does not have a UART. The
Debugport protocol solves this problem by providing an abstraction that can support many different
types of debugport hardware. The debug agent should use this abstraction to communicate with the
host.

EFI_SUCCESS The function completed successfully.
UEFI Forum, Inc. March 2019 868

UEFI Specification, Version 2.8 Protocols — Debugger Support
The interface is minimal with only reset, read, write, and poll abstractions. Since these functions are
called in interrupt context, none of them may call any EFI services or other protocol interfaces.

Debugport selection and configuration is handled by setting defaults via an environment variable which
contains a full device path to the debug port. This environment variable is used during the debugport
driver’s initialization to configure the debugport correctly. The variable contains a full device path to the
debugport, with the last node (prior to the terminal node) being a debugport messaging node. See
Section 18.3.2 for details.

The driver must also produce an instance of the EFI Device Path protocol to indicate what hardware is
being used for the debugport. This may be used by the OS to maintain the debugport across a call to
EFI_BOOT_SERVICES.ExitBootServices().

EFI_DEBUGPORT_PROTOCOL

Summary

This protocol provides the communication link between the debug agent and the remote host.

GUID

#define EFI_DEBUGPORT_PROTOCOL_GUID \

 {0xEBA4E8D2,0x3858,0x41EC,\

 {0xA2,0x81,0x26,0x47,0xBA,0x96,0x60,0xD0}}

Protocol Interface Structure

typedef struct {

 EFI_DEBUGPORT_RESET Reset;

 EFI_DEBUGPORT_WRITE Write;

 EFI_DEBUGPORT_READ Read;

 EFI_DEBUGPORT_POLL Poll;

} EFI_DEBUGPORT_PROTOCOL;

Parameters

Reset Resets the debugport hardware.

Write Send a buffer of characters to the debugport device.

Read Receive a buffer of characters from the debugport device.

Poll Determine if there is any data available to be read from the
debugport device.

Description

The Debugport protocol is used for byte stream communication with a debugport device. The debugport
can be a standard UART Serial port, a USB-based character device, or potentially any character-based I/O
device.

The attributes for all UART-style debugport device interfaces are defined in the DEBUGPORT variable (see
Section 18.3.2).
UEFI Forum, Inc. March 2019 869

UEFI Specification, Version 2.8 Protocols — Debugger Support
EFI_DEBUGPORT_PROTOCOL.Reset()

Summary

Resets the debugport.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DEBUGPORT_RESET) (

 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 18.3.

Description

The Reset() function resets the debugport device.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for parameter
checking by Reset(). The implementation behavior when an invalid parameter is passed is not defined
by this specification.

Status Codes Returned

EFI_DEBUGPORT_PROTOCOL.Write()

Summary

Writes data to the debugport.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DEBUGPORT_WRITE) (

 IN EFI_DEBUGPORT_PROTOCOL *This,

 IN UINT32 Timeout,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 18.3.

EFI_SUCCESS The debugport device was reset and is in usable state.

EFI_DEVICE_ERROR The debugport device could not be reset and is unusable.
UEFI Forum, Inc. March 2019 870

UEFI Specification, Version 2.8 Protocols — Debugger Support
Timeout The number of microseconds to wait before timing out a write
operation.

BufferSize On input, the requested number of bytes of data to write. On
output, the number of bytes of data actually written.

Buffer A pointer to a buffer containing the data to write.

Description

The Write() function writes the specified number of bytes to a debugport device. If a timeout error
occurs while data is being sent to the debugport, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the debugport device
is returned in BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for parameter
checking by Write(). The implementation behavior when an invalid parameter is passed is not defined
by this specification.

Status Codes Returned

EFI_DEBUGPORT_PROTOCOL.Read()

Summary

Reads data from the debugport.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DEBUGPORT_READ) (

 IN EFI_DEBUGPORT_PROTOCOL *This,

 IN UINT32 Timeout,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 18.3.

Timeout The number of microseconds to wait before timing out a read
operation.

BufferSize A pointer to an integer which, on input contains the requested
number of bytes of data to read, and on output contains the actual
number of bytes of data read and returned in Buffer.

Buffer A pointer to a buffer into which the data read will be saved.

EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.
UEFI Forum, Inc. March 2019 871

UEFI Specification, Version 2.8 Protocols — Debugger Support
Description

The Read() function reads a specified number of bytes from a debugport. If a timeout error or an
overrun error is detected while data is being read from the debugport, then no more characters will be
read, and EFI_TIMEOUT will be returned. In all cases the number of bytes actually read is returned in
*BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for parameter
checking by Read(). The implementation behavior when an invalid parameter is passed is not defined by
this specification.

Status Codes Returned

EFI_DEBUGPORT_PROTOCOL.Poll()

Summary

Checks to see if any data is available to be read from the debugport device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DEBUGPORT_POLL) (

 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 18.3.

Description

The Poll() function checks if there is any data available to be read from the debugport device and
returns the result. No data is actually removed from the input stream. This function enables simpler
debugger design since buffering of reads is not necessary by the caller.

Status Codes Returned

18.3.2 Debugport Device Path

The debugport driver must establish and maintain an instance of the EFI Device Path protocol for the
debugport. A graceful handoff of debugport ownership between the EFI Debugport driver and an OS

EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The debugport device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

EFI_SUCCESS At least one byte of data is available to be read.

EFI_NOT_READY No data is available to be read.

EFI_DEVICE_ERROR The debugport device is not functioning correctly.
UEFI Forum, Inc. March 2019 872

UEFI Specification, Version 2.8 Protocols — Debugger Support
debugport driver requires that the OS debugport driver can determine the type, location, and
configuration of the debugport device.

The Debugport Device Path is a vendor-defined messaging device path with no data, only a GUID. It is
used at the end of a conventional device path to tag the device for use as the debugport. For example, a
typical UART debugport would have the following fully qualified device path:

PciRoot(0)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,N,8,1)/DebugPort()

The Vendor_GUID that defines the debugport device path is the same as the debugport protocol GUID, as
defined below.

#define DEVICE_PATH_MESSAGING_DEBUGPORT \

 EFI_DEBUGPORT_PROTOCOL_GUID

Table 147 shows all fields of the debugport device path.

Table 147. Debugport Messaging Device Path

18.3.3 EFI Debugport Variable

Even though there may be more than one hardware device that could function as a debugport in a
system, only one debugport may be active at a time. The DEBUGPORT variable is used to declare which
hardware device will act as the debugport, and what communication parameters it should assume.

Like all EFI variables, the DEBUGPORT variable has both a name and a GUID. The name is “DEBUGPORT.”
The GUID is the same as the EFI_DEBUGPORT_PROTOCOL_GUID:

#define EFI_DEBUGPORT_VARIABLE_NAME L"DEBUGPORT"

#define EFI_DEBUGPORT_VARIABLE_GUID EFI_DEBUGPORT_PROTOCOL_GUID

The data contained by the DEBUGPORT variable is a fully qualified debugport device path (see
Section 18.3.2).

The desired communication parameters for the debugport are declared in the DEBUGPORT variable. The
debugport driver must read this variable during initialization to determine how to configure the debug
port.

To reduce the required complexity of the debugport driver, the debugport driver is not required to
support all possible combinations of communication parameters. What combinations of parameters are
possible is implementation specific.

Additionally debugport drivers implemented for PNP0501 devices, that is debugport devices with a
PNP0501 ACPI node in the device path, must support the following defaults. These defaults must be used
in the absence of a DEBUGPORT variable, or when the communication parameters specified in the
DEBUGPORT variable are not supported by the driver.


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 1 Type 3 – Messaging Device Path.

Sub Type 1 1 Sub Type 10 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Vendor_GUID 4 16 DEVICE_PATH_MESSAGING_DEBUGPORT.
UEFI Forum, Inc. March 2019 873

UEFI Specification, Version 2.8 Protocols — Debugger Support
• Baud : 115200

• 8 data bits

• No parity

• 1 stop bit

• No flow control (See Appendix A for flow control details)

In the absence of the DEBUGPORT variable, the selection of which port to use as the debug port is
implementation specific.

Future revisions of this specification may define new defaults for other debugport types.

The debugport device path must be constructed to reflect the actual settings for the debugport. Any code
needing to know the state of the debug port must reference the device path rather than the DEBUGPORT
variable, since the debugport may have assumed a default setting in spite of the existence of the
DEBUGPORT variable.

If it is not possible to configure the debug port using either the settings declared in the DEBUGPORT
variable or the default settings for the particular debugport type, the driver initialization must not install
any protocol interfaces and must exit with an error.

18.4 EFI Debug Support Table

This chapter defines the EFI Debug Support Table which is used by the debug agent or an external
debugger to determine loaded image information in a quiescent manner.

18.4.1 Overview

Every executable image loaded in EFI is represented by an EFI handle populated with an instance of the
EFI_LOADED_IMAGE_PROTOCOL protocol. This handle is known as an “image handle.” The associated
Loaded Image protocol provides image information that is of interest to a source level debugger. Normal
EFI executables can access this information by using EFI services to locate all instances of the Loaded
Image protocol.

A debugger has two problems with this scenario. First, if it is an external hardware debugger, the location
of the EFI system table is not known. Second, even if the location of the EFI system table is known, the
services contained therein are generally unavailable to a debugger either because it is an on-target
debugger that is running in interrupt context, or in the case of an external hardware debugger there is no
debugger code running on the target at all.

Since a source level debugger must be capable of determining image information for all loaded images,
an alternate mechanism that does not use EFI services must be provided. Two features are added to the
EFI system software to enable this capability.

First, an alternate mechanism of locating the EFI system table is required. A check-summed structure
containing the physical address of the EFI system table is created and located on a 4M aligned memory
address. A hardware debugger can search memory for this structure to determine the location of the EFI
system table.

Second, an EFI_CONFIGURATION_TABLE is published that leads to a database of pointers to all
instances of the Loaded Image protocol. Several layers of indirection are used to allow dynamically
managing the data as images are loaded and unloaded. Once the address of the EFI system table is
UEFI Forum, Inc. March 2019 874

UEFI Specification, Version 2.8 Protocols — Debugger Support
known, it is possible to discover a complete and accurate list of EFI images. (Note that the EFI core itself
must be represented by an instance of the Loaded Image protocol.)

Figure 62 illustrates the table indirection and pointer usage.

Figure 62. Debug Support Table Indirection and Pointer Usage

18.4.2 EFI System Table Location

The EFI system table can be located by an off-target hardware debugger by searching for the
EFI_SYSTEM_TABLE_POINTER structure. The EFI_SYSTEM_TABLE_POINTER structure is located on a
4M boundary as close to the top of physical memory as feasible. It may be found searching for the
EFI_SYSTEM_TABLE_SIGNATURE on each 4M boundary starting at the top of memory and scanning
down. When the signature is found, the entire structure must verified using the Crc32 field. The 32-bit
CRC of the entire structure is calculated assuming the Crc32 field is zero. This value is then written to the
Crc32 field.

typedef struct _EFI_SYSTEM_TABLE_POINTER {

 UINT64 Signature;

 EFI_PHYSICAL_ADDRESS EfiSystemTableBase;

 UINT32 Crc32;
} EFI_SYSTEM_TABLE_POINTER;

Signature A constant UINT64 that has the value
EFI_SYSTEM_TABLE_SIGNATURE (see the EFI 1.0 specification).

EfiSystemTableBaseThe physical address of the EFI system table.

Crc32 A 32-bit CRC value that is used to verify the
EFI_SYSTEM_TABLE_POINTER structure is valid.

EFI_SYSTEM_TABLE_POINTER

(EfiStystem Table)

EFI_SYSTEM_TABLE

(Configuration Table)

EFI_CONFIGURATION_TABLE

(EfiDebug ImageInfo Table Pointer)

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

(EfiDebug ImageInfo Table)

EFI_DEBUG_IMAGE_INFO_TABLE

(EfiDebug ImageInfo [n])

EFI_DEBUG_IMAGE_INFO_NORMAL

(LoadedImageProtocolInstance)
EFI_LOADED_IMAGE_PROTOCOL
UEFI Forum, Inc. March 2019 875

UEFI Specification, Version 2.8 Protocols — Debugger Support
18.4.3 EFI Image Info

The EFI_DEBUG_IMAGE_INFO_TABLE is an array of pointers to EFI_DEBUG_IMAGE_INFO unions. Each
member of an EFI_DEBUG_IMAGE_INFO union is a pointer to a data structure representing a particular
image type. For each image that has been loaded, there is an appropriate image data structure with a
pointer to it stored in the EFI_DEBUG_IMAGE_INFO_TABLE. Data structures for normal images and
SMM images are defined. All other image types are reserved for future use.

The process of locating the EFI_DEBUG_IMAGE_INFO_TABLE begins with an EFI configuration table.

//

// EFI_DEBUG_IMAGE_INFO_TABLE configuration table

// GUID declaration - {49152E77-1ADA-4764-B7A2-7AFEFED95E8B}

//

#define EFI_DEBUG_IMAGE_INFO_TABLE_GUID \

 {0x49152E77,0x1ADA,0x4764,\

 {0xB7,0xA2,0x7A,0xFE,0xFE,0xD9,0x5E,0x8B }}

The configuration table leads to an EFI_DEBUG_IMAGE_INFO_TABLE_HEADER structure that contains a
pointer to the EFI_DEBUG_IMAGE_INFO_TABLE and some status bits that are used to control access to
the EFI_DEBUG_IMAGE_INFO_TABLE when it is being updated.

//

// UpdateStatus bits

//

#define EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS 0x01

#define EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED 0x02

typedef struct {

 volatile UINT32 UpdateStatus;

 UINT32 TableSize;

 EFI_DEBUG_IMAGE_INFO *EfiDebugImageInfoTable;
} EFI_DEBUG_IMAGE_INFO_TABLE_HEADER;

UpdateStatus UpdateStatus is used by the system to indicate the state of the
debug image info table.

The EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS bit must be
set when the table is being modified. Software consuming the table
must qualify the access to the table with this bit.

The EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED bit is always set
by software that modifies the table. It may be cleared by software
that consumes the table once the entire table has been read. It is
essentially a sticky version of the
EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS bit and is
intended to provide an efficient mechanism to minimize the number
of times the table must be scanned by the consumer.

TableSize The number of EFI_DEBUG_IMAGE_INFO elements in the array
pointed to by EfiDebugImageInfoTable.
UEFI Forum, Inc. March 2019 876

UEFI Specification, Version 2.8 Protocols — Debugger Support
EfiDebugImageInfoTable
A pointer to the first element of an array of
EFI_DEBUG_IMAGE_INFO structures.

#define EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL 0x01

typedef union {

 UINT32 *ImageInfoType;

 EFI_DEBUG_IMAGE_INFO_NORMAL *NormalImage;
} EFI_DEBUG_IMAGE_INFO;

typedef struct {

 UINT32 ImageInfoType;

 EFI_LOADED_IMAGE_PROTOCOL *LoadedImageProtocolInstance;

 EFI_HANDLE ImageHandle;
} EFI_DEBUG_IMAGE_INFO_NORMAL;

ImageInfoType Indicates the type of image info structure. For PE32 EFI images, this
is set to EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL.

LoadedImageProtocolInstance
A pointer to an instance of the loaded image protocol for the
associated image.

ImageHandle Indicates the image handle of the associated image.
UEFI Forum, Inc. March 2019 877

UEFI Specification, Version 2.8
19 - Protocols — Compression Algorithm Specification

In EFI firmware storage, binary codes/data are often compressed to save storage space. These
compressed codes/data are extracted into memory for execution at boot time. This demands an efficient
lossless compression/decompression algorithm. The compressor must produce small compressed
images, and the decompressor must operate fast enough to avoid delays at boot time.

This chapter describes in detail the UEFI compression/decompression algorithm, as well as the EFI
Decompress Protocol. The EFI Decompress Protocol provides a standard decompression interface for use
at boot time.

19.1 Algorithm Overview

In this chapter, the term “character” denotes a single byte and the term “string” denotes a series of
concatenated characters.

The compression/decompression algorithm used in EFI firmware storage is a combination of the LZ77
algorithm and Huffman Coding. The LZ77 algorithm replaces a repeated string with a pointer to the
previous occurrence of the string. Huffman Coding encodes symbols in a way that the more frequently a
symbol appears in a text, the shorter the code that is assigned to it.

The compression process contains two steps:

• The first step is to find repeated strings (using LZ77 algorithm) and produce intermediate data.

Beginning with the first character, the compressor scans the source data and determines if the
characters starting at the current position can form a string previously appearing in the text. If
a long enough matching string is found, the compressor will output a pointer to the string. If the
pointer occupies more space than the string itself, the compressor will output the original
character at the current position in the source data. Then the compressor advances to the next
position and repeats the process. To speed up the compression process, the compressor
dynamically maintains a String Info Log to record the positions and lengths of strings
encountered, so that string comparisons are performed quickly by looking up the String
Info Log.
Because a compressor cannot have unlimited resources, as the compression continues the
compressor removes “old” string information. This prevents the String Info Log from becoming
too large. As a result, the algorithm can only look up repeated strings within the range of a fixed-
sized “sliding window” behind the current position.
In this way, a stream of intermediate data is produced which contains two types of symbols:
the Original Characters (to be preserved in the decompressed data), and the Pointers
(representing a previous string). A Pointer consists of two elements: the String Position and the
String Length, representing the location and the length of the target string, respectively.

• To improve the compression ratio further, Huffman Coding is utilized as the second step.

The intermediate data (consisting of original characters and pointers) is divided into Blocks so
that the compressor can perform Huffman Coding on a Block immediately after it is generated;
eliminating the need for a second pass from the beginning after the intermediate data has been
generated. Also, since symbol frequency distribution may differ in different parts of the
intermediate data, Huffman Coding can be optimized for each specific Block. The compressor
determines Block Size for each Block according to the specifications defined in Section 19.2.
UEFI Forum, Inc. March 2019 878

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
In each Block, two symbol sets are defined for Huffman Coding. The Char&Len Set consists of
the Original Characters plus the String Lengths and the Position Set consists of String Positions
(Note that the two elements of a Pointer belong to separate symbol sets). The Huffman Coding
schemes applied on these two symbol sets are independent.
The algorithm uses “canonical” Huffman Coding so a Huffman tree can be represented as an
array of code lengths in the order of the symbols in the symbol set. This code length array
represents the Huffman Coding scheme for the symbol set. Both the Char&Len Set code length
array and the Position Set code length array appear in the Block Header.
Huffman coding is used on the code length array of the Char&Len Set to define a third symbol
set. The Extra Set is defined based on the code length values in the Char&Len Set code length
array. The code length array for the Huffman Coding of Extra Set also appears in the Block
Header together with the other two code length arrays. For exact format of the Block Header, see
Section 19.2.3.1.

The decompression process is straightforward given that the compression process is known. The
decompressor scans the compressed data and decodes the symbols one by one, according to the
Huffman code mapping tables generated from code length arrays. Along the process, if it encounters an
original character, it outputs it; if it encounters a pointer, it looks it up in the already decompressed data
and outputs the associated string.

19.2 Data Format

This section describes in detail the format of the compressed data produced by the compressor. The
compressed data serves as input to the decompressor and can be fully extracted to the original source
data.

19.2.1 Bit Order

In computer data representation, a byte is the minimum unit and there is no differentiation in the order
of bits within a byte. However, the compressed data is a sequence of bits rather than a sequence of bytes
and as a result the order of bits in a byte needs to be defined. In a compressed data stream, the higher
bits are defined to precede the lower bits in a byte. Figure 63 illustrates a compressed data sequence
written as bytes from left to right. For each byte, the bits are written in an order with bit 7 (the highest
bit) at the left and bit 0 (the lowest bit) at the right. Concatenating the bytes from left to right forms a bit
sequence.

Figure 63. Bit Sequence of Compressed Data

OM13173

Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0

Byte 0 Byte 1 Byte N

Overall Bit Sequence of Compressed Data
UEFI Forum, Inc. March 2019 879

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
The bits of the compressed data are actually formed by a sequence of data units. These data units have
variable bit lengths. The bits of each data unit are arranged so that the higher bit of the data unit
precedes the lower bit of the data unit.

19.2.2 Overall Structure

The compressed data begins with two 32-bit numerical fields: the compressed size and the original size.
The compressed data following these two fields is composed of one or more Blocks. Each Block is a unit
for Huffman Coding with a coding scheme independent of the other Blocks. Each Block is composed of a
Block Header containing the Huffman code trees for this Block and a Block Body with the data encoded
using the coding scheme defined by the Huffman trees. The compressed data is terminated by an
additional byte of zero.

The overall structure of the compressed data is shown in Figure 64.

Figure 64. Compressed Data Structure

Note the following:

• Blocks are of variable lengths.

• Block lengths are counted by bits and not necessarily divisible by 8. Blocks are tightly packed
(there are no padding bits between blocks). Neither the starting position nor ending position of
a Block is necessarily at a byte boundary. However, if the last Block is not terminated at a byte
boundary, there should be some bits of 0 to fill up the remaining bits of the last byte of the
block, before the terminator byte of 0.

• Compressed Size = 
Size in bytes of (Block 0 + Block 1 + … + Block N + Filling Bits (if any) + Terminator).

• Original Size is the size in bytes of original data.

• Both Compressed Size and Original Size are “little endian” (starting from the least
significant byte).

19.2.3 Block Structure

A Block is composed of a Block Header and a Block Body, as shown in Figure 65. These two parts are
packed tightly (there are no padding bits between them). The lengths in bits of Block Header and Block
Body are not necessarily divisible by eight.

OM13174

Compressed Size

4 Bytes 4 Bytes Terminator
1 Byte

0Block nBlock 1Block 0Original Size
UEFI Forum, Inc. March 2019 880

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Figure 65. Block Structure

19.2.3.1 Block Header

The Block Header contains the Huffman encoding information for this block. Since “canonical” Huffman
Coding is being used, a Huffman tree is represented as an array of code lengths in increasing order of the
symbols in the symbol set. Code lengths are limited to be less than or equal to 16 bits. This requires some
extra handling of Huffman codes in the compressor, which is described in Section 19.3.

There are three code length arrays for three different symbol sets in the Block Header: one for the Extra
Set, one for the Char&Len Set, and one for the Position Set.

The Block Header is composed of the tightly packed (no padding bits) fields described in
Table 148.

Table 148. Block Header Fields

Field Name Length (bits) Description

Block Size 16 The size of this Block. Block Size is defined as the number of original
characters plus the number of pointers that appear in the Block Body: Block
Size = Number of Original Characters in the Block Body + Number of Pointers
in the Block Body.

Extra Set Code
Length Array Size

5 The number of code lengths in the Extra Set Code Length Array. The Extra Set
Code Length Array contains code lengths of the Extra Set in increasing order
of the symbols, and if all symbols greater than a certain symbol have zero
code length, the Extra Set Code Length Array terminates at the last nonzero
code length symbol. Since there are 19 symbols in the Extra Set (see the
description of the Char&Len Set Code Length Array), the maximum Extra Set
Code Length Array Size is 19.

Extra Set Code
Length Array

Variable If Extra Set Code Length Array Size is 0, then this field is a 5-bit value that
represents the only Huffman code used.
If Extra Set Code Length Array Size is not 0, then this field is an encoded form
of a concatenation of code lengths in increasing order of the symbols.
The concatenation of Code lengths are encoded as follows:
If a code length is less than 7, then it is encoded as a 3-bit value;
If a code length is equal to or greater than 7, then it is encoded as a series of
“1”s followed by a terminating “0.” The number of “1”s = Code length – 4. For
example, code length “ten” is encoded as “1111110”; code length “seven” is
encoded as “1110.”
After the third length of the code length concatenation, a 2-bit value is used
to indicate the number of consecutive zero lengths immediately after the
third length. (Note this 2-bit value only appears once after the third length,

and does NOT appear multiple times after every 3rd length.) This 2-bit value
ranges from 0 to 3. For example, if the 2-bit value is “00,” then it means there
are no zero lengths at the point, and following encoding starts from the
fourth code length; if the 2-bit value is “10” then it means the fourth and fifth
length are zero and following encoding starts from the sixth code length.

OM13175

Block Header Block BodyBlock:
UEFI Forum, Inc. March 2019 881

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
19.2.3.2 Block Body

The Block Body is simply a mixture of Original Characters and Pointers, while each Pointer has two
elements: String Length preceding String Position. All these data units are tightly packed together.

Position Set Code
Length Array Size

4 The number of code lengths in the Position Set Code Length Array. The
Position Set Code Length Array contains code lengths of Position Set in
increasing order of the symbols in the Position Set, and if all symbols greater
than a certain symbol have zero code length, the Position Set Code Length
Array terminates at the last nonzero code length symbol. Since there are 14
symbols in the Position Set (see 3.3.2), the maximum Position Set Code
Length Array Size is 14.

Char&Len Set Code
Length Array

Variable If Char&Len Set Code Length Array Size is 0, then this field is a 9-bit value that
represents the only Huffman code used.
If Char&Len Set Code Length Array Size is not 0, then this field is an encoded
form of a concatenation of code lengths in increasing order of the symbols.
The concatenation of Code lengths are two-step encoded:
Step 1:
If a code length is not zero, then it is encoded as “code length + 2”;
If a code length is zero, then the number of consecutive zero lengths starting
from this code length is counted -- If the count is equal to or less than 2, then
the code “0” is used for each zero length; if the count is greater than 2 and
less than 19, then the code “1” followed by a 4-bit value of “count – 3” is used
for these consecutive zero lengths; if the count is equal to 19, then it is
treated as “1 + 18,” and a code “0” and a code “1” followed by a 4-bit value of
“15” are used for these consecutive zero lengths; if the count is greater than
19, then the code “2” followed by a 9-bit value of “count – 20” is used for
these consecutive zero lengths.
Step 2:
The second step encoding is a Huffman encoding of the codes produced by
first step. (While encoding codes “1” and “2,” their appended values are not
encoded and preserved in the resulting text). The code lengths of generated
Huffman tree are just the contents of the Extra Set Code Length Array.

Position Set Code
Length Array Size

4 The number of code lengths in the Position Set Code Length Array. The
Position Set Code Length Array contains code lengths of Position Set in
increasing order of the symbols in the Position Set, and if all symbols greater
than a certain symbol have zero code length, the Position Set Code Length
Array terminates at the last nonzero code length symbol. Since there are 14
symbols in the Position Set (see 3.3.2), the maximum Position Set Code
Length Array Size is 14.

Position Set Code
Length Array

Variable If Position Set Code Length Array Size is 0, then this field is a 5-bit value that
represents the only Huffman code used.
If Position Set Code Length Array Size is not 0, then this field is an encoded
form of a concatenation of code lengths in increasing order of the symbols.
The concatenation of Code lengths are encoded as follows:
If a code length is less than 7, then it is encoded as a normal 3-bit value;
If a code length is equal to or greater than 7, then it is encoded as a series of
“1”s followed by a terminating “0.” The number of “1”s = Code length – 4. For
example, code length “10” is encoded as “1111110”; code length “7” is
encoded as “1110.”

Field Name Length (bits) Description
UEFI Forum, Inc. March 2019 882

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Figure 66. Block Body

The Original Characters, String Lengths and String Positions are all Huffman coded using the Huffman
trees presented in the Block Header, with some additional variations. The exact format is described
below:

An Original Character is a byte in the source data. A String Length is a value that is greater than 3 and less
than 257 (this range should be ensured by the compressor). By calculating “(String Length – 3) | 0x100,” a
value set is obtained that ranges from 256 to 509. By combining this value set with the value set of
Original Characters (0 ~ 255), the Char&Len Set (ranging from 0 to 509) is generated for Huffman Coding.

A String Position is a value that indicates the distance between the current position and the target string.
The String Position value is defined as “Current Position – Starting Position of the target string - 1.” The
String Position value ranges from 0 to 8190 (so 8192 is the “sliding window” size, and this range should be
ensured by the compressor). The lengths of the String Position values (in binary form) form a value set
ranging from 0 to 13 (it is assumed that value 0 has length of 0). This value set is the Position Set for
Huffman Coding. The full representation of a String Position value is composed of two consecutive parts:
one is the Huffman code for the value length; the other is the actual String Position value of “length - 1”
bits (excluding the highest bit since the highest bit is always “1”). For example, String Position value 18 is
represented as: Huffman code for “5” followed by “0010.” If the value length is 0 or 1, then no value is
appended to the Huffman code. This kind of representation favors small String Position values, which is a
hint for compressor design.

19.3 Compressor Design

The compressor takes the source data as input and produces a compressed image. This section describes
the design used in one possible implementation of a compressor that follows the UEFI Compression
Algorithm. The source code that illustrates an implementation of this specific design is listed in Appendix
H.

19.3.1 Overall Process

The compressor scans the source data from the beginning, character by character. As the scanning
proceeds, the compressor generates Original Characters or Pointers and outputs the compressed data
packed in a series of Blocks representing individual Huffman coding units.

The compressor maintains a String Info Log containing data that facilitates string comparison. Old data
items are deleted and new data items are inserted regularly.

The compressor does not output a Pointer immediately after it sees a matching string for the current
position. Instead, it delays its decision until it gets the matching string for the next position. The
compressor has two criteria at hand: one is that the former match length should be no shorter than three
characters; the other is that the former match length should be no shorter than the latter match length.

OM13176

Orig Char

Pointer

Orig Char StrLen StrPos Orig Char StrLen StrPos

Pointer

StrLen StrPos

Pointer
UEFI Forum, Inc. March 2019 883

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Only when these two criteria are met does the compressor output a Pointer to the former matching
string.

The overall process of compression can be described by following pseudo code:

Set the Current Position at the beginning of the source data;
Delete the outdated string info from the String Info Log;
Search the String Info Log for matching string;
Add the string info of the current position into the String Info Log; 
WHILE not end of source data DO
 Remember the last match;
 Advance the Current Position by 1;
 Delete the outdated String Info from the String Info Log;
 Search the String Info Log for matching string; 
 Add the string info of the Current Position into the String Info Log;
 IF the last match is shorter than 3 characters or this match is longer than
 the last match THEN
 Call Output()* to output the character at the previous position as an
 Original Character;
 ELSE
 Call Output()* to output a Pointer to the last matching string;
 WHILE (--last match length) > 0 DO
 Advance the Current Position by 1;
 Delete the outdated piece of string info from the String Info Log;
 Add the string info of the current position into the String Info Log;
 ENDWHILE
 ENDIF
ENDWHILE

The Output() is the function that is responsible for generating Huffman codes and Blocks. It accepts an
Original Character or a Pointer as input and maintains a Block Buffer to temporarily store data units that
are to be Huffman coded. The following pseudo code describes the function:

FUNCTION NAME: Output
INPUT: an Original Character or a Pointer

Put the Original Character or the Pointer into the Block Buffer;
Advance the Block Buffer position pointer by 1;
IF the Block Buffer is full THEN
 Encode the Char&Len Set in the Block buffer;
 Encode the Position Set in the Block buffer;
 Encode the Extra Set;
 Output the Block Header containing the code length arrays;
 Output the Block Body containing the Huffman encoded Original Characters and
 Pointers;
 Reset the Block Buffer position pointer to point to the beginning of the
 Block buffer;
ENDIF

19.3.2 String Info Log

The provision of the String Info Log is to speed up the process of finding matching strings. The design of
this has significant impact on the overall performance of the compressor. This section describes in detail
how String Info Log is implemented and the typical operations on it.
UEFI Forum, Inc. March 2019 884

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
19.3.2.1 Data Structures

The String Info Log is implemented as a set of search trees. These search trees are dynamically updated
as the compression proceeds through the source data. The structure of a typical search tree is depicted in
Figure 67.

Figure 67. String Info Log Search Tree

There are three types of nodes in a search tree: the root node, internal nodes, and leaves. The root node
has a “character” attribute, which represents the starting character of a string. Each edge also has a
“character” attribute, which represents the next character in the string. Each internal node has a “level”
attribute, which indicates the character on any edge that leads to its child nodes is the “level + 1”th
character in the string. Each internal node or leaf has a “position” attribute that indicates the string’s
starting position in the source data.

To speed up the tree searching, a hash function is used. Given the parent node and the edge-character,
the hash function will quickly find the expected child node.

19.3.2.2 Searching the Tree

Traversing the search tree is performed as follows:

The following example uses the search tree shown in Figure 67 above. Assume that the current position
in the source data contains the string “camxrsxpj….”

1. The starting character “c” is used to find the root of the tree. The next character “a” is used to
follow the edge from node 1 to node 2. The “position” of node 2 is 500, so a string starting with

1 Char: "c"

"a" "m" "q"

2 3 4Level: 3
Pos: 500 Pos: 500 Pos: 600

Pos: 500
Level: 8
Pos: 400

Pos: 400 Pos: 350

5 6

7 8

"x" "k"

"p" "t"

OM13177
UEFI Forum, Inc. March 2019 885

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
“ca” can be found at position 500. The string at the current position is compared with the string
starting at position 500.

2. Node 2 is at Level 3; so at most three characters are compared. Assume that the three-
character comparison passes.

3. The fourth character “x” is used to follow the edge from Node 2 to Node 5. The position value
of node 5 is 400, which means there is a string located in position 400 that starts with “cam”
and the character at position 403 is an “x.”

4. Node 5 is at Level 8, so the fifth to eighth characters of the source data are compared with the
string starting at position 404. Assume the strings match.

5. At this point, the ninth character “p” has been reached. It is used to follow the edge from
Node 5 to Node 7.

6. This process continues until a mismatch occurs, or the length of the matching strings exceeds
the predefined MAX_MATCH_LENGTH. The most recent matching string (which is also the
longest) is the desired matching string.

19.3.2.3 Adding String Info

String info needs to be added to the String Info Log for each position in the source data. Each time a
search for a matching string is performed, the new string info is inserted for the current position. There
are several cases that can be discussed:

1. No root is found for the first character. A new tree is created with the root node labeled with
the starting character and a child leaf node with its edge to the root node labeled with the
second character in the string. The “position” value of the child node is set to the current
position.

2. One root node matches the first character, but the second character does not match any edge
extending from the root node. A new child leaf node is created with its edge labeled with the
second character. The “position” value of the new leaf child node is set to the current position.

3. A string comparison succeeds with an internal node, but a matching edge for the next
character does not exist. This is similar to (2) above. A new child leaf node is created with its
edge labeled with the character that does not exist. The “position” value of the new leaf child
node is set to the current position.

4. A string comparison exceeds MAX_MATCH_LENGTH. Note: This only happens with leaf nodes.
For this case, the “position” value in the leaf node is updated with the current position.

5. If a string comparison with an internal node or leaf node fails (mismatch occurs before the
“Level + 1”th character is reached or MAX_MATCH_LENGTH is exceeded), then a “split”
operation is performed as follows:

Suppose a comparison is being performed with a level 9 Node, at position 350, and the current
position is 1005. If the sixth character at position 350 is an “x” and the sixth character at
position 1005 is a “y,” then a mismatch will occur. In this case, a new internal node and a new
child node are inserted into the tree, as depicted in Figure 68.
UEFI Forum, Inc. March 2019 886

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Figure 68. Node Split

The b) portion of Figure 68 has two new inserted nodes, which reflects the new string information that
was found at the current position. The process splits the old node into two child nodes, and that is why
this operation is called a “split.”

19.3.2.4 Deleting String Info

The String Info Log will grow as more and more string information is logged. The size of the String Info Log
must be limited, so outdated information must be removed on a regular basis. A sliding window is
maintained behind the current position, and the searches are always limited within the range of the
sliding window. Each time the current position is advanced, outdated string information that falls outside
the sliding window should be removed from the tree. The search for outdated string information is
simplified by always updating the nodes’ “position” attribute when searching for matching strings.

19.3.3 Huffman Code Generation

Another major component of the compressor design is generation of the Huffman Code.

Huffman Coding is applied to the Char&Len Set, the Position Set, and the Extra Set. The Huffman Coding
used here has the following features:

• The Huffman tree is represented as an array of code lengths (“canonical” Huffman Coding);

• The maximum code length is limited to 16 bits.

Level: 9
Pos: 350

a) Original State

OM13178

Level: 5
Pos: 1005

Pos: 1005

"x"

Level: 9
Pos: 350

b) Node "Split"
UEFI Forum, Inc. March 2019 887

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
The Huffman code generation process can be divided into three steps. These are the generation of
Huffman tree, the adjustment of code lengths, and the code generation.

19.3.3.1 Huffman Tree Generation

This process generates a typical Huffman tree. First, the frequency of each symbol is counted, and a list of
nodes is generated with each node containing a symbol and the symbol’s frequency. The two nodes with
the lowest frequency values are merged into a single node. This new node becomes the parent node of
the two nodes that are merged. The frequency value of this new parent node is the sum of the two child
nodes’ frequency values. The node list is updated to include the new parent node but exclude the two
child nodes that are merged. This process is repeated until there is a single node remaining that is the
root of the generated tree.

19.3.3.2 Code Length Adjustment

The leaf nodes of the tree generated by the previous step represent all the symbols that were generated.
Traditionally the code for each symbol is found by traversing the tree from the root node to the leaf
node. Going down a left edge generates a “0,” and going down a right edge generates a “1.” However, a
different approach is used here. The number of codes of each code length is counted. This generates a
16-element LengthCount array, with LengthCount[i] = Number Of Codes whose Code Length is i. Since a
code length may be longer than 16 bits, the sixteenth entry of the LengthCount array is set to the Number
Of Codes whose Code Length is greater than or equal to 16.

The LengthCount array goes through further adjustment described by following code:

INT32 i, k;
UINT32 cum;

cum = 0;
for (i = 16; i > 0; i--) {
 cum += LengthCount[i] << (16 - i);
}
while (cum != (1U << 16)) {
 LengthCount[16]--;
 for (i = 15; i > 0; i--) {
 if (LengthCount[i] != 0) {
 LengthCount[i]--;
 LengthCount[i+1] += 2;
 break;
 }
 }
 cum--;
}

19.3.3.3 Code Generation

In the previous step, the count of each length was obtained. Now, each symbol is going to be assigned a
code. First, the length of the code for each symbol is determined. Naturally, the code lengths are
assigned in such a way that shorter codes are assigned to more frequently appearing symbols. A
CodeLength array is generated with CodeLength[i] = the code length of symbol i. Given this array, a code
UEFI Forum, Inc. March 2019 888

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
is assigned to each symbol using the algorithm described by the pseudo code below (the resulting codes
are stored in array Code such that Code[i] = the code assigned to symbol i):

 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;

 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + LengthCount[i]) << 1);
 }

 for (i = 0; i < NumberOfSymbols; i++) {
 Code[i] = Start[CodeLength[i]]++;
 }

The code length adjustment process ensures that no code longer than the designated length will
be generated. As long as the decompressor has the CodeLength array at hand, it can regenerate
the codes.

19.4 Decompressor Design

The decompressor takes the compressed data as input and produces the original source data. The main
tasks for the decompressor are decoding Huffman codes and restoring Pointers to the strings to which
they point.

The following pseudo code describes the algorithm used in the design of a decompressor. The source
code that illustrates an implementation of this design is listed in Appendix I.

WHILE not end of data DO
 IF at block boundary THEN
 Read in the Extra Set Code Length Array;
 Generate the Huffman code mapping table for the Extra Set;
 Read in and decode the Char&Len Set Code Length Array;
 Generate the Huffman code mapping table for the Char&Len Set;
 Read in the Position Set Code Length Array;
 Generate the Huffman code mapping table for the Position Set;
 ENDIF
 Get next code;
 Look the code up in the Char&Len Set code mapping table.
 Store the result as C;
 IF C < 256 (it represents an Original Character) THEN
 Output this character;
 ELSE (it represents a String Length)
 Transform C to be the actual String Length value;
 Get next code and look it up in the Position Set code mapping table, and
 with some additional transformation, store the result as P;
 Output C characters starting from the position “Current Position – P”;
 ENDIF
ENDWHILE
UEFI Forum, Inc. March 2019 889

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
19.5 Decompress Protocol

This section provides a detailed description of the EFI_DECOMPRESS_PROTOCOL.

EFI_DECOMPRESS_PROTOCOL

Summary

Provides a decompression service.

GUID

#define EFI_DECOMPRESS_PROTOCOL_GUID \

 {0xd8117cfe,0x94a6,0x11d4,\

 {0x9a,0x3a,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure

typedef struct _EFI_DECOMPRESS_PROTOCOL {

 EFI_DECOMPRESS_GET_INFO GetInfo;

 EFI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_DECOMPRESS_PROTOCOL;

Parameters

GetInfo Given the compressed source buffer, this function retrieves the size
of the uncompressed destination buffer and the size of the scratch
buffer required to perform the decompression. It is the caller’s
responsibility to allocate the destination buffer and the scratch
buffer prior to calling
EFI_DECOMPRESS_PROTOCOL.Decompress(). See the
EFI_DECOMPRESS_PROTOCOL.GetInfo() function description.

Decompress Decompresses a compressed source buffer into an uncompressed
destination buffer. It is the caller’s responsibility to allocate the
destination buffer and a scratch buffer prior to making this call. See
the Decompress() function description.

Description

The EFI_DECOMPRESS_PROTOCOL provides a decompression service that allows a compressed source
buffer in memory to be decompressed into a destination buffer in memory. It also requires a temporary
scratch buffer to perform the decompression. The GetInfo() function retrieves the size of the
destination buffer and the size of the scratch buffer that the caller is required to allocate. The
Decompress() function performs the decompression. The scratch buffer can be freed after the
decompression is complete.

EFI_DECOMPRESS_PROTOCOL.GetInfo()

Summary

Given a compressed source buffer, this function retrieves the size of the uncompressed buffer and the
size of the scratch buffer required to decompress the compressed source buffer.
UEFI Forum, Inc. March 2019 890

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DECOMPRESS_GET_INFO) (

 IN EFI_DECOMPRESS_PROTOCOL *This,

 IN VOID *Source,

 IN UINT32 SourceSize,

 OUT UINT32 *DestinationSize,

 OUT UINT32 *ScratchSize
);

Parameters

This A pointer to the EFI_DECOMPRESS_PROTOCOL instance. Type
EFI_DECOMPRESS_PROTOCOL is defined in Section 19.5.

Source The source buffer containing the compressed data.

SourceSize The size, in bytes, of the source buffer.

DestinationSize A pointer to the size, in bytes, of the uncompressed buffer that will
be generated when the compressed buffer specified by Source and
SourceSize is decompressed.

ScratchSize A pointer to the size, in bytes, of the scratch buffer that is required
to decompress the compressed buffer specified by Source and
SourceSize.

Description

The GetInfo() function retrieves the size of the uncompressed buffer and the temporary scratch buffer
required to decompress the buffer specified by Source and SourceSize. If the size of the
uncompressed buffer or the size of the scratch buffer cannot be determined from the compressed data
specified by Source and SourceData, then EFI_INVALID_PARAMETER is returned. Otherwise, the
size of the uncompressed buffer is returned in DestinationSize, the size of the scratch buffer is
returned in ScratchSize, and EFI_SUCCESS is returned.

The GetInfo() function does not have scratch buffer available to perform a thorough checking of the
validity of the source data. It just retrieves the “Original Size” field from the beginning bytes of the source
data and output it as DestinationSize. And ScratchSize is specific to the decompression
implementation.
UEFI Forum, Inc. March 2019 891

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
Status Codes Returned

EFI_DECOMPRESS_PROTOCOL.Decompress()

Summary

Decompresses a compressed source buffer.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DECOMPRESS_DECOMPRESS) (

 IN EFI_DECOMPRESS_PROTOCOL *This,

 IN VOID *Source,

 IN UINT32 SourceSize,

 IN OUT VOID *Destination,

 IN UINT32 DestinationSize,

 IN OUT VOID *Scratch,

 IN UINT32 ScratchSize
);

Parameters

This A pointer to the EFI_DECOMPRESS_PROTOCOL instance. Type
EFI_DECOMPRESS_PROTOCOL is defined in Section 19.5.

Source The source buffer containing the compressed data.

SourceSize The size of source data.

Destination On output, the destination buffer that contains the uncompressed
data.

DestinationSize The size of the destination buffer. The size of the destination buffer
needed is obtained from
EFI_DECOMPRESS_PROTOCOL.GetInfo().

Scratch A temporary scratch buffer that is used to perform the
decompression.

ScratchSize The size of scratch buffer. The size of the scratch buffer needed is
obtained from GetInfo().

Description

The Decompress() function extracts decompressed data to its original form.

EFI_SUCCESS The size of the uncompressed data was returned in

DestinationSize and the size of the scratch buffer was returned in

ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer cannot
be determined from the compressed data specified by Source and

SourceSize.
UEFI Forum, Inc. March 2019 892

UEFI Specification, Version 2.8 Protocols — Compression Algorithm Specification
This protocol is designed so that the decompression algorithm can be implemented without using any
memory services. As a result, the Decompress() function is not allowed to call
EFI_BOOT_SERVICES.AllocatePool() or EFI_BOOT_SERVICES.AllocatePages() in its
implementation. It is the caller’s responsibility to allocate and free the Destination and Scratch
buffers.

If the compressed source data specified by Source and SourceSize is successfully decompressed into
Destination, then EFI_SUCCESS is returned. If the compressed source data specified by Source and
SourceSize is not in a valid compressed data format, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS Decompression completed successfully, and the uncompressed buffer is
returned in Destination.

EFI_INVALID_PARAMETER The source buffer specified by Source and SourceSize is corrupted
(not in a valid compressed format).
UEFI Forum, Inc. March 2019 893

UEFI Specification, Version 2.8
20 - Protocols — ACPI Protocols

EFI_ACPI_TABLE_PROTOCOL

Summary

This protocol may be used to install or remove an ACPI table from a platform.

GUID

#define EFI_ACPI_TABLE_PROTOCOL_GUID \

 {0xffe06bdd, 0x6107, 0x46a6,\

 {0x7b, 0xb2, 0x5a, 0x9c, 0x7e, 0xc5, 0x27, 0x5c}}

Protocol Interface Structure

typedef struct _EFI_ACPI_TABLE_PROTOCOL {

 EFI_ACPI_TABLE_INSTALL_ACPI_TABLE InstallAcpiTable;

 EFI_ACPI_TABLE_UNINSTALL_ACPI_TABLE UninstallAcpiTable;
} EFI_ACPI_TABLE_PROTOCOL;

Parameters

InstallAcpiTable Installs an ACPI table into the system.

UninstallAcpiTable Removes a previously installed ACPI table from the system.

Description

The EFI_ACPI_TABLE_PROTOCOL provides the ability for a component to install and uninstall ACPI
tables from a platform.

EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()

Summary

Installs an ACPI table into the RSDT/XSDT.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ACPI_TABLE_INSTALL_ACPI_TABLE) (

 IN EFI_ACPI_TABLE_PROTOCOL *This,

 IN VOID *AcpiTableBuffer,

 IN UINTN AcpiTableBufferSize,

 OUT UINTN *TableKey,
);

Parameters

This A pointer to a EFI_ACPI_TABLE_PROTOCOL.

AcpiTableBuffer A pointer to a buffer containing the ACPI table to be installed.
UEFI Forum, Inc. March 2019 894

UEFI Specification, Version 2.8 Protocols — ACPI Protocols
AcpiTableBufferSizeSpecifies the size, in bytes, of the AcpiTableBuffer buffer.

TableKey Returns a key to refer to the ACPI table.

Description

The InstallAcpiTable() function allows a caller to install an ACPI table. The ACPI table may
either by a System Description Table or the FACS. For all tables except for the DSDT and FACS, a
copy of the table will be linked by the RSDT/XSDT. For the FACS and DSDT, the pointer to a copy
of the table will be updated in the FADT, if present.

To prevent namespace collision, ACPI tables may be created using UEFI ACPI table format. See
Appendix O. If this protocol is used to install a table with a signature already present in the system, the
new table will not replace the existing table. It is a platform implementation decision to add a new table
with a signature matching an existing table or disallow duplicate table signatures and return
EFI_ACCESS_DENIED.

On successful output, TableKey is initialized with a unique key. Its value may be used in a subsequent
call to UninstallAcpiTable to remove an ACPI table.

On successful output, the EFI_ACPI_TABLE_PROTOCOL will ensure that the checksum field is correct
for both the RSDT/XSDT table and the copy of the table being installed that is linked by the RSDT/XSDT.

On successful completion, this function reinstalls the relevant EFI_CONFIGURATION_TABLE pointer to
the RSDT.

Status Codes Returned

EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable()

Summary

Removes an ACPI table from the RSDT/XSDT.

EFI_SUCCESS The table was successfully inserted

EFI_INVALID_PARAMETER The AcpiTableBuffer is NULL, the TableKey is NULL;the
AcpiTableBufferSize, and the size field embedded in the ACPI table pointed
to by AcpiTableBuffer are not in sync.

EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the request.

EFI_ACCESS_DENIED The table signature matches a table already present in the system and platform
policy does not allow duplicate tables of this type.
UEFI Forum, Inc. March 2019 895

UEFI Specification, Version 2.8 Protocols — ACPI Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ACPI_TABLE_UNINSTALL_ACPI_TABLE) (

 IN EFI_ACPI_TABLE_PROTOCOL *This,

 IN UINTN TableKey,
);

Parameters

This A pointer to a EFI_ACPI_TABLE_PROTOCOL.

TableKey Specifies the table to uninstall. The key was returned from
InstallAcpiTable().

Description

The UninstallAcpiTable() function allows a caller to remove an ACPI table. The routine will remove
its reference from the RSDT/XSDT. A table is referenced by the TableKey parameter returned from a prior
call to InstallAcpiTable().

On successful completion, this function reinstalls the relevant EFI_CONFIGURATION_TABLE pointer to
the RSDT.

Status Codes Returned

EFI_SUCCESS The table was successfully inserted

EFI_NOT_FOUND TableKey does not refer to a valid key for a table entry.

EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the request.
UEFI Forum, Inc. March 2019 896

UEFI Specification, Version 2.8
21 - Protocols — String Services

21.1 Unicode Collation Protocol

This section defines the Unicode Collation protocol. This protocol is used to allow code running in the
boot services environment to perform lexical comparison functions on Unicode strings for
given languages.

EFI_UNICODE_COLLATION_PROTOCOL

Summary

Is used to perform case-insensitive comparisons of strings.

GUID

#define EFI_UNICODE_COLLATION_PROTOCOL2_GUID \

 {0xa4c751fc, 0x23ae, 0x4c3e, \

 {0x92, 0xe9, 0x49, 0x64, 0xcf, 0x63, 0xf3, 0x49}}

Protocol Interface Structure

typedef struct {

 EFI_UNICODE_COLLATION_STRICOLL StriColl;

 EFI_UNICODE_COLLATION_METAIMATCH MetaiMatch;

 EFI_UNICODE_COLLATION_STRLWR StrLwr;

 EFI_UNICODE_COLLATION_STRUPR StrUpr;

 EFI_UNICODE_COLLATION_FATTOSTR FatToStr;

 EFI_UNICODE_COLLATION_STRTOFAT StrToFat;

 CHAR8 *SupportedLanguages;
} EFI_UNICODE_COLLATION_PROTOCOL;

Parameters

StriColl Performs a case-insensitive comparison of two Null-terminated
strings. See the StriColl() function description.

MetaiMatch Performs a case-insensitive comparison between a Null-terminated
pattern string and a Null-terminated string. The pattern string can
use the ‘?’ wildcard to match any character, and the ‘*’ wildcard to
match any substring. See the MetaiMatch() function description.

StrLwr Converts all the characters in a Null-terminated string to lowercase
characters. See the StrLwr() function description.

StrUpr Converts all the characters in a Null-terminated string to uppercase
characters. See the StrUpr() function description.

FatToStr Converts an 8.3 FAT file name using an OEM character set to a Null-
terminated string. See the FatToStr() function description.

StrToFat Converts a Null-terminated string to legal characters in a FAT
filename using an OEM character set. See the StrToFat() function
description.
UEFI Forum, Inc. March 2019 897

UEFI Specification, Version 2.8 Protocols — String Services
SupportedLanguagesA Null-terminated ASCII string array that contains one or more
language codes. This array is specified in RFC 4646 format. See
Appendix M for the format of language codes and language code
arrays.

Description

The EFI_UNICODE_COLLATION_PROTOCOL is used to perform case-insensitive comparisons of strings.

One or more of the EFI_UNICODE_COLLATION_PROTOCOL instances may be present at one time. Each
protocol instance can support one or more language codes. The language codes supported in the
EFI_UNICODE_COLLATION_PROTOCOL are declared in SupportedLanguages.

The SupportedLanguages is a Null-terminated ASCII string array that contains one or more supported
language codes. This is the list of language codes that this protocol supports. See Appendix M for the
format of language codes and language code arrays.

The main motivation for this protocol is to help support file names in a file system driver. When a file is
opened, a file name needs to be compared to the file names on the disk. In some cases, this comparison
needs to be performed in a case-insensitive manner. In addition, this protocol can be used to sort files
from a directory or to perform a case-insensitive file search.

EFI_UNICODE_COLLATION_PROTOCOL.StriColl()

Summary

Performs a case-insensitive comparison of two Null-terminated strings.

Prototype

typedef

INTN

(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN CHAR16 *s1,

 IN CHAR16 *s2
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

s1 A pointer to a Null-terminated string.

s2 A pointer to a Null-terminated string.

Description

The StriColl() function performs a case-insensitive comparison of two Null-terminated strings.

This function performs a case-insensitive comparison between the string s1 and the string s2 using the
rules for the language codes that this protocol instance supports. If s1 is equivalent to s2, then 0 is
returned. If s1 is lexically less than s2, then a negative number will be returned. If s1 is lexically greater
than s2, then a positive number will be returned. This function allows strings to be compared and sorted.
UEFI Forum, Inc. March 2019 898

UEFI Specification, Version 2.8 Protocols — String Services
Status Codes Returned

EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()

Summary

Performs a case-insensitive comparison of a Null-terminated pattern string and a Null-terminated string.

Prototype

typedef

BOOLEAN

(EFIAPI *EFI_UNICODE_COLLATION_METAIMATCH) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN CHAR16 *String,

 IN CHAR16 *Pattern
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

String A pointer to a Null-terminated string.

Pattern A pointer to a Null-terminated string.

Description

The MetaiMatch() function performs a case-insensitive comparison of a Null-terminated pattern string
and a Null-terminated string.

This function checks to see if the pattern of characters described by Pattern are found in String. The
pattern check is a case-insensitive comparison using the rules for the language codes that this protocol
instance supports. If the pattern match succeeds, then TRUE is returned. Otherwise FALSE is returned.
The following syntax can be used to build the string Pattern:

* Match 0 or more characters.

? Match any one character.

[<char1><char2>…<charN>]
Match any character in the set.

[<char1>-<char2>] Match any character between <char1> and <char2>.

<char> Match the character <char>.

Following is an example pattern for English:

*.FW Matches all strings that end in “.FW” or “.fw” or “.Fw” or “.fW.”

[a-z] Match any letter in the alphabet.

 [!@#$%^&*()] Match any one of these symbols.

0 s1 is equivalent to s2.

> 0 s1 is lexically greater than s2.

< 0 s1 is lexically less than s2.
UEFI Forum, Inc. March 2019 899

UEFI Specification, Version 2.8 Protocols — String Services
z Match the character “z” or “Z.”

D?.* Match the character “D” or “d” followed by any character followed
by a “.” followed by any string.

Status Codes Returned

EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()

Summary

Converts all the characters in a Null-terminated string to lowercase characters.

Prototype

typedef

VOID

(EFIAPI *EFI_UNICODE_COLLATION_STRLWR) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

String A pointer to a Null-terminated string.

Description

This function walks through all the characters in String, and converts each one to its lowercase
equivalent if it has one. The converted string is returned in String.

EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()

Summary

Converts all the characters in a Null-terminated string to uppercase characters.

TRUE Pattern was found in String.

FALSE Pattern was not found in String.
UEFI Forum, Inc. March 2019 900

UEFI Specification, Version 2.8 Protocols — String Services
Prototype

typedef

VOID

(EFIAPI *EFI_UNICODE_COLLATION_STRUPR) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

String A pointer to a Null-terminated string.

Description

This functions walks through all the characters in String, and converts each one to its uppercase
equivalent if it has one. The converted string is returned in String.

EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()

Summary

Converts an 8.3 FAT file name in an OEM character set to a Null-terminated string.

Prototype

typedef

VOID

(EFIAPI *EFI_UNICODE_COLLATION_FATTOSTR) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN UINTN FatSize,

 IN CHAR8 *Fat,

 OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file name
encoded using an 8-bit OEM character set.

String A pointer to a Null-terminated string. The string must be allocated in
advance to hold FatSize characters.

Description

This function converts the string specified by Fat with length FatSize to the Null-terminated string
specified by String. The characters in Fat are from an OEM character set.
UEFI Forum, Inc. March 2019 901

UEFI Specification, Version 2.8 Protocols — String Services
EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

Summary

Converts a Null-terminated string to legal characters in a FAT filename using an OEM character set.

Prototype

typedef

BOOLEAN

(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (

 IN EFI_UNICODE_COLLATION_PROTOCOL *This,

 IN CHAR16 *String,

 IN UINTN FatSize,

 OUT CHAR8 *Fat
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL instance.
Type EFI_UNICODE_COLLATION_PROTOCOL is defined above.

String A pointer to a Null-terminated string.

FatSize The size of the string Fat in bytes.

Fat A pointer to a string that contains the converted version of String
using legal FAT characters from an OEM character set.

Description

This function converts the characters from String into legal FAT characters in an OEM character set and
stores then in the string Fat. This conversion continues until either FatSize bytes are stored in Fat, or
the end of String is reached. The characters ‘.’ (period) and ‘ ’ (space) are ignored for this conversion.
Characters that map to an illegal FAT character are substituted with an ‘_’. If no valid mapping from a
character to an OEM character is available, then it is also substituted with an ‘_’. If any of the character
conversions are substituted with a ‘_’, then TRUE is returned. Otherwise FALSE is returned.

Status Codes Returned

21.2 Regular Expression Protocol

This section defines the Regular Expression Protocol. This protocol is used to match Unicode strings
against Regular Expression patterns.

TRUE One or more conversions failed and were substituted with ‘_’.

FALSE None of the conversions failed.
UEFI Forum, Inc. March 2019 902

UEFI Specification, Version 2.8 Protocols — String Services
EFI_REGULAR_EXPRESSION_PROTOCOL

Summary

GUID

 #define EFI_REGULAR_EXPRESSION_PROTOCOL_GUID \
 { 0xB3F79D9A, 0x436C, 0xDC11,\

 { 0xB0, 0x52, 0xCD, 0x85, 0xDF, 0x52, 0x4C, 0xE6 } }

Protocol Interface Structure

typedef struct {

 EFI_REGULAR_EXPRESSION_MATCH MatchString;

 EFI_REGULAR_EXPRESSION_GET_INFO GetInfo;
} EFI_REGULAR_EXPRESSION_PROTOCOL;

Parameters

MatchString Search the input string for anything that matches the regular
expression.

GetInfo Returns information about the regular expression syntax types
supported by the implementation.

EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()

Summary

Checks if the input string matches to the regular expression pattern.

Prototype

typedef 
EFI_STATUS
EFIAPI *EFI_REGULAR_EXPRESSION_MATCH) (
 IN EFI_REGULAR_EXPRESSION_PROTOCOL *This, 
 IN CHAR16 *String, 
 IN CHAR16 *Pattern,

 IN EFI_REGEX_SYNTAX_TYPE *SyntaxType, OPTIONAL
 OUT BOOLEAN *Result,

 OUT EFI_REGEX_CAPTURE **Captures, OPTIONAL
 OUT UINTN *CapturesCount
);

Parameters

This A pointer to the EFI_REGULAR_EXPRESSION_PROTOCOL instance.
Type EFI_REGULAR_EXPRESSION_PROTOCOL is defined in above.

String A pointer to a NULL terminated string to match against the regular
expression string specified by Pattern.

Pattern A pointer to a NULL terminated string that represents the regular
expression.
UEFI Forum, Inc. March 2019 903

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

UEFI Specification, Version 2.8 Protocols — String Services
SyntaxType A pointer to the EFI_REGEX_SYNTAX_TYPE that identifies the
regular expression syntax type to use. May be NULL in which case
the function will use its default regular expression syntax type.

Result On return, points to TRUE if String fully matches against the
regular expression Pattern using the regular expression
SyntaxType. Otherwise, points to FALSE.

Captures A Pointer to an array of EFI_REGEX_CAPTURE objects to receive
the captured groups in the event of a match. The full sub-string
match is put in Captures[0], and the results of N capturing groups
are put in Captures[1:N]. If Captures is NULL, then this function
doesn’t allocate the memory for the array and does not build up the
elements. It only returns the number of matching patterns in
CapturesCount. If Captures is not NULL, this function returns a
pointer to an array and builds up the elements in the array.
CapturesCount is also updated to the number of matching
patterns found. It is the caller’s responsibility to free the memory
pool in Captures and in each CapturePtr in the array elements.

 CapturesCount On output, CapturesCount is the number of matching patterns
found in String. Zero means no matching patterns were found in the
string.

Description

The MatchString() function performs a matching of a Null-terminated input string with the NULL
terminated pattern string. The pattern string syntax type is optionally identified in SyntaxType.

This function checks to see if String fully matches against the regular expression described by Pattern.
The pattern check is performed using regular expression rules that are supported by this implementation,
as indicated in the return value of GetInfo function. If the pattern match succeeds, then TRUE is
returned in Result. Otherwise FALSE is returned.

Related Definitions

typedef struct {

 CONST CHAR16 *CapturePtr;

 UINTN Length;
} EFI_REGEX_CAPTURE;

*CapturePtr Pointer to the start of the captured sub-expression within matched
String.

Length Length of captured sub-expression.
UEFI Forum, Inc. March 2019 904

UEFI Specification, Version 2.8 Protocols — String Services
Status Codes Returned

EFI_REGULAR_EXPRESSION_PROTOCOL.GetInfo()

Summary

Returns information about the regular expression syntax types supported by the implementation.

Prototype

typedef 
EFI_STATUS
EFIAPI *EFI_REGULAR_EXPRESSION_GET_INFO) (
 IN EFI_REGULAR_EXPRESSION_PROTOCOL*This, 
 IN OUT UINTN *RegExSyntaxTypeListSize,
 OUT EFI_REGEX_SYNTAX_TYPE *RegExSyntaxTypeList
);

Parameters

This A pointer to the EFI_REGULAR_EXPRESSION_PROTOCOL instance.

RegExSyntaxTypeListSize

On input, the size in bytes of RegExSyntaxTypeList. On output
with a return code of EFI_SUCCESS, the size in bytes of the data
returned in RegExSyntaxTypeList. On output with a return code
of EFI_BUFFER_TOO_SMALL, the size of RegExSyntaxTypeList
required to obtain the list.

RegExSyntaxTypeListA caller-allocated memory buffer filled by the driver with one
EFI_REGEX_SYNTAX_TYPE element for each supported regular
expression syntax type. The list must not change across multiple calls
to the same driver. The first syntax type in the list is the default type
for the driver.

Description

This function returns information about supported regular expression syntax types. A driver
implementing the EFI_REGULAR_EXPRESSION_PROTOCOL protocol need not support more than one
regular expression syntax type, but shall support a minimum of one regular expression syntax type.

EFI_SUCCESS The regular expression string matching completed successfully.

EFI_UNSUPPORTED The regular expression syntax specified by SyntaxType is not supported by this
driver.

EFI_DEVICE_ERROR The regular expression string matching failed due to a hardware or firmware
error.

EFI_INVALID_PARAMETER String, Pattern, Result, or CapturesCount is NULL.
UEFI Forum, Inc. March 2019 905

UEFI Specification, Version 2.8 Protocols — String Services
Related Definitions

typedef EFI_GUID EFI_REGEX_SYNTAX_TYPE;

Status Codes Returned

21.2.1 EFI Regular Expression Syntax Type Definitions

Summary
This sub-section provides EFI_GUID values for a selection of EFI_REGULAR_EXPRESSION_PROTOCOL
syntax types. The types listed are optional, not meant to be exhaustive and may be augmented by

vendors or other industry standards.

Prototype
 For regular expression rules specified in the POSIX Extended Regular Expression (ERE) Syntax:

#define EFI_REGEX_SYNTAX_TYPE_POSIX_EXTENDED_GUID \ 
 {0x5F05B20F, 0x4A56, 0xC231,\

 { 0xFA, 0x0B, 0xA7, 0xB1, 0xF1, 0x10, 0x04, 0x1D }}

For regular expression rules specified in the Perl standard:

 #define EFI_REGEX_SYNTAX_TYPE_PERL_GUID \ 
 {0x63E60A51, 0x497D, 0xD427,\

 { 0xC4, 0xA5, 0xB8, 0xAB, 0xDC, 0x3A, 0xAE, 0xB6 }}

For regular expression rules specified in the ECMA 262 Specification:

#define EFI_REGEX_SYNTAX_TYPE_ECMA_262_GUID \ 
 { 0x9A473A4A, 0x4CEB, 0xB95A, 0x41,\

 { 0x5E, 0x5B, 0xA0, 0xBC, 0x63, 0x9B, 0x2E }}

For regular expression rules specified in the POSIX Extended Regular Expression (ERE) Syntax, where the
Pattern and String input strings need to be converted to ASCII:

EFI_SUCCESS The regular expression syntax types list was returned successfully.

EFI_UNSUPPORTED The service is not supported by this driver.

EFI_DEVICE_ERROR The list of syntax types could not be retrieved due to a hardware or firmware
error.

EFI_BUFFER_TOO_SMALL The buffer RegExSyntaxTypeList is too small to hold the result.

EFI_INVALID_PARAMETER RegExSyntaxTypeListSize is NULL.
UEFI Forum, Inc. March 2019 906

UEFI Specification, Version 2.8 Protocols — String Services
#define EFI_REGEX_SYNTAX_TYPE_POSIX_EXTENDED_ASCII_GUID \

 {0x3FD32128, 0x4BB1, 0xF632, \

 { 0xBE, 0x4F, 0xBA, 0xBF, 0x85, 0xC9, 0x36, 0x76 }}

For regular expression rules specified in the Perl standard, where the Pattern and String input strings
nees to be converted to ASCII:

#define EFI_REGEX_SYNTAX_TYPE_PERL_ASCII_GUID \

 {0x87DFB76D, 0x4B58, 0xEF3A, \

 { 0xF7, 0xC6, 0x16, 0xA4, 0x2A, 0x68, 0x28, 0x10 }}

For regular expression rules specified in the ECMA 262 Specification, where the Pattern and String input
strings need to be converted to ASCII:

#define EFI_REGEX_SYNTAX_TYPE_ECMA_262_ASCII_GUID \

 { 0xB2284A2F, 0x4491, 0x6D9D, \

 { 0xEA, 0xB7, 0x11, 0xB0, 0x67, 0xD4, 0x9B, 0x9A }}

(See Appendix Q for more information.)

(See References for more information.)
UEFI Forum, Inc. March 2019 907

UEFI Specification, Version 2.8
22 - EFI Byte Code Virtual Machine

This section defines an EFI Byte Code (EBC) Virtual Machine that can provide platform- and processor-
independent mechanisms for loading and executing EFI device drivers.

22.1 Overview

The current design for option ROMs that are used in personal computer systems has been in place since
1981. Attempts to change the basic design requirements have failed for a variety of reasons. The EBC
Virtual Machine described in this chapter is attempting to help achieve the following goals:

• Abstract and extensible design

• Processor independence

• OS independence

• Build upon existing specifications when possible

• Facilitate the removal of legacy infrastructure

• Exclusive use of EFI Services

One way to satisfy many of these goals is to define a pseudo or virtual machine that can interpret
a predefined instruction set. This will allow the virtual machine to be ported across processor and system
architectures without changing or recompiling the option ROM. This specification defines a set of
machine level instructions that can be generated by a C compiler.

The following sections are a detailed description of the requirements placed on future option ROMs.

22.1.1 Processor Architecture Independence

Option ROM images shall be independent of supported 32-bit and supported 64-bit architectures. In
order to abstract the architectural differences between processors option ROM images shall be EBC. This
model is presented below:

• 64-bit C source code

• The EFI EBC image is the flashed image

• The system BIOS implements the EBC interpreter

• The interpreter handles 32 vs. 64 bit issues

Current Option ROM technology is processor dependent and heavily reliant upon the existence of the PC-
AT infrastructure. These dependencies inhibit the evolution of both hardware and software under the
veil of “backward compatibility.” A solution that isolates the hardware and support infrastructure
through abstraction will facilitate the uninhibited progression of technology.

22.1.2 OS Independent

Option ROMs shall not require or assume the existence of a particular OS.

22.1.3 EFI Compliant

Option ROM compliance with EFI requires (but is not limited to) the following:
UEFI Forum, Inc. March 2019 908

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• Little endian layout

• Single-threaded model with interrupt polling if needed

• Where EFI provides required services, EFI is used exclusively. These include:

— Console I/O

— Memory Management

— Timer services

— Global variable access

• When an Option ROM provides EFI services, the EFI specification is strictly followed:

— Service/protocol installation

— Calling conventions

— Data structure layouts

— Guaranteed return on services

22.1.4 Coexistence of Legacy Option ROMs

The infrastructure shall support coexistent Legacy Option ROM and EBC Option ROM images. This case
would occur, for example, when a Plug and Play Card has both Legacy and EBC Option ROM images
flashed. The details of the mechanism used to select which image to load is beyond the scope of this
document. Basically, a legacy System BIOS would not recognize an EBC Option ROM and therefore would
never load it. Conversely, an EFI Firmware Boot Manager would only load images that it supports.

The EBC Option ROM format must utilize a legacy format to the extent that a Legacy System BIOS can:

• Determine the type of the image, in order to ignore the image. The type must be incompatible
with currently defined types.

• Determine the size of the image, in order to skip to the next image.

22.1.5 Relocatable Image

An EBC option ROM image shall be eligible for placement in any system memory area large enough to
accommodate it.

Current option ROM technology requires images to be shadowed in system memory address range
0xC0000 to 0xEFFFF on a 2048 byte boundary. This dependency not only limits the number of Option
ROMs, it results in unused memory fragments up to 2 KiB.

22.1.6 Size Restrictions Based on Memory Available

EBC option ROM images shall not be limited to a predetermined fixed maximum size.

Current option ROM technology limits the size of a preinitialization option ROM image to 128 KiB
(126 KiB actual). Additionally, in the DDIM an image is not allowed to grow during initialization. It is
inevitable that 64-bit solutions will increase in complexity and size. To avoid revisiting this issue, EBC
option ROM size is only limited by available system memory. EFI memory allocation services allow device
drivers to claim as much memory as they need, within limits of available system memory.

The PCI specification limits the size of an image stored in an option ROM to 16 MB. If the driver is stored
on the hard drive then the 16MB option ROM limit does not apply. In addition, the PE/COFF object
format limits the size of images to 2 GB.
UEFI Forum, Inc. March 2019 909

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.2 Memory Ordering

The term memory ordering refers to the order in which a processor issues reads (loads) and writes
(stores) out onto the bus to system memory. The EBC Virtual Machine enforces strong memory ordering,
where reads and writes are issued on the system bus in the order they occur in the instruction stream
under all circumstances.

22.3 Virtual Machine Registers

The EBC virtual machine utilizes a simple register set. There are two categories of VM registers: general
purpose registers and dedicated registers. All registers are 64-bits wide. There are eight (8) general-
purpose registers (R0-R7), which are used by most EBC instructions to manipulate or fetch data.
Table 149 lists the general-purpose registers in the VM and the conventions for their usage during
execution.

Table 149. General Purpose VM Registers

Register R0 is used as a stack pointer and is used by the CALL, RET, PUSH, and POP instructions. The VM
initializes this register to point to the incoming arguments when an EBC image is started or entered. This
register may be modified like any other general purpose VM register using EBC instructions. Register R7 is
used for function return values.

Unlike the general-purpose registers, the VM dedicated registers have specific purposes. There are two
dedicated registers: the instruction pointer (IP), and the flags (Flags) register. Specialized instructions
provide access to the dedicated registers. These instructions reference the particular dedicated register
by its assigned index value. Table 150 lists the dedicated registers and their corresponding index values.

Table 150. Dedicated VM Registers

The VM Flags register contains VM status and context flags. Table 151 lists the descriptions of the bits in
the Flags register.

Index Register Description

0 R0 Points to the top of the stack

1-3 R1-R3 Preserved across calls

4-7 R4-R7 Scratch, not preserved across calls

Index Register Description

0 FLAGS

Bit Description

0 C = Condition code

1 SS = Single step

2..63 Reserved

1 IP Points to current instruction

2..7 Reserved Not defined
UEFI Forum, Inc. March 2019 910

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Table 151. VM Flags Register

The VM IP register is used as an instruction pointer and holds the address of the currently executing EBC
instruction. The virtual machine will update the IP to the address of the next instruction on completion of
the current instruction, and will continue execution from the address indicated in IP. The IP register can
be moved into any general-purpose register (R0-R7). Data manipulation and data movement instructions
can then be used to manipulate the value. The only instructions that may modify the IP are the JMP,
CALL, and RET instructions. Since the instruction set is designed to use words as the minimum
instruction entity, the low order bit (bit 0) of IP is always cleared to 0. If a JMP, CALL, or RET instruction
causes bit 0 of IP to be set to 1, then an alignment exception occurs.

22.4 Natural Indexing

The natural indexing mechanism is the critical functionality that enables EBC to be executed unchanged
on 32- or 64-bit systems. Natural indexing is used to specify the offset of data relative to a base address.
However, rather than specifying the offset as a fixed number of bytes, the offset is encoded in a form that
specifies the actual offset in two parts: a constant offset, and an offset specified as a number of natural
units (where one natural unit = sizeof (VOID *)). These two values are used to compute the actual offset
to data at runtime. When the VM decodes an index during execution, the resultant offset is computed
based on the natural processor size. The encoded indexes themselves may be 16, 32, or 64 bits in size.
Table 152 describes the fields in a natural index encoding.

Table 152. Index Encoding

As shown in Table 152, for a given encoded index, the most significant bit (bit N) specifies the sign of the
resultant offset after it has been calculated. The sign bit is followed by three bits (N-3..N-1) that are used
to compute the width of the natural units field (n). The value (w) from this field is multiplied by the index
size in bytes to determine the actual width (A) of the natural units field (n). Once the width of the natural
units field has been determined, then the natural units (n) and constant units (c) can be extracted. The
offset is then calculated at runtime according to the following equation:

Offset = (c + n * (sizeof (VOID *))) * sign

Bit Flag Description

0 C Condition code. Set to 1 if the result of the last compare was true, or set
to 0 if the last compare was false. Used by conditional JMP instructions.

1 S Single-step. If set, causes the VM to generate a single-step exception
after executing each instruction. The bit is not cleared by the VM
following the exception.

2..63 - Reserved

Bit # Description

N Sign bit (sign), most significant bit

N-3..N-1 Bits assigned to natural units (w)

A..N-4 Constant units (c)

0..A-1 Natural units (n)
UEFI Forum, Inc. March 2019 911

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
The following sections describe each of these fields in more detail.

22.4.1 Sign Bit

The sign bit determines the sign of the index once the offset calculation has been performed. All index
computations using “n” and “c” are done with positive numbers, and the sign bit is only used to set the
sign of the final offset computed.

22.4.2 Bits Assigned to Natural Units

This 3-bit field that is used to determine the width of the natural units field. The units vary based on the
size of the index according to Table 153. For example, for a 16-bit index, the value contained in this field
would be multiplied by 2 to get the actual width of the natural-units field.

Table 153. Index Size in Index Encoding

22.4.3 Constant

The constant is the number of bytes in the index that do not scale with processor size. When the index is
a 16-bit value, the maximum constant is 4095. This index is achieved when the bits assigned to natural
units is 0.

22.4.4 Natural Units

Natural units are used when a structure has fields that can vary with the architecture of the processor.
Fields that precipitate the use of natural units include pointers and EFI INTN and UINTN data types. The
size of one pointer or INTN/UINTN equals one natural unit. The natural units field in an index encoding is
a count of the number of natural fields whose sizes (in bytes) must be added to determine a field offset.

As an example, assume that a given EBC instruction specifies a 16-bit index of 0xA048. This breaks down
into:

• Sign bit (bit 15) = 1 (negative offset)

• Bits assigned to natural units (w, bits 14-12) = 2. Multiply by index size in bytes = 2 x 2 = 4 (A)

• c = bits 11-4 = 4

• n = bits 3-0 = 8

On a 32-bit machine, the offset is then calculated to be:

• Offset = (4 + 8 * 4) * -1 = -36

• On a 64-bit machine, the offset is calculated to be:

• Offset = (4 + 8 * 8) * -1 = -68

Index Size Units

16 bits 2 bits

32 bits 4 bits

64 bits 8 bits
UEFI Forum, Inc. March 2019 912

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.5 EBC Instruction Operands

The VM supports an EBC instruction set that performs data movement, data manipulation, branching,
and other miscellaneous operations typical of a simple processor. Most instructions operate on two
operands, and have the general form:

INSTRUCTION Operand1, Operand2

Typically, instruction operands will be one of the following:

• Direct

• Indirect

• Indirect with index

• Immediate

The following subsections explain these operands.

22.5.1 Direct Operands

When a direct operand is specified for an instruction, the data to operate upon is contained in one of the
VM general-purpose registers R0-R7. Syntactically, an example of direct operand mode could be the ADD
instruction:

ADD64 R1, R2

This form of the instruction utilizes two direct operands. For this particular instruction, the VM would
take the contents of register R2, add it to the contents of register R1, and store the result in register R1.

22.5.2 Indirect Operands

When an indirect operand is specified, a VM register contains the address of the operand data. This is
sometimes referred to as register indirect, and is indicated by prefixing the register operand with “@.”
Syntactically, an example of an indirect operand mode could be this form of the ADD instruction:

ADD32 R1, @R2

For this instruction, the VM would take the 32-bit value at the address specified in R2, add it to the
contents of register R1, and store the result in register R1.

22.5.3 Indirect with Index Operands

When an indirect with index operand is specified, the address of the operand is computed by adding the
contents of a register to a decoded natural index that is included in the instruction. Typically with indexed
addressing, the base address will be loaded in the register and an index value will be used to indicate the
offset relative to this base address. Indexed addressing takes the form

@R1 (+n,+c)

where:

• R1 is one of the general-purpose registers (R0-R7) which contains the base address

• +n is a count of the number of “natural” units offset. This portion of the total offset is
computed at runtime as (n * sizeof (VOID *))
UEFI Forum, Inc. March 2019 913

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• +c is a byte offset to add to the natural offset to resolve the total offset

The values of n and c can be either positive or negative, though they must both have the same sign. These
values get encoded in the indexes associated with EBC instructions as shown in Table 152. Indexes can be
16-, 32-, or 64-bits wide depending on the instruction. An example of indirect with index syntax would be:

ADD32 R1, @R2 (+1, +8)

This instruction would take the address in register R2, add (8 + 1 * sizeof (VOID *)), read the 32-bit value
at the address, add the contents of R1 to the value, and store the result back to R1.

22.5.4 Immediate Operands

Some instructions support an immediate operand, which is simply a value included in the instruction
encoding. The immediate value may or may not be sign extended, depending on the particular
instruction. One instruction that supports an immediate operand is MOVI. An example usage of this
instruction is:

MOVIww R1, 0x1234

This instruction moves the immediate value 0x1234 directly into VM register R1. The immediate value is
contained directly in the encoding for the MOVI instruction.

22.6 EBC Instruction Syntax

Most EBC instructions have one or more variations that modify the size of the instruction and/or the
behavior of the instruction itself. These variations will typically modify an instruction in one or more of
the following ways:

• The size of the data being operated upon

• The addressing mode for the operands

• The size of index or immediate data

• To represent these variations syntactically in this specification the following conventions are
used:

• Natural indexes are indicated with the “Index” keyword, and may take the form of “Index16,”
“Index32,” or “Index64” to indicate the size of the index value supported. Sometimes the form
Index16|32|64 is used here, which is simply a shorthand notation for
Index16|Index32|Index64. A natural index is encoded per Table 152 and is resolved at
runtime.

• Immediate values are indicated with the “Immed” keyword, and may take the form of
“Immed16,” “Immed32,” or “Immed64” to indicate the size of the immediate value supported.
The shorthand notation Immed16|32|64 is sometimes used when different size immediate
values are supported.

• Terms in brackets [] are required.

• Terms in braces { } are optional.

• Alternate terms are separated by a vertical bar |.

• The form R1 and R2 represent Operand 1 register and Operand 2 register respectfully, and can

typically be any VM general-purpose register R0-R7.
UEFI Forum, Inc. March 2019 914

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• Within descriptions of the instructions, brackets [] enclosing a register and/or index indicate
that the contents of the memory pointed to by the enclosed contents are used.

22.7 Instruction Encoding

Most EBC instructions take the form:

INSTRUCTION R1, R2 Index|Immed

For those instructions that adhere to this form, the binary encoding for the instruction will typically
consist of an opcode byte, followed by an operands byte, followed by two or more bytes of immediate or
index data. Thus the instruction stream will be:

(1 Byte Opcode) + (1 Byte Operands) + (Immediate data|Index data)

22.7.1 Instruction Opcode Byte Encoding

The first byte of an instruction is the opcode byte, and an instruction’s actual opcode value consumes 6
bits of this byte. The remaining two bits will typically be used to indicate operand sizes and/or presence
or absence of index or immediate data. Table 154 defines the bits in the opcode byte for most
instructions, and their usage.

Table 154. Opcode Byte Encoding

For those instructions that use bit 7 to indicate the presence of an index or immediate data and bit 6 to
indicate the size of the index or immediate data, if bit 7 is 0 (no immediate data), then bit 6 is ignored by
the VM. Otherwise, unless otherwise specified for a given instruction, setting unused bits in the opcode
byte results in an instruction encoding exception when the instruction is executed. Setting the modifiers
field in the opcode byte to reserved values will also result in an instruction encoding exception.

22.7.2 Instruction Operands Byte Encoding

The second byte of most encoded instructions is an operand byte, which encodes the registers for the
instruction operands and whether the operands are direct or indirect. Table 155 defines the encoding for
the operand byte for these instructions. Unless otherwise specified for a given instruction, setting unused
bits in the operand byte results in an instruction encoding exception when the instruction is executed.
Setting fields in the operand byte to reserved values will also result in an instruction encoding exception.

Table 155. Operand Byte Encoding

Bit Sym Description

6..7 Modifiers One or more of:
Index or immediate data present/absent
Operand size
Index or immediate data size

0..5 Op Instruction opcode

Bit Description

7 0 = Operand 2 is direct
1 = Operand 2 is indirect
UEFI Forum, Inc. March 2019 915

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.7.3 Index/Immediate Data Encoding

Following the operand bytes for most instructions is the instruction’s immediate data. The immediate
data is, depending on the instruction and instruction encoding, either an unsigned or signed literal value,
or an index encoded using natural encoding. In either case, the size of the immediate data is specified in
the instruction encoding.

For most instructions, the index/immediate value in the instruction stream is interpreted as a signed
immediate value if the register operand is direct. This immediate value is then added to the contents of
the register to compute the instruction operand. If the register is indirect, then the data is usually
interpreted as a natural index (see Section 22.4) and the computed index value is added to the contents
of the register to get the address of the operand.

22.8 EBC Instruction Set

The following sections describe each of the EBC instructions in detail. Information includes an assembly-
language syntax, a description of the instruction functionality, binary encoding, and any limitations or
unique behaviors of the instruction.

ADD

Syntax

ADD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Adds two signed operands and stores the result to Operand 1. The operation can be performed on either
32-bit (ADD32) or 64-bit (ADD64) operands.

Operation

Operand 1 <= Operand 1 + Operand 2

Table 156. ADD Instruction Encoding

4..6 Operand 2 register

3 0 = Operand 1 is direct
1 = Operand 1 is indirect

0..2 Operand 1 register

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0C
UEFI Forum, Inc. March 2019 916

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index and the Operand 2
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the R2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is ADD32 and Operand 1 is direct, then the result is stored back to the
Operand 1 register with the upper 32 bits cleared.

AND

Syntax

AND[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a logical AND operation on two operands and stores the result to Operand 1. The operation can
be performed on either 32-bit (AND32) or 64-bit (AND64) operands.

Operation

Operand 1 <= Operand 1 AND Operand 2

Table 157. AND Instruction Encoding

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x14
UEFI Forum, Inc. March 2019 917

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• If the instruction is AND32 and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

ASHR

Syntax

ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs an arithmetic right-shift of a signed 32-bit (ASHR32) or 64-bit (ASHR64) operand and stores the
result back to Operand 1

Operation

Operand 1 <= Operand 1 SHIFT-RIGHT Operand 2

Table 158. ASHR Instruction Encoding

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x19
UEFI Forum, Inc. March 2019 918

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• If the instruction is ASHR32, and Operand 1 is direct, then the result is stored back to the
Operand 1 register with the upper 32 bits cleared.

BREAK

Syntax

BREAK [break code]

Description

The BREAK instruction is used to perform special processing by the VM. The break code specifies the
functionality to perform.

BREAK 0 – Runaway program break. This indicates that the VM is likely executing code from cleared
memory. This results in a bad break exception.

BREAK 1 – Get virtual machine version. This instruction returns the 64-bit virtual machine revision
number in VM register R7. The encoding is shown in Table 159 and Table 160. A VM that conforms to this
version of the specification should return a version number of 0x00010000.

Table 159. VM Version Format

BREAK 3 – Debug breakpoint. Executing this instruction results in a debug break exception. If a debugger
is attached or available, then it may halt execution of the image.

BREAK 4 – System call. There are no system calls supported for use with this break code, so the VM will
ignore the instruction and continue execution at the following instruction.

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

Bits Description

63-32 Reserved = 0

31..16 VM major version

15..0 VM minor version
UEFI Forum, Inc. March 2019 919

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
BREAK 5 – Create thunk. This causes the interpreter to create a thunk for the EBC entry point whose 32-
bit IP-relative offset is stored at the 64-bit address in VM register R7. The interpreter then replaces the
contents of the memory location pointed to by R7 to point to the newly created thunk. Since all EBC IP-
relative offsets are relative to the next instruction or data object, the original offset is off by 4, so must be
incremented by 4 to get the actual address of the entry point.

BREAK 6 – Set compiler version. An EBC C compiler can insert this break instruction into an executable to
set the compiler version used to build an EBC image. When the VM executes this instruction it takes the
compiler version from register R7 and may perform version compatibility checking. The compiler version
number follows the same format as the VM version number returned by the BREAK 1 instruction.

Table 160. BREAK Instruction Encoding

Behaviors and Restrictions

• Executing an undefined BREAK code results in a bad break exception.

• Executing BREAK 0 results in a bad break exception.

CALL

Syntax

CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64

Description

The CALL instruction pushes the address of the following instruction on the stack and jumps to a
subroutine. The subroutine may be either EBC or native code, and may be to an absolute or IP-relative
address. CALL32 is used to jump directly to EBC code within a given application, whereas CALLEX is used
to jump to external code (either native or EBC), which requires thunking. Functionally, the CALL does the
following:

Byte Description

0 Opcode = 0x00

1 0 = Runaway program break
1 = Get virtual machine version
3 = Debug breakpoint
4 = System call
5 = Create thunk
6 = Set compiler version
UEFI Forum, Inc. March 2019 920

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
 R0 = R0 - 8;

 PUSH64 ReturnAddress

 if (Opcode.ImmedData64Bit) {

 if (Operands.EbcCall) {

 IP = Immed64;

 } else {

 NativeCall (Immed64);

 }

 } else {

 if (Operand1 != R0) {

 Addr = Operand1;

 } else {

 Addr = Immed32;

 }

 if (Operands.EbcCall) {

 if (Operands.RelativeAddress) {

 IP += Addr + SizeOfThisInstruction;

 } else {

 IP = Addr

 }

 } else {

 if (Operands.RelativeAddress) {

 NativeCall (IP + Addr)

 } else {

 NativeCall (Addr)

 }

 }

Operation

R0 <= R0 – 16

[R0] <= IP + SizeOfThisInstruction

IP <= IP + SizeOfThisInstruction + Operand 1 (relative CALL)

IP <= Operand 1 (absolute CALL)

Table 161. CALL Instruction Encoding

BYTE Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = CALL32 with 32-bit immediate data/index if present
1 = CALL64 with 64-bit immediate data

0..5 Opcode = 0x03
UEFI Forum, Inc. March 2019 921

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
BEHAVIOR AND RESTRICTIONS

• For the CALL32 forms, if Operand 1 is indirect, then the immediate data is interpreted as an
index, and the Operand 1 value is fetched from memory address [R1 + Index32].

• For the CALL32 forms, if Operand 1 is direct, then the immediate data is considered a signed
immediate value and is added to the Operand 1 register contents such that Operand 1 = R1 +

Immed32.

• For the CALLEX forms, the VM must fix up the stack pointer and execute a call to native code in
a manner compatible with the native code such that the callee is able to access arguments
passed on the VM stack..

• For the CALLEX forms, the value returned by the callee should be returned in R7.

• For the CALL64 forms, the Operand 1 fields are ignored.

• If Byte7:Bit6 = 1 (CALL64), then Byte1:Bit4 is assumed to be 0 (absolute address)

• For CALL32 forms, if Operand 1 register = R0, then the register operand is ignored and only the
immediate data is used in the calculation of the call address.

• Prior to the call, the VM will decrement the stack pointer R0 by 16 bytes, and store the 64-bit
return address on the stack.

• Offsets for relative calls are relative to the address of the instruction following the CALL
instruction.

CMP

Syntax

CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}

Description

The CMP instruction is used to compare Operand 1 to Operand 2. Supported comparison modes are =,
<=, >=, unsigned <=, and unsigned >=. The comparison size can be 32 bits (CMP32) or 64 bits (CMP64).
The effect of this instruction is to set or clear the condition code bit in the Flags register per the
comparison results. The operands are compared as signed values except for the CMPulte and CMPugte
forms.

1 Bit Description

6..7 Reserved = 0

5 0 = Call to EBC
1 = Call to native code

4 0 = Absolute address
1 = Relative address

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..5 Optional 32-bit index/immediate for CALL32

2..9 Required 64-bit immediate data for CALL64
UEFI Forum, Inc. March 2019 922

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

CMPeq: Flags.C <= (Operand 1 == Operand 2)

CMPlte: Flags.C <= (Operand 1 <= Operand 2)

CMPgte: Flags.C <= (Operand 1 >= Operand 2)

CMPulte: Flags.C <= (Operand 1 <= Operand 2) (unsigned)

CMPugte: Flags.C <= (Operand 1>= Operand 2) (unsigned)

Table 162. CMP Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• Only register direct is supported for Operand 1.

BYTE Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = 32-bit comparison
1 = 64-bit comparison

0..5 Opcode

0x05 = CMPeq compare equal
0x06 = CMPlte compare signed less then/equal
0x07 = CMPgte compare signed greater than/equal
0x08 = CMPulte compare unsigned less than/equal
0x09 = CMPugte compare unsigned greater than/equal

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 Reserved = 0

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 923

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
CMPI

Syntax

CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}R1 {Index16}, Immed16|Immed32

Description

Compares two operands, one of which is an immediate value, for =, <=, >=, unsigned <=, or unsigned >=,
and sets or clears the condition flag bit in the Flags register accordingly. Comparisons can be performed
on a 32-bit (CMPI32) or 64-bit (CMPI64) basis. The size of the immediate data can be either 16 bits
(CMPIw) or 32 bits (CMPId).

Operation

CMPIeq: Flags.C <= (Operand 1 == Operand 2)

CMPIlte: Flags.C <= (Operand 1 <= Operand 2)

CMPIgte: Flags.C <= (Operand 1 >= Operand 2)

CMPIulte: Flags.C <= (Operand 1 <= Operand 2)

CMPIugte: Flags.C <= (Operand 1>= Operand 2)

Table 163. CMPI Instruction Encoding

BYTE Description

0 Bit Description

7 0 = 16-bit immediate data
1 = 32-bit immediate data

6 0 = 32-bit comparison
1 = 64-bit comparison

0..5 Opcode

0x2D = CMPIeq compare equal
0x2E = CMPIlte compare signed less then/equal
0x2F = CMPIgte compare signed greater than/equal
0x30 = CMPIulte compare unsigned less than/equal
0x31 = CMPIugte compare unsigned greater than/equal

1 Bit Description

5..7 Reserved = 0

4 0 = Operand 1 index absent
1 = Operand 1 index present

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data
UEFI Forum, Inc. March 2019 924

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• The immediate data is fetched as a signed value.

• If the immediate data is smaller than the comparison size, then the immediate data is sign-
extended appropriately.

• If Operand 1 is direct, and an Operand 1 index is specified, then an instruction encoding
exception is generated.

DIV

Syntax

DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a divide operation on two signed operands and stores the result to Operand 1. The operation
can be performed on either 32-bit (DIV32) or 64-bit (DIV64) operands.

Operation

Operand 1 <= Operand 1 / Operand 2

Table 164. DIV Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered a signed value and is added to the
register contents such that Operand 2 = R2 + Immed16

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x10

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 925

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• If the instruction is DIV32 form, and Operand 1 is direct, then the upper 32 bits of the result are
set to 0 before storing to the Operand 1 register.

• A divide-by-0 exception occurs if Operand 2 = 0.

DIVU

Syntax

DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a divide operation on two unsigned operands and stores the result to Operand 1. The operation
can be performed on either 32-bit (DIVU32) or 64-bit (DIVU64) operands.

Operation

Operand 1 <= Operand 1 / Operand 2

Table 165. DIVU Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the value is
fetched from memory as an unsigned value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered an unsigned value and is added to
the Operand 2 register contents such that Operand 2 = R2 + Immed16

• For the DIVU32 form, if Operand 1 is direct then the upper 32 bits of the result are set to 0
before storing back to the Operand 1 register.

• A divide-by-0 exception occurs if Operand 2 = 0.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x11

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 926

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
EXTNDB

Syntax

EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Sign-extend a byte value and store the result to Operand 1. The byte can be signed extended to 32 bits
(EXTNDB32) or 64 bits (EXTNDB64).

Operation

Operand 1 <= (sign extended) Operand 2

Table 166. EXTNDB Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the byte
Operand 2 value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value, is
added to the signed-extended byte from the Operand 2 register, and the byte result is sign
extended to 32 or 64 bits.

• If the instruction is EXTNDB32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1A

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 927

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
EXTNDD

Syntax

EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Sign-extend a 32-bit Operand 2 value and store the result to Operand 1. The Operand 2 value can be
extended to 32 bits (EXTNDD32) or 64 bits (EXTNDD64).

Operation

Operand 1 <= (sign extended) Operand 2

Table 167. EXTNDD Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the 32-bit
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such
that Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If the instruction is EXTNDD32 and Operand 1 is direct, then the result is stored in the Operand
1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1C

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 928

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
EXTNDW

Syntax

EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Sign-extend a 16-bit Operand 2 value and store the result back to Operand 1. The value can be signed
extended to 32 bits (EXTNDW32) or 64 bits (EXTNDW64).

Operation

Operand 1 <= (sign extended) Operand 2

Table 168. EXTNDW Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the word value
is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such
that Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If the instruction is EXTNDW32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1B

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 929

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
JMP

Syntax

JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64

Description

The JMP instruction is used to conditionally or unconditionally jump to a relative or absolute address and
continue executing EBC instructions. The condition test is done using the condition bit in the VM Flags
register. The JMP64 form only supports an immediate value that can be used for either a relative or
absolute jump. The JMP32 form adds support for indirect addressing of the JMP offset or address. The
JMP is implemented as:

if (ConditionMet) {

 if (Operand.RelativeJump) {

 IP += Operand1 + SizeOfThisInstruction;

 } else {

 IP = Operand1;

 }

}

Operation

IP <= Operand 1 (absolute address)

IP <= IP + SizeOfThisInstruction + Operand 1 (relative address)

Table 169. JMP Instruction Encoding

Byte Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = JMP32
1 = JMP64

0..5 Opcode = 0x01

1 Bit Description

7 0 = Unconditional jump
1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)
1 = Jump if Flags.C is set (cs)

5 Reserved = 0

4 0 = Absolute address
1 = Relative address

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..5 Optional 32-bit immediate data/index for JMP32
UEFI Forum, Inc. March 2019 930

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• Operand 1 fields are ignored for the JMP64 forms

• If the instruction is JMP32, and Operand 1 register = R0, then the register contents are
assumed to be 0.

• If the instruction is JMP32, and Operand 1 is indirect, then the immediate data is interpreted as
an index, and the jump offset or address is fetched as a 32-bit signed value from address [R1 +

Index32]

• If the instruction is JMP32, and Operand 1 is direct, then the immediate data is considered a
signed immediate value such that Operand 1 = R1 + Immed32

• If the jump is unconditional, then Byte1:Bit6 (condition) is ignored

• If the instruction is JMP64, and Byte0:Bit7 is clear (no immediate data), then an instruction
encoding exception is generated.

• If the instruction is JMP32, and Operand 2 is indirect, then the Operand 2 value is read as a
natural value from memory address [R1 + Index32]

• An alignment check exception is generated if the jump is taken and the target address is odd.

JMP8

Syntax

JMP8{cs|cc} Immed8

Description

Conditionally or unconditionally jump to a relative offset and continue execution. The offset is a signed
one-byte offset specified in the number of words. The offset is relative to the start of the following
instruction.

Operation

IP = IP + SizeOfThisInstruction + (Immed8 * 2)

Table 170. JMP8 Instruction Encoding

2..9 64-bit immediate data for JMP64

BYTE Description

0 Bit Description

7 0 = Unconditional jump
1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)
1 = Jump if Flags.C is set (cs)

0..5 Opcode = 0x02

Byte Description
UEFI Forum, Inc. March 2019 931

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• If the jump is unconditional, then Byte0:Bit6 (condition) is ignored

LOADSP

Syntax

LOADSP [Flags], R2

Description

This instruction loads a VM dedicated register with the contents of a VM general-purpose register R0-R7.
The dedicated register is specified by its index as shown in Table 150.

Operation

Operand 1 <= R2

Table 171. LOADSP Instruction Encoding

Behaviors and Restrictions

• Attempting to load any register (Operand 1) other than the Flags register results in an
instruction encoding exception.

• Specifying a reserved dedicated register index results in an instruction encoding exception.

• If Operand 1 is the Flags register, then reserved bits in the Flags register are not modified by
this instruction.

MOD

Syntax

MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Perform a modulus on two signed 32-bit (MOD32) or 64-bit (MOD64) operands and store the result to
Operand 1.

1 Immediate data (signed word offset)

BYTE Description

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x29

1 7 Reserved

4..6 Operand 2 general purpose register

3 Reserved

0..2 Operand 1 dedicated register index
UEFI Forum, Inc. March 2019 932

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

Operand 1 <= Operand 1 MOD Operand 2

Table 172. MOD Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such
that Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If Operand 2 = 0, then a divide-by-zero exception is generated.

MODU

Syntax

MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Perform a modulus on two unsigned 32-bit (MODU32) or 64-bit (MODU64) operands and store the result
to Operand 1.

Operation

Operand 1 <= Operand 1 MOD Operand 2

Table 173. MODU Instruction Encoding

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x12

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BYTE Description
UEFI Forum, Inc. March 2019 933

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered an unsigned immediate value
such that Operand 2 = R2 + Immed16.

• If Operand 2 = 0, then a divide-by-zero exception is generated.

MOV

Syntax

MOV[b|w|d|q]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

MOVqq {@}R1 {Index64}, {@}R2 {Index64}

Description

This instruction moves data from Operand 2 to Operand 1. Both operands can be indexed, though both
indexes are the same size. In the instruction syntax for the first form, the first variable character indicates
the size of the data move, which can be 8 bits (b), 16 bits (w), 32 bits (d), or 64 bits (q). The optional
character indicates the presence and size of the index value(s), which may be 16 bits (w) or 32 bits (d).
The MOVqq instruction adds support for 64-bit indexes.

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x13

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 934

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

Operand 1 <= Operand 2

Table 174. MOV Instruction Encoding

Behaviors and Restrictions

• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

Byte Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index absent
1 = Operand 2 index present

0..5 0x1D = MOVbw opcode
0x1E = MOVww opcode
0x1F = MOVdw opcode
0x20 = MOVqw opcode
0x21 = MOVbd opcode
0x22 = MOVwd opcode
0x23 = MOVdd opcode
0x24 = MOVqd opcode
0x28 = MOVqq opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index

2..9 Optional Operand 1 64-bit index (MOVqq)

2..9/10..17 Optional Operand 2 64-bit index (MOVqq)
UEFI Forum, Inc. March 2019 935

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MOVI

Syntax

MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

Description

This instruction moves a signed immediate value to Operand 1. In the instruction syntax, the first variable
character specifies the width of the move, which may be 8 bits (b), 16 bits (w), 32-bits (d), or 64 bits (q).
The second variable character specifies the width of the immediate data, which may be 16 bits (w), 32
bits (d), or 64 bits (q).

Operation

Operand 1 <= Operand 2

Table 175. MOVI Instruction Encoding

Behaviors and Restrictions

• Specifying an index value with Operand 1 direct results in an instruction encoding exception.

• If the immediate data is smaller than the move size, then the value is sign-extended to the
width of the move.

• If Operand 1 is a register, then the value is stored to the register with bits beyond the move
size cleared.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Immediate data is 16 bits (w)
2 = Immediate data is 32 bits (d)
3 = Immediate data is 64 bits (q)

0..5 Opcode = 0x37

1 Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 0 = 8 bit (b) move
1 = 16 bit (w) move
2 = 32 bit (d) move
3 = 64 bit (q) move

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

2..9/4..11 64-bit immediate data
UEFI Forum, Inc. March 2019 936

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MOVIn

Syntax

MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

Description

This instruction moves an indexed value of form (+n,+c) to Operand 1. The index value is converted from
(+n, +c) format to a signed offset per the encoding described in Table 152. The size of the Operand 2
index data can be 16 (w), 32 (d), or 64 (q) bits.

Operation

Operand 1 <= Operand 2 (index value)

Table 176. MOVIn Instruction Encoding

Behaviors and Restrictions

• Specifying an Operand 1 index when Operand 1 is direct results in an instruction encoding
exception.

• The Operand 2 index is sign extended to the size of the move if necessary.

• If the Operand 2 index size is smaller than the move size, then the value is truncated.

• If Operand 1 is direct, then the Operand 2 value is sign extended to 64 bits and stored to the
Operand 1 register.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Operand 2 index value is 16 bits (w)
2 = Operand 2 index value is 32 bits (d)
3 = Operand 2 index value is 64 bits (q)

0..5 Opcode = 0x38

1 Bit Description

7 Reserved

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit Operand 2 index

2..5/4..7 32-bit Operand 2 index

2..9/4..11 64-bit Operand 2 index
UEFI Forum, Inc. March 2019 937

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MOVn

Syntax

MOVn{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

Description

This instruction loads an unsigned natural value from Operand 2 and stores the value to Operand 1. Both
operands can be indexed, though both operand indexes are the same size. The operand index(s) can be
16 bits (w) or 32 bits (d).

Operation

Operand1 <= (UINTN)Operand2

Table 177. MOVn Instruction Encoding

Behaviors and Restrictions

• If an index is specified for Operand 2, and Operand 2 register is direct, then the Operand 2
index value is added to the register contents such that Operand 2 = (UINTN)(R2 + Index).

• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value will be 0-extended to 64 bits on a 32-bit
machine before storing to the Operand 1 register.

BYTE Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index absent
1 = Operand 2 index present

0..5 0x32 = MOVnw opcode
0x33 = MOVnd opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index
UEFI Forum, Inc. March 2019 938

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MOVREL

Syntax

MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

Description

This instruction fetches data at an IP-relative immediate offset (Operand 2) and stores the result to
Operand 1. The offset is a signed offset relative to the following instruction. The fetched data is unsigned
and may be 16 (w), 32 (d), or 64 (q) bits in size.

Operation

Operand 1 <= [IP + SizeOfThisInstruction + Immed]

Table 178. MOVREL Instruction Encoding

Behaviors and Restrictions

• If an Operand 1 index is specified and Operand 1 is direct, then an instruction encoding
exception is generated.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Immediate data is 16 bits (w)
2 = Immediate data is 32 bits (d)
3 = Immediate data is 64 bits (q)

0..5 Opcode = 0x39

1 Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate offset

2..5/4..7 32-bit immediate offset

2..9/4..11 64-bit immediate offset
UEFI Forum, Inc. March 2019 939

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MOVsn

Syntax

MOVsn{w} {@}R1, {Index16}, {@}R2 {Index16|Immed16}

MOVsn{d} {@}R1 {Index32}, {@}R2 {Index32|Immed32}

Description

Moves a signed natural value from Operand 2 to Operand 1. Both operands can be indexed, though the
indexes are the same size. Indexes can be either 16 bits (MOVsnw) or 32 bits (MOVsnd) in size.

Operation

Operand 1 <= Operand 2

Table 179. MOVsn Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is direct, and Operand 2 index/immediate data is specified, then the immediate
value is read as a signed immediate value and is added to the contents of Operand 2 register
such that Operand 2 = R2 + Immed.

• If Operand 2 is indirect, and Operand 2 index/immediate data is specified, then the immediate
data is interpreted as an index and the Operand 2 value is fetched from memory as a signed
value at address [R2 + Index16].

BYTE Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index/immediate data absent
1 = Operand 2 index/immediate data present

0..5 0x25 = MOVsnw opcode
0x26 = MOVsnd opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index (MOVsnw)

2..3/4..5 Optional 16-bit Operand 2 index (MOVsnw)

2..5 Optional 32-bit Operand 1 index/immediate data (MOVsnd)

2..5/6..9 Optional 32-bit Operand 2 index/immediate data (MOVsnd)
UEFI Forum, Inc. March 2019 940

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value is sign-extended to 64-bits on 32-bit native
machines.

MUL

Syntax

MUL[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Perform a signed multiply of two operands and store the result back to Operand 1. The operands can be
either 32 bits (MUL32) or 64 bits (MUL64).

Operation

Operand 1 <= Operand * Operand 2

Table 180. MUL Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is MUL32, and Operand 1 is direct, then the result is stored to Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0E

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 2 immediate data/index
UEFI Forum, Inc. March 2019 941

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
MULU

Syntax

MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs an unsigned multiply of two 32-bit (MULU32) or 64-bit (MULU64) operands, and stores the
result back to Operand 1.

Operation

Operand 1 <= Operand * Operand 2

Table 181. MULU Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is MULU32 and Operand 1 is direct, then the result is written to the Operand
1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0F

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 942

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
NEG

Syntax

NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Multiply Operand 2 by negative 1, and store the result back to Operand 1. Operand 2 is a signed value
and fetched as either a 32-bit (NEG32) or 64-bit (NEG64) value.

Operation

Operand 1 <= -1 * Operand 2

Table 182. NEG Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is NEG32 and Operand 1 is direct, then the result is stored in Operand 1
register with the upper 32-bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0B

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 943

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
NOT

Syntax

NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a logical NOT operation on Operand 2, an unsigned 32-bit (NOT32) or 64-bit (NOT64) value, and
stores the result back to Operand 1.

Operation

Operand 1 <= NOT Operand 2

Table 183. NOT Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is NOT32 and Operand 1 is a register, then the result is stored in the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0A

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 944

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
OR

Syntax

OR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a bit-wise OR of two 32-bit (OR32) or 64-bit (OR64) operands, and stores the result back to
Operand 1.

Operation

Operand 1 <= Operand 1 OR Operand 2

Table 184. OR Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is OR32 and Operand 1 is direct, then the result is stored to Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x15

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 945

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
POP

Syntax

POP[32|64] {@}R1 {Index16|Immed16}

Description

This instruction pops a 32-bit (POP32) or 64-bit (POP64) value from the stack, stores the result to
Operand 1, and adjusts the stack pointer R0 accordingly.

Operation

Operand 1 <= [R0]

R0 <= R0 + 4 (POP32)

R0 <= R0 + 8 (POP64)

Table 185. POP Instruction Encoding

Behaviors and Restrictions

• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is
read as a signed value and is added to the value popped from the stack, and the result stored
to the Operand 1 register.

• If Operand 1 is indirect, then the immediate data is interpreted as an index, and the value
popped from the stack is stored to address [R1 + Index16].

• If the instruction is POP32, and Operand 1 is direct, then the popped value is sign-extended to
64 bits before storing to the Operand 1 register.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x2C

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 946

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
POPn

Syntax

POPn {@}R1 {Index16|Immed16}

Description

Read an unsigned natural value from memory pointed to by stack pointer R0, adjust the stack pointer
accordingly, and store the value back to Operand 1.

Operation

Operand 1 <= (UINTN)[R0]

R0 <= R0 + sizeof (VOID *)

Table 186. POPn Instruction Encoding

Behaviors and Restrictions

• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is
fetched as a signed value and is added to the value popped from the stack and the result is
stored back to the Operand 1 register.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the value popped from the stack is stored at [R1 + Index16].

• If Operand 1 is direct, and the instruction is executed on a 32-bit machine, then the result is
stored to the Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 Reserved = 0

0..5 Opcode = 0x36

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 947

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
PUSH

Syntax

PUSH[32|64] {@}R1 {Index16|Immed16}

Description

Adjust the stack pointer R0 and store a 32-bit (PUSH32) or 64-bit (PUSH64) Operand 1 value on the stack.

Operation

R0 <= R0 - 4 (PUSH32)

R0 <= R0 - 8 (PUSH64)

[R0] <= Operand 1

Table 187. PUSH Instruction Encoding

Behaviors and Restrictions

• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is
read as a signed value and is added to the Operand 1 register contents such that Operand 1 =
R1 + Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the pushed value is read from [R1 + Index16].

PUSHn

Syntax

PUSHn {@}R1 {Index16|Immed16}

Description

Adjust the stack pointer R0, and store a natural value on the stack.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x2B

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 948

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

R0 <= R0 - sizeof (VOID *)

[R0] <= Operand 1

Table 188. PUSHn Instruction Encoding

Behaviors and Restrictions

• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is
fetched as a signed value and is added to the Operand 1 register contents such that Operand 1
= R1 + Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the Operand 1 value pushed is fetched from [R1 + Index16].

RET

Syntax

RET

Description

This instruction fetches the return address from the stack, sets the IP to the value, adjusts the stack
pointer register R0, and continues execution at the return address. If the RET is a final return from the
EBC driver, then execution control returns to the caller, which may be EBC or native code.

Operation

IP <= [R0]

R0 <= R0 + 16

Table 189. RET Instruction Encoding

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 Reserved = 0

0..5 Opcode = 0x35

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BYTE Description
UEFI Forum, Inc. March 2019 949

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Behaviors and Restrictions

• An alignment exception will be generated if the return address is not aligned on a 16-bit
boundary.

SHL

Syntax

SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Left-shifts Operand 1 by Operand 2 bit positions and stores the result back to Operand 1. The operand
sizes may be either 32-bits (SHL32) or 64 bits (SHL64).

Operation

Operand 1 <= Operand 1 << Operand 2

Table 190. SHL Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x04

1 Reserved = 0

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x17

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 950

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SHL32, and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

SHR

Syntax

SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Right-shifts unsigned Operand 1 by Operand 2 bit positions and stores the result back to Operand 1. The
operand sizes may be either 32-bits (SHR32) or 64 bits (SHR64).

Operation

Operand 1 <= Operand 1 >> Operand 2

Table 191. SHR Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SHR32, and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x18

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 951

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
STORESP

Syntax

STORESP R1, [IP|Flags]

Description

This instruction transfers the contents of a dedicated register to a general-purpose register. See
Table 150 for the VM dedicated registers and their corresponding index values.

Operation

Operand 1 <= Operand 2

Table 192. STORESP Instruction Encoding

Behaviors and Restrictions

• Specifying an invalid dedicated register index results in an instruction encoding exception.

SUB

Syntax

SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Subtracts a 32-bit (SUB32) or 64-bit (SUB64) signed Operand 2 value from a signed Operand 1 value of
the same size, and stores the result to Operand 1.

BYTE Description

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x2A

1 7 Reserved = 0

4..6 Operand 2 dedicated register index

3 Reserved = 0

0..2 Operand 1 general purpose register
UEFI Forum, Inc. March 2019 952

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

Operand 1 <= Operand 1 - Operand 2

Table 193. SUB Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SUB32 and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

XOR

Syntax

XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description

Performs a bit-wise exclusive OR of two 32-bit (XOR32) or 64-bit (XOR64) operands, and stores the result
back to Operand 1.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0D

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 953

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Operation

Operand 1 <= Operand 1 XOR Operand 2

Table 194. XOR Instruction Encoding

Behaviors and Restrictions

• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2
value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is XOR32 and Operand1 is direct, then the result is stored to the Operand 1
register with the upper 32-bits cleared.

22.9 Runtime and Software Conventions

22.9.1 Calling Outside VM

Calls can be made to routines in other modules that are native or in another VM. It is the responsibility of
the calling VM to prepare the outgoing arguments correctly to make the call outside the VM. It is also the
responsibility of the VM to prepare the incoming arguments correctly for the call from outside the VM.
Calls outside the VM must use the CALLEX instruction.

22.9.2 Calling Inside VM

Calls inside VM can be made either directly using the CALL or CALLEX instructions. Using direct CALL
instructions is an optimization.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x16

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
UEFI Forum, Inc. March 2019 954

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.9.3 Parameter Passing

Parameters are pushed on the VM stack per the CDECL calling convention. Per this convention, the last
argument in the parameter list is pushed on the stack first, and the first argument in the parameter list is
pushed on the stack last.

All parameters are stored or accessed as natural size (using naturally sized instruction) except 64-bit
integers, which are pushed as 64-bit values. 32-bit integers are pushed as natural size (since they should
be passed as 64-bit parameter values on 64-bit machines).

22.9.4 Return Values

Return values of 8 bytes or less in size are returned in general-purpose register R7. Return values larger
than 8 bytes are not supported.

22.9.5 Binary Format

PE32+ format will be used for generating binaries for the VM. A VarBss section will be included in the
binary image. All global and static variables will be placed in this section. The size of the section will be
based on worst-case 64-bit pointers. Initialized data and pointers will also be placed in the VarBss section,
with the compiler generating code to initialize the values at runtime.

22.10 Architectural Requirements

This section provides a high level overview of the architectural requirements that are necessary to
support execution of EBC on a platform.

22.10.1 EBC Image Requirements

All EBC images will be PE32+ format. Some minor additions to the format will be required to support EBC
images. See the Microsoft Portable Executable and Common Object File Format Specification pointed to
in Appendix Q for details of this image file format.

A given EBC image must be executable on different platforms, independent of whether it is a 32- or 64-bit
processor. All EBC images should be driver implementations.

22.10.2 EBC Execution Interfacing Requirements

EBC drivers will typically be designed to execute in an (usually preboot) EFI environment. As such, EBC
drivers must be able to invoke protocols and expose protocols for use by other drivers or applications.
The following execution transitions must be supported:

• EBC calling EBC

• EBC calling native code

• Native code calling EBC

• Native code calling native code

• Returning from all the above transitions

Obviously native code calling native code is available by default, so is not discussed in this document.
UEFI Forum, Inc. March 2019 955

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
To maintain backward compatibility with existing native code, and minimize the overhead for non-EBC
drivers calling EBC protocols, all four transitions must be seamless from the application perspective.
Therefore, drivers, whether EBC or native, shall not be required to have any knowledge of whether or not
the calling code, or the code being called, is native or EBC compiled code. The onus is put on the tools and
interpreter to support this requirement.

22.10.3 Interfacing Function Parameters Requirements

To allow code execution across protocol boundaries, the interpreter must ensure that parameters passed
across execution transitions are handled in the same manner as the standard parameter passing
convention for the native processor.

22.10.4 Function Return Requirements

The interpreter must support standard function returns to resume execution to the caller of external
protocols. The details of this requirement are specific to the native processor. The called function must
not be required to have any knowledge of whether or not the caller is EBC or native code.

22.10.5 Function Return Values Requirements

The interpreter must support standard function return values from called protocols. The exact
implementation of this functionality is dependent on the native processor. This requirement applies to
return values of 64 bits or less. The called function must not be required to have any knowledge of
whether or not the caller is EBC or native code. Note that returning of structures is not supported.

22.11 EBC Interpreter Protocol

The EFI EBC protocol provides services to execute EBC images, which will typically be loaded into option
ROMs.

EFI_EBC_PROTOCOL

Summary

This protocol provides the services that allow execution of EBC images.
UEFI Forum, Inc. March 2019 956

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
GUID

#define EFI_EBC_PROTOCOL_GUID \

 {0x13ac6dd1,0x73d0,0x11d4,\

 {0xb0,0x6b,0x00,0xaa,0x00,0xbd,0x6d,0xe7}}

Protocol Interface Structure

typedef struct _EFI_EBC_PROTOCOL {

 EFI_EBC_CREATE_THUNK CreateThunk;

 EFI_EBC_UNLOAD_IMAGE UnloadImage;

 EFI_EBC_REGISTER_ICACHE_FLUSH RegisterICacheFlush;

 EFI_EBC_GET_VERSION GetVersion;
} EFI_EBC_PROTOCOL;

Parameters

CreateThunk Creates a thunk for an EBC image entry point or protocol service, and
returns a pointer to the thunk. See the CreateThunk() function
description.

UnloadImage Called when an EBC image is unloaded to allow the interpreter to
perform any cleanup associated with the image’s execution. See the
UnloadImage() function description.

RegisterICacheFlush
Called to register a callback function that the EBC interpreter can call
to flush the processor instruction cache after creating thunks. See
the RegisterICacheFlush()) function description.

GetVersion Called to get the version of the associated EBC interpreter. See the
GetVersion() function description.

Description

The EFI EBC protocol provides services to load and execute EBC images, which will typically be loaded into
option ROMs. The image loader will load the EBC image, perform standard relocations, and invoke the
CreateThunk() service to create a thunk for the EBC image’s entry point. The image can then be run
using the standard EFI start image services.

EFI_EBC_PROTOCOL.CreateThunk()

Summary

Creates a thunk for an EBC entry point, returning the address of the thunk.
UEFI Forum, Inc. March 2019 957

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EBC_CREATE_THUNK) (

 IN EFI_EBC_PROTOCOL *This,

 IN EFI_HANDLE ImageHandle,

 IN VOID *EbcEntryPoint,

 OUT VOID **Thunk
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 22.11.

ImageHandle Handle of image for which the thunk is being created.

EbcEntryPoint Address of the actual EBC entry point or protocol service the thunk
should call.

Thunk Returned pointer to a thunk created.

Description

A PE32+ EBC image, like any other PE32+ image, contains an optional header that specifies the entry
point for image execution. However for EBC images this is the entry point of EBC instructions, so is not
directly executable by the native processor. Therefore when an EBC image is loaded, the loader must call
this service to get a pointer to native code (thunk) that can be executed which will invoke the interpreter
to begin execution at the original EBC entry point.

Status Codes Returned

EFI_EBC_PROTOCOL.UnloadImage()

Summary

Called prior to unloading an EBC image from memory.

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image entry point is not 2-byte aligned.

EFI_OUT_OF_RESOURCES Memory could not be allocated for the thunk.
UEFI Forum, Inc. March 2019 958

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EBC_UNLOAD_IMAGE) (

 IN EFI_EBC_PROTOCOL *This,

 IN EFI_HANDLE ImageHandle
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 22.11.

ImageHandle Image handle of the EBC image that is being unloaded from memory.

Description

This function is called after an EBC image has exited, but before the image is actually unloaded. It is
intended to provide the interpreter with the opportunity to perform any cleanup that may be necessary
as a result of loading and executing the image.

Status Codes Returned

EFI_EBC_PROTOCOL.RegisterICacheFlush()

Summary

Registers a callback function that the EBC interpreter calls to flush the processor instruction cache
following creation of thunks.

Prototype

typedef

EFI_STATUS

(* EFI_EBC_REGISTER_ICACHE_FLUSH) (

 IN EFI_EBC_PROTOCOL *This,

 IN EBC_ICACHE_FLUSH Flush
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 22.11.

Flush Pointer to a function of type EBC_ICACH_FLUSH. See “Related
Definitions” below for a detailed description of this type.

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image handle is not recognized as belonging to an EBC image that has been
executed.
UEFI Forum, Inc. March 2019 959

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Related Definitions

typedef

EFI_STATUS

(* EBC_ICACHE_FLUSH) (

 IN EFI_PHYSICAL_ADDRESS Start,

 IN UINT64 Length
);

Start The beginning physical address to flush from the processor’s
instruction cache.

Length The number of bytes to flush from the processor’s instruction cache.

This is the prototype for the Flush callback routine. A pointer to a routine of this type is passed to the EBC
EFI_EBC_REGISTER_ICACHE_FLUSH protocol service.

Description

An EBC image’s original PE32+ entry point is not directly executable by the native processor. Therefore to
execute an EBC image, a thunk (which invokes the EBC interpreter for the image’s original entry point)
must be created for the entry point, and the thunk is executed when the EBC image is started. Since the
thunks may be created on-the-fly in memory, the processor’s instruction cache may require to be flushed
after thunks are created. The caller to this EBC service can provide a pointer to a function to flush the
instruction cache for any thunks created after the CreateThunk() service has been called. If an
instruction-cache flush callback is not provided to the interpreter, then the interpreter assumes the
system has no instruction cache, or that flushing the cache is not required following creation of thunks.

Status Codes Returned

EFI_EBC_PROTOCOL.GetVersion()

Summary

Called to get the version of the interpreter.

Prototype

typedef

EFI_STATUS

(* EFI_EBC_GET_VERSION) (

 IN EFI_EBC_PROTOCOL *This,

 OUT UINT64 *Version
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 22.11.

Version Pointer to where to store the returned version of the interpreter.

EFI_SUCCESS The function completed successfully.
UEFI Forum, Inc. March 2019 960

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
Description

This function is called to get the version of the loaded EBC interpreter. The value and format of the
returned version is identical to that returned by the EBC BREAK 1 instruction.

Status Codes Returned

22.12 EBC Tools

22.12.1 EBC C Compiler

This section describes the responsibilities of the EBC C compiler. To fully specify these responsibilities
requires that the thunking mechanisms between EBC and native code be described.

22.12.2 C Coding Convention

The EBC C compiler supports only the C programming language. There is no support for C++, inline
assembly, floating point types/operations, or C calling conventions other than CDECL.

Pointer type in C is supported only as 64-bit pointer. The code should be 64-bit pointer ready (not assign
pointers to integers and vice versa).

The compiler does not support user-defined sections through pragmas.

Global variables containing pointers that are initialized will be put in the uninitialized VarBss section and
the compiler will generate code to initialize these variables during load time. The code will be placed in
an init text section. This compiler-generated code will be executed before the actual image entry point is
executed.

22.12.3 EBC Interface Assembly Instructions

The EBC instruction set includes two forms of a CALL instruction that can be used to invoke external
protocols. Their assembly language formats are:

CALLEX Immed64

CALLEX32 {@}R1 {Immed32}

Both forms can be used to invoke external protocols at an absolute address specified by the immediate
data and/or register operand. The second form also supports jumping to code at a relative address.
When one of these instructions is executed, the interpreter is responsible for thunking arguments and
then jumping to the destination address. When the called function returns, code begins execution at the
EBC instruction following the CALL instruction. The process by which this happens is called thunking.
Later sections describe this operation in detail.

22.12.4 Stack Maintenance and Argument Passing

There are several EBC assembly instructions that directly manipulate the stack contents and stack
pointer. These instructions operate on the EBC stack, not the interpreter stack. The instructions include
the EBC PUSH, POP, PUSHn, and POPn, and all forms of the MOV instructions.

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Version pointer is NULL.
UEFI Forum, Inc. March 2019 961

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
These instructions must adjust the EBC stack pointer in the same manner as equivalent instructions of
the native instruction set. With this implementation, parameters pushed on the stack by an EBC driver
can be accessed normally for stack-based native code. If native code expects parameters in registers,
then the interpreter thunking process must transfer the arguments from EBC stack to the appropriate
processor registers. The process would need to be reversed when native code calls EBC.

22.12.5 Native to EBC Arguments Calling Convention

The calling convention for arguments passed to EBC functions follows the standard CDECL calling
convention. The arguments must be pushed as their native size. After the function arguments have been
pushed on the stack, execution is passed to the called EBC function. The overhead of thunking the
function parameters depends on the standard parameter passing convention for the host processor. The
implementation of this functionality is left to the interpreter.

22.12.6 EBC to Native Arguments Calling Convention

When EBC makes function calls via function pointers, the EBC C compiler cannot determine whether the
calls are to native code or EBC. It therefore assumes that the calls are to native code, and emits the
appropriate EBC CALLEX instructions. To be compatible with calls to native code, the calling convention
of EBC calling native code must follow the parameter passing convention of the native processor. The EBC
C compiler generates EBC instructions that push all arguments on the stack. The interpreter is then
responsible for performing the necessary thunking. The exact implementation of this functionality is left
to the interpreter.

22.12.7 EBC to EBC Arguments Calling Convention

If the EBC C compiler is able to determine that a function call is to a local function, it can emit a standard
EBC CALL instruction. In this case, the function arguments are passed as described in the other sections
of this specification.

22.12.8 Function Returns

When EBC calls an external function, the thunking process includes setting up the host processor stack or
registers such that when the called function returns, execution is passed back to the EBC at the
instruction following the call. The implementation is left to the interpreter, but it must follow the
standard function return process of the host processor. Typically this will require the interpreter to push
the return address on the stack or move it to a processor register prior to calling the external function.

22.12.9 Function Return Values

EBC function return values of 8 bytes or less are returned in VM general-purpose register R7. Returning
values larger than 8 bytes on the stack is not supported. Instead, the caller or callee must allocate
memory for the return value, and the caller can pass a pointer to the callee, or the callee can return a
pointer to the value in the standard return register R7.

If an EBC function returns to native code, then the interpreter thunking process is responsible for
transferring the contents of R7 to an appropriate location such that the caller has access to the value
using standard native code. Typically the value will be transferred to a processor register. Conversely, if a
native function returns to an EBC function, the interpreter is responsible for transferring the return value
from the native return memory or register location into VM register R7.
UEFI Forum, Inc. March 2019 962

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.12.10 Thunking

Thunking is the process by which transitions between execution of native and EBC are handled. The
major issues that must be addressed for thunking are the handling of function arguments, how the
external function is invoked, and how return values and function returns are handled. The following
sections describe the thunking process for the possible transitions.

22.12.10.1 Thunking EBC to Native Code

By definition, all external calls from within EBC are calls to native code. The EBC CALLEX instructions are
used to make these calls. A typical application for EBC calling native code would be a simple “Hello
World” driver. For a UEFI driver, the code could be written as shown below.

EFI_STATUS EfiMain (

 IN EFI_HANDLE ImageHandle,

 IN EFI_SYSTEM_TABLE *ST

)

{

ST->ConOut->OutputString(ST->ConOut, L”Hello World!”);

return EFI_SUCCESS;

}

This C code, when compiled to EBC assembly, could result in two PUSHn instructions to push the
parameters on the stack, some code to get the absolute address of the OutputString() function, then
a CALLEX instruction to jump to native code. Typical pseudo assembly code for the function call could be
something like the following:

PUSHn _HelloString

PUSHn _ConOut

MOVnw R1, _OutputString

CALLEX64R1

The interpreter is responsible for executing the PUSHn instructions to push the arguments on the EBC
stack when interpreting the PUSHn instructions. When the CALLEX instruction is encountered, it must
thunk to external native code. The exact thunking mechanism is native processor dependent. For
example, a supported 32-bit thunking implementation could simply move the system stack pointer to
point to the EBC stack, then perform a CALL to the absolute address specified in VM register R1.
However, the function calling convention for the Itanium processor family calls for the first 8 function
arguments being passed in registers. Therefore, the Itanium processor family thunking mechanism
requires the arguments to be copied from the EBC stack into processor registers. Then a CALL can be
performed to jump to the absolute address in VM register R1. Note that since the interpreter is not
aware of the number of arguments to the function being called, the maximum amount of data may be
copied from the EBC stack into processor registers.

22.12.10.2 Thunking Native Code to EBC

An EBC driver may install protocols for use by other EBC drivers, or UEFI drivers or applications. These
protocols provide the mechanism by which external native code can call EBC. Typical C code to install a
generic protocol is shown below.
UEFI Forum, Inc. March 2019 963

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
EFI_STATUS Foo(UINT32 Arg1, UINT32 Arg2);

MyProtInterface->Service1= Foo;

Status = LibInstallProtocolInterfaces (&Handle, &MyProtGUID, MyProtInterface,
NULL);

To support thunking native code to EBC, the EBC compiler resolves all EBC function pointers using one
level of indirection. In this way, the address of an EBC function actually becomes the address of a piece of
native (thunk) code that invokes the interpreter to execute the actual EBC function. As a result of this
implementation, any time the address of an EBC function is taken, the EBC C compiler must generate the
following:

• A 64-bit function pointer data object that contains the actual address of the EBC function

• EBC initialization code that is executed before the image entry point that will execute EBC
BREAK 5 instructions to create thunks for each function pointer data object

• Associated relocations for the above

So for the above code sample, the compiler must generate EBC initialization code similar to the following.
This code is executed prior to execution of the actual EBC driver’s entry point.

MOVqq R7, Foo_pointer; get address of Foo pointer

BREAK 5 ; create a thunk for the function

The BREAK instruction causes the interpreter to create native thunk code elsewhere in memory, and then
modify the memory location pointed to by R7 to point to the newly created thunk code for EBC function
Foo. From within EBC, when the address of Foo is taken, the address of the thunk is actually returned. So
for the assignment of the protocol Service1 above, the EBC C compiler will generate something like the
following:

MOVqq R7, Foo_pointer; get address of Foo function pointer

MOVqq R7, @R7 ; one level of indirection

MOVn R6, _MyProtInterface->Service1 ; get address of variable

MOVqq @R6, R7 ; address of thunk to ->Service1

22.12.10.3 Thunking EBC to EBC

EBC can call EBC via function pointers or protocols. These two mechanisms are treated identically by the
EBC C compiler, and are performed using EBC CALLEX instructions. For EBC to call EBC, the EBC being
called must have provided the address of the function. As described above, the address is actually the
address of native thunk code for the actual EBC function. Therefore, when EBC calls EBC, the interpreter
assumes native code is being called so prepares function arguments accordingly, and then makes the call.
The native thunk code assumes native code is calling EBC, so will basically “undo” the preparation of
function arguments, and then invoke the interpreter to execute the actual EBC function of interest.
UEFI Forum, Inc. March 2019 964

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.12.11 EBC Linker

New constants must be defined for use by the linker in processing EBC images. For EBC images, the linker
must set the machine type in the PE file header accordingly to indicate that the image contains EBC.

#define IMAGE_FILE_MACHINE_EBC 0x0EBC

In addition, the linker must support EBC images with of the following subsystem types as set in a PE32+
optional header:

#define IMAGE_SUBSYSTEM_EFI_APPLICATION 10

#define IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11

#define IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

For EFI EBC images and object files, the following relocation types must be supported:

// No relocations required

#define IMAGE_REL_EBC_ABSOLUTE 0x0000

// 32-bit address w/o image base

#define IMAGE_REL_EBC_ADDR32NB 0x0001

// 32-bit relative address from byte following relocs

#define IMAGE_REL_EBC_REL32 0x0002

// Section table index

#define IMAGE_REL_EBC_SECTION 0x0003

// Offset within section

#define IMAGE_REL_EBC_SECREL 0x0004

The ADDR32NB relocation is used internally to the linker when RVAs are emitted. It also is used for
version resources which probably will not be used. The REL32 relocation is for PC relative addressing on
code. The SECTION and SECREL relocations are used for debug information.

22.12.12 Image Loader

The EFI image loader is responsible for loading an executable image into memory and applying relocation
information so that an image can execute at the address in memory where it has been loaded prior to
execution of the image. For EBC images, the image loader must also invoke the interpreter protocol to
create a thunk for the image entry point and return the address of this thunk. After loading the image in
this manner, the image can be executed in the standard manner. To implement this functionality, only
minor changes will be made to EFI service EFI_BOOT_SERVICES.LoadImage(), and no changes
should be made to EFI_BOOT_SERVICES.StartImage().

After the image is unloaded, the EFI image load service must call the EBC
EFI_BOOT_SERVICES.UnloadImage() service to perform any cleanup to complete unloading of the
image. Typically this will include freeing up any memory allocated for thunks for the image during load
and execution.

22.12.13 Debug Support

The interpreter must support debugging in an EFI environment per the EFI debug support protocol.
UEFI Forum, Inc. March 2019 965

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.13 VM Exception Handling

This section lists the different types of exceptions that the VM may assert during execution of an EBC
image. If a debugger is attached to the EBC driver via the EFI debug support protocol, then the debugger
should be able to capture and identify the exception type. If a debugger is not attached, then depending
on the severity of the exception, the interpreter may do one of the following:

• Invoke the EFI ASSERT() macro, which will typically display an error message and halt the
system

• Sit in a while(1) loop to hang the system

• Ignore the exception and continue execution of the image (minor exceptions only)

It is a platform policy decision as to the action taken in response to EBC exceptions. The following
sections describe the exceptions that may be generated by the VM.

22.13.1 Divide By 0 Exception

A divide-by-0 exception can occur for the EBC instructions DIV, DIVU, MOD, and MODU.

22.13.2 Debug Break Exception

A debug break exception occurs if the VM encounters a BREAK instruction with a break code of 3.

22.13.3 Invalid Opcode Exception

An invalid opcode exception will occur if the interpreter encounters a reserved opcode during execution.

22.13.4 Stack Fault Exception

A stack fault exception can occur if the interpreter detects that function nesting within the interpreter or
system interrupts was sufficient to potentially corrupt the EBC image’s stack contents. This exception
could also occur if the EBC driver attempts to adjust the stack pointer outside the range allocated to the
driver.

22.13.5 Alignment Exception

An alignment exception can occur if the particular implementation of the interpreter does not support
unaligned accesses to data or code. It may also occur if the stack pointer or instruction pointer becomes
misaligned.

22.13.6 Instruction Encoding Exception

An instruction encoding exception can occur for the following:

• For some instructions, if an Operand 1 index is specified and Operand 1 is direct

• If an instruction encoding has reserved bits set to values other than 0

• If an instruction encoding has a field set to a reserved value.
UEFI Forum, Inc. March 2019 966

UEFI Specification, Version 2.8 EFI Byte Code Virtual Machine
22.13.7 Bad Break Exception

A bad break exception occurs if the VM encounters a BREAK instruction with a break code of 0, or any
other unrecognized or unsupported break code.

22.13.8 Undefined Exception

An undefined exception can occur for other conditions detected by the VM. The cause of such an
exception is dependent on the VM implementation, but will most likely include internal VM faults.

22.14 Option ROM Formats

The new option ROM capability is designed to be a departure from the legacy method of formatting an
option ROM. PCI local bus add-in cards are the primary targets for this design although support for future
bus types will be added as necessary. EFI EBC drivers can be stored in option ROMs or on hard drives in an
EFI system partition.

The new format defined for the UEFI specification is intended to coexist with legacy format PCI Expansion
ROM images. This provides the ability for IHVs to make a single option ROM binary that contains both
legacy and new format images at the same time. This is important for the ability to have single add-in
card SKUs that can work in a variety of systems both with and without native support for UEFI. Support
for multiple image types in this way provides a smooth migration path during the period before
widespread adoption of UEFI drivers as the primary means of support for software needed to accomplish
add-in card operation in the pre-OS boot timeframe.

22.14.1 EFI Drivers for PCI Add-in Cards

The location mechanism for UEFI drivers in PCI option ROM containers is described fully in Section 11.3.
Readers should refer to this section for complete details of the scheme and associated data structures.

22.14.2 Non-PCI Bus Support

EFI expansion ROMs are not supported on any other bus besides PCI local bus in the current revision of
the UEFI specification.

This means that support for UEFI drivers in legacy ISA add-in card ROMs is explicitly excluded.

Support for UEFI drivers to be located on add-in card type devices for future bus designs other than PCI
local bus will be added to future revisions of the UEFI specification. This support will depend upon the
specifications that govern such new bus designs with respect to the mechanisms defined for support of
driver code on devices.
UEFI Forum, Inc. March 2019 967

UEFI Specification, Version 2.8
23 - Firmware Update and Reporting

The UEFI Firmware Management Protocol provides an abstraction for device to provide firmware
management support. The base requirements for managing device firmware images include identifying
firmware image revision level and programming the image into the device.

The protocol for managing firmware provides the following services.

• Get the attributes of the current firmware image. Attributes include revision level.

• Get a copy of the current firmware image. As an example, this service could be used by a
management application to facilitate a firmware roll-back.

• Program the device with a firmware image supplied by the user.

• Label all the firmware images within a device with a single version.

When UEFI Firmware Management Protocol (FMP) instance is intended to perform the update of an
option ROM loaded from a PCI or PCI Express device, it is recommended that the FMP instance be
attached to the handle with EFI_LOADED_IMAGE_PROTOCOL for said Option ROM.

When the FMP instance is intended to update internal device firmware, or a combination of device
firmware and Option ROM, the FMP instance may instead be attached to the Controller handle of the
device. However in the case where multiple devices represented by multiple controller handles are
served by the same firmware store, only a single Controller handle should expose FMP. In all cases a
specific updatable hardware firmware store must be represented by exactly one FMP instance.

Care should be taken to ensure that the FMP instance reports current version data that accurately
represents the actual contents of the firmware store of the device exposing FMP, because in some cases
the device driver currently operating the device may have been loaded from another device or media.

23.1 Firmware Management Protocol

EFI_FIRMWARE_MANAGEMENT_PROTOCOL

Summary

Firmware Management application invokes this protocol to manage device firmware.

GUID

// {86C77A67-0B97-4633-A187-49104D0685C7}

#define EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GUID \

 { 0x86c77a67, 0xb97, 0x4633, \

 {0xa1, 0x87, 0x49, 0x10, 0x4d, 0x06, 0x85, 0xc7 }}
UEFI Forum, Inc. March 2019 968

UEFI Specification, Version 2.8 Firmware Update and Reporting
Protocol

typedef struct _EFI_FIRMWARE_MANAGEMENT_PROTOCOL {

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE_INFO GetImageInfo;

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE GetImage;

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_IMAGE SetImage;

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_CHECK_IMAGE CheckImage;

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_PACKAGE_INFO GetPackageInfo;

 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_PACKAGE_INFO SetPackageInfo;
} EFI_FIRMWARE_MANAGEMENT_PROTOCOL;

Members

GetImageInfo

Returns information about the current firmware image(s) of the device.

GetImage

Retrieves a copy of the current firmware image of the device.

SetImage

Updates the device firmware image of the device.

CheckImage

Checks if the firmware image is valid for the device.

GetPackageInfo

Returns information about the current firmware package.

SetPackageInfo

Updates information about the firmware package.

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()

Summary

Returns information about the current firmware image(s) of the device.
UEFI Forum, Inc. March 2019 969

UEFI Specification, Version 2.8 Firmware Update and Reporting
Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE_INFO) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 IN OUT UINTN *ImageInfoSize,

 IN OUT EFI_FIRMWARE_IMAGE_DESCRIPTOR *ImageInfo,

 OUT UINT32 *DescriptorVersion

 OUT UINT8 *DescriptorCount,

 OUT UINTN *DescriptorSize,

 OUT UINT32 *PackageVersion,

 OUT CHAR16 **PackageVersionName
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageInfoSize

A pointer to the size, in bytes, of the ImageInfo buffer. On input, this is the size of
the buffer allocated by the caller. On output, it is the size of the buffer returned by
the firmware if the buffer was large enough, or the size of the buffer needed to
contain the image(s) information if the buffer was too small.

ImageInfo

A pointer to the buffer in which firmware places the current image(s) information.
The information is an array of EFI_FIRMWARE_IMAGE_DESCRIPTORs. See “Related
Definitions”. May be NULL with a zero ImageInfoSize in order to determine the
size of the buffer needed.

DescriptorVersion

A pointer to the location in which firmware returns the version number associated
with the EFI_FIRMWARE_IMAGE_DESCRIPTOR. See “Related Definitions”.

DescriptorCount

A pointer to the location in which firmware returns the number of descriptors or
firmware images within this device.

DescriptorSize

A pointer to the location in which firmware returns the size, in bytes, of an individual
EFI_FIRMWARE_IMAGE_DESCRIPTOR.
UEFI Forum, Inc. March 2019 970

UEFI Specification, Version 2.8 Firmware Update and Reporting
PackageVersion

A version number that represents all the firmware images in the device. The format
is vendor specific and new version must have a greater value than the old version. If
PackageVersion is not supported, the value is 0xFFFFFFFF. A value of 0xFFFFFFFE
indicates that package version comparison is to be performed using
PackageVersionName. A value of 0xFFFFFFFD indicates that package version
update is in progress.

PackageVersionName

A pointer to a pointer to a null-terminated string representing the package version
name. The buffer is allocated by this function with AllocatePool(), and it is the
caller’s responsibility to free it with a call to FreePool().

Related Definitions

//**

// EFI_FIRMWARE_IMAGE_DESCRIPTOR

//**

typedef struct {

 UINT8 ImageIndex;

 EFI_GUID ImageTypeId;

 UINT64 ImageId;

 CHAR16 *ImageIdName;

 UINT32 Version;

 CHAR16 *VersionName;

 UINTN Size;

 UINT64 AttributesSupported;

 UINT64 AttributesSetting;

 UINT64 Compatibilities;

//Introduced with DescriptorVersion 2+

 UINT32 LowestSupportedImageVersion; \

//Introduced with DescriptorVersion 3+

 UINT32 LastAttemptVersion; 
 UINT32 LastAttemptStatus; 
 UINT64 HardwareInstance;

//Introduced with DescriptorVersion 4+

 EFI_FMP_DEP *Dependencies;

} EFI_FIRMWARE_IMAGE_DESCRIPTOR;

ImageIndex

A unique number identifying the firmware image within the device. The number is
between 1 and DescriptorCount.

ImageTypeId

A unique GUID identifying the firmware image type.

ImageId

A unique number identifying the firmware image.
UEFI Forum, Inc. March 2019 971

UEFI Specification, Version 2.8 Firmware Update and Reporting
ImageIdName

A pointer to a null-terminated string representing the firmware image name.

Version

Identifies the version of the device firmware. The format is vendor specific and new
version must have a greater value than an old version.

VersionName

A pointer to a null-terminated string representing the firmware image version name.

Size

Size of the image in bytes. If size=0, then only ImageIndex and ImageTypeId are
valid.

AttributesSupported

Image attributes that are supported by this device. See “Image Attribute Definitions”
for possible returned values of this parameter. A value of 1 indicates the attribute is
supported and the current setting value is indicated in AttributesSetting. A
value of 0 indicates the attribute is not supported and the current setting value in
AttributesSetting is meaningless.

AttributesSetting

Image attributes. See “Image Attribute Definitions” for possible returned values of
this parameter.

Compatibilities

Image compatibilities. See “Image Compatibility Definitions” for possible returned
values of this parameter.

LowestSupportedImageVersion

Describes the lowest ImageDescriptor version that the device will accept. Only
present in version 2 or higher.

LastAttemptVersion

Describes the version that was last attempted to update. If no update attempted the
value will be 0. If the update attempted was improperly formatted and no version
number was available then the value will be zero. Only present in version 3 or higher.

LastAttemptStatus

Describes the status that was last attempted to update. If no update has been
attempted the value will be LAST_ATTEMPT_STATUS_SUCCESS. See "Related
Definitions" in Section 23.4 for Last Attempt Status values. Only present in version 3
or higher.

HardwareInstance

An optional number to identify the unique hardware instance within the system for
devices that may have multiple instances (Example: a plug in pci network card). This
number must be unique within the namespace of the ImageTypeId GUID and
ImageIndex. For FMP instances that have multiple descriptors for a single
hardware instance, all descriptors must have the same HardwareInstance value.
This number must be consistent between boots and should be based on some sort of
UEFI Forum, Inc. March 2019 972

UEFI Specification, Version 2.8 Firmware Update and Reporting
hardware identified unique id (serial number, etc) whenever possible. If a hardware
based number is not available the FMP provider may use some other characteristic
such as device path, bus/dev/function, slot num, etc for generating the
HardwareInstance. For implementations that will never have more than one
instance a zero can be used. A zero means the FMP provider is not able to determine
a unique hardware instance number or a hardware instance number is not needed.
Only present in version 3 or higher.

Dependencies

A pointer to an array of FMP depex expression op-codes that are terminated by an
EFI_FMP_DEP_END op-code.

//**

// Image Attribute Definitions

//**

#define IMAGE_ATTRIBUTE_IMAGE_UPDATABLE 0x0000000000000001

#define IMAGE_ATTRIBUTE_RESET_REQUIRED 0x0000000000000002

#define IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED 0x0000000000000004

#define IMAGE_ATTRIBUTE_IN_USE 0x0000000000000008

#define IMAGE_ATTRIBUTE_UEFI_IMAGE 0x0000000000000010

#define IMAGE_ATTRIBUTE_DEPENDENCY 0x0000000000000020

The attribute IMAGE_ATTRIBUTE_DEPENDENCY indicates that there is an EFI_FIRMWARE_IMAGE_DEP
section associated with the image. See “Image Attribute – Dependency”.

//**

// Image Attribute - Dependency

//**

typedef struct {

 UINT8 Dependencies[];

} EFI_FIRMWARE_IMAGE_DEP;

Dependencies

An array of FMP depex expression op-codes that are terminated by an END op-code (see related
definitions below.)

The attribute IMAGE_ATTRIBUTE_IMAGE_UPDATABLE indicates this device supports firmware image
update.

The attribute IMAGE_ATTRIBUTE_RESET_REQUIRED indicates a reset of the device is required for the
new firmware image to take effect after a firmware update. The device is the device hosting the firmware
image.

The attribute IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED indicates authentication is required to
perform the following image operations: GetImage(), SetImage(), and CheckImage(). See “Image
Attribute – Authentication”.
UEFI Forum, Inc. March 2019 973

UEFI Specification, Version 2.8 Firmware Update and Reporting
The attribute IMAGE_ATTRIBUTE_IN_USE indicates the current state of the firmware image. This
distinguishes firmware images in a device that supports redundant images.

The attribute IMAGE_ATTRIBUTE_UEFI_IMAGE indicates that this image is an EFI compatible image.

//**

// Image Compatibility Definitions

//**

#define IMAGE_COMPATIBILITY_CHECK_SUPPORTED 0x0000000000000001

Values from 0x0000000000000002 thru 0x000000000000FFFF are reserved for future assignments.

Values from 0x0000000000010000 thru 0xFFFFFFFFFFFFFFFF are used by firmware vendor for
compatibility check.

//**

// Descriptor Version exposed by GetImageInfo() function

//**

#define EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 3

//**

// Image Attribute – Authentication Required

//**

typedef struct {

 UINT64 MonotonicCount;

 WIN_CERTIFICATE_UEFI_GUID AuthInfo;
} EFI_FIRMWARE_IMAGE_AUTHENTICATION;

MonotonicCount

It is included in the signature of AuthInfo. It is used to ensure freshness/no replay.
It is incremented during each firmware image operation.

AuthInfo

Provides the authorization for the firmware image operations.

If the image has dependencies associated with it, a signature across the image data
will be created by including the Monotonic Count followed by the dependency
values. If there are no dependencies, the signature will be across the image data and
the Monotonic Count value.

Caller uses the private key that is associated with a public key that has been
provisioned via the key exchange. Because this is defined as a signature,
WIN_CERTIFICATE_UEFI_GUID.CertType must be
EFI_CERT_TYPE_PKCS7_GUID.

Description

GetImageInfo() is the only required function. GetImage(), SetImage(), CheckImage(),
GetPackageInfo(), and SetPackageInfo() shall return EFI_UNSUPPORTED if not supported by the
driver.
UEFI Forum, Inc. March 2019 974

UEFI Specification, Version 2.8 Firmware Update and Reporting
A package can have one to many firmware images. The firmware images can have the same version
naming or different version naming. PackageVersion may be used as the representative version for all
the firmware images. PackageVersion can be obtained from GetPackageInfo().
PackageVersion is also available in GetImageInfo() as GetPackageInfo() is optional. It also
ensures the package version is in sync with the versions of the images within the package by returning
the package version and image version(s) in a single function call.

The value of ImageTypeID is implementation specific. This feature facilitates vendor to target a single
firmware release to cover multiple products within a product family. As an example, a vendor has an
initial product A and then later developed a product B that is of the same product family. Product A and
product B will have the same ImageTypeID to indicate firmware compatibility between the two
products.

To determine image attributes, software must use both AttributesSupported and
AttributesSetting. An attribute setting in AttributesSetting is meaningless if the
corresponding attribute is not supported in AttributesSupported.

Compatibilities are used to ensure the targeted firmware image supports the current hardware

configuration. Compatibilities are set based on the current hardware configuration and firmware update
policy should match the current settings to those supported by the new firmware image, and only permits update
to proceed if the new firmware image settings are equal or greater than the current hardware configuration

settings. For example, if this function returns Compatibilities= 0x0000000000070001 and the new firmware
image supports settings=0x0000000000030001, then the update policy should block the firmware update and
notify the user that updating the hardware with the new firmware image may render the hardware inoperable. This
situation usually occurs when updating the hardware with an older version of firmware.

The authentication support leverages the authentication scheme employed in variable authentication.
Please reference EFI_VARIABLE_AUTHENTICATION in the “Variable Services” section of “Services –
Runtime Services” chapter.

If IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED is supported and clear, then authentication is not
required to perform the firmware image operations. In firmware image operations, the image pointer
points to the start of the firmware image and the image size is the firmware image.

Figure 69. Firmware Image with no Authentication Support

If IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED is supported and set, then authentication is
required to perform the firmware image operations. In firmware image operations, the image pointer
points to the start of the authentication data and the image size is the size of the authentication data and
the size of the firmware image.

Firmware
Image

Image Pointer

Image Size
UEFI Forum, Inc. March 2019 975

UEFI Specification, Version 2.8 Firmware Update and Reporting
Figure 70. Firmware Image with Authentication Support

If IMAGE_ATTRIBUTE_DEPENDENCY is supported and set, then there are dependencies associated with
the image. See the Dependency Expression Instruction Set for details on the format of the dependency
op-codes and how they are to be used.

Figure 71. Firmware Image with Dependency/Authentication Support

Image Pointer

Image Size

Firmware
Image

Authentication

Firmware
Image

UEFI Forum, Inc. March 2019 976

UEFI Specification, Version 2.8 Firmware Update and Reporting
Status Codes Returned

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()

Summary

Retrieves a copy of the current firmware image of the device.

Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 IN UINT8 ImageIndex,

 IN OUT VOID *Image,

 IN OUT UINTN *ImageSize
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

EFI_SUCCESS The image information was successfully returned.

EFI_BUFFER_TOO_SMALL The ImageInfo buffer was too small. The current buffer size
needed to hold the image(s) information is returned in
ImageInfoSize.

EFI_INVALID_PARAMETER ImageInfoSize is not too small and ImageInfo is NULL.

EFI_INVALID_PARAMETER ImageInfoSize is non-zero and DescriptorVersion is
NULL.

EFI_INVALID_PARAMETER ImageInfoSize is non-zero and DescriptorCount is NULL.

EFI_INVALID_PARAMETER ImageInfoSize is non-zero and DescriptorSize is NULL.

EFI_INVALID_PARAMETER ImageInfoSize is non-zero and PackageVersion is NULL.

EFI_INVALID_PARAMETER ImageInfoSize is non-zero and PackageVersionName is
NULL.

EFI_DEVICE_ERROR Valid information could not be returned. Possible corrupted
image.
UEFI Forum, Inc. March 2019 977

UEFI Specification, Version 2.8 Firmware Update and Reporting
Image

Points to the buffer where the current image is copied to. May be NULL with a zero
ImageSize in order to determine the size of the buffer needed.

ImageSize

On entry, points to the size of the buffer pointed to by Image, in bytes. On return,
points to the length of the image, in bytes.

Related Definitions

None

Description

This function allows a copy of the current firmware image to be created and saved. The saved copy could
later been used, for example, in firmware image recovery or rollback.

Status Codes Returned

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()

Summary

Updates the firmware image of the device.

EFI_SUCCESS The current image was successfully copied to the buffer.

EFI_BUFFER_TOO_SMALL The buffer specified by ImageSize is too small to hold the
image. The current buffer size needed to hold the image is
returned in ImageSize.

EFI_INVALID_PARAMETER The ImageSize is not too small and Image is NULL

EFI_NOT_FOUND The current image is not copied to the buffer.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
UEFI Forum, Inc. March 2019 978

UEFI Specification, Version 2.8 Firmware Update and Reporting
Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_IMAGE) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 IN UINT8 ImageIndex,

 IN CONST VOID *Image,

 IN UINTN ImageSize,

 IN CONST VOID *VendorCode,

 IN EFI_FIRMWARE_MANAGEMENT_UPDATE_IMAGE_PROGRESS Progress,

 OUT CHAR16 **AbortReason
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

Image

Points to the new image.

ImageSize

Size of the new image in bytes.

VendorCode

This enables vendor to implement vendor-specific firmware image update policy.
Null indicates the caller did not specify the policy or use the default policy.

Progress

A function used by the driver to report the progress of the firmware update.

AbortReason

A pointer to a pointer to a null-terminated string providing more details for the
aborted operation. The buffer is allocated by this function with AllocatePool(),
and it is the caller’s responsibility to free it with a call to FreePool().
UEFI Forum, Inc. March 2019 979

UEFI Specification, Version 2.8 Firmware Update and Reporting
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_UPDATE_IMAGE_PROGRESS) (

 IN UINTN Completion
) ;

Completion

A value between 1 and 100 indicating the current completion progress of the
firmware update. Completion progress is reported as from 1 to 100 percent. A value
of 0 is used by the driver to indicate that progress reporting is not supported.

On EFI_SUCCESS, SetImage() continues to do the callback if supported. On NOT EFI_SUCCESS,
SetImage() discontinues the callback and completes the update and returns.

Description

This function updates the hardware with the new firmware image.

This function returns EFI_UNSUPPORTED if the firmware image is not updatable.

If the firmware image is updatable, the function should perform the following minimal validations before pro-

ceeding to do the firmware image update.

• Validate the image authentication if image has attribute

IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED. The function returns

EFI_SECURITY_VIOLATION if the validation fails.

• Validate the image is a supported image for this device. The function returns EFI_ABORTED if
the image is unsupported. The function can optionally provide more detailed information on
why the image is not a supported image.

• Validate the data from VendorCode if not null. Image validation must be performed before

VendorCode data validation. VendorCode data is ignored or considered invalid if image validation

failed. The function returns EFI_ABORTED if the data is invalid.

VendorCode enables vendor to implement vendor-specific firmware image update policy. Null if the
caller did not specify the policy or use the default policy. As an example, vendor can implement a policy
to allow an option to force a firmware image update when the abort reason is due to the new firmware
image version is older than the current firmware image version or bad image checksum. Sensitive
operations such as those wiping the entire firmware image and render the device to be non-functional
should be encoded in the image itself rather than passed with the VendorCode.

AbortReason enables vendor to have the option to provide a more detailed description of the abort reason to
the caller.
UEFI Forum, Inc. March 2019 980

UEFI Specification, Version 2.8 Firmware Update and Reporting
Status Codes Returned

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckImage()

Summary

Checks if the firmware image is valid for the device.

Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_CHECK_IMAGE) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 IN UINT8 ImageIndex,

 IN CONST VOID *Image,

 IN UINTN ImageSize,

 OUT UINT32 *ImageUpdatable
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

Image

Points to the new image.

ImageSize

Size of the new image in bytes.

ImageUpdatable

Indicates if the new image is valid for update. It also provides, if available, additional
information if the image is invalid. See “Related Definitions”.

EFI_SUCCESS The device was successfully updated with the new image.

EFI_ABORTED The operation is aborted.

EFI_INVALID_PARAMETER The Image was NULL.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
UEFI Forum, Inc. March 2019 981

UEFI Specification, Version 2.8 Firmware Update and Reporting
Related Definitions

//**

// ImageUpdatable Definitions

//**

#define IMAGE_UPDATABLE_VALID 0x0000000000000001

#define IMAGE_UPDATABLE_INVALID 0x0000000000000002

#define IMAGE_UPDATABLE_INVALID_TYPE 0x0000000000000004

#define IMAGE_UPDATABLE_INVALID_OLD 0x0000000000000008

#define IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE \ 0x0000000000000010

IMAGE_UPDATABLE_VALID indicates SetImage() will accept the new image and update the device with the

new image.The version of the new image could be higher or lower than the current image. SetImage
VendorCode is optional but can be used for vendor specific action.

IMAGE_UPDATABLE_INVALID indicates SetImage() will reject the new image. No additional information is
provided for the rejection.

IMAGE_UPDATABLE_INVALID_TYPE indicates SetImage() will reject the new image. The rejection is due to
the new image is not a firmware image recognized for this device.

IMAGE_UPDATABLE_INVALID_OLD indicates SetImage() will reject the new image. The rejection is due to
the new image version is older than the current firmware image version in the device. The device firmware update
policy does not support firmware version downgrade.

IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE indicates SetImage() will accept and update the
new image only if a correct VendorCode is provided or else image would be rejected and SetImage will
return appropriate error.

Description

This function allows firmware update application to validate the firmware image without invoking the SetIm-

age()first. Please see SetImage() for the type of image validations performed.

Status Codes Returned

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackageInfo()

Summary

Returns information about the firmware package.

EFI_SUCCESS The image was successfully checked.

EFI_INVALID_PARAMETER The Image was NULL.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
UEFI Forum, Inc. March 2019 982

UEFI Specification, Version 2.8 Firmware Update and Reporting
Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_PACKAGE_INFO) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 OUT UINT32 *PackageVersion,

 OUT CHAR16 **PackageVersionName,

 OUT UINT32 *PackageVersionNameMaxLen

 OUT UINT64 *AttributesSupported,

 OUT UINT64 *AttributesSetting
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

PackageVersion

A version number that represents all the firmware images in the device. The format
is vendor specific and new version must have a greater value than the old version. If
PackageVersion is not supported, the value is 0xFFFFFFFF. A value of 0xFFFFFFFE
indicates that package version comparison is to be performed using
PackageVersionName. A value of 0xFFFFFFFD indicates that package version
update is in progress.

PackageVersionName

A pointer to a pointer to a null-terminated string representing the package version
name. The buffer is allocated by this function with AllocatePool(), and it is the
caller’s responsibility to free it with a call to FreePool().

PackageVersionNameMaxLen

The maximum length of package version name if device supports update of package
version name. A value of 0 indicates the device does not support update of package
version name. Length is the number of Unicode characters, including the terminating
null character.

AttributesSupported

Package attributes that are supported by this device. See “Package Attribute
Definitions” for possible returned values of this parameter. A value of 1 indicates the
attribute is supported and the current setting value is indicated in
AttributesSetting. A value of 0 indicates the attribute is not supported and the
current setting value in AttributesSetting is meaningless.

AttributesSetting

Package attributes. See “Package Attribute Definitions” for possible returned values
of this parameter.
UEFI Forum, Inc. March 2019 983

UEFI Specification, Version 2.8 Firmware Update and Reporting
Related Definitions

//**

// Package Attribute Definitions

//**

#define PACKAGE_ATTRIBUTE_VERSION_UPDATABLE 0x0000000000000001

#define PACKAGE_ATTRIBUTE_RESET_REQUIRED 0x0000000000000002

#define PACKAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED 0x0000000000000004

The attribute PACKAGE_ATTRIBUTE_VERSION_UPDATABLE indicates this device supports the update of
the firmware package version.

The attribute PACKAGE_ATTRIBUTE_RESET_REQUIRED indicates a reset of the device is required for
the new package info to take effect after an update.

The attribute PACKAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED indicates authentication is
required to update the package info.

Description

This function returns package information.

Status Codes Returned

EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackageInfo()

Summary

Updates information about the firmware package.

Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_PACKAGE_INFO) (

 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,

 IN CONST VOID *Image,

 IN UINTN ImageSize,

 IN CONST VOID *VendorCode,

 IN UINT32 PackageVersion,

 IN CONST CHAR16 *PackageVersionName
) ;

Parameters

This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

EFI_SUCCESS The package information was successfully returned.

EFI_UNSUPPORTED The operation is not supported.
UEFI Forum, Inc. March 2019 984

UEFI Specification, Version 2.8 Firmware Update and Reporting
Image

Points to the authentication image. Null if authentication is not required.

ImageSize

Size of the authentication image in bytes. 0 if authentication is not required.

VendorCode

This enables vendor to implement vendor-specific firmware image update policy.
Null indicates the caller did not specify this policy or use the default policy.

PackageVersion

The new package version.

PackageVersionName

A pointer to the new null-terminated Unicode string representing the package
version name. The string length is equal to or less than the value returned in
PackageVersionNameMaxLen.

Description

This function updates package information.

This function returns EFI_UNSUPPORTED if the package information is not updatable.

VendorCode enables vendor to implement vendor-specific package information update policy. Null if the caller
did not specify this policy or use the default policy.

Status Codes Returned

23.2 Dependency Expression Instruction Set

The following topics describe each of the firmware management protocol dependency expression
(depex) opcodes in detail. Information includes a description of the instruction functionality, binary
encoding, and any limitations or unique behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches the
type EFI_GUID that is described in Chapter 2 of the UEFI 2.0 specification. These GUIDs represent the
EFI_FIRMWARE_IMAGE_DESCRIPTOR.ImageTypeId that are exposed by an
EFI_FIRMWARE_MANAGE_PROTOCOL instance. A dependency expression is a packed byte stream of
opcodes and operands. As a result, some of the GUID operands will not be aligned on natural
boundaries. Care must be taken on processor architectures that do allow unaligned accesses.

EFI_SUCCESS The device was successfully updated with the new package
information

EFI_INVALID_PARAMETER The PackageVersionName length is longer than the value
returned in PackageVersionNameMaxLen.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
UEFI Forum, Inc. March 2019 985

UEFI Specification, Version 2.8 Firmware Update and Reporting
The dependency expression is stored in a packed byte stream using postfix notation. As a dependency
expression is evaluated, the operands are pushed onto a stack. Operands are popped off the stack to
perform an operation. After the last operation is performed, the value on the top of the stack represents
the evaluation of the entire dependency expression. If a push operation causes a stack overflow, then
the entire dependency expression evaluates to FALSE. If a pop operation causes a stack underflow, then
the entire dependency expression evaluates to FALSE. Reasonable implementations of a dependency
expression evaluator should not make arbitrary assumptions about the maximum stack size it will
support. Instead, it should be designed to grow the dependency expression stack as required. In
addition, FMP images that contain dependency expressions should make an effort to keep their
dependency expressions as small as possible to help reduce the size of the FMP image.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

When the dependency expression is being evaluated and a GUID specified cannot be found, then the
result of the conditional operation evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Dependency Expression Opcode Summary

Opcode Description

0x00 Push FMP GUID (1 op-code + 16 bytes)

0x01 Push 32-bit version value

0x02 Declare NULL-terminated string (Human-readable Version)

0x03 AND – Pop 2 BOOLEAN values and Push TRUE if both are TRUE.

0x04 OR – Pop 2 BOOLEAN values and Push TRUE if either are TRUE.

0x05 NOT – Pop BOOLEAN value Push NOT of BOOLEAN value.

0x06 Push TRUE

0x07 Push FALSE

0x08 EQ – Pop 2 32-bit version values and push TRUE if equal.

0x09 GT - Pop 2 32-bit version values and push TRUE if first value is greater than
the second.

0x0A GTE - Pop 2 32-bit version values and push TRUE if first value is greater
than or equal to the second.

0x0B LT - Pop 2 32-bit version values and push TRUE if first value is less than the
second.

0x0C LTE - Pop 2 32-bit version values and push TRUE if first value is less than
or equal to the second.

0x0D END
UEFI Forum, Inc. March 2019 986

UEFI Specification, Version 2.8 Firmware Update and Reporting
PUSH_GUID

Syntax

PUSH_GUID <FMP GUID>

Description

Pushes the GUID value onto the stack. This GUID should be exposed by an
EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance. The GUID should match one of the
EFI_FIRMWARE_IMAGE_DESCRIPTOR. ImageTypeId values exposed through the GetImageInfo()
function.

Operation

1) Search through all instances of the EFI_FIRMWARE_MANAGEMENT_PROTOCOL.

a. In each instance, use the GetImageInfo() function to retrieve the ImageInfo->ImageTypeId
value and ensure it matches the GUID specified in the op-code.

b. If it doesn’t match the GUID and no other instances match either, POP all values from the stack and
PUSH FALSE onto the stack when evaluating a conditional operation involving the missing GUID.

2) Having found the matching EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance, use the
GetImageInfo() function and push the ImageInfo->Version value onto the stack.

Table 195. PUSH_GUID Instruction Encoding

Behaviors and Restrictions

None.  

PUSH_VERSION

Syntax

PUSH_VERSION <32-bit Version>

Description

Pushes the 32-bit version value to compare against onto the stack. This value will be used to compare
against Version values exposed through the GetImageInfo() function.

Byte Description

0 0x00

1..16 A 16-byte GUID that represents an ImageTypeId in an
FMP instance. The format is the same as type

EFI_GUID.
UEFI Forum, Inc. March 2019 987

UEFI Specification, Version 2.8 Firmware Update and Reporting
Table 196. PUSH_VERSION Instruction Encoding

Behaviors and Restrictions

None.

DECLARE_VERSION_NAME

Syntax

DECLARE_VERSION_NAME <NULL-terminated string>

Description

Declares an optional null-terminated version string that is the equivalent of the VersionName in the
EFI_FIRMWARE_MANAGEMENT_DESCRIPTOR. Due to the OEM/IHV-specific format of version strings,
this null-terminated string will not be used for purposes of comparison. Only the 32-bit integer values will
be used for comparisons.

Table 197. DECLARE_VERSION_NAME Instruction Encoding

Behaviors and Restrictions

None.

AND

Syntax
AND

Description

Pops two Boolean operands off the stack, performs a Boolean AND operation between the two operands,
and pushes the result back onto the stack.

Operation

Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 AND Operand2
PUSH Result

Byte Description

0 0x01

1..4 A 32-bit version to compare against.

Byte Description

0 0x02

1..n A null-terminated UNICODE string.
UEFI Forum, Inc. March 2019 988

UEFI Specification, Version 2.8 Firmware Update and Reporting
Table 198. AND Instruction Encoding

Behaviors and Restrictions

None.

OR

Syntax
OR

Description

Pops two Boolean operands off the stack, performs a Boolean OR operation between the two operands,
and pushes the result back onto the stack.

Operation

Operand1 <= POP Boolean stack element

Operand2 <= POP Boolean stack element

Result <= Operand1 OR Operand2

PUSH Result

Table 199. OR Instruction Encoding

Behaviors and Restrictions

None.

NOT

Syntax
NOT

Description

Pops a Boolean operand off the stack, performs a Boolean NOT operation on the operand, and pushes
the result back onto the stack.

Operation

Operand <= POP Boolean stack element

Result <= NOT Operand PUSH Result

Byte Description

0 0x03

Byte Description

0 0x04
UEFI Forum, Inc. March 2019 989

UEFI Specification, Version 2.8 Firmware Update and Reporting
Table 200. NOT Instruction Encoding

Behaviors and Restrictions

None.

TRUE

Syntax
TRUE

Description

Pushes a Boolean TRUE onto the stack.

Operation

PUSH TRUE

Table 201. TRUE Instruction Encoding

Behaviors and Restrictions

None.

FALSE

Syntax

FALSE

Description

Pushes a Boolean FALSE onto the stack.

Operation

PUSH FALSE

Table 202. FALSE Instruction Encoding

Behaviors and Restrictions

None. 

Byte Description

0 0x05

Byte Description

0 0x06

Byte Description

0 0x07
UEFI Forum, Inc. March 2019 990

UEFI Specification, Version 2.8 Firmware Update and Reporting
EQ

Syntax
EQ

Description

Pops two 32-bit operands off the stack, performs a Boolean equals comparison operation between the
two operands, and pushes the result back onto the stack.

Operation

Operand1 ? POP 32-bit stack element

Operand2 ? POP 32-bit stack element

Result ? Operand1 EQ Operand2

PUSH Result

Table 203. EQ Instruction Encoding

Behaviors and Restrictions

None.

GT

Syntax
GT

Description

Pops two 32-bit operands off the stack, performs a Boolean greater-than comparison operation between
the two operands, and pushes the result back onto the stack.

Operation

Operand1 <= POP 32-bit stack element

Operand2 <= POP 32-bit stack element

Result <= Operand1 GT Operand2

PUSH Result

Table 204. GT Instruction Encoding

Behaviors and Restrictions

None.

Byte Description

0 0x08

Byte Description

0 0x09
UEFI Forum, Inc. March 2019 991

UEFI Specification, Version 2.8 Firmware Update and Reporting
GTE

Syntax
GTE

Description

Pops two 32-bit operands off the stack, performs a Boolean greater-than-or-equal comparison operation
between the two operands, and pushes the result back onto the stack.

Operation

Operand1 ? POP 32-bit stack element

Operand2 ? POP 32-bit stack element

Result ? Operand1 GTE Operand2

PUSH Result

Table 205. GTE Instruction Encoding

Behaviors and Restrictions

None.

LT

Syntax
LT

Description

Pops two 32-bit operands off the stack, performs a Boolean less-than comparison operation between the
two operands, and pushes the result back onto the stack.

Operation

Operand1 ? POP 32-bit stack element

Operand2 ? POP 32-bit stack element

Result ? Operand1 LT Operand2

PUSH Result

Table 206. LT Instruction Encoding

Behaviors and Restrictions

None.

Byte Description

0 0x0A

Byte Description

0 0x0B
UEFI Forum, Inc. March 2019 992

UEFI Specification, Version 2.8 Firmware Update and Reporting
LTE

Syntax
LTE

Description

Pops two 32-bit operands off the stack, performs a Boolean less-than-or-equal comparison operation
between the two operands, and pushes the result back onto the stack.

Operation

Operand1 ? POP 32-bit stack element

Operand2 ? POP 32-bit stack element

Result ? Operand1 LTE Operand2

PUSH Result

Table 207. LTE Instruction Encoding

Behaviors and Restrictions

None.

END

Syntax

END

Description

Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation

POP Result

RETURN Result

Table 208. END Instruction Encoding

Behaviors and Restrictions

This opcode must be the last one in a dependency expression.

Byte Description

0 0x0C

Byte Description

0 0x0D
UEFI Forum, Inc. March 2019 993

UEFI Specification, Version 2.8 Firmware Update and Reporting
23.3 Delivering Capsules Containing Updates to Firmware Management Protocol

Summary

This section defines a method for delivery of a Firmware Management Protocol defined update using the
UpdateCapsule runtime API.

23.3.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

GUID

// {6DCBD5ED-E82D-4C44-BDA1-7194199AD92A}

#define EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID \

 {0x6dcbd5ed, 0xe82d, 0x4c44, \

 {0xbd, 0xa1, 0x71, 0x94, 0x19, 0x9a, 0xd9, 0x2a }}

Description

This GUID is used in the CapsuleGuid field of EFI_CAPSULE_HEADER struct within a capsule
constructed according to the definitions of section Section 8.5.3.1. Use of this GUID indicates a capsule
with body conforming to the additional structure defined in Section 23.3.2.

When delivered to platform firmware QueryCapsuleCapabilities() the capsule will be examined
according to the structure defined in Section 23.3.2 and if it is possible for the platform to process
EFI_SUCCESS will be returned.

When delivered to platform firmware UpdateCapsule() the capsule will be examined according to the
structure defined in Section 23.3.2 and if it is possible for the platform to process the update will be
processed.

By definition Firmware Management protocol services are not available in EFI runtime and depending
upon platform capabilities, EFI runtime delivery of this capsule may not be supported and may return an
error when delivered in EFI runtime with CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit defined.
However any platform supporting this capability is required to accept this form of capsule in Boot
Services, including optional use of CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit.

23.3.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE

Structure of the Capsule Body

Generic EFI Capsule Body is defined in Section 8.5.3.1. When an EFI Capsule is identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID, the internal structure of the capsule
__FIRMWARE_MANAGEMENT_CAPSULE_HEADER followed by optional EFI drivers to be loaded by the
platform and optional binary payload items to be processed and passed to Firmware Management
Protocol image update function. Each binary payload item is preceded by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER . Internal capsule structure diagram follows.
UEFI Forum, Inc. March 2019 994

UEFI Specification, Version 2.8 Firmware Update and Reporting
Figure 72. Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule()

System Memory

Capsule Body

EFI Capsule

Header
UEFI Forum, Inc. March 2019 995

UEFI Specification, Version 2.8 Firmware Update and Reporting
Figure 73. Capsule Header and Firmware Management Capsule Header

Capsule Body

EFI Capsule Header

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_HEADER

Optional Driver 1
Offset Within Body == ItemOffset[0]

Payload 1
Offset Within Body == ItemOffset[2]

Payload n
Offset Within Body == ItemOffset

[EmbeddedDriverCount + PayloadItemCount
-1]

Payload 2
Offset Within Body == ItemOffset[3]

...

Optional Driver 2
Offset Within Body == ItemOffset[1]
UEFI Forum, Inc. March 2019 996

UEFI Specification, Version 2.8 Firmware Update and Reporting
Figure 74. Firmware Management and Firmware Image Management headers

Related Definitions

#pragma pack(1)

typedef struct {

 UINT32 Version;

 UINT16 EmbeddedDriverCount;

 UINT16 PayloadItemCount;

 // UINT64 ItemOffsetList[];
} EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER;

Version

Version of the structure, initially 0x00000001.

EmbeddedDriverCount

The number of drivers included in the capsule and the number of corresponding
offsets stored in ItemOffsetList array. This field may be zero in the case where
no driver is required.

PayloadItemCount

The number of payload items included in the capsule and the number of
corresponding offsets stored in the ItemOffsetList array. This field may be zero
in the case where no binary payload object is required to accomplish the update.

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_HEADER

Driver 1

Payload 1

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_IMAGE_HEADER

Binary Update Image
Image Length = UpdateImageSize

Vendor Code Byes
Data Length = UpdateVendorCodeSize
UEFI Forum, Inc. March 2019 997

UEFI Specification, Version 2.8 Firmware Update and Reporting
ItemOffsetList

Variable length array of dimension [EmbeddedDriverCount +
PayloadItemCount] containing offsets of each of the drivers and payload items
contained within the capsule. The offsets of the items are calculated relative to the
base address of the EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER struct.
Offset may indicate structure begins on any byte boundary. Offsets in the array must
be sorted in ascending order with all drivers preceding all binary payload elements.

#pragma pack(1)

typedef struct {

 UINT32 Version;

 EFI_GUID UpdateImageTypeId;

 UINT8 UpdateImageIndex;
 UINT8 reserved_bytes[3];

 UINT32 UpdateImageSize;

 UINT32 UpdateVendorCodeSize;

 UINT64 UpdateHardwareInstance; //Introduced in v2
} EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER;

Version

Version of the structure, initially 0x00000002.

UpdateImageTypeId

Used to identify device firmware targeted by this update. This guid is matched by
system firmware against ImageTypeId field within a
EFI_FIRMWARE_IMAGE_DESCRIPTOR returned by an instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo() in the system.

UpdateImageIndex

Passed as ImageIndex in call to
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()

UpdateImageSize

Size of the binary update image which immediately follows this structure. Passed as
ImageSize to EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage(). This size
may or may not include Firmware Image Authentication information.

UpdateVendorCodeSize

Size of the VendorCode bytes which optionally immediately follow binary update
image in the capsule. Pointer to these bytes passed in VendorCode to
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage(). If
UpdateVendorCodeSize is zero, then VendorCode is null in SetImage() call.
UEFI Forum, Inc. March 2019 998

UEFI Specification, Version 2.8 Firmware Update and Reporting
UpdateHardwareInstance

The HardwareInstance to target with this update. If value is zero it means match
all HardwareInstances. This field allows update software to target only a single
device in cases where there are more than one device with the same ImageTypeId
GUID. This header is outside the signed data of the Authentication Info structure and
therefore can be modified without changing the Auth data.

Description

The EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER structure is located at the lowest offset within
the body of the capsule identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID. The structure
is variable length with the number of element offsets within of the ItemOffsetList array determined
by the count of drivers within the capsule plus the count of binary payload elements. It is expected that
drivers whose presence is indicated by non-zero EmbeddedDriverCount will be used to supply an
implementation of EFI_FIRMWARE_MANAGEMENT_PROTOCOL for devices that lack said protocol within
the image to be updated.

Each payload item contained within the capsule body is preceded by a
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER struct used to provide information required
to prepare the payload item as an image for delivery to a instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()function.

Note: [Caution] The capsule identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID uses
packed structures and structure fields may not be naturally aligned within the capsule buffer as
delivered. Drivers and binary payload elements may start on byte boundary with no padding.
Processing firmware may need to copy content elements during capsule unpacking in order to
achieve any required natural alignment.

23.3.3 Firmware Processing of the Capsule Identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

1. Capsule is presented to system firmware via call to UpdateCapsule()or using mass storage
delivery procedure of Section 8.5.5. The capsule must be constructed to consist of a single
EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER structure with the 0 or more drivers and 0
or more binary payload items. However a capsule in which driver count and payload count are
both zero is not processed.

2. Capsule is recognized by EFI_CAPSULE_HEADER member CapsuleGuid equal to
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID.
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must be 0.

3. If system is not in boot services and platform does not support persistence of capsule across
reset when initiated within EFI Runtime, EFI_OUT_OF_RESOURCES error is returned.

4. If device requires hardware reset to unlock flash write protection,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET and optionally
CAPSULE_FLAGS_INITIATE_RESET should be set to 1 in the EFI_CAPSULE_HEADER.

5. When reset is requested using CAPSULE_FLAGS_PERSIST_ACROSS_RESET, the capsule is
processed in Boot Services, before the EFI_EVENT_GROUP_READY_TO_BOOT event.

6. All scatter-gather fragmentation is removed by the platform firmware and the capsule is
processed as a contiguous buffer.
UEFI Forum, Inc. March 2019 999

UEFI Specification, Version 2.8 Firmware Update and Reporting
7. Examining EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER , if EmbeddedDriverCount is
non-zero, for each of the included drivers up to indicated count, the portion of the capsule
body starting at the offset indicated by ItemOffsetList[n] and continuing for a size
encompassing all bytes up to the next element’s offset stored in ItemOffsetList[n+1]or
the end of the capsule, will be copied to a buffer. The driver contained within the capsule body
may not be naturally aligned and the exact driver size in bytes should be respected to ensure
successful security validation. In the case where a driver is last element in the
ItemOffsetList array, the driver size may be calculated by reference to body size as
calculated from CapsuleImageSize in EFI_CAPSULE_HEADER

8. Each extracted driver is placed into a buffer and passed to LoadImage(). The driver image
passed to LoadImage() must successfully pass all image format, platform type, and security
checks including those related to UEFI secure boot, if enabled on the platform. After
LoadImage()returns the processing of the capsule is continued with next driver if present
until all drivers have been passed to LoadImage(). The driver being installed must check for
matching hardware and instantiate any required protocols during call to
EFI_IMAGE_ENTRY_POINT. In case where matching hardware is not found the driver should
exit with error. In case where capsule creator has preference as to which of several included
drivers to be made resident, later drivers in the capsule should confirm earlier driver
successfully loaded and then exit with load error.

9. After driver processing is complete the platform firmware examines PayloadItemCount, and
if zero the capsule processing is complete. Otherwise platform firmware sequentially locates
each EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER found within the capsule and
processes according to steps 10-14.

10. For all instances of EFI_FIRMWARE_MANAGEMENT_PROTOCOL in the system,
GetImageInfo() is called to return arrays of EFI_FIRMWARE_IMAGE_DESCRIPTOR
structures.

11. Find the matching FMP instance(s):

a If the EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER is version 1 or it is
version 2 with UpdateHardwareInstance set to 0, then system firmware will use
only the ImageTypeId to determine a match. For each instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL that returns a
EFI_FIRMWARE_IMAGE_DESCRIPTOR containing an ImageTypeId GUID that
matches the UpdateImageTypeId GUID within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER, the system firmware will
call SetImage() function within that instance. In some cases there may be more
than one instance of matching EFI_FIRMWARE_MANAGEMENT_PROTOCOL when
multiple matching devices are installed in the system and all instances will be
checked for GUID match and SetImage() call if match is successful.

b If the EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER is version 2 and
contains a non-zero value in the UpdateHardwareInstance field, then system
firmware will use both ImageTypeId and HardwareInstance to determine a
match. For the instance of EFI_FIRMWARE_MANAGEMENT_PROTOCOL that returns a
EFI_FIRMWARE_IMAGE_DESCRIPTOR containing an ImageTypeId GUID that
matches the UpdateImageTypeId GUID and a HardwareInstance matching the
UpdateHardwareInstance within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER, the system firmware will
UEFI Forum, Inc. March 2019 1000

UEFI Specification, Version 2.8 Firmware Update and Reporting
call the SetImage() function within that instance. There will never be more than
one instance since the ImageId must be unique.

12. In the situation where platform configuration or policy prohibits the processing of a capsule or
individual FMP payload, the error EFI_NOT_READY will be returned in capsule result variable
CapsuleStatus field. Otherwise SetImage()parameters are constructed using the
UpdateImageIndex, UpdateImageSize and UpdateVendorCodeSize fields within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER. In the case of capsule containing
multiple payloads, or a payload matching multiple FMP instances, a separate Capsule Result
Variable will be created with the results of each call to SetImage(). If any call to
SetImage() selected per above matching algorithm returns an error, the processing of
additional FMP instances or payload items in that capsule will be skipped and EFI_ABORTED
returned in Capsule Result Variable for each potential call to SetImage() that was skipped.

13. SetImage() performs any required image authentication as described in that functions
definition within this chapter.

14. Note: if multiple separate component updates including multiple ImageIndex values are
required then additional EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER
structures and image binaries are included within the capsule.

15. After all items in the capsule are processed the system is restarted by the platform firmware.
UEFI Forum, Inc. March 2019 1001

UEFI Specification, Version 2.8 Firmware Update and Reporting
23.4 EFI System Resource Table

EFI_SYSTEM_RESOURCE_TABLE

Summary

The EFI System Resource Table (ESRT) provides an optional mechanism for identifying device and system
firmware resources for the purposes of targeting firmware updates to those resources. Each entry in the
ESRT describes a device or system firmware resource that can be targeted by a firmware capsule update.
Each entry in the ESRT will also be used to report status of the last attempted update. See Section 4.6 for
description of how to publish ESRT using EFI_CONFIGURATION_TABLE. The ESRT shall be stored in
memory of type EfiBootServicesData. See Section 8.5.3 and Section 8.5.5 for details on delivery of
updates to devices listed in ESRT.

GUID

#define EFI_SYSTEM_RESOURCE_TABLE_GUID\

{ 0xb122a263, 0x3661, 0x4f68,\

 { 0x99, 0x29, 0x78, 0xf8, 0xb0, 0xd6, 0x21, 0x80 }}

Table Structure

typedef struct {

 UINT32 FwResourceCount;

 UINT32 FwResourceCountMax;

 UINT64 FwResourceVersion;

 //EFI_SYSTEM_RESOURCE_ENTRY Entries[];
} EFI_SYSTEM_RESOURCE_TABLE;

Members

FwResourceCount The number of firmware resources in the table, must not be zero.

FwResourceCountMaxThe maximum number of resource array entries that can be within
the table without reallocating the table, must not be zero.

FwResourceVersion The version of the EFI_SYSTEM_RESOURCE_ENTRY entities used in
this table. This field should be set to 1. See
EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSIO
N.

Entries Array of EFI_SYSTEM_RESOURCE_ENTRY
UEFI Forum, Inc. March 2019 1002

UEFI Specification, Version 2.8 Firmware Update and Reporting
Related Definitions

// Current Entry Version

#define EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION 1

typedef struct {

 EFI_GUID FwClass;

 UINT32 FwType;

 UINT32 FwVersion;

 UINT32 LowestSupportedFwVersion;

 UINT32 CapsuleFlags;

 UINT32 LastAttemptVersion;

 UINT32 LastAttemptStatus;
} EFI_SYSTEM_RESOURCE_ENTRY;

FwClass The firmware class field contains a GUID that identifies a firmware
component that can be updated via UpdateCapsule(). This GUID
must be unique within all entries of the ESRT.

FwType Identifies the type of firmware resource. See “Firmware Type
Definitions” below for possible values.

FwVersion The firmware version field represents the current version of the
firmware resource, value must always increase as a larger number
represents a newer version.

LowestSupportedFwVersion

The lowest firmware resource version to which a firmware resource
can be rolled back for the given system/device. Generally this is used
to protect against known and fixed security issues.

CapsuleFlags The capsule flags field contains the CapsuleGuid flags (bits 0- 15)
as defined in the EFI_CAPSULE_HEADER that will be set in the
capsule header.

LastAttemptVersionThe last attempt version field describes the last firmware version for
which an update was attempted (uses the same format as Firmware
Version).

Last Attempt Version is updated each time an UpdateCapsule() is
attempted for an ESRT entry and is preserved across reboots (non-
volatile). However, in cases where the attempt version is not
recorded due to limitations in the update process, the field shall set
to zero after a failed update. Similarly, in the case of a removable
device, this value is set to 0 in cases where the device has not been
updated since being added to the system.

LastAttemptStatus The last attempt status field describes the result of the last firmware
update attempt for the firmware resource entry.

LastAttemptStatus is updated each time an UpdateCapsule()
is attempted for an ESRT entry and is preserved across reboots (non-
volatile).
UEFI Forum, Inc. March 2019 1003

UEFI Specification, Version 2.8 Firmware Update and Reporting
If a firmware update has never been attempted or is unknown, for
example after fresh insertion of a removable device,
LastAttemptStatus must be set to Success.

//

// Firmware Type Definitions

//

#define ESRT_FW_TYPE_UNKNOWN 0x00000000

#define ESRT_FW_TYPE_SYSTEMFIRMWARE 0x00000001

#define ESRT_FW_TYPE_DEVICEFIRMWARE 0x00000002

#define ESRT_FW_TYPE_UEFIDRIVER 0x00000003

//

// Last Attempt Status Values

//

#define LAST_ATTEMPT_STATUS_SUCCESS 0x00000000

#define LAST_ATTEMPT_STATUS_ERROR_UNSUCCESSFUL 0x00000001

#define LAST_ATTEMPT_STATUS_ERROR_INSUFFICIENT_RESOURCES 0x00000002

#define LAST_ATTEMPT_STATUS_ERROR_INCORRECT_VERSION 0x00000003

#define LAST_ATTEMPT_STATUS_ERROR_INVALID_FORMAT 0x00000004

#define LAST_ATTEMPT_STATUS_ERROR_AUTH_ERROR 0x00000005

#define LAST_ATTEMPT_STATUS_ERROR_PWR_EVT_AC 0x00000006

#define LAST_ATTEMPT_STATUS_ERROR_PWR_EVT_BATT 0x00000007

#define LAST_ATTEMPT_STATUS_ERROR_UNSATISFIED_DEPENDENCIES

 0x00000008

// The LastAttemptStatus values of 0x1000 - 0x4000 are reserved for vendor
usage.

#define LAST_ATTEMPT_STATUS_ERROR_UNSUCCESSFUL_VENDOR_RANGE_MIN 0x00001000

#define LAST_ATTEMPT_STATUS_ERROR_UNSUCCESSFUL_VENDOR_RANGE_MAX 0x00004000

23.4.1 Adding and Removing Devices from the ESRT

ESRT entries must be updated by System Firmware before handoff to the Operating System under the
following conditions. Devices and systems that support hot swapping (once the OS has been loaded) will
not get their ESRT entries updated until the next reboot and execution of ESRT updating logic in the UEFI
space.

Required: System firmware is responsible for updating the
FirmwareVersion, LowestSupportedFirmwareVersion, LastAttemptVersion
and LastAttemptStatus values in the ESRT any time UpdateCapsule is called
and a firmware update attempt is made for the corresponding ESRT entry.

Required: the ESRT must be updated each time a configuration change is
detected by system firmware, such as when a device is added or removed from the
system.

Optional: all devices in the ESRT should be polled for any configuration
changes any time UpdateCapsule is called.
UEFI Forum, Inc. March 2019 1004

UEFI Specification, Version 2.8 Firmware Update and Reporting
23.4.2 ESRT and Firmware Management Protocol

Although the ESRT does not require firmware to use Firmware Management Protocol for updates it is
designed to work with and extend the capabilities of FMP. The ESRT can be used to represent system and
device firmware serviced by capsules that have an implementation specific format as well as devices that
support Firmware Management Protocol and that are serviced by capsules formatted as described in
Section 23.2, Delivering Capsules Containing Updates to Firmware Management Protocol. For system
expansion devices, the task of building ESRT table entries is to be performed by the system firmware
based upon FMP data published by the device.

23.4.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries

Firmware management Protocol descriptors define most of the information needed for an ESRT entry.
The table below helps identify which members map to which fields. Some members are dependent on
certain versions of FMP and it is left to system firmware to resolve any mappings when information is not
present in the FMP instance. FMP descriptors should only be mapped to ESRT entries if the following are
true:

• An entry with the same ImageTypeId is not already in the ESRT.

• AttributesSupported and AttributesSetting have the IMAGE_ATTRIBUTE_IN_USE
bit set.

• In the case where DescriptorCount returned by GetImageInfo() is greater than one,
firmware shall populate the ESRT according to system policy, noting however that multiple
ESRT entries with identical FwClass values are not permitted.

Table 209. ESRT and FMP Fields

ESRT Field FMP Field Comment

FwClass ImageTypeId The ImageTypeId GUID from the
Firmware Management Protocol
instance for a device is used as the
Firmware Class GUID in the ESRT.
Where there are multiple identical
devices in the system, system firmware
must create a mapping to ensure that
the ESRT FwClass GUIDs are unique and
consistent.

FwVersion Version Represents the current version of device
firmware for an FMP instance.

LowestSupported
FwVersion

LowestSupported
ImageVersion

LastAttemptVersion LastAttemptVersion To be set after the completion of a
firmware update attempt. In descriptor
v3+ only. Default value is 0.
UEFI Forum, Inc. March 2019 1005

UEFI Specification, Version 2.8 Firmware Update and Reporting
23.5 Delivering Capsule Containing JSON payload

Summary

This section defines a method for delivery of JSON payload to perform firmware configuration or
firmware update using the UpdateCapsule runtime API or using mass storage delivery.

23.5.1 EFI_JSON_CAPSULE_ ID_GUID

GUID

// {67D6F4CD-D6B8-4573-BF4A-DE5E252D61AE}
#define EFI_JSON_CAPSULE_ ID_GUID \
{0x67d6f4cd, 0xd6b8, 0x4573, \
{0xbf, 0x4a, 0xde, 0x5e, 0x25, 0x2d, 0x61, 0xae }}

Description

This GUID is used in the CapsuleGuid field of EFI_CAPSULE_HEADER struct within a capsule
constructed according to the definitions of Section 8.5.3. Use of this GUID indicates a capsule with body
conforming to the additional structure defined in Section 23.5.2.

When delivered to platform firmware QueryCapsuleCapabilities() the capsule will be examined
according to the structure defined in Section 23.5.2, and if it is possible for the platform to process that
then EFI_SUCCESS will be returned.

When delivered to platform firmware UpdateCapsule() the capsule will be examined according to the
structure defined in Section 23.5.2, and if it is possible for the platform to process that the update will be
processed.

By definition, firmware configuration and firmware update are not available in EFI runtime. Depending
on platform capabilities, EFI runtime delivery of the capsule may not be supported, and may return an
error when delivered in EFI runtime with CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit defined.
However, any platform supporting this capability is required to accept this form of capsule in Boot
Services, including optional use of the CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit.

23.5.2 Defined JSON Capsule Data Structure

Structure of the Capsule Body

A generic EFI Capsule Body is defined in Section 8.5.3. When an EFI Capsule is identified by
EFI_JSON_CAPSULE_ID_GUID, the internal structure of the capsule header is defined in this section,
see EFI_JSON_CAPSULE_HEADER. Note that if multiple JSON capsules are delivered together, each JSON
capsule should contain one EFI_CAPSULE_HEADER and one EFI_JSON_CAPSULE_HEADER separately.

LastAttemptStatus LastAttemptStatus To be set after the completion of a
firmware update attempt. In descriptor
v3+ only. Default value is SUCCESS.

ESRT Field FMP Field Comment
UEFI Forum, Inc. March 2019 1006

UEFI Specification, Version 2.8 Firmware Update and Reporting
Related Definitions

#pragma pack(1)

typedef struct {

 UINT32 Version;

 UINT32 CapsuleId;

 UINT32 PayloadLength;

 // UINT8 Payload[];

} EFI_JSON_CAPSULE_HEADER;

#pragma pack ()

Version

Version of the structure, initially 0x00000001.

CapsuleId

The unique identifier of this capsule.

PayloadLength

The length of the JSON payload immediately following this header, in bytes.

Payload

Variable length buffer containing the JSON payload that should be parsed and applied to the system. The
definition of the JSON schema used in the payload is beyond the scope of this specification.

Description

The EFI_JSON_CAPSULE_HEADER structure is located at the lowest offset within the body of the
capsule identified by EFI_JSON_CAPSULE_ID_GUID. It is expected that drivers which process the JSON
payload have the specific knowledge of the JSON schema used in the payload. The drivers should parse
the JSON payload firstly to understand whether the capsule wants to perform firmware configure or
firmware update then route the JSON payload to corresponding modules. For instance, the capsule may
be delivered to EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance to update the firmware image.

Structure of the Configuration Data

During the system boot, current configuration data or cached configuration data is reported to the EFI
System Configuration Table with EFI_JSON_CONFIG_DATA_TABLE_GUID according to the value of
EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH bit in OsIndications. The structure to
record the configuration data is defined in this section, see EFI_JSON_CAPSULE_CONFIG_DATA.

Related Definitions

#pragma pack(1)

typedef struct {

 UINT32 Version;

 UINT32 TotalLength;

 // EFI_JSON_CONFIG_DATA_ITEM ConfigDataList[];

} EFI_JSON_CAPSULE_CONFIG_DATA;

#pragma pack ()

Version
UEFI Forum, Inc. March 2019 1007

UEFI Specification, Version 2.8 Firmware Update and Reporting
Version of the structure, initially 0x00000001.

TotalLength

The total length of EFI_JSON_CAPSULE_CONFIG_DATA, in bytes.

ConfigDataList

Array of configuration data groups. Type EFI_JSON_CONFIG_DATA_ITEM is defined below.

typedef struct {

 UINT32 ConfigDataLength;

 UINT8 ConfigData[ConfigDataLength];

} EFI_JSON_CONFIG_DATA_ITEM;

ConfigDataLength

The length of the following ConfigData, in bytes.

ConfigData

Variable length buffer containing the JSON payload that describes one group of configuration data within
current system. The definition of the JSON schema used in this payload is beyond the scope of this
specification.

Description

For supporting multiple groups of configuration data, a list of EFI_JSON_CONFIG_DATA_ITEM are
included in EFI_JSON_CAPSULE_CONFIG_DATA and each item indicates one group of configuration
data. It is expected that particular drivers have the specific knowledge of the JSON schema used in the
payload so that they can describe system configuration data in JSON then install to the EFI System
Configuration Table. The drivers should check EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH
bit in OsIndications to understand whether they need collect current configuration firstly.

23.5.3 Firmware Processing of the Capsule Identified by EFI_JSON_CAPSULE_ID_GUID

1. Capsule is presented to system firmware via call to UpdateCapsule() or using mass storage
delivery procedure of Section 8.5.5. The capsule must be constructed to consist of a single
EFI_JSON_CAPSULE_HEADER structure with JSON payload follows. A capsule in which
PayloadLength is zero will not be processed.

2. Capsule is recognized by EFI_CAPSULE_HEADER member CapsuleGuid equal to
EFI_JSON_CAPSULE_ID_GUID. CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must be
0.

3. If system is not in boot services and platform does not support persistence of capsule across
reset when initiated within EFI Runtime, EFI_OUT_OF_RESOURCES error is returned.

4. If device requires hardware reset to unlock flash write protection,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET and optionally
CAPSULE_FLAGS_INITIATE_RESET should be set to 1 in the EFI_CAPSULE_HEADER.

5. When reset is requested using CAPSULE_FLAGS_PERSIST_ACROSS_RESET, the capsule is
processed in Boot Services, before the EFI_EVENT_GROUP_READY_TO_BOOT event.

6. All scatter-gather fragmentation is removed by the platform firmware and the capsule is
processed as a contiguous buffer.
UEFI Forum, Inc. March 2019 1008

UEFI Specification, Version 2.8 Firmware Update and Reporting
7. When a capsule identified by EFI_JSON_CAPSULE_ ID_GUID is received, the system firmware
shall place a pointer to the coalesced capsule in the EFI System Configuration Table with
EFI_JSON_CAPSULE_DATA_TABLE_GUID before loading any third party modules such as option
ROM. If multiple capsules identified by EFI_JSON_CAPSULE_ ID_GUID are received, the system
firmware shall place a list of pointers to the capsules, preceded by a UINTN that represents the
number of pointers, in the EFI System Configuration Table with
EFI_JSON_CAPSULE_DATA_TABLE_GUID before loading any third party modules such as option
ROM. The UINTN and each pointer must be naturally aligned.

8. The system configuration driver should check EFI System Configuration Table and parse the
JSON payload, to identify the configuration data type of JSON payload, and route the JSON
payload to corresponding modules. The corresponding capsule pointer shall be removed from
the EFI System Configuration Table and also be cleared after it is processed.

9. The processing result shall be installed to EFI System Configuration Table using the format of
EFI_CAPSULE_RESULT_VARIABLE_HEADER and EFI_CAPSULE_RESULT_VARIABLE_JSON defined
in Section 8.5.6 with EFI_JSON_CAPSULE_RESULT_TABLE_GUID. If the capsule is delivered via
mass storage device, the process result shall be recorded by using UEFI variables as described
in Section 8.5.6.
UEFI Forum, Inc. March 2019 1009

UEFI Specification, Version 2.8
24 - Network Protocols — SNP, PXE, BIS and HTTP Boot

24.1 Simple Network Protocol

This section defines the Simple Network Protocol. This protocol provides a packet level interface to a
network adapter.

EFI_SIMPLE_NETWORK_PROTOCOL

Summary

The EFI_SIMPLE_NETWORK_PROTOCOL provides services to initialize a network interface, transmit
packets, receive packets, and close a network interface.

GUID

#define EFI_SIMPLE_NETWORK_PROTOCOL_GUID \

 {0xA19832B9,0xAC25,0x11D3,\

 {0x9A,0x2D,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Revision Number

#define EFI_SIMPLE_NETWORK_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure

typedef struct _EFI_SIMPLE_NETWORK_PROTOCOL_ {

 UINT64 Revision;

 EFI_SIMPLE_NETWORK_START Start;

 EFI_SIMPLE_NETWORK_STOP Stop;

 EFI_SIMPLE_NETWORK_INITIALIZE Initialize;

 EFI_SIMPLE_NETWORK_RESET Reset;

 EFI_SIMPLE_NETWORK_SHUTDOWN Shutdown;

 EFI_SIMPLE_NETWORK_RECEIVE_FILTERS ReceiveFilters;

 EFI_SIMPLE_NETWORK_STATION_ADDRESS StationAddress;

 EFI_SIMPLE_NETWORK_STATISTICS Statistics;

 EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC MCastIpToMac;

 EFI_SIMPLE_NETWORK_NVDATA NvData;

 EFI_SIMPLE_NETWORK_GET_STATUS GetStatus;

 EFI_SIMPLE_NETWORK_TRANSMIT Transmit;

 EFI_SIMPLE_NETWORK_RECEIVE Receive;

 EFI_EVENT WaitForPacket;

 EFI_SIMPLE_NETWORK_MODE *Mode;

} EFI_SIMPLE_NETWORK_PROTOCOL;

Parameters

Revision Revision of the EFI_SIMPLE_NETWORK_PROTOCOL. All future
revisions must be backwards compatible. If a future version is not
backwards compatible it is not the same GUID.
UEFI Forum, Inc. March 2019 1010

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Start Prepares the network interface for further command operations. No
other EFI_SIMPLE_NETWORK_PROTOCOL interface functions will
operate until this call is made. See the Start() function
description.

Stop Stops further network interface command processing. No other
EFI_SIMPLE_NETWORK_PROTOCOL interface functions will operate
after this call is made until another Start() call is made. See the
Stop() function description.

Initialize Resets the network adapter and allocates the transmit and receive
buffers. See the Initialize() function description.

Reset Resets the network adapter and reinitializes it with the parameters
provided in the previous call to Initialize(). See the Reset()
function description.

Shutdown Resets the network adapter and leaves it in a state safe for another
driver to initialize. The memory buffers assigned in the Initialize()
call are released. After this call, only the Initialize() or Stop() calls
may be used. See the Shutdown() function description.

ReceiveFilters Enables and disables the receive filters for the network interface
and, if supported, manages the filtered multicast HW MAC
(Hardware Media Access Control) address list. See the
ReceiveFilters() function description.

StationAddress Modifies or resets the current station address, if supported. See the
StationAddress() function description.

Statistics Collects statistics from the network interface and allows the
statistics to be reset. See the Statistics() function description.

MCastIpToMac Maps a multicast IP address to a multicast HW MAC address. See the
MCastIPtoMAC() function description.

NvData Reads and writes the contents of the NVRAM devices attached to
the network interface. See the NvData() function description.

GetStatus Reads the current interrupt status and the list of recycled transmit
buffers from the network interface. See the GetStatus() function
description.

Transmit Places a packet in the transmit queue. See the Transmit()
function description.

Receive Retrieves a packet from the receive queue, along with the status
flags that describe the packet type. See the Receive() function
description.

WaitForPacket Event used with EFI_BOOT_SERVICES.WaitForEvent() to wait
for a packet to be received.

Mode Pointer to the EFI_SIMPLE_NETWORK_MODE data for the device.
See “Related Definitions” below.
UEFI Forum, Inc. March 2019 1011

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// EFI_SIMPLE_NETWORK_MODE

//

// Note that the fields in this data structure are read-only

// and are updated by the code that produces the

// EFI_SIMPLE_NETWORK_PROTOCOL

// functions. All these fields must be discovered

// in a protocol instance of

// EFI_DRIVER_BINDING_PROTOCOL.Start().

//***

typedef struct {

 UINT32 State;

 UINT32 HwAddressSize;

 UINT32 MediaHeaderSize;

 UINT32 MaxPacketSize;

 UINT32 NvRamSize;

 UINT32 NvRamAccessSize;

 UINT32 ReceiveFilterMask;

 UINT32 ReceiveFilterSetting;

 UINT32 MaxMCastFilterCount;

 UINT32 MCastFilterCount;

 EFI_MAC_ADDRESS MCastFilter[MAX_MCAST_FILTER_CNT];

 EFI_MAC_ADDRESS CurrentAddress;

 EFI_MAC_ADDRESS BroadcastAddress;

 EFI_MAC_ADDRESS PermanentAddress;

 UINT8 IfType;

 BOOLEAN MacAddressChangeable;

 BOOLEAN MultipleTxSupported;

 BOOLEAN MediaPresentSupported;

 BOOLEAN MediaPresent;

} EFI_SIMPLE_NETWORK_MODE;

State Reports the current state of the network interface (see
EFI_SIMPLE_NETWORK_STATE below). When an
EFI_SIMPLE_NETWORK_PROTOCOL driver initializes a network
interface, the network interface is left in the
EfiSimpleNetworkStopped state.

HwAddressSize The size, in bytes, of the network interface’s HW address.

MediaHeaderSize The size, in bytes, of the network interface’s media header.

MaxPacketSize The maximum size, in bytes, of the packets supported by the
network interface.

NvRamSize The size, in bytes, of the NVRAM device attached to the network
interface. If an NVRAM device is not attached to the network
interface, then this field will be zero. This value must be a multiple of
NvramAccessSize.
UEFI Forum, Inc. March 2019 1012

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
NvRamAccessSize The size that must be used for all NVRAM reads and writes. The start
address for NVRAM read and write operations and the total length
of those operations, must be a multiple of this value. The legal values
for this field are 0, 1, 2, 4, and 8. If the value is zero, then no NVRAM
devices are attached to the network interface.

ReceiveFilterMask The multicast receive filter settings supported by the network
interface.

ReceiveFilterSetting
The current multicast receive filter settings. See “Bit Mask Values for
ReceiveFilterSetting” below.

MaxMCastFilterCountThe maximum number of multicast address receive filters
supported by the driver. If this value is zero, then ReceiveFilters()
cannot modify the multicast address receive filters. This field may be
less than MAX_MCAST_FILTER_CNT (see below).

MCastFilterCount The current number of multicast address receive filters.

MCastFilter Array containing the addresses of the current multicast address
receive filters.

CurrentAddress The current HW MAC address for the network interface.

BroadcastAddress The current HW MAC address for broadcast packets.

PermanentAddress The permanent HW MAC address for the network interface.

IfType The interface type of the network interface. See RFC 3232, section
“Number Hardware Type.”

MacAddressChangeable 
TRUE if the HW MAC address can be changed.

MultipleTxSupported 
TRUE if the network interface can transmit more than one packet at
a time.

MediaPresentSupported
TRUE if the presence of media can be determined; otherwise FALSE.
If FALSE, MediaPresent cannot be used.

MediaPresent TRUE if media are connected to the network interface; otherwise
FALSE. This field shows the media present status as of the most
recent GetStatus() call.
UEFI Forum, Inc. March 2019 1013

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// EFI_SIMPLE_NETWORK_STATE

//***

typedef enum {

EfiSimpleNetworkStopped,

EfiSimpleNetworkStarted,

EfiSimpleNetworkInitialized,

EfiSimpleNetworkMaxState

} EFI_SIMPLE_NETWORK_STATE;

//***

// MAX_MCAST_FILTER_CNT

//***

#define MAX_MCAST_FILTER_CNT 16

//***

// Bit Mask Values for ReceiveFilterSetting.

//

// Note that all other bit values are reserved.

//***

#define EFI_SIMPLE_NETWORK_RECEIVE_UNICAST 0x01

#define EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST 0x02

#define EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST 0x04

#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS 0x08

#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST 0x10

Description

The EFI_SIMPLE_NETWORK_PROTOCOL protocol is used to initialize access to a network adapter. Once
the network adapter initializes, the EFI_SIMPLE_NETWORK_PROTOCOL protocol provides services that
allow packets to be transmitted and received. This provides a packet level interface that can then be used
by higher level drivers to produce boot services like DHCP, TFTP, and MTFTP. In addition, this protocol
can be used as a building block in a full UDP and TCP/IP implementation that can produce a wide variety
of application level network interfaces. See the Preboot Execution Environment (PXE) Specification for
more information.

Note: The underlying network hardware may only be able to access 4 GiB (32-bits) of system memory.
Any requests to transfer data to/from memory above 4 GiB with 32-bit network hardware will be
double-buffered (using intermediate buffers below 4 GiB) and will reduce performance.

Note: The same handle can have an instance of the EFI_ADAPTER_INFORMATION_PROTOCOL with a
EFI_ADAPTER_INFO_MEDIA_STATE type structure.

EFI_SIMPLE_NETWORK.Start()

Summary

Changes the state of a network interface from “stopped” to “started.”
UEFI Forum, Inc. March 2019 1014

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_START) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Description

This function starts a network interface. If the network interface successfully starts, then EFI_SUCCESS
will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.Stop()

Summary

Changes the state of a network interface from “started” to “stopped.”

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_STOP) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This

);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Description

This function stops a network interface. This call is only valid if the network interface is in the started
state. If the network interface was successfully stopped, then EFI_SUCCESS will be returned.

EFI_SUCCESS The network interface was started.

EFI_ALREADY_STARTED The network interface is already in the started state.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
UEFI Forum, Inc. March 2019 1015

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.Initialize()

Summary

Resets a network adapter and allocates the transmit and receive buffers required by the network
interface; optionally, also requests allocation of additional transmit and receive buffers.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_INITIALIZE) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN UINTN ExtraRxBufferSize OPTIONAL,

 IN UINTN ExtraTxBufferSize OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

ExtraRxBufferSize The size, in bytes, of the extra receive buffer space that the driver
should allocate for the network interface. Some network interfaces
will not be able to use the extra buffer, and the caller will not know if
it is actually being used.

ExtraTxBufferSize The size, in bytes, of the extra transmit buffer space that the driver
should allocate for the network interface. Some network interfaces
will not be able to use the extra buffer, and the caller will not know if
it is actually being used.

Description

This function allocates the transmit and receive buffers required by the network interface. If this
allocation fails, then EFI_OUT_OF_RESOURCES is returned. If the allocation succeeds and the network
interface is successfully initialized, then EFI_SUCCESS will be returned.

EFI_SUCCESS The network interface was stopped.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
UEFI Forum, Inc. March 2019 1016

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.Reset()

Summary

Resets a network adapter and reinitializes it with the parameters that were provided in the previous call
to Initialize().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_RESET) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

ExtendedVerification
Indicates that the driver may perform a more exhaustive verification
operation of the device during reset.

Description

This function resets a network adapter and reinitializes it with the parameters that were provided in the
previous call to Initialize(). The transmit and receive queues are emptied and all pending interrupts are
cleared. Receive filters, the station address, the statistics, and the multicast-IP-to-HW MAC addresses are
not reset by this call. If the network interface was successfully reset, then EFI_SUCCESS will be returned.
If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

EFI_SUCCESS The network interface was initialized.

EFI_NOT_STARTED The network interface has not been started.

EFI_OUT_OF_RESOURCES There was not enough memory for the transmit and receive buffers.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED The increased buffer size feature is not supported.
UEFI Forum, Inc. March 2019 1017

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.Shutdown()

Summary

Resets a network adapter and leaves it in a state that is safe for another driver to initialize.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_SHUTDOWN) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Description

This function releases the memory buffers assigned in the Initialize() call. Pending transmits and
receives are lost, and interrupts are cleared and disabled. After this call, only the Initialize() and Stop()
calls may be used. If the network interface was successfully shutdown, then EFI_SUCCESS will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.ReceiveFilters()

Summary

Manages the multicast receive filters of a network interface.

EFI_SUCCESS The network interface was reset.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

EFI_SUCCESS The network interface was shutdown.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.
UEFI Forum, Inc. March 2019 1018

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE_FILTERS) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN UINT32 Enable,

 IN UINT32 Disable,

 IN BOOLEAN ResetMCastFilter,

 IN UINTN MCastFilterCnt OPTIONAL,
 IN EFI_MAC_ADDRESS *MCastFilter OPTIONAL,

);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Enable A bit mask of receive filters to enable on the network interface.

Disable A bit mask of receive filters to disable on the network interface. For
backward compatibility with EFI 1.1 platforms, the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit must be set
when the ResetMCastFilter parameter is TRUE.

ResetMCastFilter Set to TRUE to reset the contents of the multicast receive filters on
the network interface to their default values.

MCastFilterCnt Number of multicast HW MAC addresses in the new MCastFilter
list. This value must be less than or equal to the MCastFilterCnt
field of EFI_SIMPLE_NETWORK_MODE. This field is optional if
ResetMCastFilter is TRUE.

MCastFilter A pointer to a list of new multicast receive filter HW MAC addresses.
This list will replace any existing multicast HW MAC address list. This
field is optional if ResetMCastFilter is TRUE.

Description

This function is used enable and disable the hardware and software receive filters for the underlying
network device.

The receive filter change is broken down into three steps:

• The filter mask bits that are set (ON) in the Enable parameter are added to the current receive
filter settings.

• The filter mask bits that are set (ON) in the Disable parameter are subtracted from the updated
receive filter settings.

• If the resulting receive filter setting is not supported by the hardware a more liberal setting is
selected.

If the same bits are set in the Enable and Disable parameters, then the bits in the Disable parameter takes
precedence.
UEFI Forum, Inc. March 2019 1019

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
If the ResetMCastFilter parameter is TRUE, then the multicast address list filter is disabled (irregardless of
what other multicast bits are set in the Enable and Disable parameters). The SNP->Mode-
>MCastFilterCount field is set to zero. The Snp->Mode->MCastFilter contents are undefined.

After enabling or disabling receive filter settings, software should verify the new settings by checking the
Snp->Mode->ReceiveFilterSettings, Snp->Mode->MCastFilterCount and Snp->Mode->MCastFilter fields.

Note: Some network drivers and/or devices will automatically promote receive filter settings if the
requested setting can not be honored. For example, if a request for four multicast addresses is made and
the underlying hardware only supports two multicast addresses the driver might set the promiscuous or
promiscuous multicast receive filters instead. The receiving software is responsible for discarding any
extra packets that get through the hardware receive filters.

Note: Note: To disable all receive filter hardware, the network driver must be Shutdown() and
Stopped(). Calling ReceiveFilters() with Disable set to Snp->Mode->ReceiveFilterSettings will make
it so no more packets are returned by the Receive() function, but the receive hardware may still be
moving packets into system memory before inspecting and discarding them. Unexpected system
errors, reboots and hangs can occur if an OS is loaded and the network devices are not
Shutdown() and Stopped().

If ResetMCastFilter is TRUE, then the multicast receive filter list on the network interface will be
reset to the default multicast receive filter list. If ResetMCastFilter is FALSE, and this network
interface allows the multicast receive filter list to be modified, then the MCastFilterCnt and
MCastFilter are used to update the current multicast receive filter list. The modified receive filter list
settings can be found in the MCastFilter field of EFI_SIMPLE_NETWORK_MODE. If the network
interface does not allow the multicast receive filter list to be modified, then EFI_INVALID_PARAMETER
will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

If the receive filter mask and multicast receive filter list have been successfully updated on the network
interface, EFI_SUCCESS will be returned.
UEFI Forum, Inc. March 2019 1020

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.StationAddress()

Summary

Modifies or resets the current station address, if supported.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_STATION_ADDRESS) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN BOOLEAN Reset,

 IN EFI_MAC_ADDRESS *New OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Reset Flag used to reset the station address to the network interface’s
permanent address.

New New station address to be used for the network interface.

EFI_SUCCESS The multicast receive filter list was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER • One or more of the following conditions is TRUE:

• This is NULL
• There are bits set in Enable that are not set in Snp->Mode-

>ReceiveFilterMask

• There are bits set in Disable that are not set in Snp->Mode-
>ReceiveFilterMask

• Multicast is being enabled (the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit is set in Enable, it is not

set in Disable, and ResetMCastFilter is FALSE) and MCastFilterCount is
zero

• Multicast is being enabled and MCastFilterCount is greater than Snp-
>Mode->MaxMCastFilterCount

• Multicast is being enabled and MCastFilter is NULL
• Multicast is being enabled and one or more of the addresses in the

MCastFilter list are not valid multicast MAC addresses

EFI_DEVICE_ERROR • One or more of the following conditions is TRUE:

• The network interface has been started but has not been initialized

• An unexpected error was returned by the underlying network driver or
device

EFI_UNSUPPORTED This function is not supported by the network interface.
UEFI Forum, Inc. March 2019 1021

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

This function modifies or resets the current station address of a network interface, if supported. If Reset
is TRUE, then the current station address is set to the network interface’s permanent address. If Reset is
FALSE, and the network interface allows its station address to be modified, then the current station
address is changed to the address specified by New. If the network interface does not allow its station
address to be modified, then EFI_INVALID_PARAMETER will be returned. If the station address is
successfully updated on the network interface, EFI_SUCCESS will be returned. If the driver has not been
initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.Statistics()

Summary

Resets or collects the statistics on a network interface.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_STATISTICS) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN BOOLEAN Reset,

 IN OUT UINTN *StatisticsSize OPTIONAL,

 OUT EFI_NETWORK_STATISTICS *StatisticsTable OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

Reset Set to TRUE to reset the statistics for the network interface.

StatisticsSize On input the size, in bytes, of StatisticsTable. On output the size, in
bytes, of the resulting table of statistics.

StatisticsTable A pointer to the EFI_NETWORK_STATISTICS structure that
contains the statistics. Type EFI_NETWORK_STATISTICS is defined in
“Related Definitions” below.

EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().

EFI_INVALID_PARAMETER The New station address was not accepted by the NIC.

EFI_INVALID_PARAMETER Reset is FALSE and New is NULL.

EFI_DEVICE_ERROR The Simple Network

 Protocol interface has not been initialized by calling Initialize().

EFI_DEVICE_ERROR An error occurred attempting to set the new station address.

EFI_UNSUPPORTED The NIC does not support changing the network interface’s station address.
UEFI Forum, Inc. March 2019 1022

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// EFI_NETWORK_STATISTICS

//

// Any statistic value that is –1 is not available

// on the device and is to be ignored.

//***

typedef struct {

 UINT64 RxTotalFrames;

 UINT64 RxGoodFrames;

 UINT64 RxUndersizeFrames;

 UINT64 RxOversizeFrames;

 UINT64 RxDroppedFrames;

 UINT64 RxUnicastFrames;

 UINT64 RxBroadcastFrames;

 UINT64 RxMulticastFrames;

 UINT64 RxCrcErrorFrames;

 UINT64 RxTotalBytes;

 UINT64 TxTotalFrames;

 UINT64 TxGoodFrames;

 UINT64 TxUndersizeFrames;

 UINT64 TxOversizeFrames;

 UINT64 TxDroppedFrames;

 UINT64 TxUnicastFrames;

 UINT64 TxBroadcastFrames;

 UINT64 TxMulticastFrames;

 UINT64 TxCrcErrorFrames;

 UINT64 TxTotalBytes;

 UINT64 Collisions;

 UINT64 UnsupportedProtocol;

 UINT64 RxDuplicatedFrames;

 UINT64 RxDecryptErrorFrames;

 UINT64 TxErrorFrames;

 UINT64 TxRetryFrames;
} EFI_NETWORK_STATISTICS;

RxTotalFrames Total number of frames received. Includes frames with errors and
dropped frames.

RxGoodFrames Number of valid frames received and copied into receive buffers.

RxUndersizeFrames Number of frames below the minimum length for the
communications device.

RxOversizeFrames Number of frames longer than the maximum length for the
communications device.

RxDroppedFrames Valid frames that were dropped because receive buffers were full.
UEFI Forum, Inc. March 2019 1023

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
RxUnicastFrames Number of valid unicast frames received and not dropped.

RxBroadcastFrames Number of valid broadcast frames received and not dropped.

RxMulticastFrames Number of valid multicast frames received and not dropped.

RxCrcErrorFrames Number of frames with CRC or alignment errors.

RxTotalBytes Total number of bytes received. Includes frames with errors and
dropped frames.

TxTotalFrames Total number of frames transmitted. Includes frames with errors and
dropped frames.

TxGoodFrames Number of valid frames transmitted and copied into receive buffers.

TxUndersizeFrames Number of frames below the minimum length for the media. This
would be less than 64 for Ethernet.

TxOversizeFrames Number of frames longer than the maximum length for the media.
This would be greater than 1500 for Ethernet.

TxDroppedFrames Valid frames that were dropped because receive buffers were full.

TxUnicastFrames Number of valid unicast frames transmitted and not dropped.

TxBroadcastFrames Number of valid broadcast frames transmitted and not dropped.

TxMulticastFrames Number of valid multicast frames transmitted and not dropped.

TxCrcErrorFrames Number of frames with CRC or alignment errors.

TxTotalBytes Total number of bytes transmitted. Includes frames with errors and
dropped frames.

Collisions Number of collisions detected on this subnet.

UnsupportedProtocolNumber of frames destined for unsupported protocol.

RxDuplicatedFramesNumber of valid frames received that were duplicated.

RxDecryptErrorFramesNumber of encrypted frames received that failed to decrypt.

TxErrorFrames Number of frames that failed to transmit after exceeding the retry
limit.

TxRetryFrames Number of frames transmitted successfully after more than one
attempt.

Description

This function resets or collects the statistics on a network interface. If the size of the statistics table
specified by StatisticsSize is not big enough for all the statistics that are collected by the network
interface, then a partial buffer of statistics is returned in StatisticsTable, StatisticsSize is set to
the size required to collect all the available statistics, and EFI_BUFFER_TOO_SMALL is returned.

If StatisticsSize is big enough for all the statistics, then StatisticsTable will be filled,
StatisticsSize will be set to the size of the returned StatisticsTable structure, and
EFI_SUCCESS is returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

If Reset is FALSE, and both StatisticsSize and StatisticsTable are NULL, then no operations
will be performed, and EFI_SUCCESS will be returned.

If Reset is TRUE, then all of the supported statistics counters on this network interface will be reset to
zero.
UEFI Forum, Inc. March 2019 1024

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.MCastIPtoMAC()

Summary

Converts a multicast IP address to a multicast HW MAC address.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 IN BOOLEAN IPv6,

 IN EFI_IP_ADDRESS *IP,

 OUT EFI_MAC_ADDRESS *MAC
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

IPv6 Set to TRUE if the multicast IP address is IPv6 [RFC 2460]. Set to
FALSE if the multicast IP address is IPv4 [RFC 791].

IP The multicast IP address that is to be converted to a multicast HW
MAC address.

MAC The multicast HW MAC address that is to be generated from IP.

Description

This function converts a multicast IP address to a multicast HW MAC address for all packet transactions. If
the mapping is accepted, then EFI_SUCCESS will be returned.

EFI_SUCCESS The requested operation succeeded.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is NULL.

The current buffer size that is needed to hold all the statistics is returned in

StatisticsSize.

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is not

NULL. The current buffer size that is needed to hold all the statistics is

returned in StatisticsSize. A partial set of statistics is returned in

StatisticsTable.

EFI_INVALID_PARAMETER StatisticsSize is NULL and StatisticsTable is not NULL.

EFI_DEVICE_ERROR The Simple Network

 Protocol interface has not been initialized by calling Initialize().

EFI_DEVICE_ERROR An error was encountered collecting statistics from the NIC.

EFI_UNSUPPORTED The NIC does not support collecting statistics from the network interface.
UEFI Forum, Inc. March 2019 1025

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SIMPLE_NETWORK.NvData()

Summary

Performs read and write operations on the NVRAM device attached to a network interface.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_NVDATA) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This

 IN BOOLEAN ReadWrite,

 IN UINTN Offset,

 IN UINTN BufferSize,

 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

ReadWrite TRUE for read operations, FALSE for write operations.

Offset Byte offset in the NVRAM device at which to start the read or write
operation. This must be a multiple of NvRamAccessSize and less
than NvRamSize. (See EFI_SIMPLE_NETWORK_MODE)

BufferSize The number of bytes to read or write from the NVRAM device. This
must also be a multiple of 2.

Buffer A pointer to the data buffer.

Description

This function performs read and write operations on the NVRAM device attached to a network interface.
If ReadWrite is TRUE, a read operation is performed. If ReadWrite is FALSE, a write operation is
performed.

EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC address.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().

EFI_INVALID_PARAMETER IP is NULL.

EFI_INVALID_PARAMETER MAC is NULL.

EFI_INVALID_PARAMETER IP does not point to a valid IPv4 or IPv6 multicast address.

EFI_DEVICE_ERROR The Simple Network

 Protocol interface has not been initialized by calling Initialize().

EFI_UNSUPPORTED IPv6 is TRUE and the implementation does not support IPv6 multicast to

MAC address conversion.
UEFI Forum, Inc. March 2019 1026

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Offset specifies the byte offset at which to start either operation. Offset must be a multiple of
NvRamAccessSize , and it must have a value between zero and NvRamSize.

BufferSize specifies the length of the read or write operation. BufferSize must also be a multiple of
NvRamAccessSize, and Offset + BufferSize must not exceed NvRamSize.

If any of the above conditions is not met, then EFI_INVALID_PARAMETER will be returned.

If all the conditions are met and the operation is “read,” the NVRAM device attached to the network
interface will be read into Buffer and EFI_SUCCESS will be returned. If this is a write operation, the
contents of Buffer will be used to update the contents of the NVRAM device attached to the network
interface and EFI_SUCCESS will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.GetStatus()

Summary

Reads the current interrupt status and recycled transmit buffer status from a network interface.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_GET_STATUS) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,

 OUT UINT32 *InterruptStatus OPTIONAL,

 OUT VOID **TxBuf OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

EFI_SUCCESS The NVRAM access was performed.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL

• The This parameter does not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure

• The Offset parameter is not a multiple of

EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

• The Offset parameter is not less than

EFI_SIMPLE_NETWORK_MODE.NvRamSize

• The BufferSize parameter is not a multiple of

EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
UEFI Forum, Inc. March 2019 1027

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
InterruptStatus A pointer to the bit mask of the currently active interrupts (see
“Related Definitions”). If this is NULL, the interrupt status will not be
read from the device. If this is not NULL, the interrupt status will be
read from the device. When the interrupt status is read, it will also
be cleared. Clearing the transmit interrupt does not empty the
recycled transmit buffer array.

TxBuf Recycled transmit buffer address. The network interface will not
transmit if its internal recycled transmit buffer array is full. Reading
the transmit buffer does not clear the transmit interrupt. If this is
NULL, then the transmit buffer status will not be read. If there are no
transmit buffers to recycle and TxBuf is not NULL, * TxBuf will be
set to NULL.

Related Definitions

//***

// Interrupt Bit Mask Settings for InterruptStatus.

// Note that all other bit values are reserved.

//***

#define EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT 0x01

#define EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT 0x02

#define EFI_SIMPLE_NETWORK_COMMAND_INTERRUPT 0x04

#define EFI_SIMPLE_NETWORK_SOFTWARE_INTERRUPT 0x08

Description

This function gets the current interrupt and recycled transmit buffer status from the network interface.
The interrupt status is returned as a bit mask in InterruptStatus. If InterruptStatus is NULL, the
interrupt status will not be read. Upon successful return of the media status, the MediaPresent field of
EFI_SIMPLE_NETWORK_MODE will be updated to reflect any change of media status.Upon successful
return of the media status, the MediaPresent field of EFI_SIMPLE_NETWORK_MODE will be updated to
reflect any change of media status. If TxBuf is not NULL, a recycled transmit buffer address will be
retrieved. If a recycled transmit buffer address is returned in TxBuf, then the buffer has been
successfully transmitted, and the status for that buffer is cleared. If the status of the network interface is
successfully collected, EFI_SUCCESS will be returned. If the driver has not been initialized,
EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.Transmit()

Summary

Places a packet in the transmit queue of a network interface.

EFI_SUCCESS The status of the network interface was retrieved.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.
UEFI Forum, Inc. March 2019 1028

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_TRANSMIT) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This

 IN UINTN HeaderSize,

 IN UINTN BufferSize,

 IN VOID *Buffer,

 IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,

 IN EFI_MAC_ADDRESS *DestAddr OPTIONAL,

 IN UINT16 *Protocol OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

HeaderSize The size, in bytes, of the media header to be filled in by the
Transmit() function. If HeaderSize is nonzero, then it must be
equal to This->Mode->MediaHeaderSize and the DestAddr
and Protocol parameters must not be NULL.

BufferSize The size, in bytes, of the entire packet (media header and data) to be
transmitted through the network interface.

Buffer A pointer to the packet (media header followed by data) to be
transmitted. This parameter cannot be NULL. If HeaderSize is zero,
then the media header in Buffer must already be filled in by the
caller. If HeaderSize is nonzero, then the media header will be
filled in by the Transmit() function.

SrcAddr The source HW MAC address. If HeaderSize is zero, then this
parameter is ignored. If HeaderSize is nonzero and SrcAddr is
NULL, then This->Mode->CurrentAddress is used for the source
HW MAC address.

DestAddr The destination HW MAC address. If HeaderSize is zero, then this
parameter is ignored.

Protocol The type of header to build. If HeaderSize is zero, then this
parameter is ignored. See RFC 3232, section “Ether Types,”
for examples.

Description

This function places the packet specified by Header and Buffer on the transmit queue. If HeaderSize
is nonzero and HeaderSize is not equal to 
This->Mode->MediaHeaderSize, then EFI_INVALID_PARAMETER will be returned. If BufferSize is
less than This->Mode->MediaHeaderSize, then EFI_BUFFER_TOO_SMALL will be returned. If
Buffer is NULL, then EFI_INVALID_PARAMETER will be returned. If HeaderSize is nonzero and
DestAddr or Protocol is NULL, then EFI_INVALID_PARAMETER will be returned. If the transmit engine
of the network interface is busy, then EFI_NOT_READY will be returned. If this packet can be accepted by
the transmit engine of the network interface, the packet contents specified by Buffer will be placed on
the transmit queue of the network interface, and EFI_SUCCESS will be returned. GetStatus() can be
UEFI Forum, Inc. March 2019 1029

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
used to determine when the packet has actually been transmitted. The contents of the Buffer must not
be modified until the packet has actually been transmitted.

The Transmit() function performs nonblocking I/O. A caller who wants to perform blocking I/O, should
call Transmit(), and then GetStatus() until the transmitted buffer shows up in the recycled transmit
buffer.

If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SIMPLE_NETWORK.Receive()

Summary

Receives a packet from a network interface.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE) (

 IN EFI_SIMPLE_NETWORK_PROTOCOL *This

 OUT UINTN *HeaderSize OPTIONAL,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer,

 OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,

 OUT EFI_MAC_ADDRESS *DestAddr OPTIONAL,

 OUT UINT16 *Protocol OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL instance.

HeaderSize The size, in bytes, of the media header received on the network
interface. If this parameter is NULL, then the media header size will
not be returned.

BufferSize On entry, the size, in bytes, of Buffer. On exit, the size, in bytes, of
the packet that was received on the network interface.

Buffer A pointer to the data buffer to receive both the media header and
the data.

EFI_SUCCESS The packet was placed on the transmit queue.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY The network interface is too busy to accept this transmit request.

EFI_BUFFER_TOO_SMALL The BufferSize parameter is too small.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
UEFI Forum, Inc. March 2019 1030

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
SrcAddr The source HW MAC address. If this parameter is NULL, the HW MAC
source address will not be extracted from the media header.

DestAddr The destination HW MAC address. If this parameter is NULL, the HW
MAC destination address will not be extracted from the media
header.

Protocol The media header type. If this parameter is NULL, then the protocol
will not be extracted from the media header. See RFC 1700 section
“Ether Types” for examples.

Description

This function retrieves one packet from the receive queue of a network interface. If there are no packets
on the receive queue, then EFI_NOT_READY will be returned. If there is a packet on the receive queue,
and the size of the packet is smaller than BufferSize, then the contents of the packet will be placed in
Buffer, and BufferSize will be updated with the actual size of the packet. In addition, if SrcAddr,
DestAddr, and Protocol are not NULL, then these values will be extracted from the media header and
returned. EFI_SUCCESS will be returned if a packet was successfully received. If BufferSize is smaller
than the received packet, then the size of the receive packet will be placed in BufferSize and
EFI_BUFFER_TOO_SMALL will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will
be returned.

Status Codes Returned

24.2 Network Interface Identifier Protocol

This is an optional protocol that is used to describe details about the software layer that is used to
produce the Simple Network Protocol. This protocol is only required if the underlying network interface is
16-bit UNDI, 32/64-bit S/W UNDI, or H/W UNDI. It is used to obtain type and revision information about
the underlying network interface.

An instance of the Network Interface Identifier protocol must be created for each physical external
network interface that is controlled by the !PXE structure. The !PXE structure is defined in the 32/64-bit
UNDI Specification in Appendix E.

EFI_SUCCESS The received data was stored in Buffer, and BufferSize has been

updated to the number of bytes received.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY No packets have been received on the network interface.

EFI_BUFFER_TOO_SMALL BufferSize is too small for the received packets. BufferSize has

been updated to the required size.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL

• The This parameter does not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

• The BufferSize parameter is NULL

• The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.
UEFI Forum, Inc. March 2019 1031

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

Summary

An optional protocol that is used to describe details about the software layer that is used to produce the
Simple Network Protocol.

GUID

#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID_31 \

 {0x1ACED566, 0x76ED, 0x4218,\

 {0xBC, 0x81, 0x76, 0x7F, 0x1F, 0x97, 0x7A, 0x89}}

Revision Number

#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_REVISION \

0x00020000

Protocol Interface Structure

typedef struct {

 UINT64 Revision;

 UINT64 Id;

 UINT64 ImageAddr;

 UINT32 ImageSize;

 CHAR8 StringId[4];

 UINT8 Type;

 UINT8 MajorVer;

 UINT8 MinorVer;

 BOOLEAN Ipv6Supported;

 UINT16 IfNum;

} EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL;

Parameters

Revision The revision of the EFI_NETWORK_INTERFACE_IDENTIFIER protocol.

Id Address of the first byte of the identifying structure for this network
interface. This is only valid when the network interface is started
(see Start()). When the network interface is not started, this field
is set to zero.

16-bit UNDI and 32/64-bit S/W UNDI:

Id contains the address of the first byte of the copy of the !PXE
structure in the relocated UNDI code segment. See the Preboot
Execution Environment (PXE) Specification and Appendix E.

H/W UNDI:

Id contains the address of the !PXE structure.

ImageAddr Address of the unrelocated network interface image.

16-bit UNDI:

ImageAddr is the address of the PXE option ROM image in upper
memory.
UEFI Forum, Inc. March 2019 1032

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
32/64-bit S/W UNDI:

ImageAddr is the address of the unrelocated S/W UNDI image.

H/W UNDI:

ImageAddr contains zero.

ImageSize Size of unrelocated network interface image.

16-bit UNDI:

ImageSize is the size of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageSize is the size of the unrelocated S/W UNDI image.

H/W UNDI:

ImageSize contains zero.

StringId A four-character ASCII string that is sent in the class identifier field of
option 60 in DHCP. For a Type of EfiNetworkInterfaceUndi, this field
is “UNDI.”

Type Network interface type. This will be set to one of the values in
EFI_NETWORK_INTERFACE_TYPE (see “Related Definitions” below).

MajorVer Major version number.

16-bit UNDI:

MajorVer comes from the third byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MajorVer comes from the Major field in the !PXE structure. See
Appendix E.

MinorVer Minor version number.

16-bit UNDI:

MinorVer comes from the second byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MinorVer comes from the Minor field in the !PXE structure. See
Appendix E.

Ipv6Supported TRUE if the network interface supports IPv6; otherwise FALSE.

IfNum The network interface number that is being identified by this
Network Interface Identifier Protocol. This field must be less than or
equal to the (IFcnt | IFcntExt <<8) field in the !PXE structure.
UEFI Forum, Inc. March 2019 1033

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// EFI_NETWORK_INTERFACE_TYPE

//***

typedef enum {

EfiNetworkInterfaceUndi = 1

} EFI_NETWORK_INTERFACE_TYPE;

Description

The EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL is used by EFI_PXE_BASE_CODE_PROTOCOL
and OS loaders to identify the type of the underlying network interface and to locate its initial entry
point.

24.3 PXE Base Code Protocol

This section defines the Preboot Execution Environment (PXE) Base Code protocol, which is used to
access PXE-compatible devices for network access and network booting. For more information about
PXE, see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Preboot Execution
Environment (PXE) Specification”.

EFI_PXE_BASE_CODE_PROTOCOL

Summary

The EFI_PXE_BASE_CODE_PROTOCOL is used to control PXE-compatible devices. The features of
these devices are defined in the Preboot Execution Environment (PXE) Specification. An
EFI_PXE_BASE_CODE_PROTOCOL will be layered on top of an EFI_MANAGED_NETWORK_PROTOCOL
protocol in order to perform packet level transactions. The EFI_PXE_BASE_CODE_PROTOCOL
handle also supports the EFI_LOAD_FILE_PROTOCOL protocol. This provides a clean way to
obtain control from the boot manager if the boot path is from the remote device.
UEFI Forum, Inc. March 2019 1034

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
GUID

#define EFI_PXE_BASE_CODE_PROTOCOL_GUID \

 {0x03C4E603,0xAC28,0x11d3,\

 {0x9A,0x2D,0x00,0x90,0x27,0x3F,0xC1,0x4D}}

Revision Number

#define EFI_PXE_BASE_CODE_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure

typedef struct {

 UINT64 Revision;

 EFI_PXE_BASE_CODE_START Start;

 EFI_PXE_BASE_CODE_STOP Stop;

 EFI_PXE_BASE_CODE_DHCP Dhcp;

 EFI_PXE_BASE_CODE_DISCOVER Discover;

 EFI_PXE_BASE_CODE_MTFTP Mtftp;

 EFI_PXE_BASE_CODE_UDP_WRITE UdpWrite;

 EFI_PXE_BASE_CODE_UDP_READ UdpRead;

 EFI_PXE_BASE_CODE_SET_IP_FILTER SetIpFilter;

 EFI_PXE_BASE_CODE_ARP Arp;

 EFI_PXE_BASE_CODE_SET_PARAMETERS SetParameters;

 EFI_PXE_BASE_CODE_SET_STATION_IP SetStationIp;

 EFI_PXE_BASE_CODE_SET_PACKETS SetPackets;

 EFI_PXE_BASE_CODE_MODE *Mode;

} EFI_PXE_BASE_CODE_PROTOCOL;

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_PROTOCOL. All future
revisions must be backwards compatible. If a future version is not
backwards compatible it is not the same GUID.

Start Starts the PXE Base Code Protocol. Mode structure information is
not valid and no other Base Code Protocol functions will operate
until the Base Code is started. See the Start() function
description.

Stop Stops the PXE Base Code Protocol. Mode structure information is
unchanged by this function. No Base Code Protocol functions will
operate until the Base Code is restarted. See the Stop() function
description.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request /
acknowledge) or DHCPv6 S.A.R.R (solicit / advertise / request / reply)
sequence. See the Dhcp() function description.

Discover Attempts to complete the PXE Boot Server and/or boot image
discovery sequence. See the Discover() function description.

Mtftp Performs TFTP and MTFTP services. See the Mtftp() function
description.
UEFI Forum, Inc. March 2019 1035

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
UdpWrite Writes a UDP packet to the network interface. See the UdpWrite()
function description.

UdpRead Reads a UDP packet from the network interface. See the UdpRead()
function description.

SetIpFilter Updates the IP receive filters of the network device. See the
SetIpFilter() function description.

Arp Uses the ARP protocol to resolve a MAC address. See the Arp()
function description.

SetParameters Updates the parameters that affect the operation of the PXE Base
Code Protocol. See the SetParameters() function description.

SetStationIp Updates the station IP address and subnet mask values. See the
SetStationIp() function description.

SetPackets Updates the contents of the cached DHCP and Discover packets. See
the SetPackets() function description.

Mode Pointer to the EFI_PXE_BASE_CODE_MODE data for this device. The
EFI_PXE_BASE_CODE_MODE structure is defined in “Related
Definitions” below.

Related Definitions

//***

// Maximum ARP and Route Entries

//***

#define EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES 8

#define EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES 8

//***

// EFI_PXE_BASE_CODE_MODE

//

// The data values in this structure are read-only and 
// are updated by the code that produces the 
// EFI_PXE_BASE_CODE_PROTOCOLfunctions. //

typedef struct {

 BOOLEAN Started;

 BOOLEAN Ipv6Available;

 BOOLEAN Ipv6Supported;

 BOOLEAN UsingIpv6;

 BOOLEAN BisSupported;

 BOOLEAN BisDetected;

 BOOLEAN AutoArp;

 BOOLEAN SendGUID;

 BOOLEAN DhcpDiscoverValid;

 BOOLEAN DhcpAckReceivd;

 BOOLEAN ProxyOfferReceived;

 BOOLEAN PxeDiscoverValid;

 BOOLEAN PxeReplyReceived;
UEFI Forum, Inc. March 2019 1036

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
 BOOLEAN PxeBisReplyReceived;

 BOOLEAN IcmpErrorReceived;

 BOOLEAN TftpErrorReceived;

 BOOLEAN MakeCallbacks;

 UINT8 TTL;

 UINT8 ToS;

 EFI_IP_ADDRESS StationIp;

 EFI_IP_ADDRESS SubnetMask;

 EFI_PXE_BASE_CODE_PACKET DhcpDiscover;

 EFI_PXE_BASE_CODE_PACKET DhcpAck;

 EFI_PXE_BASE_CODE_PACKET ProxyOffer;

 EFI_PXE_BASE_CODE_PACKET PxeDiscover;

 EFI_PXE_BASE_CODE_PACKET PxeReply;

 EFI_PXE_BASE_CODE_PACKET PxeBisReply;

 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;

 UINT32 ArpCacheEntries;

 EFI_PXE_BASE_CODE_ARP_ENTRY
 ArpCache[EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES];

 UINT32 RouteTableEntries;

 EFI_PXE_BASE_CODE_ROUTE_ENTRY
 RouteTable[EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES];

 EFI_PXE_BASE_CODE_ICMP_ERROR IcmpError;

 EFI_PXE_BASE_CODE_TFTP_ERROR TftpError;

} EFI_PXE_BASE_CODE_MODE;

Started TRUE if this device has been started by calling Start(). This field is
set to TRUE by the Start() function and to FALSE by the Stop()
function.

Ipv6Available TRUE if the UNDI protocol supports IPv6.

Ipv6Supported TRUE if this PXE Base Code Protocol implementation supports IPv6.

UsingIpv6 TRUE if this device is currently using IPv6. This field is set by the
Start() function.

BisSupported TRUE if this PXE Base Code implementation supports Boot Integrity
Services (BIS). This field is set by the Start() function.

BisDetected TRUE if this device and the platform support Boot Integrity Services
(BIS). This field is set by the Start() function.

AutoArp TRUE for automatic ARP packet generation; FALSE otherwise. This
field is initialized to TRUE by Start() and can be modified with the
SetParameters() function.

SendGUID This field is used to change the Client Hardware Address (chaddr)
field in the DHCP and Discovery packets. Set to TRUE to send the
SystemGuid (if one is available). Set to FALSE to send the client NIC
MAC address. This field is initialized to FALSE by Start() and can be
modified with the SetParameters() function.

DhcpDiscoverValid This field is initialized to FALSE by the Start() function and set to
TRUE when the Dhcp() function completes successfully. When
UEFI Forum, Inc. March 2019 1037

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
TRUE, the DhcpDiscover field is valid. This field can also be
changed by the SetPackets() function.

DhcpAckReceived This field is initialized to FALSE by the Start() function and set to
TRUE when the Dhcp() function completes successfully. When
TRUE, the DhcpAck field is valid. This field can also be changed by
the SetPackets() function.

ProxyOfferReceivedThis field is initialized to FALSE by the Start() function and set to
TRUE when the Dhcp() function completes successfully and a proxy
DHCP offer packet was received. When TRUE, the ProxyOffer
packet field is valid. This field can also be changed by the
SetPackets() function.

PxeDiscoverValid When TRUE, the PxeDiscover packet field is valid. This field is set
to FALSE by the Start() and Dhcp() functions, and can be set to TRUE
or FALSE by the Discover() and SetPackets() functions.

PxeReplyReceived When TRUE, the PxeReply packet field is valid. This field is set to
FALSE by the Start() and Dhcp() functions, and can be set to TRUE or
FALSE by the Discover() and SetPackets() functions.

PxeBisReplyReceivedWhen TRUE, the PxeBisReply packet field is valid. This field is set
to FALSE by the Start() and Dhcp() functions, and can be set to TRUE
or FALSE by the Discover() and SetPackets() functions.

IcmpErrorReceived Indicates whether the IcmpError field has been updated. This field
is reset to FALSE by the Start(), Dhcp(), Discover(), Mtftp(),
UdpRead(), UdpWrite() and Arp() functions. If an ICMP error is
received, this field will be set to TRUE after the IcmpError field is
updated.

TftpErrorReceived Indicates whether the TftpError field has been updated. This field
is reset to FALSE by the Start() and Mtftp() functions. If a TFTP error
is received, this field will be set to TRUE after the TftpError field is
updated.

MakeCallbacks When FALSE, callbacks will not be made. When TRUE, make
callbacks to the PXE Base Code Callback Protocol. This field is reset to
FALSE by the Start() function if the PXE Base Code Callback Protocol
is not available. It is reset to TRUE by the Start() function if the PXE
Base Code Callback Protocol is available.

TTL The “time to live” field of the IP header. This field is initialized to
DEFAULT_TTL (See “Related Definitions”) by the Start() function
and can be modified by the SetParameters() function.

ToS The type of service field of the IP header. This field is initialized to
DEFAULT_ToS (See “Related Definitions”) by Start(), and can be
modified with the SetParameters() function.

StationIp The device’s current IP address. This field is initialized to a zero
address by Start(). This field is set when the Dhcp() function
completes successfully. This field can also be set by the
SetStationIp() function. This field must be set to a valid IP
address by either Dhcp() or SetStationIp() before the Discover(),
Mtftp(), UdpRead(), UdpWrite() and Arp() functions
are called.
UEFI Forum, Inc. March 2019 1038

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
SubnetMask The device’s current subnet mask. This field is initialized to a zero
address by the Start() function. This field is set when the Dhcp()
function completes successfully. This field can also be set by the
SetStationIp() function. This field must be set to a valid subnet
mask by either Dhcp() or SetStationIp() before the
Discover(), Mtftp(), UdpRead(), UdpWrite(), or Arp()
functions are called.

DhcpDiscover Cached DHCP Discover packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function completes
successfully. The contents of this field can replaced by the
SetPackets() function.

DhcpAck Cached DHCP Ack packet. This field is zero-filled by the Start()
function, and is set when the Dhcp() function completes successfully.
The contents of this field can be replaced by the SetPackets()
function.

ProxyOffer Cached Proxy Offer packet. This field is zero-filled by the Start()
function, and is set when the Dhcp() function completes successfully.
The contents of this field can be replaced by the SetPackets()
function.

PxeDiscover Cached PXE Discover packet. This field is zero-filled by the Start()
function, and is set when the Discover() function completes
successfully. The contents of this field can be replaced by the
SetPackets() function.

PxeReply Cached PXE Reply packet. This field is zero-filled by the Start()
function, and is set when the Discover() function completes
successfully. The contents of this field can be replaced by the
SetPackets() function.

PxeBisReply Cached PXE BIS Reply packet. This field is zero-filled by the Start()
function, and is set when the Discover() function completes
successfully. This field can be replaced by the SetPackets() function.

IpFilter The current IP receive filter settings. The receive filter is disabled and
the number of IP receive filters is set to zero by the Start()
function, and is set by the SetIpFilter() function.

ArpCacheEntries The number of valid entries in the ARP cache. This field is reset to
zero by the Start() function.

ArpCache Array of cached ARP entries.

RouteTableEntries The number of valid entries in the current route table. This field is
reset to zero by the Start() function.

RouteTable Array of route table entries.

IcmpError ICMP error packet. This field is updated when an ICMP error is
received and is undefined until the first ICMP error is received. This
field is zero-filled by the Start() function.

TftpError TFTP error packet. This field is updated when a TFTP error is received
and is undefined until the first TFTP error is received. This field is
zero-filled by the Start() function.
UEFI Forum, Inc. March 2019 1039

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// EFI_PXE_BASE_CODE_UDP_PORT

//***

typedef UINT16 EFI_PXE_BASE_CODE_UDP_PORT;

//***

// EFI_IPv4_ADDRESS and EFI_IPv6_ADDRESS

//***

typedef struct {

 UINT8 Addr[4];

} EFI_IPv4_ADDRESS;

typedef struct {

 UINT8 Addr[16];

} EFI_IPv6_ADDRESS;

//***

// EFI_IP_ADDRESS

//***

typedef union {

 UINT32 Addr[4];

 EFI_IPv4_ADDRESS v4;

 EFI_IPv6_ADDRESS v6;

} EFI_IP_ADDRESS;

//***

// EFI_MAC_ADDRESS

//***

typedef struct {

 UINT8 Addr[32];

} EFI_MAC_ADDRESS;

DHCP Packet Data Types

This section defines the data types for DHCP packets, ICMP error packets, and TFTP error packets. All of
these are byte-packed data structures.

Note: All the multibyte fields in these structures are stored in network order.
UEFI Forum, Inc. March 2019 1040

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// EFI_PXE_BASE_CODE_DHCPV4_PACKET

//***

typedef struct {

 UINT8 BootpOpcode;

 UINT8 BootpHwType;

 UINT8 BootpHwAddrLen;

 UINT8 BootpGateHops;

 UINT32 BootpIdent;

 UINT16 BootpSeconds;

 UINT16 BootpFlags;

 UINT8 BootpCiAddr[4];

 UINT8 BootpYiAddr[4];

 UINT8 BootpSiAddr[4];

 UINT8 BootpGiAddr[4];

 UINT8 BootpHwAddr[16];

 UINT8 BootpSrvName[64];

 UINT8 BootpBootFile[128];

 UINT32 DhcpMagik;

 UINT8 DhcpOptions[56];

} EFI_PXE_BASE_CODE_DHCPV4_PACKET;

//***

// DHCPV6 Packet structure

//***

typedef struct {

 UINT32 MessageType:8;

 UINT32 TransactionId:24;

 UINT8 DhcpOptions[1024];
} EFI_PXE_BASE_CODE_DHCPV6_PACKET;

//***

// EFI_PXE_BASE_CODE_PACKET

//***

typedef union {

 UINT8 Raw[1472];

 EFI_PXE_BASE_CODE_DHCPV4_PACKET Dhcpv4;

 EFI_PXE_BASE_CODE_DHCPV6_PACKET Dhcpv6;

} EFI_PXE_BASE_CODE_PACKET;

//***

// EFI_PXE_BASE_CODE_ICMP_ERROR

//***

typedef struct {

 UINT8 Type;

 UINT8 Code;
UEFI Forum, Inc. March 2019 1041

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
 UINT16 Checksum;

 union {

 UINT32 reserved;

 UINT32 Mtu;

 UINT32 Pointer;

 struct {

 UINT16 Identifier;

 UINT16 Sequence;

 } Echo;

 } u;

 UINT8 Data[494];

} EFI_PXE_BASE_CODE_ICMP_ERROR;

//***

// EFI_PXE_BASE_CODE_TFTP_ERROR

//***

typedef struct {

 UINT8 ErrorCode;

 CHAR8 ErrorString[127];

} EFI_PXE_BASE_CODE_TFTP_ERROR;

IP Receive Filter Settings

This section defines the data types for IP receive filter settings.

#define EFI_PXE_BASE_CODE_MAX_IPCNT8

//***

// EFI_PXE_BASE_CODE_IP_FILTER

//***

typedef struct {

 UINT8 Filters;

 UINT8 IpCnt;

 UINT16 reserved;

 EFI_IP_ADDRESS IpList[EFI_PXE_BASE_CODE_MAX_IPCNT];

} EFI_PXE_BASE_CODE_IP_FILTER;

#define EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP 0x0001

#define EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST 0x0002

#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS 0x0004

#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST 0x0008

ARP Cache Entries

This section defines the data types for ARP cache entries, and route table entries.
UEFI Forum, Inc. March 2019 1042

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// EFI_PXE_BASE_CODE_ARP_ENTRY

//***

typedef struct {

 EFI_IP_ADDRESS IpAddr;

 EFI_MAC_ADDRESS MacAddr;
} EFI_PXE_BASE_CODE_ARP_ENTRY;

//***

// EFI_PXE_BASE_CODE_ROUTE_ENTRY

//***

typedef struct {

 EFI_IP_ADDRESS IpAddr;

 EFI_IP_ADDRESS SubnetMask;

 EFI_IP_ADDRESS GwAddr;
} EFI_PXE_BASE_CODE_ROUTE_ENTRY;

Filter Operations for UDP Read/Write Functions

This section defines the types of filter operations that can be used with the UdpRead() and
UdpWrite() functions.

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP 0x0001

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT 0x0002

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP 0x0004

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT 0x0008

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER 0x0010

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT 0x0020

#define DEFAULT_TTL 16

#define DEFAULT_ToS 0

The following table defines values for the PXE DHCP and Bootserver Discover packet tags that are specific
to the UEFI environment. Complete definitions of all PXE tags are defined in Table 210 “PXE DHCP
Options (Full List),” in the PXE Specification.

Table 210. PXE Tag Definitions for EFI

Tag Name Tag # Length Data Field

Client Network
Interface
Identifier

94 [0x5E] 3 [0x03] Type (1), MajorVer (1), MinorVer (1)
Type is a one byte field that identifies the network interface that will be
used by the downloaded program. Type is followed by two one byte
version number fields, MajorVer and MinorVer.
Type
UNDI (1) = 0x01
Versions
WfM-1.1a 16-bit UNDI: MajorVer = 0x02. MinorVer = 0x00
PXE-2.0 16-bit UNDI: MajorVer = 0x02, MinorVer = 0x01
32/64-bit UNDI & H/W UNDI: MajorVer = 0x03, MinorVer = 0x00
UEFI Forum, Inc. March 2019 1043

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

The basic mechanisms and flow for remote booting in UEFI are identical to the remote boot functionality
described in detail in the PXE Specification. However, the actual execution environment, linkage, and
calling conventions are replaced and enhanced for the UEFI environment.

The DHCP Option for the Client System Architecture is used to inform the DHCP server if the client is a
UEFI environment in supported systems. The server may use this information to provide default images if
it does not have a specific boot profile for the client.

The DHCP Option for Client Network Interface Identifier is used to inform the DHCP server of the client
underlying network interface information. If the NII protocol is present, such information will be acquired
by this protocol. Otherwise, Type = 0x01, MajorVer=0x03, MinorVer=0x00 will be the default
value.

A handle that supports EFI_PXE_BASE_CODE_PROTOCOL is required to support
EFI_LOAD_FILE_PROTOCOL. The EFI_LOAD_FILE_PROTOCOL function LoadFile() is used by the
firmware to load files from devices that do not support file system type accesses. Specifically, the
firmware’s boot manager invokes LoadFile() with BootPolicy being TRUE when attempting to boot
from the device. The firmware then loads and transfers control to the downloaded PXE boot image. Once
the remote image is successfully loaded, it may utilize the EFI_PXE_BASE_CODE_PROTOCOL interfaces,
or even the EFI_SIMPLE_NETWORK_PROTOCOL interfaces, to continue the remote process.

EFI_PXE_BASE_CODE_PROTOCOL.Start()

Summary

Enables the use of the PXE Base Code Protocol functions.

Client System
Architecture

93 [0x5D] 2 [0x02] Type (2)
Type is a two byte, network order, field that identifies the processor
and programming environment of the client system.
For the various architecture type encodings, see the table "Processor

Architecture Types" at “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading “Processor Architecture Types”

Class Identifier 60 [0x3C] 32 [0x20] "PXEClient:Arch:xxxxx:UNDI:yyyzzz"
"PXEClient:…" is used to identify communication between PXE clients
and servers. Information from tags 93 & 94 is embedded in the Class
Identifier string. (The strings defined in this tag are case sensitive and
must not be NULL-terminated.)
xxxxx = ASCII representation of Client System Architecture.
yyyzzz = ASCII representation of Client Network Interface Identifier
 version numbers MajorVer(yyy) and MinorVer(zzz).
Example
"PXEClient:Arch:00002:UNDI:00300" identifies an IA64 PC w/ 32/64-bit
UNDI

Tag Name Tag # Length Data Field
UEFI Forum, Inc. March 2019 1044

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_START) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN BOOLEAN UseIpv6

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

UseIpv6 Specifies the type of IP addresses that are to be used during the
session that is being started. Set to TRUE for IPv6 addresses, and
FALSE for IPv4 addresses.

Description

This function enables the use of the PXE Base Code Protocol functions. If the Started field of the
EFI_PXE_BASE_CODE_MODE structure is already TRUE, then EFI_ALREADY_STARTED will be returned. If
UseIpv6 is TRUE, then IPv6 formatted addresses will be used in this session. If UseIpv6 is FALSE, then
IPv4 formatted addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported field
of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will be returned. If there
is not enough memory or other resources to start the PXE Base Code Protocol, then
EFI_OUT_OF_RESOURCES will be returned. Otherwise, the PXE Base Code Protocol will be started, and all
of the fields of the EFI_PXE_BASE_CODE_MODE structure will be initialized as follows:

Started Set to TRUE.

Ipv6Supported Unchanged.

Ipv6Available Unchanged.

UsingIpv6 Set to UseIpv6.

BisSupported Unchanged.

BisDetected Unchanged.

AutoArp Set to TRUE.

SendGUID Set to FALSE.

TTL Set to DEFAULT_TTL.

ToS Set to DEFAULT_ToS.

DhcpCompleted Set to FALSE.

ProxyOfferReceivedSet to FALSE.

StationIp Set to an address of all zeros.

SubnetMask Set to a subnet mask of all zeros.

DhcpDiscover Zero-filled.

DhcpAck Zero-filled.

ProxyOffer Zero-filled.

PxeDiscoverValid Set to FALSE.

PxeDiscover Zero-filled.
UEFI Forum, Inc. March 2019 1045

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
PxeReplyValid Set to FALSE.

PxeReply Zero-filled.

PxeBisReplyValid Set to FALSE.

PxeBisReply Zero-filled.

IpFilter Set the Filters field to 0 and the IpCnt field to 0.

ArpCacheEntries Set to 0.

ArpCache Zero-filled.

RouteTableEntries Set to 0.

RouteTable Zero-filled.

IcmpErrorReceived Set to FALSE.

IcmpError Zero-filled.

TftpErroReceived Set to FALSE.

TftpError Zero-filled.

MakeCallbacks Set to TRUE if the PXE Base Code Callback Protocol is available. Set to
FALSE if the PXE Base Code Callback Protocol is not available.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.Stop()

Summary

Disables the use of the PXE Base Code Protocol functions.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_STOP) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

EFI_SUCCESS The PXE Base Code Protocol was started.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the

EFI_PXE_BASE_CODE_MODE structure is FALSE.

EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the PXE
Base Code Protocol.
UEFI Forum, Inc. March 2019 1046

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

This function stops all activity on the network device. All the resources allocated in Start() are
released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is set to FALSE and
EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE structure is already
FALSE, then EFI_NOT_STARTED will be returned.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()

Summary

Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6 S.A.R.R
(solicit / advertise / request / reply) sequence.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_DHCP) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN BOOLEAN SortOffers

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

SortOffers TRUE if the offers received should be sorted. Set to FALSE to try the
offers in the order that they are received.

Description

This function attempts to complete the DHCP sequence. If this sequence is completed, then EFI_SUCCESS
is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp, SubnetMask,
DhcpDiscover, DhcpAck, and ProxyOffer fields of the EFI_PXE_BASE_CODE_MODE structure are
filled in.

If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before they are tried. If
SortOffers is FALSE, then the cached DHCP offer packets will be tried in the order in which they are
received. Please see the Preboot Execution Environment (PXE) Specification for additional details on the
implementation of DHCP.

This function can take at least 31 seconds to timeout and return control to the caller. If the DHCP
sequence does not complete, then EFI_TIMEOUT will be returned.

EFI_SUCCESS The PXE Base Code Protocol was stopped.

EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.
UEFI Forum, Inc. March 2019 1047

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the
DHCP sequence will be stopped and EFI_ABORTED will be returned.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.Discover()

Summary

Attempts to complete the PXE Boot Server and/or boot image discovery sequence.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_DISCOVER) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN UINT16 Type,

 IN UINT16 *Layer,

 IN BOOLEAN UseBis,

 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Type The type of bootstrap to perform. See “Related Definitions” below.

Layer Pointer to the boot server layer number to discover, which must be
PXE_BOOT_LAYER_INITIAL when a new server type is being
discovered. This is the only layer type that will perform multicast and
broadcast discovery. All other layer types will only perform unicast
discovery. If the boot server changes Layer, then the new Layer
will be returned.

UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.

EFI_SUCCESS Valid DHCP has completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.

EFI_ABORTED The callback function aborted the DHCP Protocol.

EFI_TIMEOUT The DHCP Protocol timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session. The ICMP
error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet structure.

Information about ICMP packet contents can be found in RFC 792.

EFI_NO_RESPONSE Valid PXE offer was not received.
UEFI Forum, Inc. March 2019 1048

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Info Pointer to a data structure that contains additional information on
the type of discovery operation that is to be performed. If this field is
NULL, then the contents of the cached DhcpAck and ProxyOffer
packets will be used.
UEFI Forum, Inc. March 2019 1049

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// Bootstrap Types

//***

#define EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP 0

#define EFI_PXE_BASE_CODE_BOOT_TYPE_MS_WINNT_RIS 1

#define EFI_PXE_BASE_CODE_BOOT_TYPE_INTEL_LCM 2

#define EFI_PXE_BASE_CODE_BOOT_TYPE_DOSUNDI 3

#define EFI_PXE_BASE_CODE_BOOT_TYPE_NEC_ESMPRO 4

#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_WSoD 5

#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_LCCM 6

#define EFI_PXE_BASE_CODE_BOOT_TYPE_CA_UNICENTER_TNG 7

#define EFI_PXE_BASE_CODE_BOOT_TYPE_HP_OPENVIEW 8

#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_9 9

#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_10 10

#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_11 11

#define EFI_PXE_BASE_CODE_BOOT_TYPE_NOT_USED_12 12

#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_INSTALL 13

#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_BOOT 14

#define EFI_PXE_BASE_CODE_BOOT_TYPE_REMBO 15

#define EFI_PXE_BASE_CODE_BOOT_TYPE_BEOBOOT 16

//

// Values 17 through 32767 are reserved.

// Values 32768 through 65279 are for vendor use.

// Values 65280 through 65534 are reserved.

//

#define EFI_PXE_BASE_CODE_BOOT_TYPE_PXETEST 65535

#define EFI_PXE_BASE_CODE_BOOT_LAYER_MASK 0x7FFF

#define EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL 0x0000

//***

// EFI_PXE_BASE_CODE_DISCOVER_INFO

//***

typedef struct {

 BOOLEAN UseMCast;

 BOOLEAN UseBCast;

 BOOLEAN UseUCast;

 BOOLEAN MustUseList;

 EFI_IP_ADDRESS ServerMCastIp;

 UINT16 IpCnt;

 EFI_PXE_BASE_CODE_SRVLIST SrvList[IpCnt];

} EFI_PXE_BASE_CODE_DISCOVER_INFO;

//***

// EFI_PXE_BASE_CODE_SRVLIST
UEFI Forum, Inc. March 2019 1050

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

typedef struct {

 UINT16 Type;

 BOOLEAN AcceptAnyResponse;

 UINT8 reserved;

 EFI_IP_ADDRESS IpAddr;

} EFI_PXE_BASE_CODE_SRVLIST;

Description

This function attempts to complete the PXE Boot Server and/or boot image discovery sequence. If this
sequence is completed, then EFI_SUCCESS is returned, and the PxeDiscoverValid, PxeDiscover,
PxeReplyReceived, and PxeReply fields of the EFI_PXE_BASE_CODE_MODE structure are filled in. If
UseBis is TRUE, then the PxeBisReplyReceived and PxeBisReply fields of the
EFI_PXE_BASE_CODE_MODE structure will also be filled in. If UseBis is FALSE, then
PxeBisReplyValid will be set to FALSE.

In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], has two uses: It is
the Boot Server IP address list used for unicast discovery (if the UseUCast field is TRUE), and it is the list
used for Boot Server verification (if the MustUseList field is TRUE). Also, if the MustUseList field in
that structure is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot
Server reply of that type will be accepted. If the AcceptAnyResponse field is FALSE, only responses
from Boot Servers with matching IP addresses will be accepted.

This function can take at least 10 seconds to timeout and return control to the caller. If the Discovery
sequence does not complete, then EFI_TIMEOUT will be returned. Please see the Preboot Execution
Environment (PXE) Specification for additional details on the implementation of the Discovery sequence.

If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the
Discovery sequence is stopped and EFI_ABORTED will be returned.
UEFI Forum, Inc. March 2019 1051

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()

Summary

Used to perform TFTP and MTFTP services.

EFI_SUCCESS The Discovery sequence has been completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The Layer parameter was NULL

• The Info->ServerMCastIp parameter does not contain a valid
multicast IP address

• The Info->UseUCast parameter is not FALSE and the Info-
>IpCnt parameter is zero

One or more of the IP addresses in the Info->SrvList[] array is

not a valid unicast IP address.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.

EFI_ABORTED The callback function aborted the Discovery sequence.

EFI_TIMEOUT The Discovery sequence timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery session. The
ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet structure.

Information about ICMP packet contents can be found in RFC 792.
UEFI Forum, Inc. March 2019 1052

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,

 IN OUT VOID *BufferPtr, OPTIONAL

 IN BOOLEAN Overwrite,

 IN OUT UINT64 *BufferSize,

 IN UINTN *BlockSize, OPTIONAL

 IN EFI_IP_ADDRESS *ServerIp,

 IN CHAR8 *Filename, OPTIONAL

 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL

 IN BOOLEAN DontUseBuffer

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Operation The type of operation to perform. See “Related Definitions” below
for the list of operation types.

BufferPtr A pointer to the data buffer. Ignored for read file if DontUseBuffer
is TRUE.

Overwrite Only used on write file operations. TRUE if a file on a remote server
can be overwritten.

BufferSize For get-file-size operations, *BufferSize returns the size of the
requested file. For read-file and write-file operations, this parameter
is set to the size of the buffer specified by the BufferPtr parameter.
For read-file operations, if EFI_BUFFER_TOO_SMALL is returned,
*BufferSize returns the size of the requested file.

BlockSize The requested block size to be used during a TFTP transfer. This must
be at least 512. If this field is NULL, then the largest block size
supported by the implementation will be used.

ServerIp The TFTP / MTFTP server IP address.

Filename A Null-terminated ASCII string that specifies a directory name or a
file name. This is ignored by MTFTP read directory.

Info Pointer to the MTFTP information. This information is required to
start or join a multicast TFTP session. It is also required to perform
the “get file size” and “read directory” operations of MTFTP. See
“Related Definitions” below for the description of this data
structure.

DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation. Setting
this to TRUE will cause TFTP and MTFTP read file operations to
function without a receive buffer, and all of the received packets are
passed to the Callback Protocol which is responsible for storing
them. This field is only used by TFTP and MTFTP read file.
UEFI Forum, Inc. March 2019 1053

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// EFI_PXE_BASE_CODE_TFTP_OPCODE

//***

typedef enum {

 EFI_PXE_BASE_CODE_TFTP_FIRST,

 EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,

 EFI_PXE_BASE_CODE_TFTP_READ_FILE,

 EFI_PXE_BASE_CODE_TFTP_WRITE_FILE,

 EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY,

 EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE,

 EFI_PXE_BASE_CODE_MTFTP_READ_FILE,

 EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY,

 EFI_PXE_BASE_CODE_MTFTP_LAST

} EFI_PXE_BASE_CODE_TFTP_OPCODE;

//***

// EFI_PXE_BASE_CODE_MTFTP_INFO

//***

typedef struct {

 EFI_IP_ADDRESS MCastIp;

 EFI_PXE_BASE_CODE_UDP_PORT CPort;

 EFI_PXE_BASE_CODE_UDP_PORT SPort;

 UINT16 ListenTimeout;

 UINT16 TransmitTimeout;

} EFI_PXE_BASE_CODE_MTFTP_INFO;

MCastIp File multicast IP address. This is the IP address to which the server
will send the requested file.

CPort Client multicast listening port. This is the UDP port to which the
server will send the requested file.

SPort Server multicast listening port. This is the UDP port on which the
server listens for multicast open requests and data acks.

ListenTimeout The number of seconds a client should listen for an active multicast
session before requesting a new multicast session.

TransmitTimeout The number of seconds a client should wait for a packet from the
server before retransmitting the previous open request or data ack
packet.

Description

This function is used to perform TFTP and MTFTP services. This includes the TFTP operations to get the
size of a file, read a directory, read a file, and write a file. It also includes the MTFTP operations to get the
size of a file, read a directory, and read a file. The type of operation is specified by Operation. If the
callback function that is invoked during the TFTP/MTFTP operation does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.
UEFI Forum, Inc. March 2019 1054

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
For read operations, the return data will be placed in the buffer specified by BufferPtr. If BufferSize
is too small to contain the entire downloaded file, then EFI_BUFFER_TOO_SMALL will be returned and
BufferSize will be set to zero or the size of the requested file (the size of the requested file is only
returned if the TFTP server supports TFTP options). If BufferSize is large enough for the read
operation, then BufferSize will be set to the size of the downloaded file, and EFI_SUCCESS will be
returned. Applications using the PxeBc.Mtftp() services should use the get-file-size operations to
determine the size of the downloaded file prior to using the read-file operations—especially when
downloading large (greater than 64 MiB) files—instead of making two calls to the read-file operation.
Following this recommendation will save time if the file is larger than expected and the TFTP server does
not support TFTP option extensions. Without TFTP option extension support, the client has to download
the entire file, counting and discarding the received packets, to determine the file size.

For write operations, the data to be sent is in the buffer specified by BufferPtr. BufferSize specifies
the number of bytes to send. If the write operation completes successfully, then EFI_SUCCESS will be
returned.

For TFTP “get file size” operations, the size of the requested file or directory is returned in BufferSize,
and EFI_SUCCESS will be returned. If the TFTP server does not support options, the file will be
downloaded into a bit bucket and the length of the downloaded file will be returned. For MTFTP “get file
size” operations, if the MTFTP server does not support the “get file size” option, EFI_UNSUPPORTED will
be returned.

This function can take up to 10 seconds to timeout and return control to the caller. If the TFTP sequence
does not complete, EFI_TIMEOUT will be returned.

If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the
TFTP sequence is stopped and EFI_ABORTED will be returned.

The format of the data returned from a TFTP read directory operation is a null-terminated filename
followed by a null-terminated information string, of the form “size year-month-day hour:minute:second”
(i.e., %d %d-%d-%d %d:%d:%f - note that the seconds field can be a decimal number), where the date and
time are UTC. For an MTFTP read directory command, there is additionally a null-terminated multicast IP
address preceding the filename of the form %d.%d.%d.%d for IP v4. The final entry is itself null-
terminated, so that the final information string is terminated with two null octets.
UEFI Forum, Inc. March 2019 1055

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()

Summary

Writes a UDP packet to the network interface.

EFI_SUCCESS The TFTP/MTFTP operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The Operation parameter was not one of the listed
EFI_PXE_BASE_CODE_TFTP_OPCODE constants

• The BufferPtr parameter was NULL and the DontUseBuffer

parameter was FALSE

• The BufferSize parameter was NULL

• The BlockSize parameter was not NULL and *BlockSize was less than
512

• The ServerIp parameter was NULL or did not contain a valid unicast IP
address

• The Filename parameter was NULL for a file transfer or information
request

• The Info parameter was NULL for a multicast request

The Info->MCastIp parameter is not a valid multicast IP address

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.

EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.

EFI_TIMEOUT The TFTP/MTFTP operation timed out.

EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session. The TFTP
error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.TftpError packet structure.

Information about TFTP error packet contents can be found in RFC 1350.

EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session. The ICMP
error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet structure.

Information about ICMP packet contents can be found in RFC 792.
UEFI Forum, Inc. March 2019 1056

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_UDP_WRITE) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN UINT16 OpFlags,

 IN EFI_IP_ADDRESS *DestIp,

 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,

 IN EFI_IP_ADDRESS *GatewayIp, OPTIONAL

 IN EFI_IP_ADDRESS *SrcIp, OPTIONAL

 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL

 IN UINTN *HeaderSize, OPTIONAL

 IN VOID *HeaderPtr, OPTIONAL

 IN UINTN *BufferSize,

 IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags. If MAY_FRAGMENT is set, then if required,
this UDP write operation may be broken up across multiple packets.

DestIp The destination IP address.

DestPort The destination UDP port number.

GatewayIp The gateway IP address. If DestIp is not in the same subnet as
StationIp, then this gateway IP address will be used. If this field is
NULL, and the DestIp is not in the same subnet as StationIp,
then the RouteTable will be used.

SrcIp The source IP address. If this field is NULL, then StationIp will be
used as the source IP address.

SrcPort The source UDP port number. If OpFlags has ANY_SRC_PORT set or
SrcPort is NULL, then a source UDP port will be automatically
selected. If a source UDP port was automatically selected, and
SrcPort is not NULL, then it will be returned in SrcPort.

HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prefixed to the data at BufferPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prefixed to
the data at BufferPtr.

BufferSize A pointer to the size of the data at BufferPtr.

BufferPtr A pointer to the data to be written.

Description

This function writes a UDP packet specified by the (optional HeaderPtr and) BufferPtr parameters to
the network interface. The UDP header is automatically built by this routine. It uses the parameters
OpFlags, DestIp, DestPort, GatewayIp, SrcIp, and SrcPort to build this header. If the packet is
successfully built and transmitted through the network interface, then EFI_SUCCESS will be returned. If a
UEFI Forum, Inc. March 2019 1057

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
timeout occurs during the transmission of the packet, then EFI_TIMEOUT will be returned. If an ICMP
error occurs during the transmission of the packet, then the IcmpErrorReceived field is set to TRUE,
the IcmpError field is filled in and EFI_ICMP_ERROR will be returned. If the Callback Protocol does not
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()

Summary

Reads a UDP packet from the network interface.

EFI_SUCCESS The UDP Write operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• Reserved bits in the OpFlags parameter were not set to zero

• The DestIp parameter was NULL

• The DestPort parameter was NULL

• The GatewayIp parameter was not NULL and did not contain a valid
unicast IP address.

• The HeaderSize parameter was not NULL and *HeaderSize is zero

• The *HeaderSize parameter was not zero and the HeaderPtr

parameter was NULL

• The BufferSize parameter was NULL
• The *BufferSize parameter was not zero and the BufferPtr parameter

was NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.

EFI_ABORTED The callback function aborted the UDP Write operation.

EFI_TIMEOUT The UDP Write operation timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session. The
ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet structure.

Information about ICMP packet contents can be found in RFC 792.
UEFI Forum, Inc. March 2019 1058

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_UDP_READ) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This

 IN UINT16 OpFlags,

 IN OUT EFI_IP_ADDRESS *DestIp, OPTIONAL

 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort, OPTIONAL

 IN OUT EFI_IP_ADDRESS *SrcIp, OPTIONAL

 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL

 IN UINTN *HeaderSize, OPTIONAL

 IN VOID *HeaderPtr, OPTIONAL

 IN OUT UINTN *BufferSize,

 IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags.

DestIp The destination IP address.

DestPort The destination UDP port number.

SrcIp The source IP address.

SrcPort The source UDP port number.

HeaderSize An optional field which may be set to the length of a header to be
put in HeaderPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a buffer to hold the
HeaderSize bytes which follow the UDP header.

BufferSize On input, a pointer to the size of the buffer at BufferPtr. On
output, the size of the data written to BufferPtr.

BufferPtr A pointer to the data to be read.

Description

This function reads a UDP packet from a network interface. The data contents are returned in (the
optional HeaderPtr and) BufferPtr, and the size of the buffer received is returned in BufferSize . If
the input BufferSize is smaller than the UDP packet received (less optional HeaderSize), it will be set
to the required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the contents of
BufferPtr are undefined, and the packet is lost. If a UDP packet is successfully received, then
EFI_SUCCESS will be returned, and the information from the UDP header will be returned in DestIp,
DestPort, SrcIp, and SrcPort if they are not NULL. Depending on the values of OpFlags and the
DestIp, DestPort, SrcIp, and SrcPort input values, different types of UDP packet receive filtering
will be performed. The following tables summarize these receive filter operations.
UEFI Forum, Inc. March 2019 1059

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Table 211. Destination IP Filter Operation

Table 212. Destination UDP Port Filter Operation

Table 213. Source IP Filter Operation

Table 214. Source UDP Port Filter Operation

OpFlags
USE_FILTER

OpFlags
ANY_DEST_IP


DestIp


Action

0 0 NULL Receive a packet sent to StationIp.

0 1 NULL Receive a packet sent to any IP address.

1 x NULL Receive a packet whose destination IP address passes the IP
filter.

0 0 not NULL Receive a packet whose destination IP address matches

DestIp.

0 1 not NULL Receive a packet sent to any IP address and, return the

destination IP address in DestIp.

1 x not NULL Receive a packet whose destination IP address passes the IP

filter, and return the destination IP address in DestIp.

OpFlags
ANY_DEST_PORT


DestPort


Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent to any UDP port.

0 not NULL Receive a packet whose destination Port matches DestPort.

1 not NULL Receive a packet sent to any UDP port, and return the destination port in

DestPort.

OpFlags
ANY_SRC_IP


SrcIp


Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any IP address.

0 not NULL Receive a packet whose source IP address matches SrcIp.

1 not NULL Receive a packet sent from any IP address, and return the source IP address in

SrcIp.

OpFlags
ANY_SRC_PORT


SrcPort


Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any UDP port.

0 not NULL Receive a packet whose source UDP port matches SrcPort.
UEFI Forum, Inc. March 2019 1060

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()

Summary

Updates the IP receive filters of a network device and enables software filtering.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_SET_IP_FILTER) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewFilter Pointer to the new set of IP receive filters.

Description

The NewFilter field is used to modify the network device’s current IP receive filter settings and to
enable a software filter. This function updates the IpFilter field of the EFI_PXE_BASE_CODE_MODE

1 not NULL Receive a packet sent from any UDP port, and return the source UPD port in

SrcPort.

EFI_SUCCESS The UDP Read operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• Reserved bits in the OpFlags parameter were not set to zero

• The HeaderSize parameter is not NULL and *HeaderSize is zero

• The HeaderSize parameter is not NULL L and the HeaderPtr parameter

is NULL

• The BufferSize parameter is NULL

• The BufferPtr parameter is NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.

EFI_ABORTED The callback function aborted the UDP Read operation.

EFI_TIMEOUT The UDP Read operation timed out.

OpFlags
ANY_SRC_PORT


SrcPort


Action
UEFI Forum, Inc. March 2019 1061

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
structure with the contents of NewIpFilter. The software filter is used when the USE_FILTER in
OpFlags is set to UdpRead(). The current hardware filter remains in effect no matter what the settings
of OpFlags are, so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those
packets whose reception is enabled in hardware – physical NIC address (unicast), broadcast address,
logical address or addresses (multicast), or all (promiscuous). UdpRead() does not modify the IP filter
settings.

Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive filter list emptied
and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. If an application or driver wishes to
preserve the IP receive filter settings, it will have to preserve the IP receive filter settings before these
calls, and use SetIpFilter() to restore them after the calls. If incompatible filtering is requested (for
example, PROMISCUOUS with anything else) or if the device does not support a requested filter setting
and it cannot be accommodated in software (for example, PROMISCUOUS not supported),
EFI_INVALID_PARAMETER will be returned. The IPlist field is used to enable IPs other than the StationIP.
They may be multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP,
then both the StationIP and the IPs from the IPlist will be used.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.Arp()

Summary

Uses the ARP protocol to resolve a MAC address.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_ARP) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN EFI_IP_ADDRESS *IpAddr,

 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

IpAddr Pointer to the IP address that is used to resolve a MAC address.
When the MAC address is resolved, the ArpCacheEntries and

EFI_SUCCESS The IP receive filter settings were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewFilter parameter was NULL

• The NewFilter -> IPlist [] array contains one or more
broadcast IP addresses

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
UEFI Forum, Inc. March 2019 1062

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
ArpCache fields of the EFI_PXE_BASE_CODE_MODE structure are
updated.

MacAddr If not NULL, a pointer to the MAC address that was resolved with the
ARP protocol.

Description

This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field of the
EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6 addresses are being used. The
IP address specified by IpAddr is used to resolve a MAC address in the case of IPv4; the concept of Arp is
not supported in IPv6, though.

 If the ARP protocol succeeds in resolving the specified address, then the ArpCacheEntries and
ArpCache fields of the EFI_PXE_BASE_CODE_MODE structure are updated, and EFI_SUCCESS is
returned. If MacAddr is not NULL, the resolved MAC address is placed there as well.

If the PXE Base Code protocol is in the stopped state, then EFI_NOT_STARTED is returned. If the ARP
protocol encounters a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is
returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
then EFI_ABORTED is returned.

Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()

Summary

Updates the parameters that affect the operation of the PXE Base Code Protocol.

EFI_SUCCESS The IP or MAC address was resolved.

EFI_INVALID_PARAMETER One or more of the following conditions was :

• The This parameter was NULL

• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The IpAddr parameter was NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_TIMEOUT The ARP Protocol encountered a timeout condition.

EFI_ABORTED The callback function aborted the ARP Protocol.

EFI_UNSUPPORTED When Mode->UsingIpv6 is TRUE because the Arp is a concept special for

IPv4.
UEFI Forum, Inc. March 2019 1063

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_SET_PARAMETERS) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN BOOLEAN *NewAutoArp, OPTIONAL

 IN BOOLEAN *NewSendGUID, OPTIONAL

 IN UINT8 *NewTTL, OPTIONAL

 IN UINT8 *NewToS, OPTIONAL

 IN BOOLEAN *NewMakeCallback OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
current value of AutoARP. TRUE for automatic ARP packet
generation, FALSE otherwise. If NULL, this parameter is ignored.

NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
current value of SendGUID. TRUE to send the SystemGUID (if there
is one) as the client hardware address in DHCP; FALSE to send client
NIC MAC address. If NULL, this parameter is ignored. If
NewSendGUID is TRUE and there is no SystemGUID, then
EFI_INVALID_PARAMETER is returned.

NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
the “time to live” field of the IP header. If NULL, this parameter is
ignored.

NewToS If not NULL, a pointer to be used in place of the current value of ToS,
the “type of service” field of the IP header. If NULL, this parameter is
ignored.

NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
current value of the MakeCallback field of the Mode structure. If
NULL, this parameter is ignored. If the Callback Protocol is not
available EFI_INVALID_PARAMETER is returned.

Description

This function sets parameters that affect the operation of the PXE Base Code Protocol. The parameter
specified by NewAutoArp is used to control the generation of ARP protocol packets. If NewAutoArp is
TRUE, then ARP Protocol packets will be generated as required by the PXE Base Code Protocol. If
NewAutoArp is FALSE, then no ARP Protocol packets will be generated. In this case, the only mappings
that are available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure. If
there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol service, then the
service will fail. This function updates the AutoArp field of the EFI_PXE_BASE_CODE_MODE structure to
NewAutoArp.

The SetParameters() call must be invoked after a Callback Protocol is installed to enable the use of
callbacks.
UEFI Forum, Inc. March 2019 1064

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()

Summary

Updates the station IP address and/or subnet mask values of a network device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_SET_STATION_IP) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN EFI_IP_ADDRESS *NewStationIp, OPTIONAL

 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewStationIp Pointer to the new IP address to be used by the network device. If
this field is NULL, then the StationIp address will not be modified.

NewSubnetMask Pointer to the new subnet mask to be used by the network device. If
this field is NULL, then the SubnetMask will not be modified.

Description

This function updates the station IP address and/or subnet mask values of a network device.

The NewStationIp field is used to modify the network device’s current IP address. If NewStationIP is
NULL, then the current IP address will not be modified. Otherwise, this function updates the StationIp
field of the EFI_PXE_BASE_CODE_MODE structure with NewStationIp.

The NewSubnetMask field is used to modify the network device’s current subnet mask. If
NewSubnetMask is NULL, then the current subnet mask will not be modified. Otherwise, this function
updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE structure with NewSubnetMask.

EFI_SUCCESS The new parameters values were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE :

• The This parameter was NULL

• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewSendGUID parameter is not NULL and *
NewSendGUID is TRUE and a system GUID could not be located

• The NewMakeCallback parameter is not NULL and *
NewMakeCallback is TRUE and an

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL could not
be located on the network device handle.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
UEFI Forum, Inc. March 2019 1065

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()

Summary

Updates the contents of the cached DHCP and Discover packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PXE_BASE_CODE_SET_PACKETS) (

 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

 IN BOOLEAN *NewDhcpDiscoverValid, OPTIONAL

 IN BOOLEAN *NewDhcpAckReceived, OPTIONAL

 IN BOOLEAN *NewProxyOfferReceived, OPTIONAL

 IN BOOLEAN *NewPxeDiscoverValid, OPTIONAL

 IN BOOLEAN *NewPxeReplyReceived, OPTIONAL

 IN BOOLEAN *NewPxeBisReplyReceived, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply, OPTIONAL

 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewDhcpDiscoverValidPointer to a value that will replace the current
DhcpDiscoverValid field. If NULL, this parameter is ignored.

NewDhcpAckReceivedPointer to a value that will replace the current DhcpAckReceived
field. If NULL, this parameter is ignored.

NewProxyOfferReceivedPointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is ignored.

EFI_SUCCESS The new station IP address and/or subnet mask were updated.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This s parameter was NULL

• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewStationIp parameter is not NULL and * NewStationIp is
not a valid unicast IP address

• The NewSubnetMask parameter is not NULL and *
NewSubnetMask does not contain a valid IP subnet mask

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
UEFI Forum, Inc. March 2019 1066

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
NewPxeDiscoverValidPointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is ignored.

NewPxeReplyReceivedPointer to a value that will replace the current
PxeReplyReceived field. If NULL, this parameter is ignored.

NewPxeBisReplyReceived
Pointer to a value that will replace the current
PxeBisReplyReceived field. If NULL, this parameter is ignored.

NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents. If NULL,
this parameter is ignored.

NewDhcpAck Pointer to the new cached DHCP Ack packet contents. If NULL, this
parameter is ignored.

NewProxyOffer Pointer to the new cached Proxy Offer packet contents. If NULL, this
parameter is ignored.

NewPxeDiscover Pointer to the new cached PXE Discover packet contents. If NULL,
this parameter is ignored.

NewPxeReply Pointer to the new cached PXE Reply packet contents. If NULL, this
parameter is ignored.

NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents. If NULL,
this parameter is ignored.

Description

The pointers to the new packets are used to update the contents of the cached packets in the
EFI_PXE_BASE_CODE_MODE structure.

Status Codes Returned

24.3.1 Netboot6

For IPv4, PXE drivers typically install a LoadFile protocol on the NIC handle. In the case of supporting both
IPv4 and IPv6 where two PXE Base Code and LoadFile protocol instances need be produced, the PXE
driver will have to create two child handles and install EFI_LOAD_FILE_PROTOCOL,
EFI_SIMPLE_NETWORK_PROTOCOL and PXE_BASE_CODE_PROTOCOL on each child handle. To
distinguish these two child handles, an IP device path node can be appended to the parent device path,
for example:

PciRoot(0x0)/Pci(0x19,0x0)/MAC(001320F4B4FF,0x0)/IPv4(...)

PciRoot(0x0)/Pci(0x19,0x0)/MAC(001320F4B4FF,0x0)/IPv6(...)

These two instances allow for the boot manager to decide a preference of IPv6 versus IPv4 since the IETF
and other bodies do not speak to this policy choice.

EFI_SUCCESS The cached packet contents were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL

The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
UEFI Forum, Inc. March 2019 1067

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.3.1.1 DHCP6 options for PXE

In IPv4-based PXE, as defined by the rfc2131, rfc2132 and rfc4578, and described by the PXE2.1
specification and the UEFI specification, there are the following PXE related options/fields in DHCPv4
packet:

• siaddr field/ServerAddress option (54) – next server address.

• BootFileName option (67

•) – NBP file name.

• BootFileSize option (13)

• – NBP file size.

• ClassIdentifier (60)

• – PXE client tag.

• ClientSystemArchitectureType option (93)

• – client architecture type.

• ClientNetworkInterface Identifier option (94)

• – client network interface identifier.

In IPv6-based PXE, or ‘netboot6’, there are the following PXE related options in the DHCPv6 packet:

• BootFileURL option - OPT_BOOTFILE_URL (59) – next server address and NBP (Network
Bootable Program) file name.

• BootFileParameters option

• - OPT_BOOTFILE_PARAM (60) – NBP file size.

• VendorClass option (16)

• – PXE client tag.

• ClientSystemArchitectureType option - OPTION_CLIENT_ARCH_TYPE (61) – client architecture
type.

• ClientNetworkInterfaceIdentifier option (

• 62) – client network interface identifier.

The BootFileURL option is used to deliver the next server address or the next server address with NBP file
name.

As an example where the next server address delivered only:
”tftp:// [FEDC:BA98:7654:3210:FEDC:BA98:7654:3210];mode=octet”.

As an example where the next server address and BOOTFILE_NAME delivered both:

“tftp:// [FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/ BOOTFILE_NAME ;mode=octet”.

The BootFileParameters option is used to deliver the NBP file size with the unit of 512-octet blocks. The
maximum of the NBP file size is 65535 * 512 bytes.

As an example where the NBP file size is 1600 * 512 bytes:
UEFI Forum, Inc. March 2019 1068

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
para-len 1 = 4

parameter 1 = “1600”

 The VendorClass option is used to deliver the PXE client tag.

As an example where the client architecture is EFI-X64 and the client network interface identifier is UNDI:

Enterprise-number = (343)

Vendor-class-data = “PXEClient:Arch:00006:UNDI:003016”

#define DUID-UUID 4

The Netboot6 client will use the DUID-UUID to report the platform identifier as part of the netboot6
DHCP options.

24.3.1.2 IPv6-based PXE boot

As PXE 2.1 specification describes step-by-step synopsis of the IPv4-based PXE process, Figure 1 describes
the corresponding synopsis for netboot6.
UEFI Forum, Inc. March 2019 1069

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot

Figure 75. IPv6-based PXE boot

24.3.1.2.1 Step 1.

The client multicasts a SOLICIT message to the standard DHCP6 port (547). It contains the following:

• A tag for client UNDI version.

• A tag for the client system architecture.

• A tag for PXE client, Vendor Class data set to

• “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.

Boot Service Request to port 4011
Contains: “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

PXE
Client

DHCP6 Soilict to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains PXE server ext tags +

[Other DHCP6 option tags] + client address
+ BootFileURL(Boot Server address)

DHCP6 Request to 547
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to 546

1

5

4

3

2

UEFI Forum, Inc. March 2019 1070

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.3.1.2.2 Step 2.

The DHCP6 or Proxy DHCP6 service responds by sending a ADVERTISE message to the client on the
standard DHCP6 reply port (546). If this is a Proxy DHCP6 service, the next server (Boot Server) address is
delivered by Boot File URL option. If this is a DHCP6 service, the new assigned client address is delivered
by IA option. The extension tags information will be conveyed via the VENDOR OPTS field.

24.3.1.2.3 Steps 3 and 4.

If the client selects an address from a DHCP6 service, then it must complete the standard DHCP6 process
by sending a REQUEST for the address back to the service and then waiting for an REPLY from the service.

24.3.1.2.4 Step 5.

The client multicasts a REQUEST message to the Boot Server port 4011, it contains the following:

• A tag for client UNDI version.

• A tag for the client system architecture.

• A tag for PXE client, Vendor Class option, set to

• “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.

24.3.1.2.5 Step 6.

The Boot Server unicasts a REPLY message back to the client on the client port. It contains the following:

• A tag for NBP file name.

• A tag for NBP file size if needed.

24.3.1.2.6 Step 7.

The client requests the NBP file using TFTP (port 69).

24.3.1.2.7 Step 8.

The NBP file, dependent on the client’s CPU architecture, is downloaded into client’s memory.

24.3.1.3 Proxy DHCP6

The netboot6 DHCP6 options may be supplied by the DHCP6 service or a Proxy DHCP6 service. This Proxy DHCP6
service may reside on the same server as the DHCP6 service, or it ma be located on a separate server. A Proxy
DHCP6 service on the same server as the DHCP6 service is illustrated in Figure 2. In this case, the Proxy DHCP6
service is listening to UDP port (4011), and communication with the Proxy DHCP6 service occurs after completing
the standard DHCP6 process. Proxy DHCP6 uses port (4011) because is cannot share port (547) with the DHCP6
service. The netboot6 client knows how to interrogate the Proxy DHCP6 service because the ADVERTISE from the
DHCP6 service contains a VendorClass option “PXEClient” tag without a BootFileURL option (including NBP file

name). The client will not request option 16 (OPTION_VENDOR_CLASS) in ORO, but server must still reply
with "PXEClient" in order to inform the client to start the Proxy DHCPv6 mode. The client will accept just
the string "PXEClient" as sufficient, the server need not echo back the entire
UEFI Forum, Inc. March 2019 1071

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
OPTION_VENDOR_CLASS.

Figure 76. netboot6 (DHCP6 and ProxyDHCP6 reside on the same server)

Figure 77 illustrates the case of a Proxy DHCP6 service and the DHCP6 service on different servers.
In this case, the Proxy DHCP6 service listens to UDP port (547) and responds in parallel with DHCP6
service.

PXE
Client

PXE
Client

PXE
Client

DHCP6
Service

DHCP6
Service

Proxy
DHCP6
Service

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains [Other DHCP6 options tags]

 + “PXEClient” + client address

DHCP6 Request to 547
Contains [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to 546

DHCP6 Request to 4011
Contains “PXEClient” ext tags

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address)

Boot
Service

TFTP
Service

Boot Service Request to 4011
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

Boot Service Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address
and NBP file name)

+ BootFilePara (NBP file size)

TFTP ReadFile to 69 to request NBP file

PXE
Client

NBP file download to client port

3

2

1

10

9

8

7

6

5

4

UEFI Forum, Inc. March 2019 1072

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot

Figure 77. IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server)

24.4 PXE Base Code Callback Protocol

This protocol is a specific instance of the PXE Base Code Callback Protocol that is invoked when the PXE
Base Code Protocol is about to transmit, has received, or is waiting to receive a packet. The PXE Base
Code Callback Protocol must be on the same handle as the PXE Base Code Protocol.

PXE
Client

PXE
Client

PXE
Client

DHCP6
Service

DHCP6
Service

Proxy
DHCP6
Service

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains [Other DHCP6 option tags]

+ client address

DHCP6 Request to 547

PXE
Client

DHCP6 Reply to 546

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains “PXEClient” ext tags

Boot
Service

TFTP
Service

DHCP6 Request to 4011
Contains “PXEClient” ext tags

PXE
Client

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address)

Boot Service Request to 4011
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address
and NBP file name)

+ BootFilePara (NBP file size)

Proxy
DHCP6
Service

TFTP ReadFile to 69 to request NBP file

NBP file download to client port

2

1

8

5 2

10

4

9

3

7

1

6

UEFI Forum, Inc. March 2019 1073

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

Summary

Protocol that is invoked when the PXE Base Code Protocol is about to transmit, has received, or is waiting
to receive a packet.

GUID

#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID \

 {0x245DCA21,0xFB7B,0x11d3,\

 {0x8F,0x01,0x00,0xA0, 0xC9,0x69,0x72,0x3B}}

Revision Number

#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION \

0x00010000

Protocol Interface Structure

typedef struct {

 UINT64 Revision;

 EFI_PXE_CALLBACK Callback;
} EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL;

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL. All
future revisions must be backwards compatible. If a future revision is
not backwards compatible, it is not the same GUID.

Callback Callback routine used by the PXE Base Code Dhcp(), Discover(),
Mtftp(), UdpWrite(), and Arp() functions.

EFI_PXE_BASE_CODE_CALLBACK.Callback()

Summary

Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has received, or
is waiting to receive a packet.

Prototype

typedef

EFI_PXE_BASE_CODE_CALLBACK_STATUS

(*EFI_PXE_CALLBACK) (

 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,

 IN EFI_PXE_BASE_CODE_FUNCTION Function,

 IN BOOLEAN Received,

 IN UINT32 PacketLen,

 IN EFI_PXE_BASE_CODE_PACKET *Packet OPTIONAL
);
UEFI Forum, Inc. March 2019 1074

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Function The PXE Base Code Protocol function that is waiting for an event.

Received TRUE if the callback is being invoked due to a receive event. FALSE if
the callback is being invoked due to a transmit event.

PacketLen The length, in bytes, of Packet. This field will have a value of zero if
this is a wait for receive event.

Packet If Received is TRUE, a pointer to the packet that was just received;
otherwise a pointer to the packet that is about to be transmitted.
This field will be NULL if this is not a packet event.

Related Definitions

//***

// EFI_PXE_BASE_CODE_CALLBACK_STATUS

//***

typedef enum {

EFI_PXE_BASE_CODE_CALLBACK_STATUS_FIRST,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_LAST

} EFI_PXE_BASE_CODE_CALLBACK_STATUS;

//***

// EFI_PXE_BASE_CODE_FUNCTION

//***

typedef enum {

EFI_PXE_BASE_CODE_FUNCTION_FIRST,

EFI_PXE_BASE_CODE_FUNCTION_DHCP,

EFI_PXE_BASE_CODE_FUNCTION_DISCOVER,

EFI_PXE_BASE_CODE_FUNCTION_MTFTP,

EFI_PXE_BASE_CODE_FUNCTION_UDP_WRITE,

EFI_PXE_BASE_CODE_FUNCTION_UDP_READ,

EFI_PXE_BASE_CODE_FUNCTION_ARP,

EFI_PXE_BASE_CODE_FUNCTION_IGMP,

EFI_PXE_BASE_CODE_PXE_FUNCTION_LAST

} EFI_PXE_BASE_CODE_FUNCTION;

Description

This function is invoked when the PXE Base Code Protocol is about to transmit, has received, or is waiting
to receive a packet. Parameters Function and Received specify the type of event. Parameters
PacketLen and Packet specify the packet that generated the event. If these fields are zero and NULL
respectively, then this is a status update callback. If the operation specified by Function is to continue,
then CALLBACK_STATUS_CONTINUE should be returned. If the operation specified by Function should
be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to the polling nature of UEFI
device drivers, a callback function should not execute for more than 5 ms.
UEFI Forum, Inc. March 2019 1075

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
The SetParameters() function must be called after a Callback Protocol is installed to enable the use of
callbacks.

24.5 Boot Integrity Services Protocol

This section defines the Boot Integrity Services (BIS) protocol, which is used to check a digital signature of
a data block against a digital certificate for the purpose of an integrity and authorization check. BIS is
primarily used by the Preboot Execution Environment (PXE) Base Code protocol
EFI_PXE_BASE_CODE_PROTOCOL to check downloaded network boot images before executing them.
BIS is a UEFI Boot Service Driver, so its services are also available to applications written to this
specification until the time of EFI_BOOT_SERVICES.ExitBootServices(). More information about
BIS can be found in the Boot Integrity Services Application Programming Interface Version 1.0.

This section defines the Boot Integrity Services Protocol. This protocol is used to check a digital signature
of a data block against a digital certificate for the purpose of an integrity and authorization check.

EFI_BIS_PROTOCOL

Summary

The EFI_BIS_PROTOCOL is used to check a digital signature of a data block against a digital certificate
for the purpose of an integrity and authorization check.

GUID

#define EFI_BIS_PROTOCOL_GUID \

{0x0b64aab0,0x5429,0x11d4,\

 {0x98,0x16,0x00,0xa0,0xc9,0x1f,0xad,0xcf}}

Protocol Interface Structure

typedef struct _EFI_BIS_PROTOCOL {

 EFI_BIS_INITIALIZE Initialize;

 EFI_BIS_SHUTDOWN Shutdown;

 EFI_BIS_FREE Free;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE

 GetBootObjectAuthorizationCertificate;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG

 GetBootObjectAuthorizationCheckFlag;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN

 GetBootObjectAuthorizationUpdateToken;
 EFI_BIS_GET_SIGNATURE_INFO

 GetSignatureInfo;
 EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION

 UpdateBootObjectAuthorization;
 EFI_BIS_VERIFY_BOOT_OBJECT

 VerifyBootObject;
 EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL

 VerifyObjectWithCredential;
} EFI_BIS_PROTOCOL;
UEFI Forum, Inc. March 2019 1076

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Parameters

Initialize Initializes an application instance of the EFI_BIS protocol,
returning a handle for the application instance. Other functions in
the EFI_BIS protocol require a valid application instance handle
obtained from this function. See the Initialize() function
description.

Shutdown Ends the lifetime of an application instance of the EFI_BIS
protocol, invalidating its application instance handle. The application
instance handle may no longer be used in other functions in the
EFI_BIS protocol. See the Shutdown() function description.

Free Frees memory structures allocated and returned by other functions
in the EFI_BIS protocol. See the Free() function description.

GetBootObjectAuthorizationCertificate
Retrieves the current digital certificate (if any) used by the EFI_BIS
protocol as the source of authorization for verifying boot objects and
altering configuration parameters. See the
GetBootObjectAuthorizationCertificate() function
description.

GetBootObjectAuthorizationCheckFlag
Retrieves the current setting of the authorization check flag that
indicates whether or not authorization checks are required for boot
objects. See the GetBootObjectAuthorizationCheckFlag()
function description.

GetBootObjectAuthorizationUpdateToken
Retrieves an uninterpreted token whose value gets included and
signed in a subsequent request to alter the configuration
parameters, to protect against attempts to “replay” such a request.
See the GetBootObjectAuthorizationUpdateToken()
function description.

GetSignatureInfo Retrieves information about the digital signature algorithms
supported and the identity of the installed authorization certificate,
if any. See the GetSignatureInfo() function description.

UpdateBootObjectAuthorization
Requests that the configuration parameters be altered by installing
or removing an authorization certificate or changing the setting of
the check flag. See the UpdateBootObjectAuthorization()
function description.

VerifyBootObject Verifies a boot object according to the supplied digital signature and
the current authorization certificate and check flag setting. See the
VerifyBootObject() function description.

VerifyObjectWithCredential
Verifies a data object according to a supplied digital signature and a
supplied digital certificate. See the
VerifyObjectWithCredential() function description.
UEFI Forum, Inc. March 2019 1077

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

The EFI_BIS_PROTOCOL provides a set of functions as defined in this section. There is no physical device
associated with these functions, however, in the context of UEFI every protocol operates on a device.
Accordingly, BIS installs and operates on a single abstract device that has only a software representation.

EFI_BIS_PROTOCOL.Initialize()

Summary

Initializes the BIS service, checking that it is compatible with the version requested by the caller. After this
call, other BIS functions may be invoked.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_INITIALIZE)(

 IN EFI_BIS_PROTOCOL *This,

 OUT BIS_APPLICATION_HANDLE *AppHandle,

 IN OUT EFI_BIS_VERSION *InterfaceVersion,

 IN EFI_BIS_DATA *TargetAddress
);

Parameters

This A pointer to the EFI_BIS_PROTOCOL object. The protocol
implementation may rely on the actual pointer value and object
location, so the caller must not copy the object to a new location.

AppHandle The function writes the new BIS_APPLICATION_HANDLE if
successful, otherwise it writes NULL. The caller must eventually
destroy this handle by calling Shutdown(). Type
BIS_APPLICATION_HANDLE is defined in “Related Definitions”
below.

InterfaceVersion 
On input, the caller supplies the major version number of the
interface version desired. The minor version number supplied on
input is ignored since interface compatibility is determined solely by
the major version number. On output, both the major and minor
version numbers are updated with the major and minor version
numbers of the interface (and underlying implementation). This
update is done whether or not the initialization was successful. Type
EFI_BIS_VERSION is defined in “Related Definitions” below.

TargetAddress Indicates a network or device address of the BIS platform to connect
to. Local-platform BIS implementations require that the caller sets
TargetAddress.Data to NULL, but otherwise ignores this
parameter. BIS implementations that redirect calls to an agent at a
remote address must define their own format and interpretation of
this parameter outside the scope of this document. For all
implementations, if the TargetAddress is an unsupported value,
UEFI Forum, Inc. March 2019 1078

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
the function fails with the error EFI_UNSUPPORTED. Type
EFI_BIS_DATA is defined in “Related Definitions” below.

Related Definitions

//***

// BIS_APPLICATION_HANDLE

//***

typedef VOID *BIS_APPLICATION_HANDLE;

This type is an opaque handle representing an initialized instance of the BIS interface. A
BIS_APPLICATION_HANDLE value is returned by the Initialize() function as an “out” parameter.
Other BIS functions take a BIS_APPLICATION_HANDLE as an “in” parameter to identify the BIS
instance.

//***

// EFI_BIS_VERSION

//***

typedef struct _EFI_BIS_VERSION {

 UINT32 Major;

 UINT32 Minor;
} EFI_BIS_VERSION;

Major This describes the major BIS version number. The major version
number defines version compatibility. That is, when a new version of
the BIS interface is created with new capabilities that are not
available in the previous interface version, the major version number
is increased.

Minor This describes a minor BIS version number. This version number is
increased whenever a new BIS implementation is built that is fully
interface compatible with the previous BIS implementation. This
number may be reset when the major version number is increased.

This type represents a version number of the BIS interface. This is used as an “in out” parameter of the
Initialize() function for a simple form of negotiation of the BIS interface version between the caller
and the BIS implementation.

//***

// EFI_BIS_VERSION predefined values

// Use these values to initialize EFI_BIS_VERSION.Major

// and to interpret results of Initialize.

//***

#define BIS_CURRENT_VERSION_MAJOR BIS_VERSION_1

#define BIS_VERSION_1 1

These C preprocessor macros supply values for the major version number of an EFI_BIS_VERSION. At
the time of initialization, a caller supplies a value to request a BIS interface version. On return, the (IN
OUT) parameter is over-written with the actual version of the interface.
UEFI Forum, Inc. March 2019 1079

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// EFI_BIS_DATA

//

// EFI_BIS_DATA instances obtained from BIS must be freed by

// calling Free().
//***

typedef struct _EFI_BIS_DATA {

 UINT32 Length;

 UINT8 *Data;
} EFI_BIS_DATA;

Length The length of the data buffer in bytes.

Data A pointer to the raw data buffer.

This type defines a structure that describes a buffer. BIS uses this type to pass back and forth most large
objects such as digital certificates, strings, etc. Several of the BIS functions allocate a EFI_BIS_DATA*
and return it as an “out” parameter. The caller must eventually free any allocated EFI_BIS_DATA* using
the Free() function.

Description

This function must be the first BIS function invoked by an application. It passes back a
BIS_APPLICATION_HANDLE value that must be used in subsequent BIS functions. The handle must be
eventually destroyed by a call to the Shutdown() function, thus ending that handle’s lifetime. After the
handle is destroyed, BIS functions may no longer be called with that handle value. Thus all other BIS
functions may only be called between a pair of Initialize() and Shutdown() functions.

There is no penalty for calling Initialize() multiple times. Each call passes back a distinct handle
value. Each distinct handle must be destroyed by a distinct call to Shutdown(). The lifetimes of handles
created and destroyed with these functions may be overlapped in any way.
UEFI Forum, Inc. March 2019 1080

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_BIS_PROTOCOL.Shutdown()

Summary

Shuts down an application’s instance of the BIS service, invalidating the application handle. After this call,
other BIS functions may no longer be invoked using the application handle value.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_SHUTDOWN)(

 IN BIS_APPLICATION_HANDLE AppHandle
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

EFI_SUCCESS The function completed successfully.

EFI_INCOMPATIBLE_VERSION The InterfaceVersion.Major requested by the caller was

not compatible with the interface version of the implementation. The

InterfaceVersion.Major has been updated with the

current interface version.

EFI_UNSUPPORTED This is a local-platform implementation and

TargetAddress.Data was not NULL, or
TargetAddress.Data was any other value that was not

supported by the implementation.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal failure while
initializing a cryptographic software module, or
No cryptographic software module with compatible version was
found, or 
A resource limitation was encountered while using a cryptographic
software module.

EFI_INVALID_PARAMETER The This parameter supplied by the caller is NULL or does not

reference a valid EFI_BIS_PROTOCOL object, or
The AppHandle parameter supplied by the caller is NULL or an

invalid memory reference, or
The InterfaceVersion parameter supplied by the caller is

NULL or an invalid memory reference, or
The TargetAddress parameter supplied by the caller is NULL or

an invalid memory reference.
UEFI Forum, Inc. March 2019 1081

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

This function shuts down an application’s instance of the BIS service, invalidating the application handle.
After this call, other BIS functions may no longer be invoked using the application handle value.

This function must be paired with a preceding successful call to the Initialize() function. The
lifetime of an application handle extends from the time the handle was returned from Initialize()
until the time the handle is passed to Shutdown(). If there are other remaining handles whose lifetime
is still active, they may still be used in calling BIS functions.

The caller must free all memory resources associated with this AppHandle that were allocated and
returned from other BIS functions before calling Shutdown(). Memory resources are freed using the
Free() function. Failure to free such memory resources is a caller error, however, this function does not
return an error code under this circumstance. Further attempts to access the outstanding memory
resources cause unspecified results.

Status Codes Returned

EFI_BIS_PROTOCOL.Free()

Summary

Frees memory structures allocated and returned by other functions in the EFI_BIS protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_FREE)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 IN EFI_BIS_DATA *ToFree
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

ToFree An EFI_BIS_DATA* and associated memory block to be freed. This
EFI_BIS_DATA* must have been allocated by one of the other BIS
functions. Type EFI_BIS_DATA is defined in the Initialize()
function description.

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_DEVICE_ERROR The function encountered an unexpected internal error while returning
resources associated with a cryptographic software module, or
The function encountered an internal error while trying to shut down a
cryptographic software module.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
UEFI Forum, Inc. March 2019 1082

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Description

This function deallocates an EFI_BIS_DATA* and associated memory allocated by one of the other BIS
functions.

Callers of other BIS functions that allocate memory in the form of an EFI_BIS_DATA* must eventually
call this function to deallocate the memory before calling the Shutdown() function for the application
handle under which the memory was allocated. Failure to do so causes unspecified results, and the
continued correct operation of the BIS service cannot be guaranteed.

Status Codes Returned

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()

Summary

Retrieves the certificate that has been configured as the identity of the organization designated as the
source of authorization for signatures of boot objects.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 OUT EFI_BIS_DATA **Certificate
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

Certificate The function writes an allocated EFI_BIS_DATA* containing the
Boot Object Authorization Certificate object. The caller must
eventually free the memory allocated by this function using the
function Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description.

Description

This function retrieves the certificate that has been configured as the identity of the organization
designated as the source of authorization for signatures of boot objects.

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The ToFree parameter is not or is no longer a memory resource

associated with this AppHandle.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
UEFI Forum, Inc. March 2019 1083

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()

Summary

Retrieves the current status of the Boot Authorization Check Flag.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 OUT BOOLEAN *CheckIsRequired
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

CheckIsRequired The function writes the value TRUE if a Boot Authorization Check is
currently required on this platform, otherwise the function writes
FALSE.

Description

This function retrieves the current status of the Boot Authorization Check Flag (in other words, whether
or not a Boot Authorization Check is currently required on this platform).

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_NOT_FOUND There is no Boot Object Authorization Certificate currently installed.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The Certificate parameter supplied by the caller is NULL or an

invalid memory reference.
UEFI Forum, Inc. March 2019 1084

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()

Summary

Retrieves a unique token value to be included in the request credential for the next update of any
parameter in the Boot Object Authorization set (Boot Object Authorization Certificate and Boot
Authorization Check Flag).

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 OUT EFI_BIS_DATA **UpdateToken
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

UpdateToken The function writes an allocated EFI_BIS_DATA* containing the
new unique update token value. The caller must eventually free the
memory allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Description

This function retrieves a unique token value to be included in the request credential for the next update
of any parameter in the Boot Object Authorization set (Boot Object Authorization Certificate and Boot
Authorization Check Flag). The token value is unique to this platform, parameter set, and instance of
parameter values. In particular, the token changes to a new unique value whenever any parameter in this
set is changed.

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The CheckIsRequired parameter supplied by the caller is NULL or

an invalid memory reference.
UEFI Forum, Inc. March 2019 1085

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_BIS_PROTOCOL.GetSignatureInfo()

Summary

Retrieves a list of digital certificate identifier, digital signature algorithm, hash algorithm, and key-length
combinations that the platform supports.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_GET_SIGNATURE_INFO)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 OUT EFI_BIS_DATA **SignatureInfo
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

SignatureInfo 
The function writes an allocated EFI_BIS_DATA* containing the
array of EFI_BIS_SIGNATURE_INFO structures representing the
supported digital certificate identifier, algorithm, and key length
combinations. The caller must eventually free the memory allocated
by this function using the function Free(). Type EFI_BIS_DATA is
defined in the Initialize() function description. Type
EFI_BIS_SIGNATURE_INFO is defined in “Related Definitions”
below.

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a cryptographic
software module.

EFI_INVALID_PARAMETER The UpdateToken parameter supplied by the caller is NULL or an

invalid memory reference.
UEFI Forum, Inc. March 2019 1086

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Related Definitions

//***

// EFI_BIS_SIGNATURE_INFO

//***

typedef struct _EFI_BIS_SIGNATURE_INFO {

 BIS_CERT_ID CertificateID;

 BIS_ALG_ID AlgorithmID;

 UINT16 KeyLength;
} EFI_BIS_SIGNATURE_INFO;

CertificateID A shortened value identifying the platform’s currently configured
Boot Object Authorization Certificate, if one is currently configured.
The shortened value is derived from the certificate as defined in the
Related Definition for BIS_CERT_ID below. If there is no certificate
currently configured, the value is one of the reserved
BIS_CERT_ID_XXX values defined below. Type BIS_CERT_ID and
its predefined reserved values are defined in “Related Definitions”
below.

AlgorithmID A predefined constant representing a particular digital signature
algorithm. Often this represents a combination of hash algorithm
and encryption algorithm, however, it may also represent a
standalone digital signature algorithm. Type BIS_ALG_ID and its
permitted values are defined in “Related Definitions” below.

KeyLength The length of the public key, in bits, supported by this digital
signature algorithm.

This type defines a digital certificate, digital signature algorithm, and key-length combination that may be
supported by the BIS implementation. This type is returned by GetSignatureInfo() to describe the
combination(s) supported by the implementation.

//***

// BIS_GET_SIGINFO_COUNT macro

// Tells how many EFI_BIS_SIGNATURE_INFO elements are contained

// in a EFI_BIS_DATA struct pointed to by the provided

// EFI_BIS_DATA*.

//***

#define BIS_GET_SIGINFO_COUNT(BisDataPtr) \

 ((BisDataPtr)->Length/sizeof(EFI_BIS_SIGNATURE_INFO))

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The number of EFI_BIS_SIGNATURE_INFO elements contained in
the array.

This macro computes how many EFI_BIS_SIGNATURE_INFO elements are contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo(). The number returned is the count of
items in the list of supported digital certificate, digital signature algorithm, and key-length combinations.
UEFI Forum, Inc. March 2019 1087

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// BIS_GET_SIGINFO_ARRAY macro

// Produces a EFI_BIS_SIGNATURE_INFO* from a given

// EFI_BIS_DATA*.

//***

#define BIS_GET_SIGINFO_ARRAY(BisDataPtr) \

 ((EFI_BIS_SIGNATURE_INFO*)(BisDataPtr)->Data)

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The pointer to the EFI_BIS_SIGNATURE_INFO array, cast as an
EFI_BIS_SIGNATURE_INFO*.

This macro returns a pointer to the EFI_BIS_SIGNATURE_INFO array contained in an EFI_BIS_DATA
structure returned from GetSignatureInfo() representing the list of supported digital certificate,
digital signature algorithm, and key-length combinations.

//***

// BIS_CERT_ID

//***

typedef UINT32 BIS_CERT_ID;

This type represents a shortened value that identifies the platform’s currently configured Boot Object
Authorization Certificate. The value is the first four bytes, in “little-endian” order, of the SHA-1 hash of
the certificate, except that the most-significant bits of the second and third bytes are reserved, and must
be set to zero regardless of the outcome of the hash function. This type is included in the array of values
returned from the GetSignatureInfo() function to indicate the required source of a signature for a
boot object or a configuration update request. There are a few predefined reserved values with special
meanings as described below.

//***

// BIS_CERT_ID predefined values

// Currently defined values for EFI_BIS_SIGNATURE_INFO.

// CertificateId.

//***

#define BIS_CERT_ID_DSA BIS_ALG_DSA //CSSM_ALGID_DSA

#define BIS_CERT_ID_RSA_MD5 BIS_ALG_RSA_MD5 //CSSM_ALGID_MD5_WITH_RSA

These C preprocessor symbols provide values for the BIS_CERT_ID type. These values are used when
the platform has no configured Boot Object Authorization Certificate. They indicate the signature
algorithm that is supported by the platform. Users must be careful to avoid constructing Boot Object
Authorization Certificates that transform to BIS_CERT_ID values that collide with these predefined
values or with the BIS_CERT_ID values of other Boot Object Authorization Certificates they use.
UEFI Forum, Inc. March 2019 1088

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//***

// BIS_CERT_ID_MASK

// The following is a mask value that gets applied to the

// truncated hash of a platform Boot Object Authorization

// Certificate to create the CertificateId. A CertificateId

// must not have any bits set to the value 1 other than bits in

// this mask.

//***

#define BIS_CERT_ID_MASK (0xFF7F7FFF)

This C preprocessor symbol may be used as a bit-wise “AND” value to transform the first four bytes (in
little-endian order) of a SHA-1 hash of a certificate into a certificate ID with the “reserved” bits properly
set to zero.

//***

// BIS_ALG_ID

//***

typedef UINT16 BIS_ALG_ID;

This type represents a digital signature algorithm. A digital signature algorithm is often composed of a
particular combination of secure hash algorithm and encryption algorithm. This type also allows for
digital signature algorithms that cannot be decomposed. Predefined values for this type are as defined
below.

//***

// BIS_ALG_ID predefined values

// Currently defined values for EFI_BIS_SIGNATURE_INFO.

// AlgorithmID. The exact numeric values come from “Common

// Data Security Architecture (CDSA) Specification.”

//***

#define BIS_ALG_DSA (41) //CSSM_ALGID_DSA

#define BIS_ALG_RSA_MD5 (42) //CSSM_ALGID_MD5_WITH_RSA

These values represent the two digital signature algorithms predefined for BIS. Each implementation of
BIS must support at least one of these digital signature algorithms. Values for the digital signature
algorithms are chosen by an industry group known as The Open Group. Developers planning to support
additional digital signature algorithms or define new digital signature algorithms should refer to The
Open Group for interoperable values to use.

Description

This function retrieves a list of digital certificate identifier, digital signature algorithm, hash algorithm,
and key-length combinations that the platform supports. The list is an array of (certificate id, algorithm
id, key length) triples, where the certificate id is derived from the platform’s Boot Object Authorization
Certificate as described in the Related Definition for BIS_CERT_ID above, the algorithm id represents
the combination of signature algorithm and hash algorithm, and the key length is expressed in bits. The
number of array elements can be computed using the Length field of the retrieved EFI_BIS_DATA*.
UEFI Forum, Inc. March 2019 1089

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
The retrieved list is in order of preference. A digital signature algorithm for which the platform has a
currently configured Boot Object Authorization Certificate is preferred over any digital signature
algorithm for which there is not a currently configured Boot Object Authorization Certificate. Thus the
first element in the list has a CertificateID representing a Boot Object Authorization Certificate if the
platform has one configured. Otherwise the CertificateID of the first element in the list is one of the
reserved values representing a digital signature algorithm.

Status Codes Returned

EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()

Summary

Updates one of the configurable parameters of the Boot Object Authorization set (Boot Object
Authorization Certificate or Boot Authorization Check Flag).

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 IN EFI_BIS_DATA *RequestCredential,

 OUT EFI_BIS_DATA **NewUpdateToken
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

RequestCredential This is a Signed Manifest with embedded attributes that carry the
details of the requested update. The required syntax of the Signed
Manifest is described in the Related Definition for Manifest Syntax
below. The key used to sign the request credential must be the
private key corresponding to the public key in the platform’s
configured Boot Object Authorization Certificate. Authority to

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a cryptographic
software module, or
The function encountered an unexpected internal consistency check
failure (possible corruption of stored Boot Object Authorization
Certificate).

EFI_INVALID_PARAMETER The SignatureInfo parameter supplied by the caller is NULL or an

invalid memory reference.
UEFI Forum, Inc. March 2019 1090

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
update parameters in the Boot Object Authorization set cannot be
delegated.

If there is no Boot Object Authorization Certificate, the request
credential may be signed with any private key. In this case, this
function interacts with the user in a platform-specific way to
determine whether the operation should succeed. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

NewUpdateToken The function writes an allocated EFI_BIS_DATA* containing the
new unique update token value. The caller must eventually free the
memory allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Related Definitions

//**

// Manifest Syntax

//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive as
described in [SM spec]: a manifest file, a signer’s information file, and a signature block file. These three
parts, along with examples are described in the following sections. In these examples, text in parentheses
is a description of the text that would appear in the signed manifest. Text outside of parentheses must
appear exactly as shown. Also note that manifest files and signer’s information files must conform to a
72-byte line-length limit. Continuation lines (lines beginning with a single “space” character) are used for
lines longer than 72 bytes. The examples given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text files. In
cases where these files contain a base-64 encoded string, the string is an ASCII string before base-64
encoding.

//**

// Manifest File Example

//**

The manifest file must include a section referring to a memory-type data object with the reserved name
as shown in the example below. This data object is a zero-length object whose sole purpose in the
manifest is to serve as a named collection point for the attributes that carry the details of the requested
update. The attributes are also contained in the manifest file. An example manifest file is shown below.

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)
X-Intel-BIS-ParameterSet: (base-64 representation of
UEFI Forum, Inc. March 2019 1091

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
 BootObjectAuthorizationSetGUID)
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A line-by-line description of this manifest file is as follows.

Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.

ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
manifest file created. The Win32 function UuidCreate() can be used for this on Win32 systems. The GUID
is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme for representing
binary values that uses only printing characters. Base-64 encoding is described in [BASE-64].

Name: memory:UpdateRequestParameters

This identifies the manifest section that carries a dummy zero-length data object serving as the collection
point for the attribute values appearing later in this manifest section (lines prefixed with “X-Intel-
BIS-”). The string “memory:UpdateRequestParameters” must appear exactly as shown.

Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. These are
required even though the data object is zero-length. For systems with DSA signing, SHA-1 hash, and 1024-
bit key length, the digest algorithm must be “SHA-1.” For systems with RSA signing, MD5 hash, and 512-
bit key length, the digest algorithm must be “MD5.” Multiple algorithms can be specified as a whitespace-
separated list. For every digest algorithm XXX listed, there must also be a corresponding XXX-Digest
line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)

Gives the corresponding digest value for the dummy zero-length data object. The value is base-64
encoded. Note that for both MD5 and SHA-1, the digest value for a zero-length data object is not zero.

X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)

A named attribute value that distinguishes updates of BIS parameters from updates of other parameters.
The left-hand attribute-name keyword must appear exactly as shown. The GUID value for the right-hand
side is always the same, and can be found under the preprocessor symbol
BOOT_OBJECT_AUTHORIZATION_PARMSET_GUIDVALUE. The representation inserted into the manifest
is base-64 encoded.

Note the “X-Intel-BIS-” prefix on this and the following attributes. The “X-” part of the prefix was
chosen to avoid collisions with future reserved keywords defined by future versions of the signed
UEFI Forum, Inc. March 2019 1092

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
manifest specification. The “Intel-BIS-” part of the prefix was chosen to avoid collisions with other
user-defined attribute names within the user-defined attribute name space.

X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)

A named attribute value that makes this update of BIS parameters different from any other on the same
target platform. The left-hand attribute-name keyword must appear exactly as shown. The value for the
right-hand side is generally different for each update-request manifest generated. The value to be base-
64 encoded is retrieved through the functions GetBootObjectAuthorizationUpdateToken() or
UpdateBootObjectAuthorization().

X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)

A named attribute value that indicates which BIS parameter is to be updated. The left-hand attribute-
name keyword must appear exactly as shown. The value for the right-hand side is the base-64 encoded
representation of one of the two strings shown.

X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A named attribute value that indicates the new value to be set for the indicated parameter. The left-hand
attribute-name keyword must appear exactly as shown. The value for the right-hand side is the
appropriate base-64 encoded new value to be set. In the case of the Boot Object Authorization
Certificate, the value is the new digital certificate raw data. A zero-length value removes the certificate
altogether. In the case of the Boot Authorization Check Flag, the value is a single-byte Boolean value,
where a nonzero value “turns on” the check and a zero value “turns off” the check.

//**

// Signer’s Information File Example

//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries the
integrity data for the attributes in the corresponding section in the manifest file. An example signer’s
information file is shown below.

Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)
SignerInformationName: BIS_UpdateManifestSignerInfoName

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.

Signature-Version: 2.0
UEFI Forum, Inc. March 2019 1093

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
This is a standard header line that all signed manifests have. It must appear exactly as shown.

SignerInformationPersistentId: (base-64 representation of a unique
 GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
signer’s information file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme
for representing binary values that uses only printing characters. Base-64 encoding is described in [BASE-
64].

SignerInformationName: BIS_UpdateManifestSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as shown.

Name: memory:UpdateRequestParameters

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The string “memory:UpdateRequestParameters” must
appear exactly as shown.

Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding manifest
section. Strings identifying digest algorithms are the same as in the manifest file. The digest algorithms
specified here must match those specified in the manifest file. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest section
starts at the beginning of the opening “Name:” keyword and continues up to, but not including, the next
section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank line(s) at the end of a
section and any newline(s) preceding the next “Name:” keyword or end-of-file.

//**

// Signature Block File Example

//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format signature
block. The signature block covers exactly the contents of the signer’s information file. There must be a
correspondence between the name of the signer’s information file and the signature block file. The base
name matches, and the three-character extension is modified to reflect the signature algorithm used
according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA signature
block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].
UEFI Forum, Inc. March 2019 1094

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//**

// “X-Intel-BIS-ParameterSet” Attribute value

// Binary Value of “X-Intel-BIS-ParameterSet” Attribute.

// (Value is Base-64 encoded in actual signed manifest).

//**

#define BOOT_OBJECT_AUTHORIZATION_PARMSET_GUID \

 {0xedd35e31,0x7b9,0x11d2,{0x83,0xa3,0x0,0xa0,0xc9,0x1f,0xad,0xcf}}

This preprocessor symbol gives the value for an attribute inserted in signed manifests to distinguish
updates of BIS parameters from updates of other parameters. The representation inserted into the
manifest is base-64 encoded.

Description

This function updates one of the configurable parameters of the Boot Object Authorization set (Boot
Object Authorization Certificate or Boot Authorization Check Flag). It passes back a new unique update
token that must be included in the request credential for the next update of any parameter in the Boot
Object Authorization set. The token value is unique to this platform, parameter set, and instance of
parameter values. In particular, the token changes to a new unique value whenever any parameter in this
set is changed.
UEFI Forum, Inc. March 2019 1095

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a cryptographic
software module.

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter was invalid (could not be parsed), 
or

The signed manifest supplied as the RequestCredential

parameter failed to verify using the installed Boot Object Authorization

Certificate or the signer’s Certificate in RequestCredential, 
or

Platform-specific authorization failed, 
or

The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-ParameterSet

attribute value, 
or

The X-Intel-BIS-ParameterSet attribute value supplied did not
match the required GUID value, 

or
The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-
ParameterSetToken attribute value, 

or
The X-Intel-BIS-ParameterSetToken attribute value

supplied did not match the platform’s current update-token value, 
or
UEFI Forum, Inc. March 2019 1096

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-ParameterId

attribute value, 
or

The X-Intel-BIS-ParameterId attribute value supplied did not

match one of the permitted values, 
or


The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-ParameterValue

attribute value, 
or

Any other required attribute value was missing, 
or

The new certificate supplied was too big to store, 
or

The new certificate supplied was invalid (could not be parsed), 
or

The new certificate supplied had an unsupported combination of key
algorithm and key length, 

or
The new check flag value supplied is the wrong length (1 byte), 

or
The signed manifest supplied as the RequestCredential

parameter did not include a signer certificate, 
or

The signed manifest supplied as the RequestCredential

parameter did not include the manifest section named

“memory:UpdateRequestParameters,” 
or
UEFI Forum, Inc. March 2019 1097

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.VerifyBootObject()

Summary

Verifies the integrity and authorization of the indicated data object according to the
indicated credentials.

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter had a signing certificate with an unsupported public-key
algorithm, 

or
The manifest section named

“memory:UpdateRequestParameters” did not include a

digest with a digest algorithm corresponding to the signing certificate’s
public key algorithm, 

or
The zero-length data object referenced by the manifest section named

“memory:UpdateRequestParameters” did not verify with

the digest supplied in that manifest section, 
or

The signed manifest supplied as the RequestCredential

parameter did not include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_UpdateManifestSignerInfoName,” 
or

There were no signers associated with the identified signer’s information
file, 

or
There was more than one signer associated with the identified signer’s
information file, 

or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while analyzing the new
certificate’s key algorithm, 

or
An unexpected internal error occurred while attempting to retrieve the
public key algorithm of the manifest’s signer’s certificate, 

or
An unexpected internal error occurred in a cryptographic software
module.

EFI_INVALID_PARAMETER The RequestCredential parameter supplied by the caller is

NULL or an invalid memory reference, 
or

The RequestCredential.Data parameter supplied by the caller

is NULL or an invalid memory reference, 
or

The NewUpdateToken parameter supplied by the caller is NULL or

an invalid memory reference.
UEFI Forum, Inc. March 2019 1098

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_VERIFY_BOOT_OBJECT)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 IN EFI_BIS_DATA *Credentials,

 IN EFI_BIS_DATA *DataObject,

 OUT BOOLEAN *IsVerified
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

Credentials A Signed Manifest containing verification information for the
indicated data object. The Manifest signature itself must meet the
requirements described below. This parameter is optional if a Boot
Authorization Check is currently not required on this platform
(Credentials.Data may be NULL), otherwise this parameter is
required. The required syntax of the Signed Manifest is described in
the Related Definition for Manifest Syntax below. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification succeeded, otherwise
FALSE.

Related Definitions

//**

// Manifest Syntax

//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive as
described in [SM spec]: a manifest file, a signer’s information file, and a signature block file. These three
parts along with examples are described in the following sections. In these examples, text in parentheses
is a description of the text that would appear in the signed manifest. Text outside of parentheses must
appear exactly as shown. Also note that manifest files and signer’s information files must conform to a
72-byte line-length limit. Continuation lines (lines beginning with a single “space” character) are used for
lines longer than 72 bytes. The examples given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text files. In
cases where these files contain a base-64 encoded string, the string is an ASCII string before base-64
encoding.
UEFI Forum, Inc. March 2019 1099

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//**

// Manifest File Example

//**

The manifest file must include a section referring to a memory-type data object with the reserved name
as shown in the example below. This data object is the Boot Object to be verified. An example manifest
file is shown below.

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 boot object)

A line-by-line description of this manifest file is as follows.

Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.

ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
manifest file created. The Win32 function UuidCreate() can be used for this on Win32 systems. The GUID
is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme for representing
binary values that uses only printing characters. Base-64 encoding is described in [BASE-64].

 Name: memory:BootObject

This identifies the section that carries the integrity data for the Boot Object. The string
“memory:BootObject” must appear exactly as shown. Note that the Boot Object cannot be found
directly from this manifest. A caller verifying the Boot Object integrity must load the Boot Object into
memory and specify its memory location explicitly to this verification function through the DataObject
parameter.

Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be “SHA-1.”
For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm must be “MD5.”
Multiple algorithms can be specified as a whitespace-separated list. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of the boot object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**

// Signer’s Information File Example

//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries the
UEFI Forum, Inc. March 2019 1100

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
integrity data for the corresponding section in the manifest file. An example signer’s information file is
shown below.

Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
 unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.

Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.

SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
signer’s information file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme
for representing binary values that uses only printing characters. Base-64 encoding is described in [BASE-
64].

SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as shown.

Name: memory:BootObject

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The string “memory:BootObject” must appear exactly as
shown.

Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding manifest
section. Strings identifying digest algorithms are the same as in the manifest file. The digest algorithms
specified here must match those specified in the manifest file. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest section
starts at the beginning of the opening “Name:” keyword and continues up to, but not including, the next
section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank line(s) at the end of a
section and any newline(s) preceding the next “Name:” keyword or end-of-file.
UEFI Forum, Inc. March 2019 1101

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
//**

// Signature Block File Example

//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format signature
block. The signature block covers exactly the contents of the signer’s information file. There must be a
correspondence between the name of the signer’s information file and the signature block file. The base
name matches, and the three-character extension is modified to reflect the signature algorithm used
according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA signature
block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials. The rules for successful verification depend on whether or not a Boot Authorization
Check is currently required on this platform.

If a Boot Authorization Check is not currently required on this platform, no authorization check is
performed. However, the following rules are applied for an integrity check:

• In this case, the credentials are optional. If they are not supplied (Credentials.Data is
NULL), no integrity check is performed, and the function returns immediately with a “success”
indication and IsVerified is TRUE.

• If the credentials are supplied (Credentials.Data is other than NULL), integrity checks are
performed as follows:

— Verify the credentials – The credentials parameter is a valid signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

— Verify the data object – The Manifest must contain a section named
“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed
over the specified DataObject data.

— If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

If a Boot Authorization Check is currently required on this platform, authorization and integrity checks
are performed. The integrity check is the same as in the case above, except that it is required. The
following rules are applied:

• Verify the credentials – The credentials parameter is required in this case
(Credentials.Data must be other than NULL). The credentials parameter is a valid Signed
Manifest, with a single signer. The signer’s identity is included in the credential as a certificate.
UEFI Forum, Inc. March 2019 1102

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
• Verify the data object – The Manifest must contain a section named “memory:BootObject,”
with associated verification information (in other words, hash value). The hash value from this
Manifest section must match the hash value computed over the specified DataObject data.

• Do Authorization check – This happens one of two ways depending on whether or not the
platform currently has a Boot Object Authorization Certificate configured.

— If a Boot Object Authorization Certificate is not currently configured, this function interacts
with the user in a platform-specific way to determine whether the operation should
succeed.

— If a Boot Object Authorization Certificate is currently configured, this function uses the
Boot Object Authorization Certificate to determine whether the operation should succeed.
The public key certified by the signer’s certificate must match the public key in the Boot
Object Authorization Certificate configured for this platform. The match must be direct,
that is, the signature authority cannot be delegated along a certificate chain.

— If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

Note that if a Boot Authorization Check is currently required on this platform this function always
performs an authorization check, either through platform-specific user interaction or through a signature
generated with the private key corresponding to the public key in the platform’s Boot Object
Authorization Certificate.
UEFI Forum, Inc. March 2019 1103

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or an

invalid memory reference, 
or

The Boot Authorization Check is currently required on this platform and

the Credentials.Data parameter supplied by the caller is NULL

or an invalid memory reference, 
or

The DataObject parameter supplied by the caller is NULL or an

invalid memory reference, 
or

The DataObject.Data parameter supplied by the caller is NULL or

an invalid memory reference, 
or

The IsVerified parameter supplied by the caller is NULL or an

invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter was

invalid (could not be parsed), 
or

The signed manifest supplied as the Credentials parameter failed to

verify using the installed Boot Object Authorization Certificate or the

signer’s Certificate in Credentials, 
or

Platform-specific authorization failed, 
or

Any other required attribute value was missing, 
or

The signed manifest supplied as the Credentials parameter did not

include a signer certificate, 
or
UEFI Forum, Inc. March 2019 1104

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

Summary

Verifies the integrity and authorization of the indicated data object according to the indicated credentials
and authority certificate.

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter did not

include the manifest section named “memory:BootObject,” 
or

The signed manifest supplied as the Credentials parameter had a

signing certificate with an unsupported public-key algorithm, 
or

The manifest section named “memory:BootObject” did not

include a digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm, 

or
The data object supplied as the DataObject parameter and

referenced by the manifest section named “memory:BootObject”

did not verify with the digest supplied in that manifest section, 
or

The signed manifest supplied as the Credentials parameter did not

include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_VerifiableObjectSignerInfoName,” 
or

There were no signers associated with the identified signer’s information
file, 

or
There was more than one signer associated with the identified signer’s
information file, 

or
The platform’s check flag is “on” (requiring authorization checks) but the

Credentials.Data supplied by the caller is NULL, 
or

Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve the
public key algorithm of the manifest’s signer’s certificate, 

or
An unexpected internal error occurred in a cryptographic software
module.
UEFI Forum, Inc. March 2019 1105

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL)(

 IN BIS_APPLICATION_HANDLE AppHandle,

 IN EFI_BIS_DATA *Credentials,

 IN EFI_BIS_DATA *DataObject,

 IN EFI_BIS_DATA *SectionName,

 IN EFI_BIS_DATA *AuthorityCertificate,

 OUT BOOLEAN *IsVerified
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

Credentials A Signed Manifest containing verification information for the
indicated data object. The Manifest signature itself must meet the
requirements described below. The required syntax of the Signed
Manifest is described in the Related Definition of Manifest Syntax
below. Type EFI_BIS_DATA is defined in the Initialize()
function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

SectionName An ASCII string giving the section name in the manifest holding the
verification information (in other words, hash value) that
corresponds to DataObject. Type EFI_BIS_DATA is defined in the
Initialize() function description.

AuthorityCertificate
A digital certificate whose public key must match the signer’s public
key which is found in the credentials. This parameter is optional
(AuthorityCertificate.Data may be NULL). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification was successful.
Otherwise, the function writes FALSE.

Related Definitions

//**

// Manifest Syntax

//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive as
described in [SM spec]: a manifest file, a signer’s information file, and a signature block file. These three
parts along with examples are described in the following sections. In these examples, text in parentheses
UEFI Forum, Inc. March 2019 1106

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
is a description of the text that would appear in the signed manifest. Text outside of parentheses must
appear exactly as shown. Also note that manifest files and signer’s information files must conform to a
72-byte line-length limit. Continuation lines (lines beginning with a single “space” character) are used for
lines longer than 72 bytes. The examples given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text files. In
cases where these files contain a base-64 encoded string, the string is an ASCII string before base-64
encoding.

//**

// Manifest File Example

//**

The manifest file must include a section referring to a memory-type data object with the caller-chosen
name as shown in the example below. This data object is the Data Object to be verified. An example
manifest file is shown below.

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 data object)

A line-by-line description of this manifest file is as follows.

Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.

ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
manifest file created. The Win32 function UuidCreate() can be used for this on Win32 systems. The GUID
is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme for representing
binary values that uses only printing characters. Base-64 encoding is described in [BASE-64].

Name: (a memory-type data object name)

This identifies the section that carries the integrity data for the target Data Object. The right-hand string
must obey the syntax for memory-type references, that is, it is of the form
“memory:SomeUniqueName.” The “memory:” part of this string must appear exactly. The
“SomeUniqueName” part is chosen by the caller. It must be unique within the section names in this
manifest file. The entire “memory:SomeUniqueName” string must match exactly the corresponding
string in the signer’s information file described below. Furthermore, this entire string must match the
value given for the SectionName parameter to this function. Note that the target Data Object cannot be
found directly from this manifest. A caller verifying the Data Object integrity must load the Data Object
into memory and specify its memory location explicitly to this verification function through the
DataObject parameter.

Digest-Algorithms: SHA-1
UEFI Forum, Inc. March 2019 1107

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be “SHA-1.”
For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm must be “MD5.”
Multiple algorithms can be specified as a whitespace-separated list. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of the data object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**

// Signer’s Information File Example

//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries the
integrity data for the corresponding section in the manifest file. An example signer’s information file is
shown below.

Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.

Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.

SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for every
signer’s information file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding scheme
for representing binary values that uses only printing characters. Base-64 encoding is described in [BASE-
64].

SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as shown.

Name: (a memory-type data object name)

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The right-hand string must match exactly the corresponding
string in the manifest file described above.

Digest-Algorithms: SHA-1
UEFI Forum, Inc. March 2019 1108

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
This enumerates the digest algorithms for which integrity data is included for the corresponding manifest
section. Strings identifying digest algorithms are the same as in the manifest file. The digest algorithms
specified here must match those specified in the manifest file. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.

SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest section
starts at the beginning of the opening “Name:” keyword and continues up to, but not including, the next
section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank line(s) at the end of a
section and any newline(s) preceding the next “Name:” keyword or end-of-file.

//**

// Signature Block File Example

//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format signature
block. The signature block covers exactly the contents of the signer’s information file. There must be a
correspondence between the name of the signer’s information file and the signature block file. The base
name matches, and the three-character extension is modified to reflect the signature algorithm used
according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA signature
block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials and authority certificate.

Both an integrity check and an authorization check are performed. The rules for a successful integrity
check are:

• Verify the credentials – The credentials parameter is a valid Signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section with the name as specified by the
SectionName parameter, with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over
the data specified by the DataObject parameter of this function.

The authorization check is optional. It is performed only if the AuthorityCertificate.Data
parameter is other than NULL. If it is other than NULL, the rules for a successful authorization check are:

• The AuthorityCertificate parameter is a valid digital certificate. There is no requirement
regarding the signer (issuer) of this certificate.
UEFI Forum, Inc. March 2019 1109

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
• The public key certified by the signer’s certificate must match the public key in the
AuthorityCertificate. The match must be direct, that is, the signature authority cannot
be delegated along a certificate chain.

If all of the integrity and authorization check rules are met, the function returns with a “success”
indication and IsVerified is TRUE. Otherwise, it returns with a nonzero specific error code and
IsVerified is FALSE.
UEFI Forum, Inc. March 2019 1110

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or an

invalid memory reference, 
or

The Credentials.Data parameter supplied by the caller is NULL

or an invalid memory reference, 
or

The Credentials.Length supplied by the caller is zero, 
or

The DataObject parameter supplied by the caller is NULL or an

invalid memory reference, 
or

The DataObject.Data parameter supplied by the caller is NULL

or an invalid memory reference, 
or

EFI_INVALID_PARAMETER The SectionName parameter supplied by the caller is NULL or an

invalid memory reference, 
or

The SectionName.Data parameter supplied by the caller is NULL

or an invalid memory reference, 
or

The SectionName.Length supplied by the caller is zero, 
or

The AuthorityCertificate parameter supplied by the caller is

NULL or an invalid memory reference, 
or

The IsVerified parameter supplied by the caller is NULL or an

invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
UEFI Forum, Inc. March 2019 1111

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.6 DHCP options for ISCSI on IPV6

Option 59 is the iSCSI Root path

EFI_SECURITY_VIOLATION The Credentials.Data supplied by the caller is NULL, 
or

The AuthorityCertificate supplied by the caller was invalid

(could not be parsed), 
or

The signed manifest supplied as Credentials failed to verify using

the AuthorityCertificate supplied by the caller or the

manifest’s signer’s certificate, 
or

Any other required attribute value was missing, 
or

The signed manifest supplied as the Credentials parameter did not

include a signer certificate, 
or

The signed manifest supplied as the Credentials parameter did not

include the manifest section named according to SectionName, 
or

The signed manifest supplied as the Credentials parameter had a

signing certificate with an unsupported public-key algorithm, 
or

The manifest section named according to SectionName did not

include a digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm, 

or
The data object supplied as the DataObject parameter and

referenced by the manifest section named according to

SectionName did not verify with the digest supplied in that manifest

section, 
or

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter did not

include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_VerifiableObjectSignerInfoName,” 
or

There were no signers associated with the identified signer’s information
file, 

or
There was more than one signer associated with the identified signer’s
information file, 

or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve the
public key algorithm of the manifest’s signer’s certificate, 

or
An unexpected internal error occurred in a cryptographic software
module.
UEFI Forum, Inc. March 2019 1112

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
The format of the root path is

 "iscsi:"<servername>":"<protocol>":"<port>":"<LUN>":"<targetname>

This is per the description in “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Format of the iSCSI root path; RFC 4173”.

Option 60 is the DHCP Server address.

This is formatted the same as parameter 1 in OPT_BOOTFILE_PARAM (60) is the IPv6 address of the DHCP
server as described in “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“DHCPv6 Options for Network Boot”.

24.7 HTTP Boot

24.7.1 Boot from URL

Elsewhere in this specification there is defined a discoverable network boot using DHCP as a control
channel allowing a firmware client machine export its architecture type, and then have the boot server
response with a binary image. For the UEFI architecture types defined in “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “IANA DHCPv6 parameters”, the binary image on
the boot service is a UEFI-formatted executable with a machine subsystem type that corresponds to the
UEFI firmware on the client machine, or it could be mounted as a RAM disk which contains a UEFI-
compliant file system (see Section 13.3). This binary image is often referred to as a “Network Boot
Program” (NBP). The UEFI client machine that downloads the NBP uses the IPV4 or IPV6 TFTP protocol to
address the indicated server, depending upon if DHCP4 or DHCP6 was used initially, in order to download
images such as 64-bit UEFI (type 0x07).

This section defines a related method indicated by other codes in the DHCP options, in which the name
and path of the NBP are specified as a URI string in one of several formats specifying protocol and unique
name identifying the NBP for the specified protocol. In this method the NBP will be downloaded via IPV4
or IPV6 HTTP protocol if the tag indicates x64 UEFI HTTP Boot (type code 0x0f for x86 and 0x10 for x64).

In the future other protocols such as FTP or NFS could be encoded with both new tag types and
corresponding URIs (e.g., ‘ftp://nbp.efi or nfs://nbp.efi, respectively). However, assignment of these type
codes has not yet occurred.

The rest of this section will describe ‘HTTP Boot’ as one example of ‘boot from URI’. It is expected that the
procedure can be extended as additional protocol type codes are defined.

Please reference the definitions of EFI_DNS4_PROTOCOL and EFI_DNS6_PROTOCOL elsewhere in this
document. In systems that also support one of both of these protocols, the target URI can be specified
using Internet domain name format understood by DNS servers supporting the appropriate RFC
specifications.

Also, elsewhere in this document, the PXE2.1 and UEFI2.4 netboot6 sections talk about the ‘boot from
TFTP’ method of ‘boot from URI.’

The following RFC documents should be consulted for network message details related to the processes
described in this chapter:

1. RFC1034 - "Domain Names - Concepts and Facilities",

2. RFC 1035 - "Domain Names - Implementation and Specification",
UEFI Forum, Inc. March 2019 1113

http://reg-name:port/boot/image
http://ipv4address:port/boot/image
http://ipv4address:port/boot/image
http://ipv6address:port/boot/image

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
3. RFC 3513 - "Internet Protocol Version 6 (IPv6) Addressing Architecture", , April 2003.

4. RFC 3596 - DNS Extensions to Support IP Version 6

5. RFC 2131 – Dynamic Host Configuration Protocol

6. RFC 2132 – DHCP options and BOOTP Vendor Extensions

7. RFC 5970 – DHCPv6 Options for Network Boot

8. RFC 4578 – Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot
eXecution Environment (PXE)

9. RFC 3986 – Uniform Resource Identifiers (URI): Generic Syntax, IETF, 2005

10. RFC 3004 – The User Class option

11. RFC3315 – Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

12. RFC3646 – DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)

13. RFC2246 – TLS protocol Version 1.0

24.7.2 Concept configuration for a typical HTTP Boot scenario

HTTP Boot is client-server communication based application. It combines the DHCP, DNS, and HTTP
protocols to provide the capability for system deployment and configuration over the network. This new
capability can be utilized as a higher-performance replacement for tftp-based PXE boot methods of
network deployment.

24.7.2.1 Use in Corporate environment

Figure 78. HTTP Boot Network Topology Concept – Corporate Environment

A typical network configuration which supports UEFI HTTP Boot may involve one or more UEFI client
systems, and several server systems. Figure 78 show a typical HTTP Boot network topology for a
corporate environment.

• UEFI HTTP Boot Client initiates the communication between the client and different server
system.

• DHCP server with HTTPBoot extension for boot service discovery. Besides the standard host
configuration information (such as address/subnet/gateway/name-server, etc…), the DHCP
UEFI Forum, Inc. March 2019 1114

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
server with the extensions can also provide the discovery of URI locations for boot images on
the HTTP server.

• HTTP server could be located either inside the corporate environment or across networks, such
as on the Internet. The boot resource itself is deployed on the HTTP server. In this example,
“http://webserver/boot/boot.efi” is used as the boot resource. Such an application is also
called a Network Boot Program (NBP). NBPs are used to setup the client system, which may
include installation of an operating system, or running a service OS for maintenance and
recovery tasks.

• DNS server is optional; and provides standard domain name resolution service.

24.7.2.2 Use case in Home environment

In a corporate environment, a standard DHCP server can be enhanced to support the HTTPBoot
extension. In a home network, generally only an optional standard DHCP server may be available for host
configuration information assignment. Figure 79 shows the concept network topology for a typical home
PC environment.

Figure 79. HTTP Boot Network Topology Concept2 – Home environments

UEFI HTTP Boot Client initiates the communication between the client and different servers. In the home
configuration however, the client will expect the boot resource information to be available from a source
other than the standard DHCP server, and that source does not typically have HTTPBoot extensions.
Instead of DHCP, the boot URI could be created by a UEFI application or extracted from text entered by a
user.

DHCP server is optional, and if available in the network, provides the standard service to assign host
configuration information to the UEFI Client (e.g. address/subnet/gateway/name-server/etc.). In case the
standard DHCP server is not available, the same host configuration information should be provided by a
UEFI application or extracted from text entered by a user prior to the client initiating the communication.

DNS Server is optional, and provides standard domain name resolution service.
UEFI Forum, Inc. March 2019 1115

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical HTTP Boot
scenario

Figure 80. UEFI HTTP Boot Protocol Layout

This figure illustrates the UEFI network layers related to how the HTTP Boot works.

The HTTP Boot driver is layered on top of a UEFI Network stack implementation. It consumes DHCP
service to do the Boot service discovery, and DNS service to do domain name resolution if needed. It also
consumes HTTP serviced to retrieve images from the HTTP server. The functionality needed in the HTTP
Boot scenario is limited to client initiated requests to download the boot image.

TLS is consumed if HTTPS functionality is needed. The TLS design is covered in Section 28.10.2.

The HTTP Boot driver produces LoadFile protocol and device path protocol. BDS will provide the boot
options for the HTTP Boot. Once a boot option for HTTP boot is executed, a particular network interface
is selected. HTTP Boot driver will perform all steps on that interface and it is not required to use other
interfaces.
UEFI Forum, Inc. March 2019 1116

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.7.3.1 Device Path

If both IPv4 and IPv6 are supported, the HTTP Boot driver should create two child handles, with LoadFile
and DevicePath installed on each child handle. For the device path, an IP device path node and a BootURI
device path are appended to the parent device path, for example:

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(0.0.0.0, 0, DHCP, 0.0.0.0, 0.0.0.0, 0.0.0.0)/
Uri()

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(::/128, 0, Static, ::/128, ::/128, 0)/Uri()

Also, after retrieving the boot resource information and IP address, the BootURI device path node will be
updated to include the BootURI information. For example, if the NBP is a UEFI-formatted executable, the
device patch will be updated to

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(192.168.1.100, TCP, DHCP, 192.168.1.5,
192.168.1.1, 255.255.255.0)/Uri(http://192.168.1.100/shell.efi)

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(2015::100, TCP, StatefulAutoConfigure,
2015::5, 2015::10, 64)/UriI(http://2015::100/shell.efi)

These two instances allow for the boot manager to decide a preference of IPv6 versus IPv4.

If the NBP is a binary image which could be mounted as a RAM disk, the device path will be updated to

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(192.168.1.100, TCP, DHCP, 192.168.1.5,
192.168.1.1, 255.255.255.0)/Uri(http://192.168.1.100/boot.iso [^])

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(2015::100, TCP, StatefulAutoConfigure,
2015::5, 2015::10, 64)/Uri (http://2015::100/boot.iso)

In this case, the HTTP Boot driver will register RAM disk with the downloaded NBP, by appending a
RamDisk device node to the device path above, like

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(192.168.1.100, TCP, DHCP, 192.168.1.5,
192.168.1.1, 255.255.255.0)/Uri(http://192.168.1.100/boot.iso)/RamDisk(0x049EA000, 0x5DEA000, 0,
3D5ABD30-4175-87CE-6D64-D2ADE523C4BB)

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(2015::100, TCP, StatefulAutoConfigure,
2015::5, 2015::10, 64)/Uri (http://2015::100/boot.iso)/ RamDisk(0x049EA000, 0x5DEA000, 0, 3D5ABD30-
4175-87CE-6D64-D2ADE523C4BB)
UEFI Forum, Inc. March 2019 1117

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
In some cases, Uri includes a host name and DNS become mandatory for translating the name to the IP
address of the host. The HTTP Boot driver may append DNS device path node immediately before Uri
device path node, for example:

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(192.168.1.100, TCP, DHCP, 192.168.1.5,
192.168.1.1, 255.255.255.0)/Dns(192.168.22.100, 192.168.22.101)/Uri(http://www.bootserver.com/
boot.iso)/ RamDisk(0x049EA000, 0x5DEA000, 0, 3D5ABD30-4175-87CE-6D64-D2ADE523C4BB)

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(2015::100, TCP, StatefulAutoConfigure,
2015::5, 2015::10, 64)/Dns(2016::100, 2016::101)/Uri (http:// www.bootserver.com/ boot.iso)/
RamDisk(0x049EA000, 0x5DEA000, 0, 3D5ABD30-4175-87CE-6D64-D2ADE523C4BB)

If HTTP Boot driver cannot obtain the DNS server addresses, it should not append an empty DNS device
path node.

The boot manager could use the example device paths to match the device which produces a device path
protocol including a URI device path node in the system, without matching the Specific Device Path data
in IP device path node and URI device path node, because the IP device path node and URI device path
node might be updated by HTTP Boot driver in different scenarios.

The BootURI information could be retrieved from a DHCP server with HTTPBoot extension, or from a boot
option which includes a short-form URI device path, or from a boot option which includes a URI device
path node, or created by a UEFI application or extracted from text entered by a user.

Once the HTTP Boot driver retrieves the BootURI information from the short-form URI device path, it will
perform all other steps for HTTP boot except retrieving the BootURI from DHCP server. Also, when the
short-form URI device path is inputted to HTTP Boot driver via LoadFile protocol, the HTTP Boot driver
should expand the short-form URI device path to above example device path after retrieving IP address
configuration (address, subnet, gateway, and optionally the name-server) from the DHCP server. In case
of the home environment with no DHCP server, the same information may be provisioned by OEM or
input by the end user through Setup Options. The IP and optional DNS device path nodes, constructed
with this information and prefixed to the short-form URI device path, can be inputted to the HTTP Boot
driver via LoadFile protocol. The name server information in the form of DNS device path node is
optional, and is used only when the BootURI contains the server name or FQDN. The HTTP Boot driver
will then consume the information in the device path and initiate the necessary communication.

Once the HTTP Boot driver retrieves the BootURI information from a boot option which includes a URI
device path node, it should retrieve the IP address configuration from the IP device path node of the
same boot option. If the IP address configuration or BootURI information is empty, the HTTP Boot driver
could retrieve the required information from DHCP server. If the IP address configuration or BootURI
information is not empty but invalid, the HTTP boot process will fail.

The HTTP Boot block diagram (Figure 80) describes a suggested implementation for HTTP Boot. Other
implementation can create their own HTTP Netboot Driver which meets the requirements for their
netboot methodology

24.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in Corporate
Environment)

In summary, the newly installed networked client machine (UEFI HTTP Boot Client) should be able to
enter a heterogeneous network, acquire a network address from a DHCP server, and then download an
NBP to set itself up.
UEFI Forum, Inc. March 2019 1118

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
The concept of HTTP Boot message exchange sequence is as follows. The client initiates the DHCPv4
D.O.R.A process by broadcasting a DHCPDISCOVER containing the extension that identifies the request as
coming from a client that implements the HTTP Boot functionality. Assuming that a DHCP server or a
Proxy DHCP server implementing this extension is available, after several intermediate steps, besides the
standard configuration such as address/subnet/router/dns-server, boot resource location will be
provided to the client system in the format of a URI. The URI points to the NBP which is appropriate for
this client hardware configuration. A boot option is created, and if selected by the system logic the client
then uses HTTP to download the NBP from the HTTP server into memory. Finally, the client executes the
downloaded NBP image from memory. This image can then consume other UEFI interfaces for further
system setup.

Figure 81. HTTP Boot overall flow
UEFI Forum, Inc. March 2019 1119

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
24.7.4.1 Message exchange between EFI Client and DHCP server using DHCP Client Extensions

24.7.4.1.1 Client broadcast

The client broadcasts a DHCP Discover message to the standard DHCP port (67).

 An option field in this packet contains the following:

• Fill DHCP option 55 – Parameter Requested List option

— Address configuration, Server information, Name server, Vendor class identifier

• A DHCP option 97: UUID/GUID-based Client Identifier

• A DHCP option 94: Client Network Identifier Option

— If support UNDI, fill this option (Refer RFC5970)

• A DHCP option 93: the client system architecture (Refer [Arch-Type])

— 0x0F - x86 UEFI HTTP Boot

— 0x10 - x64 UEFI HTTP Boot

• A DHCP option 60, Vendor Class ID, set to “HTTPClient:Arch:XXXX:UNDI:YYYZZZ”

24.7.4.1.2 DHCP server response

 The DHCP server responds by sending DHCPOFFER message on standard DHCP reply port (68).

The HTTP Boot Client may possibly receive multiple DHCPOFFER packets from different sources of DHCP
Services, possibly from DHCP Services which recognize the HTTP extensions or from Standard DHCP
Services.

A service recognizing HTTP extensions must respond with an offer that has Option 60 (Vendor class
identifier) parameter set to “HTTPClient”, in response to the Vendor class identifier requested in option
55 in the DHCP Discover message.

Each message contains standard DHCP parameters: an IP address for the client and any other parameters
that the administrator might have configured on the DHCP or Proxy DHCP Service. The DHCP service or
Proxy DHCP which recognizes the HTTPBoot extension will provide DHCPOFFER with HTTPClient
extensions. If this is a Proxy DHCP service, then the client IP address field is (0.0.0.0). If this is from a DHCP
service, then the returned client IP address field is valid.

From the received DHCPOFFER(s), the client records the information as follows:

• Client IP address (and other parameters) offered by a standard DHCP/BOOTP services.

• If Boot URI information is provided thru ‘file’ field in DHCP Header or option 67, then the client
will record the information as well.

• Optional Name-server information if URI is displayed using domain-name

Timeout: After Client sent out the DHCP Discover packet, the Client will wait for a
timeout to collect enough DHCP Offers. If failed to retrieve all the required
information, the DHCP Discover will be retried, at most four times. The four timeout
mechanisms is 4, 8, 16 and 32 seconds respectively,

Priority: Among all the received DHCPOFFERs, the Priority is considered as follows:
UEFI Forum, Inc. March 2019 1120

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
Priority1

Choose the DHCPOFFER that provides all required information:

 <IP address configuration, Boot URI configuration, Name-server configuration (if domain-name used in
Boot URI)>

If Boot URI and IP address configuration provided in different DHCPOFFER, Using 5 DHCPOFFER as
example for priority description

• Packet1 – DHCPOFFER, provide <IP address configuration, Name server>

• Packet2 – DHCPOFFER, provide <IP address configuration>

• Packet3 – DHCPOFFER, provide <domain-name expressed URI>

• Packet4 – DHCPOFFER, provide <IP address expressed URI>

• Packet5 – DHCPOFFER, provide <IP address, domain-name expressed URI>

Then,

Priority2

Choose the DHCPOFFER from different packet, firstly find out URI info represented in IP address mode,
then choose DHCPOFFER which provide IP address configuration

In this example, the chosen DHCPOFFER packet is packet4 + packet1 / packet 2 (packet 1/2 take same
priority, implementation can make its own implementation choice)

Priority3

Choose the DHCPOFFER from different packet, firstly find out URI info represented in domain-name
mode, then choose DHCPOFFER which provide <IP address configuration, domain-name expressed URI>

In this example, the chosen DHCPOFFER packet is packet3 / packet5 + packet1

Note: If packet5, then client IP address assigned by Packet5 will be override by IP address in packet1.

Priority4

If failed to retrieve <Boot URI / IP address / (on-demand) Name-server> information through all received
DHCPOFFERs, this is deemed as FAILED-CONFIGURATION

Assuming the boot image is in the boot subdirectory of the web server root, the supported URI could be
one of below formats. [RFC3986] where ‘/boot/’ is replaced by administrator-created directory, and
‘image’ is the file name of the NBP.

http://reg-name:port/boot/image

http://ipv4address:port/boot/image

http://ipv6address:port/boot/image

In the URL example, Port is optional if web service is provided through port 80 for the HTTP data transfer.
Commonly, the reg-name use DNS as name registry mechanism.

After retrieving the boot URI through Section 24.7.3.1, if IP address (either IPv4 or IPv6 address) is
provided, the HTTP Boot Client can directly use that address for next step HTTP transfer. If a reg-name is
UEFI Forum, Inc. March 2019 1121

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
provided in the URI, the HTTP Boot Client driver need initiate DNS process (Section 24.7.4.3) to resolve its
IP address.

24.7.4.1.3 DHCP Request

The HTTP Boot Client selects an IP address offered by a DHCP Service, and then it completes the standard
DHCP protocol by sending a DHCP Request packet for the address to the DHCP Server and waiting for
acknowledgement from the DHCP server.

24.7.4.1.4 DHCP ACK

The server acknowledges the IP address by sending DHCP ACK packet to the client.

24.7.4.2 Message exchange between UEFI Client and DHCP server not using DHCP Client
Extensions

In a home environment, because the Boot URI Information will not be provided by the DHCP Offers, we
need other channels to provide this information. The implementation suggestion is provisioning this
information by OEM or input by end user through Setup Options, henceforth, the UEFI Boot Client
already know the Boot URI before contacting the DHCP server.

The message exchange between the EFI Client and DHCP server will be standard DHCP D.O.R.A to obtain
<IP address, Name-server>.

In the case of a home environment without a DHCP server, the above message exchange is not needed,
and the UEFI HTTP Boot Client will have the <IP address, Name-server> provisioned by OEM or input by
the end user through Setup Options.

24.7.4.3 Message in DNS Query/Reply

The DNS Query/Reply is a standard process defined in DNS Protocol [RFC 1034, RFC 1035]. Multiple IP
address might be retrieved from the DNS process. It’s the HTTP Boot Client driver’s responsibility to
select proper IP address automatically or expose user interface for customer to decide proper IP address.

24.7.4.4 Message in HTTP Download

In the HTTP Boot scenario, HTTP GET message is used to get image from the Web server.

24.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6)

24.7.5.1 Message exchange between EFI Client and DHCPv6 server with DHCP Client
extensions

24.7.5.1.1 Client multicast a DHCPv6 Solicit message to the standard DHCPv6 port (547).

 Besides the options required for address auto-configuration, option field in this packet also contains the
following:

• Fill DHCPv6 Option 6 – Option Request Option

— Request server to supply option 59 (OPT_BOOTFILE_URL), option 60
(OPT_BOOTFILE_PARAM), option 23 (OPT_DNS_SERVERS), option 16
(OPTION_VENDOR_CLASS).
UEFI Forum, Inc. March 2019 1122

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
• A DHCPv6 option 1, Client identifier

• A DHCPv6 option 16, Vendor Class ID, set to “HTTPClient:Arch:XXXX:UNDI:YYYZZZ”

• A DHCPv6 option 61: the client system architecture (Refer [Arch-Type])

— 0x0F - x86 UEFI HTTP Boot

— 0x10 - x64 UEFI HTTP Boot

• A DHCPv6 option 62: Client Network Identifier Option

— If support UNDI, fill this option (Refer RFC5970)

24.7.5.1.2 Server unicast DHCPv6 Advertisement to the Client to the DHCPv6 port (546).

The HTTP Boot Client will receive multiple advertisements from different sources of DHCPv6 Services,
possibly from DHCPv6 Services which recognize the HTTP extensions or from Standard DHCPv6 Services.

A DHCPv6 service recognizing HTTP extensions must respond with an Advertisement that has Option 16
(OPTION_VENDOR_CLASS) parameter set to “HTTPClient”, in response to the OPTION_VENDOR_CLASS
requested in Option 6 in the DHCPv6 Solicit message.

Each message contains standard DHCP parameters: Identify Association (IA) option which conveys
information including <IP address, lifetime, etc…>. Name server option conveys the DNS server address.
The DHCP service or Proxy DHCP which recognizes the HTTPBoot extension will provide DHCPv6
Advertisement with HTTPClient extensions, including Boot URI and Optional Boot Parameters.

From the received DHCPOFFER(s), the client records the information as follows:

• Client IP address (and other parameters) provide through IA option

• Boot URI provided thru option 59

• Optional BootFile Parameter provided through option 60 (if no other parameter needed for
this boot URI, this option can be eliminated)

• Optional Name-server information provided through option 23, if URI is displayed using
domain-name.

24.7.5.1.3 Client multicast DHCPv6 Request to the selected DHCP Advertisement to confirm
the IP address assigned by that server

This packet is the same with the DHCPv6 Solicit packet except for the message type is Request.

24.7.5.1.4 Server unicast the DHCPv6 Reply to acknowledge the Client IP address for the
UEFI HTTP Client.

24.7.5.2 Message exchange between UEFI Client and DHCPv6 server not using DHCP Client
Extensions

In a home environment, the Boot URI Information will not be provided by the DHCPv6 Offers, we need
other channels to provide this information. Like what is described in Section 24.7.4.2, the
implementation suggestion is provisioning this information by OEM or input by end user through Setup
Options, henceforth, the UEFI Boot Client already know the Boot URI before contacting the DHCP server.

The message exchange between the EFI Client and DHCP server will be standard DHCP S.A.R.R. to obtain
<IP address, Name-server>.
UEFI Forum, Inc. March 2019 1123

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
In the case of a home environment without a DHCPv6 server, the above message exchange is not needed,
and the UEFI HTTP Boot Client will have the <IP address, Name-server> provisioned by OEM or input by
the end user through Setup Options.

24.7.5.3 Message exchange between UEFI Client and DNS6 server

The DNS Query/Reply for domain name resolution is the same process as described in Section 24.7.4.3.

24.7.5.4 Message in HTTP Download

HTTP Download process is the same process as described in Section 24.7.4.4.

24.7.6 EFI HTTP Boot Callback Protocol

This section defines the EFI HTTP Boot Callback Protocol that is invoked when the HTTP Boot driver
is about to transmit or has received a packet. The EFI HTTP Boot Callback Protocol must be installed
on the same handle as the Load File Protocol for the HTTP Boot.

EFI_HTTP_BOOT_CALLBACK_PROTOCOL

Summary

Protocol that is invoked when the HTTP Boot driver is about to transmit or has received a packet.

GUID

#define EFI_HTTP_BOOT_CALLBACK_PROTOCOL_GUID \

 {0xba23b311, 0x343d, 0x11e6, {0x91, 0x85, 0x58, 0x20, 0xb1, 0xd6, 0x52, 0x99}}

Protocol Interface Structure

typedef struct _EFI_HTTP_BOOT_CALLBACK_PROTOCOL {

 EFI_HTTP_BOOT_CALLBACK Callback;

} EFI_HTTP_BOOT_CALLBACK_PROTOCOL;

Parameters

Callback Callback routine used by the HTTP Boot driver.

EFI_HTTP_BOOT_CALLBACK_PROTOCOL.Callback()

Summary

Callback function that is invoked when the HTTP Boot driver is about to transmit or has received a
packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_BOOT_CALLBACK) (

 IN EFI_HTTP_BOOT_CALLBACK_PROTOCOL*This,
UEFI Forum, Inc. March 2019 1124

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
 IN EFI_HTTP_BOOT_CALLBACK_DATA_TYPEDataType,

 IN BOOLEAN Received,

 IN UINT32 DataLength,

 IN VOID *Data OPTIONAL

);

Parameters

This Pointer to the EFI_HTTP_BOOT_CALLBACK_PROTOCOL
instance.

DataType The event that occurs in the current state. Type
EFI_HTTP_BOOT_CALLBACK_DATA_TYPE is defined below.

Received TRUE if the callback is being invoked due to a receive event. FALSE
if the callback is being invoked due to a transmit event.

DataLength The length in bytes of the buffer pointed to by Data.

Data A pointer to the buffer of data, the data type is specified by
DataType.

Related Definitions

//**

// EFI_HTTP_BOOT_CALLBACK_DATA_TYPE

//**

typedef enum {

 HttpBootDhcp4,

 HttpBootDhcp6,

 HttpBootHttpRequest,

 HttpBootHttpResponse,

 HttpBootHttpEntityBody,

 HttpBootTypeMax

} EFI_HTTP_BOOT_CALLBACK_DATA_TYPE;

HttpBootDhcp4 Data points to a DHCP4 packet which is about to transmit or has
received.

HttpBootDhcp6 Data points to a DHCP6 packet which is about to be transmit or has
received.

HttpBootHttpRequestData points to an EFI_HTTP_MESSAGE structure, which contians
a HTTP request message to be transmitted.

HttpBootHttpResponseData points to an EFI_HTTP_MESSAGE structure, which
contians a received HTTP response message.

HttpBootHttpEntityBodyPart of the entity body has been received from the HTTP server.
Data points to the buffer of the entity body data.

Description

This function is invoked when the HTTP Boot driver is about to transmit or has received
packet. Parameters DataType and Received specify the type of
event and the format of the buffer pointed to by Data. Due to the
polling nature of UEFI device drivers, this callback function should
not execute for more than 5 ms.
UEFI Forum, Inc. March 2019 1125

UEFI Specification, Version 2.8 Network Protocols — SNP, PXE, BIS and HTTP Boot
The returned status code determines the behavior of the HTTP Boot driver.

Status Codes Returned

EFI_SUCCESS Tells the HTTP Boot driver to continue the HTTP Boot process.
EFI_ABORTED Tells the HTTP Boot driver to abort the current HTTP Boot

process.
UEFI Forum, Inc. March 2019 1126

UEFI Specification, Version 2.8
25 - Network Protocols — Managed Network

25.1 EFI Managed Network Protocol

This chapter defines the EFI Managed Network Protocol. It is split into the following two main sections:

• Managed Network Service Binding Protocol (MNSBP)

• Managed Network Protocol (MNP)

The MNP provides raw (unformatted) asynchronous network packet I/O services. These services make it
possible for multiple-event-driven drivers and applications to access and use the system network
interfaces at the same time.

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL

Summary

The MNSBP is used to locate communication devices that are supported by an MNP driver and to create
and destroy instances of the MNP child protocol driver that can use the underlying communications
device.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol functions.
This section discusses the details that are specific to the MNP.

GUID

#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \

 {0xf36ff770,0xa7e1,0x42cf,\

 {0x9ed2,0x56,0xf0,0xf2,0x71,0xf4,0x4c}}

Description

A network application (or driver) that requires shared network access can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an MNSBP
GUID. Each device with a published MNSBP GUID supports MNP and may be available for use.

After a successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function, the child MNP
driver instance is in an unconfigured state; it is not ready to send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function must be
matched with a call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_MANAGED_NETWORK_PROTOCOL

Summary

The MNP is used by network applications (and drivers) to perform raw (unformatted) asynchronous
network packet I/O.
UEFI Forum, Inc. March 2019 1127

UEFI Specification, Version 2.8 Network Protocols — Managed Network
GUID

#define EFI_MANAGED_NETWORK_PROTOCOL_GUID\

 {0x7ab33a91, 0xace5, 0x4326,\

 {0xb5, 0x72, 0xe7, 0xee, 0x33, 0xd3, 0x9f, 0x16}}

Protocol Interface Structure

typedef struct _EFI_MANAGED_NETWORK_PROTOCOL {

 EFI_MANAGED_NETWORK_GET_MODE_DATA GetModeData;

 EFI_MANAGED_NETWORK_CONFIGURE Configure;

 EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC McastIpToMac;
 EFI_MANAGED_NETWORK_GROUPS Groups;

 EFI_MANAGED_NETWORK_TRANSMIT Transmit;

 EFI_MANAGED_NETWORK_RECEIVE Receive;

 EFI_MANAGED_NETWORK_CANCEL Cancel;

 EFI_MANAGED_NETWORK_POLL Poll;

} EFI_MANAGED_NETWORK_PROTOCOL;

Parameters

GetModeData Returns the current MNP child driver operational parameters.
May also support returning underlying Simple Network
Protocol (SNP) driver mode data. See the GetModeData()
function description.

Configure Sets and clears operational parameters for an MNP child
driver. See the Configure() function description.

McastIpToMac Translates a software (IP) multicast address to a hardware
(MAC) multicast address. This function may be unsupported in
some MNP implementations. See the McastIpToMac()
function description.

Groups Enables and disables receive filters for multicast addresses.
This function may be unsupported in some MNP
implementations. See the Groups() function description.

Transmit Places asynchronous outgoing data packets into the transmit
queue. See the Transmit() function description.

Receive Places an asynchronous receiving request into the receiving
queue. See the Receive() function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The services that are provided by MNP child drivers make it possible for multiple drivers and applications
to send and receive network traffic using the same network device.
UEFI Forum, Inc. March 2019 1128

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Before any network traffic can be sent or received, the
EFI_MANAGED_NETWORK_PROTOCOL.Configure() function must initialize the operational
parameters for the MNP child driver instance. Once configured, data packets can be received and sent
using the following functions:

• EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

• EFI_MANAGED_NETWORK_PROTOCOL.Receive()

• EFI_MANAGED_NETWORK_PROTOCOL.Poll()

EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()

Summary

Returns the operational parameters for the current MNP child driver. May also support returning the
underlying SNP driver mode data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_GET_MODE_DATA) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
MnpConfigData Pointer to storage for MNP operational parameters. Type

EFI_MANAGED_NETWORK_CONFIG_DATA is defined in “Related
Definitions” below.

SnpModeData Pointer to storage for SNP operational parameters. This
feature may be unsupported. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function is used to read the current mode data (operational parameters) from the
MNP or the underlying SNP.
UEFI Forum, Inc. March 2019 1129

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Related Definitions

//**

// EFI_MANAGED_NETWORK_CONFIG_DATA

//**

typedef struct {

 UINT32 ReceivedQueueTimeoutValue;

 UINT32 TransmitQueueTimeoutValue;

 UINT16 ProtocolTypeFilter;

 BOOLEAN EnableUnicastReceive;

 BOOLEAN EnableMulticastReceive;

 BOOLEAN EnableBroadcastReceive;

 BOOLEAN EnablePromiscuousReceive;

 BOOLEAN FlushQueuesOnReset;

 BOOLEAN EnableReceiveTimestamps;

 BOOLEAN DisableBackgroundPolling;

} EFI_MANAGED_NETWORK_CONFIG_DATA;

ReceivedQueueTimeoutValue
Timeout value for a UEFI one-shot timer event. A packet that
has not been removed from the MNP receive queue by a call
to EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be dropped
if its receive timeout expires. If this value is zero, then there is
no receive queue timeout. If the receive queue fills up, then
the device receive filters are disabled until there is room in the
receive queue for more packets. The startup default value is
10,000,000 (10 seconds).

TransmitQueueTimeoutValue
Timeout value for a UEFI one-shot timer event. A packet that
has not been removed from the MNP transmit queue by a call
to EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be dropped
if its transmit timeout expires. If this value is zero, then there is
no transmit queue timeout. If the transmit queue fills up, then
the EFI_MANAGED_NETWORK_PROTOCOL.Transmit() function
will return EFI_NOT_READY until there is room in the transmit
queue for more packets. The startup default value is
10,000,000 (10 seconds).

ProtocolTypeFilterEthernet type II 16-bit protocol type in host byte order. Valid
values are zero and 1,500 to 65,535. Set to zero to receive
packets with any protocol type. The startup default value is
zero.

EnableUnicastReceive
Set to TRUE to receive packets that are sent to the network
device MAC address. The startup default value is FALSE.
UEFI Forum, Inc. March 2019 1130

UEFI Specification, Version 2.8 Network Protocols — Managed Network
EnableMulticastReceive
Set to TRUE to receive packets that are sent to any of the
active multicast groups. The startup default value is FALSE.

EnableBroadcastReceive
Set to TRUE to receive packets that are sent to the network
device broadcast address. The startup default value is FALSE.

EnablePromiscuousReceive
Set to TRUE to receive packets that are sent to any MAC
address. Note that setting this field to TRUE may cause packet
loss and degrade system performance on busy networks. The
startup default value is FALSE.

FlushQueuesOnReset
Set to TRUE to drop queued packets when the configuration is
changed. The startup default value is FALSE.

EnableReceiveTimestamps
Set to TRUE to timestamp all packets when they are received
by the MNP. Note that timestamps may be unsupported in
some MNP implementations. The startup default value is
FALSE.

DisableBackgroundPolling
Set to TRUE to disable background polling in this MNP
instance. Note that background polling may not be supported
in all MNP implementations. The startup default value is
FALSE, unless background polling is not supported.

Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.Configure()

Summary

Sets or clears the operational parameters for the MNP child driver.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_NOT_STARTED This MNP child driver instance has not been configured. The default values

are returned in MnpConfigData if it is not NULL.

Other The mode data could not be read.
UEFI Forum, Inc. March 2019 1131

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_CONFIGURE) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
MnpConfigData Pointer to configuration data that will be assigned to the MNP

child driver instance. If NULL, the MNP child driver instance is
reset to startup defaults and all pending transmit and receive
requests are flushed. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

Description

The Configure() function is used to set, change, or reset the operational parameters for the MNP child
driver instance. Until the operational parameters have been set, no network traffic can be sent or
received by this MNP child driver instance. Once the operational parameters have been reset, no more
traffic can be sent or received until the operational parameters have been set again.

Each MNP child driver instance can be started and stopped independently of each other by setting or
resetting their receive filter settings with the Configure() function.

After any successful call to Configure(), the MNP child driver instance is started. The internal periodic
timer (if supported) is enabled. Data can be transmitted and may be received if the receive filters have
also been enabled.

Note: If multiple MNP child driver instances will receive the same packet because of overlapping receive
filter settings, then the first MNP child driver instance will receive the original packet and
additional instances will receive copies of the original packet.

Note: Warning: Receive filter settings that overlap will consume extra processor and/or DMA resources
and degrade system and network performance.
UEFI Forum, Inc. March 2019 1132

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()

Summary

Translates an IP multicast address to a hardware (MAC) multicast address. This function may be
unsupported in some MNP implementations.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN BOOLEAN Ipv6Flag,

 IN EFI_IP_ADDRESS *IpAddress,

 OUT EFI_MAC_ADDRESS *MacAddress

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
Ipv6Flag Set to TRUE to if IpAddress is an IPv6 multicast address.

Set to FALSE if IpAddress is an IPv4 multicast address.
IpAddress Pointer to the multicast IP address (in network byte order) to

convert.
MacAddress Pointer to the resulting multicast MAC address.

Description

The McastIpToMac() function translates an IP multicast address to a hardware (MAC) multicast
address.

This function may be implemented by calling the underlying EFI_SIMPLE_NETWORK.MCastIpToMac()
function, which may also be unsupported in some MNP implementations.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• MnpConfigData.ProtocolTypeFilter is not valid.

The operational data for the MNP child driver instance is unchanged.

EFI_OUT_OF_RESOURCES Required system resources (usually memory) could not be allocated.
The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this [MNP] implementation.
The operational data for the MNP child driver instance is unchanged.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
The MNP child driver instance has been reset to startup defaults.

Other The MNP child driver instance has been reset to startup defaults.
UEFI Forum, Inc. March 2019 1133

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.Groups()

Summary

Enables and disables receive filters for multicast address. This function may be unsupported in some
MNP implementations.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_GROUPS) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN BOOLEAN JoinFlag,

 IN EFI_MAC_ADDRESS *MacAddress OPTIONAL

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
JoinFlag Set to TRUE to join this multicast group.

Set to FALSE to leave this multicast group.
MacAddress Pointer to the multicast MAC group (address) to join or leave.

Description

The Groups() function only adds and removes multicast MAC addresses from the filter list. The MNP
driver does not transmit or process Internet Group Management Protocol (IGMP) packets.

If JoinFlag is FALSE and MacAddress is NULL, then all joined groups are left.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One of the following conditions is TRUE:

• This is NULL.

• IpAddress is NULL.

• *IpAddress is not a valid multicast IP address.

• MacAddress is NULL.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

Other The address could not be converted.
UEFI Forum, Inc. March 2019 1134

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

Summary

Places asynchronous outgoing data packets into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_TRANSMIT) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
Token Pointer to a token associated with the transmit data

descriptor. Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN
is defined in “Related Definitions” below.

Description

The Transmit() function places a completion token into the transmit packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event and Token.TxData fields in the completion token, and these
fields cannot be NULL. When the transmit operation completes, the MNP updates the Token.Status
field and the Token.Event is signaled.

EFI_SUCCESS The requested operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MacAddress is NULL.

• *MacAddress is not a valid multicast MAC address.

The MNP multicast group settings are unchanged.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_ALREADY_STARTED The supplied multicast group is already joined.

EFI_NOT_FOUND The supplied multicast group is not joined.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

Other The requested operation could not be completed.
The MNP multicast group settings are unchanged.
UEFI Forum, Inc. March 2019 1135

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Note: There may be a performance penalty if the packet needs to be defragmented before it can be
transmitted by the network device. Systems in which performance is critical should review the
requirements and features of the underlying communications device and drivers.

Related Definitions

//**

// EFI_MANAGED_NETWORK_COMPLETION_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 union {

 EFI_MANAGED_NETWORK_RECEIVE_DATA *RxData;

 EFI_MANAGED_NETWORK_TRANSMIT_DATA *TxData;

 } Packet;

} EFI_MANAGED_NETWORK_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the MNP. The type of Event must be EVT_NOTIFY_SIGNAL.
The Task Priority Level (TPL) of Event must be lower than or
equal to TPL_CALLBACK.

Status This field will be set to one of the following values:
EFI_SUCCESS: The receive or transmit completed
successfully.
EFI_ABORTED: The receive or transmit was aborted.
EFI_TIMEOUT: The transmit timeout expired.
EFI_DEVICE_ERROR: There was an unexpected system or
network error.
EFI_NO_MEDIA: There was a media error

RxData When this token is used for receiving, RxData is a pointer to
the EFI_MANAGED_NETWORK_RECEIVE_DATA.

TxData When this token is used for transmitting, TxData is a pointer
to the EFI_MANAGED_NETWORK_TRANSMIT_DATA.

The EFI_MANAGED_NETWORK_COMPLETION_TOKEN structure is used for both transmit and receive
operations.

When it is used for transmitting, the Event and TxData fields must be filled in by the MNP client. After
the transmit operation completes, the MNP updates the Status field and the Event is signaled.

When it is used for receiving, only the Event field must be filled in by the MNP client. After a packet is
received, the MNP fills in the RxData and Status fields and the Event is signaled.
UEFI Forum, Inc. March 2019 1136

UEFI Specification, Version 2.8 Network Protocols — Managed Network
//**

// EFI_MANAGED_NETWORK_RECEIVE_DATA

//**

typedef struct {

 EFI_TIME Timestamp;

 EFI_EVENT RecycleEvent;

 UINT32 PacketLength;

 UINT32 HeaderLength;

 UINT32 AddressLength;

 UINT32 DataLength;

 BOOLEAN BroadcastFlag;

 BOOLEAN MulticastFlag;

 BOOLEAN PromiscuousFlag;

 UINT16 ProtocolType;

 VOID *DestinationAddress;

 VOID *SourceAddress;

 VOID *MediaHeader;

 VOID *PacketData;

} EFI_MANAGED_NETWORK_RECEIVE_DATA;

Timestamp System time when the MNP received the packet. Timestamp is
zero filled if receive timestamps are disabled or unsupported.

RecycleEvent MNP clients must signal this event after the received data has
been processed so that the receive queue storage can be
reclaimed. Once RecycleEvent is signaled, this structure and
the received data that is pointed to by this structure must not
be accessed by the client.

PacketLength Length of the entire received packet (media header plus the
data).

HeaderLength Length of the media header in this packet.
AddressLength Length of a MAC address in this packet.
DataLength Length of the data in this packet.
BroadcastFlag Set to TRUE if this packet was received through the broadcast

filter. (The destination MAC address is the broadcast MAC
address.)

MulticastFlag Set to TRUE if this packet was received through the multicast
filter. (The destination MAC address is in the multicast filter
list.)

PromiscuousFlag Set to TRUE if this packet was received through the
promiscuous filter. (The destination address does not match
any of the other hardware or software filter lists.)

ProtocolType 16-bit protocol type in host byte order. Zero if there is no
protocol type field in the packet header.

DestinationAddressPointer to the destination address in the media header.
UEFI Forum, Inc. March 2019 1137

UEFI Specification, Version 2.8 Network Protocols — Managed Network
SourceAddress Pointer to the source address in the media header.
MediaHeader Pointer to the first byte of the media header.
PacketData Pointer to the first byte of the packet data (immediately

following media header).

An EFI_MANAGED_NETWORK_RECEIVE_DATA structure is filled in for each packet that is received by the
MNP.

If multiple instances of this MNP driver can receive a packet, then the receive data structure and the
received packet are duplicated for each instance of the MNP driver that can receive the packet.

//**

// EFI_MANAGED_NETWORK_TRANSMIT_DATA

//**

typedef struct {

 EFI_MAC_ADDRESS *DestinationAddress OPTIONAL;

 EFI_MAC_ADDRESS *SourceAddress OPTIONAL;

 UINT16 ProtocolType OPTIONAL;

 UINT32 DataLength;

 UINT16 HeaderLength OPTIONAL;

 UINT16 FragmentCount;

 EFI_MANAGED_NETWORK_FRAGMENT_DATA FragmentTable[1];

} EFI_MANAGED_NETWORK_TRANSMIT_DATA;

DestinationAddress
Pointer to the destination MAC address if the media header is
not included in FragmentTable[]. If NULL, then the media
header is already filled in FragmentTable[].

SourceAddress Pointer to the source MAC address if the media header is not
included in FragmentTable[]. Ignored if
DestinationAddress is NULL.

ProtocolType The protocol type of the media header in host byte order.
Ignored if DestinationAddress is NULL.

DataLength Sum of all FragmentLength fields in FragmentTable[] minus
the media header length.

HeaderLength Length of the media header if it is included in the
FragmentTable. Must be zero if DestinationAddress is not
NULL.

FragmentCount Number of data fragments in FragmentTable[]. This field
cannot be zero.

FragmentTable Table of data fragments to be transmitted. The first byte of
the first entry in FragmentTable[] is also the first byte of the
media header or, if there is no media header, the first byte of
payload. Type EFI_MANAGED_NETWORK_FRAGMENT_DATA is
defined below.
UEFI Forum, Inc. March 2019 1138

UEFI Specification, Version 2.8 Network Protocols — Managed Network
The EFI_MANAGED_NETWORK_TRANSMIT_DATA structure describes a (possibly fragmented) packet to
be transmitted.

The DataLength field plus the HeaderLength field must be equal to the sum of all of the
FragmentLength fields in the FragmentTable.

If the media header is included in FragmentTable[], then it cannot be split between fragments.

//**

// EFI_MANAGED_NETWORK_FRAGMENT_DATA

//**

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;

} EFI_MANAGED_NETWORK_FRAGMENT_DATA;

FragmentLength Number of bytes in the FragmentBuffer. This field may not
be set to zero.

FragmentBuffer Pointer to the fragment data. This field may not be set to
NULL.

The EFI_MANAGED_NETWORK_FRAGMENT_DATA structure describes the location and length of a packet
fragment to be transmitted.

Status Codes Returned

EFI_SUCCESS The transmit completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

• Token.TxData is NULL.

• Token.TxData.DestinationAddress is not NULL
and Token.TxData.HeaderLength is zero.

• Token.TxData.FragmentCount is zero.

• (Token.TxData.HeaderLength +
Token.TxData.DataLength) is not equal to the sum of the

Token.TxData.FragmentTable[].FragmentLengt
h fields.

• One or more of the

Token.TxData.FragmentTable[].FragmentLengt
h fields is zero.

• One or more of the

Token.TxData.FragmentTable[].FragmentBuffe
rfields is NULL.

• Token.TxData.DataLength is greater than MTU
UEFI Forum, Inc. March 2019 1139

UEFI Specification, Version 2.8 Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.Receive()

Summary

Places an asynchronous receiving request into the receiving queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_RECEIVE) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
Token Pointer to a token associated with the receive data descriptor.

Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN is defined
in EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be NULL.
When the receive operation completes, the MNP updates the Token.Status and Token.RxData fields
and the Token.Event is signaled.

EFI_ACCESS_DENIED The transmit completion token is already in the transmit queue.

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
(usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_NOT_READY The transmit request could not be queued because the transmit queue is
full.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1140

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.Cancel()

Summary

Aborts an asynchronous transmit or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_CANCEL)(

 IN EFI_MANAGED_NETWORK_PROTOCOL *This,

 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token OPTIONAL

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_MANAGED_NETWORK_PROTOCOL.Transmit() or
EFI_MANAGED_NETWORK_PROTOCOL.Receive(). If NULL, all
pending tokens are aborted. Type
EFI_MANAGED_NETWORK_COMPLETION_TOKEN is defined in
EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues, which
usually means that the asynchronous operation has completed, this function will not signal the token and
EFI_NOT_FOUND is returned.

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
(usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token was already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is
full.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1141

UEFI Specification, Version 2.8 Network Protocols — Managed Network
Status Codes Returned

EFI_MANAGED_NETWORK_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MANAGED_NETWORK_POLL) (

 IN EFI_MANAGED_NETWORK_PROTOCOL *This

);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

Normally, a periodic timer event internally calls the Poll() function. But, in some systems, the periodic
timer event may not call Poll() fast enough to transmit and/or receive all data packets without missing
packets. Drivers and applications that are experiencing packet loss should try calling the Poll() function
more often.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event was

signaled. When Token is NULL, all pending requests were aborted and

their events were signaled.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or was

not issued by Transmit() and Receive().

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_NOT_READY No incoming or outgoing data was processed. Consider increasing the
polling rate.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue. Consider
increasing the polling rate.
UEFI Forum, Inc. March 2019 1142

UEFI Specification, Version 2.8
26 - Network Protocols — Bluetooth

26.1 EFI Bluetooth Host Controller Protocol

EFI_BLUETOOTH_HC_PROTOCOL

Summary

This protocol abstracts the Bluetooth host controller layer message transmit and receive.

GUID

#define EFI_BLUETOOTH_HC_PROTOCOL_GUID \
 { 0xb3930571, 0xbeba, 0x4fc5,
 { 0x92, 0x3, 0x94, 0x27, 0x24, 0x2e, 0x6a, 0x43 }}

Protocol Interface Structure

typedef struct _EFI_BLUETOOTH_HC_PROTOCOL {

 EFI_BLUETOOTH_HC_SEND_COMMAND SendCommand;

 EFI_BLUETOOTH_HC_RECEIVE_EVENT ReceiveEvent;

 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_EVENT AsyncReceiveEvent;

 EFI_BLUETOOTH_HC_SEND_ACL_DATA SendACLData;

 EFI_BLUETOOTH_HC_RECEIVE_ACL_DATA ReceiveACLData;

 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_ACL_DATA AsyncReceiveACLData;

 EFI_BLUETOOTH_HC_SEND_SCO_DATA SendSCOData;

 EFI_BLUETOOTH_HC_RECEIVE_SCO_DATA ReceiveSCOData;

 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_SCO_DATA AsyncReceiveSCOData;
} EFI_BLUETOOTH_HC_PROTOCOL;

Parameters

SendCommand Send HCI command packet. See the SendCommand() function
description.

ReceiveEvent Receive HCI event packets. See the ReceiveEvent() function
description.

AsyncReceiveEvent Non-blocking receive HCI event packets. See the
AsyncReceiveEvent() function description.

SendACLData Send HCI ACL (asynchronous connection-oriented) data packets. See
the SendACLData() function description.

ReceiveACLData Receive HCI ACL data packets. See the ReceiveACLData()
function description.

AsyncReceiveACLDataNon-blocking receive HCI ACL data packets. See the
AsyncReceiveACLData() function description.

SendSCOData Send HCI synchronous (SCO and eSCO) data packets. See the
SendSCOData() function description.

ReceiveSCOData Receive HCI synchronous data packets. See the
ReceiveSCOData() function description.
UEFI Forum, Inc. March 2019 1143

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
AsyncReceiveSCODataNon-blocking receive HCI synchronous data packets. See the
AsyncReceiveSCOData() function description.

Description

The EFI_BLUETOOTH_HC_PROTOCOL is used to transmit or receive HCI layer data packets. For detail of
different HCI packet (command, event, ACL, SCO), please refer to Bluetooth specification.

BLUETOOTH_HC_PROTOCOL.SendCommand()

Summary

Send HCI command packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_SEND_COMMAND)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to Bluetooth
host controller.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The SendCommand() function sends HCI command packet. Buffer holds the whole HCI command
packet, including OpCode, OCF, OGF, parameter length, and parameters. When this function is returned,
it just means the HCI command packet is sent, it does not mean the command is success or complete.
Caller might need to wait a command status event to know the command status, or wait a command
complete event to know if the command is completed. (see in Bluetooth specification, HCI Command
Packet for more detail)
UEFI Forum, Inc. March 2019 1144

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_HC_PROTOCOL.ReceiveEvent()

Summary

Receive HCI event packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_EVENT)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from Bluetooth
host controller.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The ReceiveEvent() function receives HCI event packet. Buffer holds the whole HCI event packet,
including EventCode, parameter length, and parameters. (See in Bluetooth specification, HCI Event
Packet for more detail.)

EFI_SUCCESS The HCI command packet is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

BufferSize is NULL.

*BufferSize is 0.

Buffer is NULL.

EFI_TIMEOUT Sending HCI command packet fail due to timeout.

EFI_DEVICE_ERROR Sending HCI command packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1145

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent()

Summary

Receive HCI event packet in non-blocking way.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_EVENT) (

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN BOOLEAN IsNewTransfer,

 IN UINTN PollingInterval,

 IN UINTN DataLength,

 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request is
deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The AsyncReceiveEvent() function receives HCI event packet in non-blocking way. Data in
Callback function holds the whole HCI event packet, including EventCode, parameter length, and
parameters. (See in Bluetooth specification, HCI Event Packet for more detail.)

EFI_SUCCESS The HCI event packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI event packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI event packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1146

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK) (

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context
);

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.

Context Context passed from asynchronous transfer request.

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.SendACLData()

Summary

Send HCI ACL data packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_SEND_ACL_DATA)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to Bluetooth
host controller.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
UEFI Forum, Inc. March 2019 1147

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The SendACLData() function sends HCI ACL data packet. Buffer holds the whole HCI ACL data packet,
including Handle, PB flag, BC flag, data length, and data. (see in Bluetooth specification, HCI ACL Data
Packet for more detail)

The SendACLData() function and ReceiveACLData() function just send and receive data payload
from application layer. In order to protect the payload data, the Bluetooth bus is required to call
HCI_Set_Connection_Encryption command to enable hardware based encryption after authentication
completed, according to pairing mode and host capability.

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.ReceiveACLData()

Summary

Receive HCI ACL data packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_ACL_DATA)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from Bluetooth
host controller.

EFI_SUCCESS The HCI ACL data packet is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending HCI ACL data packet fail due to timeout.

EFI_DEVICE_ERROR Sending HCI ACL data packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1148

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The ReceiveACLData() function receives HCI ACL data packet. Buffer holds the whole HCI ACL data
packet, including Handle, PB flag, BC flag, data length, and data. (See in Bluetooth specification, HCI ACL
Data Packet for more detail.)

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData()

Summary

Receive HCI ACL data packet in non-blocking way.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_ACL_DATA) (

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN BOOLEAN IsNewTransfer,

 IN UINTN PollingInterval,

 IN UINTN DataLength,

 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request is
deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed.

DataLength Specifies the length, in bytes, of the data to be received.

EFI_SUCCESS The HCI ACL data packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI ACL data packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI ACL data packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1149

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The AsyncReceiveACLData() function receives HCI ACL data packet in non-blocking way. Data in
Callback holds the whole HCI ACL data packet, including Handle, PB flag, BC flag, data length, and data.
(See in Bluetooth specification, HCI ACL Data Packet for more detail.)

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.SendSCOData()

Summary

Send HCI SCO data packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_SEND_SCO_DATA)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to Bluetooth
host controller.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
UEFI Forum, Inc. March 2019 1150

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The SendSCOData() function sends HCI SCO data packet. Buffer holds the whole HCI SCO data packet,
including ConnectionHandle, PacketStatus flag, data length, and data. (See in Bluetooth
specification, HCI Synchronous Data Packet for more detail.)

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.ReceiveSCOData()

Summary

Receive HCI SCO data packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_SCO_DATA)(

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from Bluetooth
host controller.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

EFI_SUCCESS The HCI SCO data packet is sent successfully.

EFI_UNSUPPORTED The implementation does not support HCI SCO transfer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending HCI SCO data packet fail due to timeout.

EFI_DEVICE_ERROR Sending HCI SCO data packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1151

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The ReceiveSCOData() function receives HCI SCO data packet. Buffer holds the whole HCI SCO data
packet, including ConnectionHandle, PacketStatus flag, data length, and data. (see in Bluetooth
specification, HCI Synchronous Data Packet for more detail)

Status Codes Returned

BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData()

Summary

Receive HCI SCO data packet in non-blocking way.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_SCO_DATA) (

 IN EFI_BLUETOOTH_HC_PROTOCOL *This,

 IN BOOLEAN IsNewTransfer,

 IN UINTN PollingInterval,

 IN UINTN DataLength,

 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request is
deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

EFI_SUCCESS The HCI SCO data packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI SCO data packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI SCO data packet fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1152

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The AsyncReceiveSCOData() function receives HCI SCO data packet in non-blocking way. Data in
Callback holds the whole HCI SCO data packet, including ConnectionHandle, PacketStatus flag,
data length, and data. (See in Bluetooth specification, HCI SCO Data Packet for more detail.)

Status Codes Returned

26.2 EFI Bluetooth Bus Protocol

EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL

Summary

The EFI Bluetooth IO Service Binding Protocol is used to locate EFI Bluetooth IO Protocol drivers to create
and destroy child of the driver to communicate with other Bluetooth device by using Bluetooth IO
protocol.

GUID

#define EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL_GUID \

 { 0x388278d3, 0x7b85, 0x42f0,\

 { 0xab, 0xa9, 0xfb, 0x4b, 0xfd, 0x69, 0xf5, 0xab }

Description

The Bluetooth IO consumer need locate EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL and call
CreateChild() to create a new child of EFI_BLUETOOTH_IO_PROTOCOL instance. Then use
EFI_BLUETOOTH_IO_PROTOCOL for Bluetooth communication. After use, the Bluetooth IO consumer
need call DestroyChild() to destroy it.

EFI_BLUETOOTH_IO_PROTOCOL

Summary

This protocol provides service for Bluetooth L2CAP (Logical Link Control and Adaptation Protocol) and
SDP (Service Discovery Protocol).

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
UEFI Forum, Inc. March 2019 1153

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
GUID

#define EFI_BLUETOOTH_IO_PROTOCOL_GUID \

 { 0x467313de, 0x4e30, 0x43f1,\

 { 0x94, 0x3e, 0x32, 0x3f, 0x89, 0x84, 0x5d, 0xb5 }}

Protocol Interface Structure

typedef struct _EFI_BLUETOOTH_IO_PROTOCOL {

 EFI_BLUETOOTH_IO_GET_DEVICE_INFO GetDeviceInfo;

 EFI_BLUETOOTH_IO_GET_SDP_INFO GetSdpInfo;

 EFI_BLUETOOTH_IO_L2CAP_RAW_SEND L2CapRawSend;

 EFI_BLUETOOTH_IO_L2CAP_RAW_RECEIVE L2CapRawReceive;
 EFI_BLUETOOTH_IO_L2CAP_RAW_ASYNC_RECEIVE\

 L2CapRawAsyncReceive;

 EFI_BLUETOOTH_IO_L2CAP_SEND L2CapSend;

 EFI_BLUETOOTH_IO_L2CAP_RECEIVE L2CapReceive;

 EFI_BLUETOOTH_IO_L2CAP_ASYNC_RECEIVE L2CapAsyncReceive;

 EFI_BLUETOOTH_IO_L2CAP_CONNECT L2CapConnect;

 EFI_BLUETOOTH_IO_L2CAP_DISCONNECT L2CapDisconnect;
 EFI_BLUETOOTH_IO_L2CAP_REGISTER_SERVICE\

 L2CapRegisterService;
} EFI_BLUETOOTH_IO_PROTOCOL;

Parameters

GetDeviceInfo Get Bluetooth device Information. See the GetDeviceInfo()
function description.

GetSdpInfo Get Bluetooth device SDP information. See the GetSdpInfo()
function description.

L2CapRawSend Send L2CAP message (including L2CAP header). See the
L2CapRawSend() function description.

L2CapRawReceive Receive L2CAP message (including L2CAP header). See the
L2CapRawReceive() function description.

L2CapRawAsyncReceive

Non-blocking receive L2CAP message (including L2CAP header). See
the L2CapRawAsyncReceive() function description.

L2CapSend Send L2CAP message (excluding L2CAP header) to a specific channel.
See the L2CapSend() function description.

L2CapReceive Receive L2CAP message (excluding L2CAP header) from a specific
channel. See the L2CapRawReceive() function description.

L2CapAsyncReceive Non-blocking receive L2CAP message (excluding L2CAP header) from
a specific channel. See the L2CapRawAsyncReceive() function
description.

L2CapConnect Do L2CAP connection. See the L2CapConnect() function
description.
UEFI Forum, Inc. March 2019 1154

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
L2CapDisconnect Do L2CAP disconnection. See the L2CapDisconnect() function
description.

L2CapRegisterService

Register L2CAP callback function for special channel. See the
L2CapRegisterService() function description.

Description

The EFI_BLUETOOTH_IO_PROTOCOL provides services in L2CAP protocol and SDP protocol. For detail of
L2CAP packet format, and SDP service, please refer to Bluetooth specification.

BLUETOOTH_IO_PROTOCOL.GetDeviceInfo

Summary

Get Bluetooth device information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_GET_DEVICE_INFO)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 OUT UINTN *DeviceInfoSize,

 OUT VOID **DeviceInfo
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

DeviceInfoSize A pointer to the size, in bytes, of the DeviceInfo buffer.

DeviceInfo A pointer to a callee allocated buffer that returns Bluetooth device
information. Callee allocates this buffer by using EFI Boot Service
AllocatePool().

Description

The GetDeviceInfo() function returns Bluetooth device information. The size of DeviceInfo
structure should never be assumed and the value of DeviceInfoSize is the only valid way to know the
size of DeviceInfo.
UEFI Forum, Inc. March 2019 1155

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef struct {

 UINT32 Version;

 BLUETOOTH_ADDRESS BD_ADDR;

 UINT8 PageScanRepetitionMode;

 BLUETOOTH_CLASS_OF_DEVICE ClassOfDevice;

 UINT16 ClockOffset;

 UINT8 RSSI;

 UINT8 ExtendedInquiryResponse[240];
} EFI_BLUETOOTH_DEVICE_INFO;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_DEVICE_INFO structure as defined here. Future
version of this specification may extend this data structure in a
backward compatible way and increase the value of Version.

BD_ADDR 48bit Bluetooth device address.

PageScanRepetitionMode

Bluetooth PageScanRepetitionMode. See Bluetooth specification for
detail.

ClassOfDevice Bluetooth ClassOfDevice. See Bluetooth specification for detail.

ClockOffset Bluetooth CloseOffset. See Bluetooth specification for detail.

RSSI Bluetooth RSSI. See Bluetooth specification for detail.

ExtendedInquiryResponse

Bluetooth ExtendedInquiryResponse. See Bluetooth specification for
detail.
UEFI Forum, Inc. March 2019 1156

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
typedef struct {

 UINT8 Address[6];
} BLUETOOTH_ADDRESS;

typedef struct {

 UINT8 FormatType:2;

 UINT8 MinorDeviceClass: 6;

 UINT16 MajorDeviceClass: 5;

 UINT16 MajorServiceClass:11;
} BLUETOOTH_CLASS_OF_DEVICE;

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.GetSdpInfo

Summary

Get Bluetooth SDP information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_GET_SDP_INFO)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 OUT UINTN *SdpInfoSize,

 OUT VOID **SdpInfo
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

SdpInfoSize A pointer to the size, in bytes, of the SdpInfo buffer.

SdpInfo A pointer to a callee allocated buffer that returns Bluetooth SDP
information. Callee allocates this buffer by using EFI Boot Service
AllocatePool().

Description

The GetSdpInfo() function returns Bluetooth SDP information. The size of SdpInfo structure should
never be assumed and the value of SdpInfoSize is the only valid way to know the size of SdpInfo.

EFI_SUCCESS The Bluetooth device information is returned successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth device
information.
UEFI Forum, Inc. March 2019 1157

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapRawSend

Summary

Send L2CAP message (including L2CAP header).

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_SEND)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to Bluetooth
L2CAP layer.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The L2CapRawSend() function sends L2CAP layer message (including L2CAP header). Buffer holds the
whole L2CAP message, including Length, ChannelID, and information payload. (see in Bluetooth
specification, L2CAP Data Packet Format for more detail)

EFI_SUCCESS The Bluetooth SDP information is returned successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth SDP
information.
UEFI Forum, Inc. March 2019 1158

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapRawReceive

Summary

Receive L2CAP message (including L2CAP header).

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_RECEIVE)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from Bluetooth
L2CAP layer.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The L2CapRawReceive() function receives L2CAP layer message (including L2CAP header). Buffer
holds the whole L2CAP message, including Length, ChannelID, and information payload. (see in Bluetooth
specification, L2CAP Data Packet Format for more detail)

EFI_SUCCESS The L2CAP message is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Sending L2CAP message fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1159

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive

Summary

Receive L2CAP message (including L2CAP header) in non-blocking way.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_ASYNC_RECEIVE)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN BOOLEAN IsNewTransfer,

 IN UINTN PollingInterval,

 IN UINTN DataLength,

 IN EFI_BLUETOOTH_IO_ASYNC_FUNC_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request is
deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The L2CapRawAsyncReceive() function receives L2CAP layer message (including L2CAP header) in
non-blocking way. Data in Callback function holds the whole L2CAP message, including Length,
ChannelID, and information payload. (see in Bluetooth specification, L2CAP Data Packet Format for more
detail)

EFI_SUCCESS The L2CAP message is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Receiving L2CAP message fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1160

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_ASYNC_FUNC_CALLBACK) (

 IN UINT16 ChannelID,

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context
);

ChannelID Bluetooth L2CAP message channel ID.

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.

Context Context passed from asynchronous transfer request.

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapSend

Summary

Send L2CAP message (excluding L2CAP header) to a specific channel.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_SEND)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN EFI_HANDLE Handle,

 IN OUT UINTN *BufferSize,

 IN VOID *Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect indicates which
channel to send.

EFI_SUCCESS The L2CAP asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
UEFI Forum, Inc. March 2019 1161

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
BufferSize On input, indicates the size, in bytes, of the data buffer specified by
Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to Bluetooth
L2CAP layer.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The L2CapSend() function sends L2CAP layer message (excluding L2CAP header) to Bluetooth channel
indicated by Handle. Buffer only holds information payload. (see in Bluetooth specification, L2CAP
Data Packet Format for more detail). Handle

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapReceive

Summary

Receive L2CAP message (excluding L2CAP header) from a specific channel.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RECEIVE)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN EFI_HANDLE Handle,

 OUT UINTN *BufferSize,

 OUT VOID **Buffer,

 IN UINTN Timeout
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

EFI_SUCCESS The L2CAP message is sent successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Sending L2CAP message fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1162

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect indicates which
channel to receive.

BufferSize Indicates the size, in bytes, of the data buffer specified by Buffer.

Buffer A pointer to the buffer of data that will be received from Bluetooth
L2CAP layer. Callee allocates this buffer by using EFI Boot Service
AllocatePool().

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller must
wait for the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Description

The L2CapReceive() function receives L2CAP layer message (excluding L2CAP header) from Bluetooth
channel indicated by Handle. Buffer only holds information payload. (see in Bluetooth specification,
L2CAP Data Packet Format for more detail)

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive

Summary

Receive L2CAP message (including L2CAP header) in non-blocking way from a specific channel.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_ASYNC_RECEIVE)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN EFI_HANDLE Handle,

 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,

 IN VOID *Context

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

EFI_SUCCESS The L2CAP message is received successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Receiving L2CAP message fail due to host controller or device error.
UEFI Forum, Inc. March 2019 1163

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect indicates which
channel to receive.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The L2CapAsyncReceive() function receives L2CAP layer message (excluding L2CAP header) in non-
blocking way from Bluetooth channel indicated by Handle. Data in Callback
function only holds information payload. (see in Bluetooth specification, L2CAP
Data Packet Format for more detail)

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK) (

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context
);

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.

Context Context passed from asynchronous transfer request.

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapConnect

Summary

Do L2CAP connection.

EFI_SUCCESS The L2CAP asynchronous receive request is submitted successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If an asynchronous receive request already exists on same Handle.
UEFI Forum, Inc. March 2019 1164

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_CONNECT)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 OUT EFI_HANDLE *Handle,

 IN UINT16 Psm,

 IN UINT16 Mtu,

 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Psm Bluetooth PSM. See Bluetooth specification for detail.

Mtu Bluetooth MTU. See Bluetooth specification for detail.

Callback The callback function. This function is called whenever there is
message received in this channel.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The L2CapConnect() function does all necessary steps for Bluetooth L2CAP layer connection in
blocking way. It might take long time. Once this function is returned Handle is created to indicate the
connection.

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapDisconnect

Summary

Do L2CAP disconnection.

EFI_SUCCESS The Bluetooth L2CAP layer connection is created successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Handle is NULL.

EFI_DEVICE_ERROR A hardware error occurred trying to do Bluetooth L2CAP connection.
UEFI Forum, Inc. March 2019 1165

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_DISCONNECT)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 IN EFI_HANDLE Handle
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Description

The L2CapDisconnect() function does all necessary steps for Bluetooth L2CAP layer disconnection in
blocking way. It might take long time. Once this function is returned Handle is no longer valid.

Status Codes Returned

BLUETOOTH_IO_PROTOCOL.L2CapRegisterService

Summary

Register L2CAP callback function for special channel.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_REGISTER_SERVICE)(

 IN EFI_BLUETOOTH_IO_PROTOCOL *This,

 OUT EFI_HANDLE *Handle,

 IN UINT16 Psm,

 IN UINT16 Mtu,

 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Psm Bluetooth PSM. See Bluetooth specification for detail.

Mtu Bluetooth MTU. See Bluetooth specification for detail.

EFI_SUCCESS The Bluetooth L2CAP layer disconnection is created successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_DEVICE_ERROR A hardware error occurred trying to do Bluetooth L2CAP disconnection.
UEFI Forum, Inc. March 2019 1166

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Callback The callback function. This function is called whenever there is
message received in this channel. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The L2CapRegisterService() function registers L2CAP callback function for a special channel. Once
this function is returned Handle is created to indicate the connection.

Status Codes Returned

26.3 EFI Bluetooth Configuration Protocol

EFI_BLUETOOTH_CONFIG_PROTOCOL

Summary

This protocol abstracts user interface configuration for Bluetooth device.

EFI_SUCCESS The Bluetooth L2CAP callback function is registered successfully.

EFI_ALREADY_STARTED The callback function already exists when register.

EFI_NOT_FOUND The callback function does not exist when unregister.
UEFI Forum, Inc. March 2019 1167

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
GUID

#define EFI_BLUETOOTH_CONFIG_PROTOCOL_GUID \

 { 0x62960cf3, 0x40ff, 0x4263,\

 { 0xa7, 0x7c, 0xdf, 0xde, 0xbd, 0x19, 0x1b, 0x4b }}

Protocol Interface Structure

typedef struct _EFI_BLUETOOTH_CONFIG_PROTOCOL {

 EFI_BLUETOOTH_CONFIG_INIT Init;

 EFI_BLUETOOTH_CONFIG_SCAN Scan;

 EFI_BLUETOOTH_CONFIG_CONNECT Connect;

 EFI_BLUETOOTH_CONFIG_DISCONNECT Disconnect;

 EFI_BLUETOOTH_CONFIG_GET_DATA GetData;

 EFI_BLUETOOTH_CONFIG_SET_DATA SetData;

 EFI_BLUETOOTH_CONFIG_GET_REMOTE_DATA GetRemoteData;
EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK

 RegisterPinCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK

 RegisterGetLinkKeyCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK

 RegisterSetLinkKeyCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK

 RegisterLinkConnectCompleteCallback;
} EFI_BLUETOOTH_CONFIG_PROTOCOL;

Parameters

Init Initialize Bluetooth host controller and local device. See the Init()
function description.

Scan Scan Bluetooth device. See the Scan() function description.

Connect Connect one Bluetooth device. See the Connect() function
description.

Disconnect Disconnect one Bluetooth device. See the Disconnect() function
description.

GetData Get Bluetooth configuration data. See the GetData() function
description.

SetData Set Bluetooth configuration data. See the SetData() function
description.

GetRemoteData Get remote Bluetooth device data. See the GetRemoteData()
function description.

RegisterPinCallbackRegister PIN callback function. See the RegisterPinCallback()
function description.

RegisterGetLinkKeyCallback

Register get link key callback function. See the
RegisterGetLinkKeyCallback() function description.

RegisterSetLinkKeyCallback
UEFI Forum, Inc. March 2019 1168

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Register set link key callback function. See the
RegisterSetLinkKeyCallback() function description.

RegisterLinkConnectCompleteCallback

Register link connect complete callback function. See the
RegisterLinkConnectCompleteCallback() function
description.

Description

The EFI_BLUETOOTH_CONFIG_PROTOCOL abstracts the Bluetooth configuration. User can use
Bluetooth configuration to interactive with Bluetooth bus driver.

BLUETOOTH_CONFIG_PROTOCOL.Init

Summary

Initialize Bluetooth host controller and local device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_INIT)(

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Description

The Init() function initializes Bluetooth host controller and local device.

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.Scan

Summary

Scan Bluetooth device.

EFI_SUCCESS The Bluetooth host controller and local device is initialized successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to initialize the Bluetooth host
controller and local device.
UEFI Forum, Inc. March 2019 1169

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_SCAN)(

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN BOOLEAN ReScan,

 IN UINT8 ScanType,

 IN EFI_BLUETOOTH_CONFIG_SCAN_CALLBACK_FUNCTION Callback

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

ReScan If TRUE, a new scan request is submitted no matter there is scan
result before. If FALSE and there is scan result, the previous scan
result is returned and no scan request is submitted.

ScanType Bluetooth scan type, Inquiry and/or Page. See Bluetooth
specification for detail.

Callback The callback function. This function is called if a Bluetooth device is
found during scan process.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The Scan() function scans Bluetooth device. When this function is returned, it just means scan request
is submitted. It does not mean scan process is started or finished. Whenever there is a Bluetooth device is
found, the Callback function will be called. Callback function might be called before this function
returns or after this function returns.

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_SCAN_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_BLUETOOTH_SCAN_CALLBACK_INFORMATION *CallbackInfo
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Context Context passed from scan request.

CallbackInfo Data related to scan result. NULL CallbackInfo means scan
complete.
UEFI Forum, Inc. March 2019 1170

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
typedef

typedef struct{

 BLUETOOTH_ADDRESS BDAddr;

 UINT8 RemoteDeviceState;

 BLUETOOTH_CLASS_OF_DEVICE ClassOfDevice;
 UINT8
RemoteDeviceName[BLUETOOTH_HCI_COMMAND_LOCAL_READABLE_NAME_MAX_SIZE];

}EFI_BLUETOOTH_SCAN_CALLBACK_INFORMATION;

#define BLUETOOTH_HCI_COMMAND_LOCAL_READABLE_NAME_MAX_SIZE 248

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.Connect

Summary

Connect a Bluetooth device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_CONNECT)(

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN BLUETOOTH_ADDRESS *BD_ADDR
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOLinstance.

BD_ADDR The address of Bluetooth device to be connected.

Description

The Connect() function connects a Bluetooth device. When this function is returned successfully, a new
EFI_BLUETOOTH_IO_PROTOCOL is created.

EFI_SUCCESS The Bluetooth scan request is submitted.

EFI_DEVICE_ERROR A hardware error occurred trying to scan the Bluetooth device.
UEFI Forum, Inc. March 2019 1171

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.Disconnect

Summary

Disconnect a Bluetooth device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_DISCONNECT)(

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN BLUETOOTH_ADDRESS *BD_ADDR,

 IN UINT8 Reason
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

BD_ADDR The address of Bluetooth device to be connected.

Reason Bluetooth disconnect reason. See Bluetooth specification for detail.

Description

The Disconnect() function disconnects a Bluetooth device. When this function is returned
successfully, the EFI_BLUETOOTH_IO_PROTOCOL associated with this device is destroyed and all
services associated are stopped.

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.GetData

Summary

Get Bluetooth configuration data.

EFI_SUCCESS The Bluetooth device is connected successfully.

EFI_ALREADY_STARTED The Bluetooth device is already connected.

EFI_NOT_FOUND The Bluetooth device is not found.

EFI_DEVICE_ERROR A hardware error occurred trying to connect the Bluetooth device.

EFI_SUCCESS The Bluetooth device is disconnected successfully.

EFI_NOT_STARTED The Bluetooth device is not connected.

EFI_NOT_FOUND The Bluetooth device is not found.

EFI_DEVICE_ERROR A hardware error occurred trying to disconnect the Bluetooth device.
UEFI Forum, Inc. March 2019 1172

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_GET_DATA) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN OUT UINTN *DataSize,

 IN OUT VOID *Data
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

DataType Configuration data type.

DataSize On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually returned.

Data A pointer to the buffer of data that will be returned.

Description

The GetData() function returns Bluetooth configuration data. For remote Bluetooth device
configuration data, please use GetRemoteData() function with valid BD_ADDR.

Related Definitions

typedef enum {

 EfiBluetoothConfigDataTypeDeviceName, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeClassOfDevice,

 EfiBluetoothConfigDataTypeRemoteDeviceState, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeSdpInfo,

 EfiBluetoothConfigDataTypeBDADDR, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeDiscoverable, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeControllerStoredPairedDeviceList,

 EfiBluetoothConfigDataTypeAvailableDeviceList,

 EfiBluetoothConfigDataTypeRandomAddress, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeRSSI, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeAdvertisementData, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeIoCapability, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeOOBDataFlag, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeKeyType, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeEncKeySize, /* Relevant for LE*/

 EfiBluetoothConfigDataTypeMax,

} EFI_BLUETOOTH_CONFIG_DATA_TYPE;

EfiBluetoothConfigDataTypeAdvertisementDataReport

Advertisement report. Data structure is UNIT8[].

EfiBluetoothConfigDataTypeKeyType
UEFI Forum, Inc. March 2019 1173

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
KeyType of Authentication Requirements flag of local device as
UINT8, indicating requested security properties. See Bluetooth
specification 3.H.3.5.1. BIT0: MITM, BIT1: SC.

EfiBluetoothConfigDataTypeDeviceName

Local/Remote Bluetooth device name. Data structure is zero
terminated CHAR8[].

EfiBluetoothConfigDataTypeClassOfDevice

Local/Remote Bluetooth device ClassOfDevice. Data structure is
BLUETOOTH_CLASS_OF_DEVICE.

EfiBluetoothConfigDataTypeRemoteDeviceState

Remove Bluetooth device state. Data structure is
EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_TYPE.

EfiBluetoothConfigDataTypeSdpInfo

Local/Remote Bluetooth device SDP information. Data structure is
UINT8[].

EfiBluetoothConfigDataTypeBDADDR

Local Bluetooth device address. Data structure is
BLUETOOTH_ADDRESS.

EfiBluetoothConfigDataTypeDiscoverable

Local Bluetooth discoverable state. Data structure is UINT8. (Page
scan and/or Inquiry scan)

EfiBluetoothConfigDataTypeControllerStoredPairedDeviceList

Local Bluetooth controller stored paired device list. Data structure is
BLUETOOTH_ADDRESS[].

EfiBluetoothConfigDataTypeAvailableDeviceList

Local available device list. Data structure is
BLUETOOTH_ADDRESS[].
UEFI Forum, Inc. March 2019 1174

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
typedef EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_TYPE UINT32;

#define EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_CONNECTED 0x1

#define EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_PAIRED 0x2

#define BLUETOOTH_HCI_LINK_KEY_SIZE 16

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.SetData

Summary

Set Bluetooth configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_SET_DATA) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN UINTN DataSize,

 IN VOID *Data
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

DataType Configuration data type.

DataSize Indicates the size, in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data that will be set.

Description

The SetData() function sets local Bluetooth device configuration data. Not all DataType can be set.

EFI_SUCCESS The Bluetooth configuration data is returned successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
• DataSize is NULL.
• *DataSize is not 0 and Data is NULL

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The DataType is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
*DataSize has been updated with the size needed to complete
the request.
UEFI Forum, Inc. March 2019 1175

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData

Summary

Get remove Bluetooth device configuration data.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_BLUETOOTH_CONFIG_GET_REMOTE_DATA) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN BLUETOOTH_ADDRESS *BDAddr,

 IN OUT UINTN *DataSize,

 IN OUT VOID *Data
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

DataType Configuration data type.

BDAddr Remote Bluetooth device address.

DataSize On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually returned.

Data A pointer to the buffer of data that will be returned.

Description

The GetRemoteData() function returns remote Bluetooth device configuration data.

EFI_SUCCESS The Bluetooth configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataSize is 0.

• Data is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_WRITE_PROTECTED Cannot set configuration data.
UEFI Forum, Inc. March 2019 1176

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback

Summary

Register PIN callback function.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK_FUNCTION Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The RegisterPinCallback() function registers Bluetooth PIN callback function. The Bluetooth
configuration driver must call RegisterPinCallback() to register a callback function. During pairing,
Bluetooth bus driver must trigger this callback function, and Bluetooth configuration driver must handle
callback function according to CallbackType during pairing. Both Legacy pairing and SSP (secure simple
pairing) are required to be supported. See EFI_BLUETOOTH_PIN_CALLBACK_TYPE below for detail of
each pairing mode.

EFI_SUCCESS The remote Bluetooth device configuration data is returned
successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
• DataSize is NULL.
• *DataSize is not 0 and Data is NULL

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The DataType is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
*DataSize has been updated with the size needed to complete
the request.
UEFI Forum, Inc. March 2019 1177

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_BLUETOOTH_PIN_CALLBACK_TYPE CallbackType,

 IN VOID *InputBuffer,

 IN UINTN InputBufferSize,

 OUT VOID **OutputBuffer,

 OUT UINTN *OutputBufferSize
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Context Context passed from registration.

CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

InBuffer A pointer to the buffer of data that is input from callback caller.

InputBufferSize Indicates the size, in bytes, of the data buffer specified by
InBuffer.

OutputBuffer A pointer to the buffer of data that will be output from callback
callee. Callee allocates this buffer by using EFI Boot Service
AllocatePool().

OutputBufferSize Indicates the size, in bytes, of the data buffer specified by
OutputBuffer.

typedef enum {

 EfiBluetoothCallbackTypeUserPasskeyNotification,

 EfiBluetoothCallbackTypeUserConfirmationRequest,

 EfiBluetoothCallbackTypeOOBDataRequest,

 EfiBluetoothCallbackTypePinCodeRequest,

 EfiBluetoothCallbackTypeMax,

} EFI_BLUETOOTH_PIN_CALLBACK_TYPE;

EfiBluetoothCallbackTypeUserPasskeyNotification

For SSP – passkey entry. Input buffer is Passkey (4 bytes). No output
buffer. See Bluetooth HCI command for detail.

EfiBluetoothCallbackTypeUserConfirmationRequest

For SSP – just work and numeric comparison. Input buffer is numeric
value (4 bytes). Output buffer is BOOLEAN (1 byte). See Bluetooth
HCI command for detail.

EfiBluetoothCallbackTypeOOBDataRequest

For SSP – OOB. See Bluetooth HCI command for detail.

EfiBluetoothCallbackTypePinCodeRequest

For legacy paring. No input buffer. Output buffer is PIN code (<= 16
bytes). See Bluetooth HCI command for detail.
UEFI Forum, Inc. March 2019 1178

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback

Summary

Register get link key callback function.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION

Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The RegisterGetLinkKeyCallback() function registers Bluetooth get link key callback function. The
Bluetooth configuration driver may call RegisterGetLinkKeyCallback() to register a callback
function. When Bluetooth bus driver get Link_Key_Request_Event, Bluetooth bus driver must trigger this
callback function if it is registered. Then the callback function in Bluetooth configuration driver must pass
link key to Bluetooth bus driver. When the callback function is returned Bluetooth bus driver gets link key
and must send HCI_Link_Key_Request_Reply to remote device. If this GetLinkKey callback function is not
registered or Bluetooth configuration driver fails to return a valid link key, the Bluetooth bus driver must
send HCI_Link_Key_Request_Negative_Reply to remote device. The original link key is passed by Bluetooth
bus driver to Bluetooth configuration driver by using
EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION. The Bluetooth
configuration driver need save link key to a non-volatile safe place. (See Bluetooth specification,
HCI_Link_Key_Request_Reply)

EFI_SUCCESS The PIN callback function is registered successfully.
UEFI Forum, Inc. March 2019 1179

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

IN VOID *Context,

IN BLUETOOTH_ADDRESS *BDAddr,
 OUT UINT8 LinkKey[BLUETOOTH_HCI_LINK_KEY_SIZE]

);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Context Context passed from registration.

CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

BDAddr A pointer to Bluetooth device address.

LinkKey A pointer to the buffer of link key.

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback

Summary

Register set link key callback function.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION

Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The RegisterSetLinkKeyCallback() function registers Bluetooth link key callback function. The
Bluetooth configuration driver may call RegisterSetLinkKeyCallback() to register a callback
function to get link key from Bluetooth bus driver. When Bluetooth bus driver gets
Link_Key_Notification_Event, Bluetooth bus driver must call this callback function if it is registered. Then

EFI_SUCCESS The link key callback function is registered successfully.
UEFI Forum, Inc. March 2019 1180

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
the callback function in Bluetooth configuration driver must save link key to a safe place. This link key will
be used by EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION later. (See
Bluetooth specification, Link_Key_Notification_Event)

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN BLUETOOTH_ADDRESS *BDAddr,
 IN UINT8 LinkKey[BLUETOOTH_HCI_LINK_KEY_SIZE]

);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Context Context passed from registration.

CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

BDAddr A pointer to Bluetooth device address.

LinkKey A pointer to the buffer of link key.

Status Codes Returned

BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback

Summary

Register link connect complete callback function.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK_FUNCTION

Callback,

 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

EFI_SUCCESS The link key callback function is registered successfully.
UEFI Forum, Inc. March 2019 1181

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The RegisterLinkConnectCompleteCallback() function registers Bluetooth link connect
complete callback function. The Bluetooth Configuration driver may call
RegisterLinkConnectCompleteCallback() to register a callback function. During pairing,
Bluetooth bus driver must trigger this callback function to report device state, if it is registered. Then
Bluetooth Configuration driver will get information on device connection, according to CallbackType
defined by EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE.

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE CallbackType,

 IN BLUETOOTH_ADDRESS *BDAddr,

 IN VOID *InputBuffer,

 IN UINTN InputBufferSize
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.

Context Context passed from registration.

CallbackType Callback type in
EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE.

BDAddr A pointer to Bluetooth device address.

InputBuffer A pointer to the buffer of data that is input from callback caller.

InputBufferSize Indicates the size, in bytes, of the data buffer specified by
InputBuffer.

typedef enum {

 EfiBluetoothConnCallbackTypeDisconnected,

 EfiBluetoothConnCallbackTypeConnected,

 EfiBluetoothConnCallbackTypeAuthenticated,

 EfiBluetoothConnCallbackTypeEncrypted,

} EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE;

EfiBluetoothConnCallbackTypeDisconnected

This callback is called when Bluetooth receive
Disconnection_Complete event. Input buffer is Event Parameters of
Disconnection_Complete Event defined in Bluetooth specification.

EfiBluetoothConnCallbackTypeConnected

This callback is called when Bluetooth receive Connection_Complete
event. Input buffer is Event Parameters of Connection_Complete
Event defined in Bluetooth specification.

EfiBluetoothConnCallbackTypeAuthenticated
UEFI Forum, Inc. March 2019 1182

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
This callback is called when Bluetooth receive
Authentication_Complete event. Input buffer is Event Parameters of
Authentication_Complete Event defined in Bluetooth specification.

EfiBluetoothConnCallbackTypeEncrypted

This callback is called when Bluetooth receive Encryption_Change
event. Input buffer is Event Parameters of Encryption_Change Event
defined in Bluetooth specification.

Status Codes Returned

26.4 EFI Bluetooth Attribute Protocol

EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL

Summary

This protocol provides service for Bluetooth ATT (Attribute Protocol) and GATT (Generic Attribute Profile)
based protocol interfaces.

GUID

 #define EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL_GUID \

 { 0x898890e9, 0x84b2, 0x4f3a, { 0x8c, 0x58, 0xd8, 0x57, 0x78, 0x13, 0xe0,
0xac }}

Protocol Interface Structure

typedef struct _EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL {

 EFI_BLUETOOTH_ATTRIBUTE_SEND_REQUEST SendRequest;

 EFI_BLUETOOTH_ATTRIBUTE_REGISTER_FOR_SERVER_NOTIFICATION RegisterForServerNotification;

 EFI_BLUETOOTH_ATTRIBUTE_GET_SERVICE_INFO GetServiceInfo;

 EFI_BLUETOOTH_ATTRIBUTE_GET_DEVICE_INFO GetDeviceInfo;

} EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL;

Parameters

SendRequest Send a “REQUEST” or “COMMAND” message to remote server and
receive a “RESPONSE” message for “REQUEST” from remote server
according to Bluetooth attribute protocol data unit (PDU). See the
SendRequest() function description.

RegisterForServerNotification

Register or unregister a server initiated PDU, such as
“NOTIFICATION” or “INDICATION” on a characteristic value on
remote server. See the RegisterForServerInitiatedMessage()
function description.

GetServiceInfo Get discovered service data information from connected remote
device. See GetServiceInfo() function description.

EFI_SUCCESS The link connect complete callback function is registered successfully.
UEFI Forum, Inc. March 2019 1183

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
GetDeviceInfo Get the device information. See GetDeviceInfo() function
description.

Description

The EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL provides services in ATT protocol and GATT profile. For
detail of ATT protocol, and GATT profile, please refer to Bluetooth specification.

BLUETOOTH_ATTRIBUTE_PROTOCOL.SendRequest

Summary

Send a “REQUEST” or “COMMAND” message to remote server and receive a “RESPONSE”

message for “REQUEST” from remote server according to Bluetooth attribute protocol data unit

(PDU).

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_ATTRIBUTE_SEND_REQUEST)(

 IN EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL *This,

 IN VOID *Data,

 IN UINTN DataLength,

 IN EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_FUNCTION Callback,

 IN VOID *Context

);

Parameters
This Pointer to the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL instance.

Data Data of a REQUEST or COMMAND message. The first byte is the attribute PDU
related opcode, followed by opcode specific fields. See Bluetooth specification,
Vol 3, Part F, Attribute Protocol.

DataLength The length of Data in bytes.

Callback Callback function to notify the RESPONSE is received to the caller, with the
response buffer. Caller must check the response buffer content to know if the
request action is success or fail. It may be NULL if the data is a COMMAND.

Context Data passed into Callback function. It is optional parameter and may be
NULL.
UEFI Forum, Inc. March 2019 1184

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The SendRequest() function sends a “REQUEST” or “COMMAND” message to remote server and
receive a “RESPONSE” message for “REQUEST” from remote server according to
Bluetooth attribute protocol data unit (PDU). In most cases, this interface is used
to read attributes from remote device, or write attributes to remote device.

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL *This,

 IN VOID *Data,

 IN UINTN DataLength,

 IN VOID *Context

);

This Pointer to the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL instance.

Data Data received. The first byte is the attribute opcode, followed by opcode specific
fields. See Bluetooth specification, Vol 3, Part F, Attribute Protocol. It might be a
normal RESPONSE message, or ERROR RESPONSE message.

DataLength The length of Data in bytes.

Context The context passed from the callback registration request.

Status Codes Returned

BLUETOOTH_ATTRIBUTE_PROTOCOL.RegisterForServerNotification

Summary

Register or unregister a server initiated message, such as NOTIFICATION or INDICATION, on a

EFI_SUCCESS The request is sent successfully.
EFI_INVALID_PARAMETE

R
One or more parameters are invalid due to following conditions:

l The Buffer is NULL.

l The

l BufferLength is 0.

l The opcode in Buffer is not a valid OPCODE according to

Bluetooth specification.

l The

l Callback is NULL.
EFI_DEVICE_ERROR Sending the request failed due to the host controller or the

device error.
EFI_NOT_READY A GATT operation is already underway for this device
EFI_UNSUPPORTED The attribute does not support the corresponding operation
UEFI Forum, Inc. March 2019 1185

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
characteristic value on remote server.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_ATTRIBUTE_REGISTER_FOR_SERVER_NOTIFICATION)(

 IN EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL *This,

 IN EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER *CallbackParameter,

 IN EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_FUNCTION Callback,

 IN VOID *Context

);

Parameters
This Pointer to the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL

instance.

CallbackParameterThe parameter of the callback.

Callback Callback function for server initiated attribute protocol. NULL callback function
means unregister the server initiated callback.

Context Data passed into Callback function. It is optional parameter and may be
NULL.

Description

The RegisterForServerNotification() function can be issued to request Bluetooth to
register or unregister a server initiated message, such as notification or indication,
on a characteristic value on remote server. It can only be done if the characteristic
supports that operation.

Related Definitions

typedef struct {

 UINT16 AttributeHandle;

} EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER_NOTIFICATION;

typedef struct {

 UINT16 AttributeHandle;

} EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER_INDICATION;

typedef struct {

 UINT32 Version;

 UINT8 AttributeOpCode;

 union {

 EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER_NOTIFICATION Notification;

 EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER_INDICATION Indication;
UEFI Forum, Inc. March 2019 1186

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
 } Parameter;

} EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_ATTRIBUTE_CALLBACK_PARAMETER structure as
defined here. Future version of this specification may extend this data structure in
a backward compatible way and increase the value of Version.

AttributeOpCodeThe attribute opcode for server initiated attribute protocol. See Bluetooth
specification, Vol 3, Part F, Attribute Protocol.

AttributeHandleThe attribute handle for notification or indication.

Status Codes Returned

BLUETOOTH_ATTRIBUTE_PROTOCOL.GetServiceInfo

Summary

Get Bluetooth discovered service information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_ATTRIBUTE_GET_SERVICE_INFO)(

 IN EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL *This,

 OUT UINTN *ServiceInfoSize,

 OUT VOID **ServiceInfo

);

Parameters

This Pointer to the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL instance.

ServiceInfoSize A pointer to the size, in bytes, of the ServiceInfo buffer.

ServiceInfo A pointer to a callee allocated buffer that returns Bluetooth
discovered service information. Callee allocates this buffer by using
EFI Boot Service AllocatePool().

EFI_SUCCESS The callback function is registered or unregistered successfully
EFI_INVALID_PARAMETE

R
The attribute opcode is not server initiated message opcode. See

Bluetooth specification, Vol 3, Part F,
Attribute Protocol.

EFI_ALREADY_STARTED A callback function is already registered on the same attribute
opcode and attribute handle, when the
Callback is not NULL.

EFI_NOT_STARTED A callback function is not registered on the same attribute opcode
and attribute handle, when the Callback
is NULL.

EFI_NOT_READY A GATT operation is already underway for this device
EFI_UNSUPPORTED The attribute does not support notification
UEFI Forum, Inc. March 2019 1187

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The GetServiceInfo() function returns Bluetooth discovered service information. The size of
ServiceInfo structure should never be assumed and the value of
ServiceInfoSize is the only valid way to know the size of ServiceInfo. The
ServiceInfo buffer is a list Bluetooth service information structures defined
below.

Related Definitions

typedef struct {

 UINT8 Length;

 union {

 UINT16 Uuid16;

 UINT32 Uuid32;

 UINT8 Uuid128[16];

 } Data;

} EFI_BLUETOOTH_UUID;

Length The length of Bluetooth UUID data. The valid value is 2, 4, or 16.

Uuid16 The 16-bit Bluetooth UUID data.

Uuid32 The 32-bit Bluetooth UUID data.

Uuid128 The 128-bit Bluetooth UUID data.

typedef struct {

 EFI_BLUETOOTH_UUID Type;

 UINT16 Length;

 UINT16 AttributeHandle;

 EFI_BLUETOOTH_ATTRIBUTE_PERMISSION AttributePermission;

} EFI_BLUETOOTH_ATTRIBUTE_HEADER;

Type The type of this structure. It must be EFI_BLUETOOTH_UUID. See
Bluetooth GATT definition. Primary Service is 0x2800. Secondary
Service is 0x2801. Include Service is 0x2802. Characteristic is 0x2803.
Characteristic Descriptor is 0x2900.

Length The length of this structure.

AttributeHandle The handle of the service declaration. See Bluetooth specification.
UEFI Forum, Inc. March 2019 1188

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
AttributePermissionThe permission of the attribute. This field is only
valid for the attribute of the local device. This field should be ignored for
the attribute of the remote device.

//

// Bluetooth Attribute Permission

//

typedef union {
 struct {

 UINT16 Readable : 1;

 UINT16 ReadEncryption : 1;

 UINT16 ReadAuthentication : 1;

 UINT16 ReadAuthorization : 1;

 UINT16 ReadKeySize : 5;

 UINT16 Reserved1 : 7;

 UINT16 Writeable : 1;

 UINT16 WriteEncryption : 1;

 UINT16 WriteAuthentication : 1;

 UINT16 WriteAuthorization : 1;

 UINT16 WriteKeySize : 5;

 UINT16 Reserved2 : 7;

 } Permission;

 UINT32 Data32;

} EFI_BLUETOOTH_ATTRIBUTE_PERMISSION;

Readable The attribute is readable.

ReadEncryption The encryption is required on read.

ReadAuthenticationThe authentication is required on read.

ReadAuthorization The authorization is required on read.

ReadKeySize The size of key in bytes on read.

Writeable The attribute is writeable.

WriteEncryption The encryption is required on write.

WriteAuthenticationThe authentication is required on write.

WriteAuthorizationThe authorization is required on write.

WriteKeySize The size of key in bytes on write.

typedef struct {

 EFI_BLUETOOTH_ATTRIBUTE_HEADER Header;

 UINT16 EndGroupHandle;

 EFI_BLUETOOTH_UUID ServiceUuid;

} EFI_BLUETOOTH_GATT_PRIMARY_SERVICE_INFO;

EndGroupHandle The handle of the last attribute within the service definition. See
Bluetooth specification.

Header The header of this structure.
UEFI Forum, Inc. March 2019 1189

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
typedef struct {

 EFI_BLUETOOTH_ATTRIBUTE_HEADER Header;

 UINT16
StartGroupHandle;

 UINT16
EndGroupHandle;

 EFI_BLUETOOTH_UUID ServiceUuid;

} EFI_BLUETOOTH_GATT_INCLUDE_SERVICE_INFO;

Header The header of this structure.

typedef struct {

 EFI_BLUETOOTH_ATTRIBUTE_HEADER Header;

 UINT8 CharacteristicProperties;

 UINT16 CharacteristicValueHandle;

 EFI_BLUETOOTH_UUID haracteristicUuid;

} EFI_BLUETOOTH_GATT_CHARACTERISTIC_INFO;

Header The header of this structure.

typedef struct {

 EFI_BLUETOOTH_ATTRIBUTE_HEADER Header;

 EFI_BLUETOOTH_UUID
CharacteristicDescriptorUuid;

} EFI_BLUETOOTH_GATT_CHARACTERISTIC_DESCRIPTOR_INFO;

Header

The header of this structure.

Status Codes Returned

EFI_SUCCESS The Bluetooth discovered service information is returned
successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth
discovered service information.
UEFI Forum, Inc. March 2019 1190

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
BLUETOOTH_ATTRIBUTE_PROTOCOL.GetDeviceInfo

Summary

Get Bluetooth device information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_ATTRIBUTE_GET_DEVICE_INFO)(

 IN EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL *This,

 OUT UINTN *DeviceInfoSize,
 OUT VOID **DeviceInfo
);

Parameters

This Pointer to the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL instance.

DeviceInfoSize A pointer to the size, in bytes, of the DeviceInfo buffer.

DeviceInfo A pointer to a callee allocated buffer that returns Bluetooth device
information. Callee allocates this buffer by using EFI Boot Service
AllocatePool(). If this device is Bluetooth classic device,
EFI_BLUETOOTH_DEVICE_INFO should be used. If this device is
Bluetooth LE device, EFI_BLUETOOTH_LE_DEVICE_INFO
should be used.

Description

The GetDeviceInfo() function returns Bluetooth device information. The size of DeviceInfo
structure should never be assumed and the value of DeviceInfoSize is the
only valid way to know the size of DeviceInfo.

Related Definitions

typedef struct {

 UINT8 Address[6];

 UINT8 Type;

} BLUETOOTH_LE_ADDRESS;

typedef struct {

 UINT32 Version;

 BLUETOOTH_LE_ADDRESS BD_ADDR;

 BLUETOOTH_LE_ADDRESS DirectAddress;

 UINT8 RSSI;

 UINTN AdvertismentDataSize;

 VOID *AdvertismentData;

} EFI_BLUETOOTH_LE_DEVICE_INFO;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_LE_DEVICE_INFO structure as defined here. Future
UEFI Forum, Inc. March 2019 1191

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
version of this specification may extend this data structure in a
backward compatible way and increase the value of Version.

BD_ADDR 48bit Bluetooth device address and 1byte address type.

DirectAddress 48bit random device address and 1byte address type.

RSSI Bluetooth RSSI. See Bluetooth specification for detail.

AdvertisementDataSize The size of AdvertisementData in bytes.

AdvertisementData Bluetooth LE advertisement data. See Bluetooth specification for
detail.

Status Codes Returned

EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL

Summary

The EFI Bluetooth ATTRIBUTE Service Binding Protocol is used to locate EFI Bluetooth ATTRIBUTE
Protocol drivers to create and destroy child of the driver to communicate with other Bluetooth
device by using Bluetooth ATTRIBUTE protocol.

GUID

#define EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL_GUID \

 { \

0x5639867a, 0x8c8e, 0x408d, 0xac, 0x2f, 0x4b, 0x61, 0xbd, 0xc0, 0xbb, 0xbb \

}

Description

The Bluetooth ATTRIBUTE consumer need locate
EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL and call CreateChild() to create a new child
of EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL instance. Then use EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL
for Bluetooth communication. After use, the Bluetooth ATTRIBUTE consumer need call DestroyChild()to
destroy it.

26.5 EFI Bluetooth LE Configuration Protocol

EFI_BLUETOOTH_LE_CONFIG_PROTOCOL

Summary

This protocol abstracts user interface configuration for BluetoothLe device.

GUID

EFI_SUCCESS The Bluetooth device information is returned successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth device
information.
UEFI Forum, Inc. March 2019 1192

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
#define EFI_BLUETOOTH_LE_CONFIG_PROTOCOL_GUID \

 { 0x8f76da58, 0x1f99, 0x4275, { 0xa4, 0xec, 0x47, 0x56, 0x51, 0x5b,
0x1c, 0xe8 }}

Protocol Interface Structure

typedef struct _EFI_BLUETOOTH_LE_CONFIG_PROTOCOL {

 EFI_BLUETOOTH_LE_CONFIG_INIT Init;

 EFI_BLUETOOTH_LE_CONFIG_SCAN Scan;

 EFI_BLUETOOTH_LE_CONFIG_CONNECT Connect;

 EFI_BLUETOOTH_LE_CONFIG_DISCONNECT Disconnect;

 EFI_BLUETOOTH_LE_CONFIG_GET_DATA GetData;

 EFI_BLUETOOTH_LE_CONFIG_SET_DATA SetData;

 EFI_BLUETOOTH_LE_CONFIG_GET_REMOTE_DATA GetRemoteData;

EFI_BLUETOOTH_LE_CONFIG_REGISTER_SMP_AUTH_CALLBACK RegisterSmpAuthCallback;

 EFI_BLUETOOTH_LE_CONFIG_SEND_SMP_AUTH_DATA SendSmpAuthData;

 EFI_BLUETOOTH_LE_CONFIG_REGISTER_SMP_GET_DATA_CALLBACK
RegisterSmpGetDataCallback;

 EFI_BLUETOOTH_LE_CONFIG_REGISTER_SMP_SET_DATA_CALLBACK
RegisterSmpSetDataCallback;

EFI_BLUETOOTH_LE_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK
RegisterLinkConnectCompleteCallback;

} EFI_BLUETOOTH_LE_CONFIG_PROTOCOL;

Parameters

Init Initialize BluetoothLE host controller and local device. See the
Init() function description.

Scan Scan BluetoothLE device. See the Scan() function description.

Connect Connect one BluetoothLE device. See the Connect() function
description.

Disconnect Disconnect one BluetoothLE device. See the Disconnect()
function description.

GetData Get BluetoothLE configuration data. See the GetData() function
description.

SetData Set BluetoothLE configuration data. See the SetData() function
description.

GetRemoteData Get remote BluetoothLE device data. See the GetRemoteData()
function description.

RegisterSmpAuthCallback

Register Security Manager Callback function. This function will be
called from Bluetooth BUS driver whenever user interaction is
required for security protocol authorization/authentication. See the
RegisterSmpAuthCallback() function description.

SendSmpAuthData

Send user input (Authentication/Authorization) such as passkey,
confirmation (yes/no) in response to pairing request. See the
SendSmpAuthData() function description.
UEFI Forum, Inc. March 2019 1193

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
RegisterSmpGetDataCallback

Register a callback function to get SMP related data. See the
RegisterSmpGetDataCallback() function description.

RegisterSmpSetDataCallback

Register a callback function to set SMP related data. See the
RegisterSmpGetDataCallback() function description.

RegisterLinkConnectCompleteCallback

Register link connect complete callback function. See the
RegisterLinkConnectCompleteCallback() function
description.

Description

The EFI_BLUETOOTH_LE_CONFIG_PROTOCOL abstracts the BluetoothLE configuration. User can use
BluetoothLE configuration to interactive with BluetoothLE bus driver.

BLUETOOTH_LE_CONFIG_PROTOCOL.Init

Summary

Initialize BluetoothLE host controller and local device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_INIT)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Description

The Init() function initializes BluetoothLE host controller and local device.

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.Scan

Summary

Scan BluetoothLE device.

EFI_SUCCESS The BluetoothLE host controller and local device is initialized
successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to initialize the BluetoothLE host
controller and local device.
UEFI Forum, Inc. March 2019 1194

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_SCAN)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,
 IN BOOLEAN ReScan,
 IN UIN32 Timeout;

 IN EFI_BLUETOOTH_LE_CONFIG_SCAN_PARAMETER *ScanParameter, OPTIONAL
 IN EFI_BLUETOOTH_LE_CONFIG_SCAN_CALLBACK_FUNCTION Callback,
 IN VOID *Context
);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

ReScan If TRUE, a new scan request is submitted no matter there is scan result
before. If FALSE and there is scan result, the previous scan result is
returned and no scan request is submitted.

Timeout Duration in milliseconds for which to scan.

ScanParameter If it is not NULL, the ScanParameter is used to perform a scan by
the BluetoothLE bus driver. If it is NULL, the default parameter is
used.

Callback The callback function. This function is called if a BluetoothLE device
is found during scan process.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The Scan() function scans BluetoothLE device. When this function is returned, it just means scan
request is submitted. It does not mean scan process is started or finished.
Whenever there is a BluetoothLE device is found, the Callback function will be
called. Callback function might be called before this function returns or after
this function returns.
UEFI Forum, Inc. March 2019 1195

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef struct {

// Scan parameter

 UINT32 Version;

 UINT8 ScanType;

 UINT16 ScanInterval;

 UINT16 ScanWindow;

 UINT8 ScanningFilterPolicy;

// Scan result filter

 UINT8 AdvertisementFlagFilter;

} EFI_BLUETOOTH_LE_CONFIG_SCAN_PARAMETER;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_LE_CONFIG_SCAN_PARAMETER structure
as defined here. Future version of this specification may extend this
data structure in a backward compatible way and increase the value of
Version.

ScanType Passive scanning or active scanning. See Bluetooth specification.

ScanInterval Recommended scan interval to be used while performing scan.

ScanWindow Recommended scan window to be used while performing a scan.

ScanningFilterPolicyRecommended scanning filter policy to be used while
performing a scan.

AdvertisementFlagFilter

This is one byte flag to serve as a filter to remove unneeded scan
result. For example, set BIT0 means scan in LE Limited Discoverable
Mode. Set BIT1 means scan in LE General Discoverable Mode. See
Supplement to Bluetooth Core Specification.

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_SCAN_CALLBACK_FUNCTION) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_BLUETOOTH_LE_SCAN_CALLBACK_INFORMATION *CallbackInfo

);

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Context Context passed from scan request.

CallbackInfo Data related to scan result. NULL CallbackInfo means scan complete.
UEFI Forum, Inc. March 2019 1196

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
typedef struct{

 BLUETOOTH_LE_ADDRESS BDAddr;

 BLUETOOTH_LE_ADDRESS DirectAddress;

 UINT8 RemoteDeviceState;

 INT8 RSSI;

 UINTN AdvertisementDataSize;

 VOID *AdvertisementData;

} EFI_BLUETOOTH_LE_SCAN_CALLBACK_INFORMATION;

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.Connect

Summary

Connect a BluetoothLE device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_CONNECT)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,
 IN BOOLEAN AutoReconnect,
 IN BOOLEAN DoBonding;
 IN EFI_BLUETOOTH_LE_CONFIG_CONNECT_PARAMETER *ConnectParameter,
OPTIONAL
 IN BLUETOOTH_LE_ADDRESS *BD_ADDR
);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

AutoReconnect If TRUE, the BluetoothLE host controller needs to do an auto
reconnect. If FALSE, the BluetoothLE host controller does not do an
auto reconnect.

DoBonding If TRUE, the BluetoothLE host controller needs to do a bonding. If
FALSE, the BluetoothLE host controller does not do a bonding.

ConnectParameter If it is not NULL, the ConnectParameter is used to perform a
scan by the BluetoothLE bus driver. If it is NULL, the default
parameter is used.

BD_ADDR The address of the BluetoothLE device to be connected.

EFI_SUCCESS The Bluetooth scan request is submitted.
EFI_DEVICE_ERROR A hardware error occurred trying to scan the Bluetooth device.
UEFI Forum, Inc. March 2019 1197

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The Connect() function connects a Bluetooth device. When this function is returned successfully, a
new EFI_BLUETOOTH_IO_PROTOCOL is created.

Related Definitions

typedef struct {

 UINT32 Version;

 UINT16 ScanInterval;

 UINT16 ScanWindow;

 UINT16 ConnIntervalMin;

 UINT16 ConnIntervalMax;

 UINT16 ConnLatency;

 UINT16 SupervisionTimeout;

} EFI_BLUETOOTH_LE_CONFIG_CONNECT_PARAMETER;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_LE_CONFIG_CONNECT_PARAMETER
structure as defined here. Future version of this specification may
extend this data structure in a backward compatible way and increase
the value of Version.

ScanInterval Recommended scan interval to be used while performing scan
before connect.

ScanWindow Recommended scan window to be used while performing a
connection.

ConnIntervalMin Minimum allowed connection interval. Shall be less than or equal to
ConnIntervalMax.

ConnIntervalMax Maximum allowed connection interval. Shall be greater than or
equal to ConnIntervalMin.

ConnLatency Slave latency for the connection in number of connection events.

SupervisionTimeoutLink supervision timeout for the connection.

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.Disconnect

Summary

Disconnect a BluetoothLE device.

EFI_SUCCESS The BluetoothLE device is connected successfully.
EFI_ALREADY_STARTED The BluetoothLE device is already connected.
EFI_NOT_FOUND The BluetoothLE device is not found.
EFI_DEVICE_ERROR A hardware error occurred trying to connect the BluetoothLE

device.
UEFI Forum, Inc. March 2019 1198

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_DISCONNECT)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN BLUETOOTH_LE_ADDRESS *BD_ADDR,

 IN UINT8 Reason

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

BD_ADDR The address of BluetoothLE device to be connected.

Reason BluetoothLE disconnect reason. See Bluetooth specification for
detail.

Description

The Disconnect() function disconnects a BluetoothLE device. When this function is returned
successfully, the EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL associated with this
device is destroyed and all services associated are stopped.

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.GetData

Summary

Get BluetoothLE configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_GET_DATA) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN OUT UINTN *DataSize,

 IN OUT VOID *Data

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

DataType Configuration data type.

DataSize On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually returned.

EFI_SUCCESS The BluetoothLE device is disconnected successfully.
EFI_NOT_STARTED The BluetoothLE device is not connected.
EFI_NOT_FOUND The BluetoothLE device is not found.
EFI_DEVICE_ERROR A hardware error occurred trying to disconnect the BluetoothLE

device.
UEFI Forum, Inc. March 2019 1199

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Data A pointer to the buffer of data that will be returned.

Description

The GetData() function returns BluetoothLE configuration data. For remote BluetoothLE device
configuration data, please use GetRemoteData() function with valid
BD_ADDR.

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.SetData

Summary

Set BluetoothLE configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_SET_DATA) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN UINTN DataSize,

 IN VOID *Data

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

DataType Configuration data type.

DataSize Indicates the size, in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data that will be set.

Description

The SetData() function sets local BluetoothLE device configuration data. Not all DataType can be set.

EFI_SUCCESS The BluetoothLE configuration data is returned successfully.
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

· DataSize is NULL.

· *DataSize is 0.

· Data is NULL.
EFI_UNSUPPORTED The DataType is unsupported.
EFI_NOT_FOUND The DataType is not found.
EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
UEFI Forum, Inc. March 2019 1200

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.GetRemoteData

Summary

Get remove BluetoothLE device configuration data.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_BLUETOOTH_LE_CONFIG_GET_REMOTE_DATA) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,

 IN OUT UINTN *DataSize,

 IN OUT VOID *Data

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

DataType Configuration data type.

BDAddr Remote BluetoothLE device address.

DataSize On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually returned.

Data A pointer to the buffer of data that will be returned.

Description

The GetRemoteData() function returns remote BluetoothLE device configuration data.

EFI_SUCCESS The BluetoothLE configuration data is set successfully.
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

· DataSize is 0.

· Data is NULL.
EFI_UNSUPPORTED The DataType is unsupported.
EFI_WRITE_PROTECTED Cannot set configuration data.
UEFI Forum, Inc. March 2019 1201

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpAuthCallback

Summary

Register Security Manager Protocol callback function for user authentication/authorization.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_REGISTER_SMP_AUTH_CALLBACK)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_LE_SMP_CALLBACK Callback,

 IN VOID *Context

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Callback Callback function for user authentication/authorization.

Context Data passed into callback function. This is optional parameter and
may be NULL.

Description

The RegisterSmpAuthCallback() function register Security Manager Protocol callback
function for user authentication/authorization.

EFI_SUCCESS The remote BluetoothLE device configuration data is returned
successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

· DataSize is NULL.

· *DataSize is 0.

· Data is NULL.
EFI_UNSUPPORTED The DataType is unsupported.
EFI_NOT_FOUND The DataType is not found.
EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
UEFI Forum, Inc. March 2019 1202

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_SMP_CALLBACK) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,

 IN EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE EventDataType,

 IN UINTN DataSize,

 IN VOID *Data

);

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Context Data passed into callback function. This is optional parameter and
may be NULL.

BDAddr Remote BluetoothLE device address.

EventDataType Event data type in EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE.

DataSize Indicates the size, in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data.

typedef enum {

 EfiBlutoothSmpAuthorizationRequestEvent,

 EfiBlutoothSmpPasskeyReadyEvent,

 EfiBlutoothSmpPasskeyRequestEvent,

 EfiBlutoothSmpOOBDataRequestEvent,

 EfiBlutoothSmpNumericComparisonEvent,

} EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE;

EfiBlutoothSmpAuthorizationRequestEvent

It indicates an authorization request. No data is associated with the callback
input. In the output data, the application should return the authorization value.
The data structure is BOOLEAN. TRUE means YES. FALSE means NO.

EfiBlutoothSmpPasskeyReadyEvent

It indicates that a passkey has been generated locally by the driver, and the same
passkey should be entered at the remote device. The callback input data is the
passkey of type UINT32, to be displayed by the application. No output data
should be returned.

EfiBlutoothSmpPasskeyRequestEvent

It indicates that the driver is requesting for the passkey has been generated at
the remote device. No data is associated with the callback input. The output data
is the passkey of type UINT32, to be entered by the user.

EfiBlutoothSmpOOBDataRequestEvent
UEFI Forum, Inc. March 2019 1203

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
It indicates that the driver is requesting for the passkey that has been pre-shared
out-of-band with the remote device. No data is associated with the callback
input. The output data is the stored OOB data of type UINT8[16].

EfiBlutoothSmpNumericComparisonEvent

In indicates that a number have been generated locally by the bus driver, and
also at the remote device, and the bus driver wants to know if the two numbers
match. The callback input data is the number of type UINT32. The output data
is confirmation value of type BOOLEAN. TRUE means comparison pass. FALSE
means comparison fail.

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.SendSmpAuthData

Summary

Send user authentication/authorization to remote device.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_SEND_SMP_AUTH_DATA)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,

 IN EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE EventDataType,

 IN UINTN DataSize,

 IN VOID *Data

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

BDAddr Remote BluetoothLE device address.

EventDataType Event data type in EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE.

DataSize The size of Data in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data that will be sent. The data format
depends on the type of SMP event data being responded to. See
EFI_BLUETOOTH_LE_SMP_EVENT_DATA_TYPE.

EFI_SUCCESS The SMP callback function is registered successfully.
EFI_ALREADY_STARTED A callback function is already registered on the same attribute opcode

and attribute handle, when the Callback is not NULL.
EFI_NOT_STARTED A callback function is not registered on the same attribute opcode and

attribute handle, when the Callback is NULL.
UEFI Forum, Inc. March 2019 1204

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Description

The SendSmpAuthData() function sends user authentication/authorization to remote device. It
should be used to send these information after the caller gets the request data
from the callback function by RegisterSmpAuthCallback().

Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpGetDataCallback

Summary

Register a callback function to get SMP related data.

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_BLUETOOTH_LE_CONFIG_REGISTER_SMP_GET_DATA_CALLBACK
)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_LE_CONFIG_SMP_GET_DATA_CALLBACK Callback,

 IN VOID *Context

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Callback Callback function for SMP get data.

Context Data passed into callback function. This is optional parameter and
may be NULL.

Description

The RegisterSmpGetDataCallback() function registers a callback function to get SMP related
data.

Related Definitions

typedef

EFI_STATUS

(EFIAPI * EFI_BLUETOOTH_LE_CONFIG_SMP_GET_DATA_CALLBACK) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,
 IN EFI_BLUETOOTH_LE_SMP_DATA_TYPE DataType,

 IN OUT UINTN *DataSize,

 OUT VOID *Data

EFI_SUCCESS The SMP authorization data is sent successfully.
EFI_NOT_READY SMP is not in the correct state to receive the auth data
UEFI Forum, Inc. March 2019 1205

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
);

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Context Data passed into callback function. This is optional parameter and
may be NULL.

BDAddr Remote BluetoothLE device address. For Local device setting, it
should be NULL.

DataType Data type in EFI_BLUETOOTH_LE_SMP_DATA_TYPE.

DataSize On input, indicates the size, in bytes, of the data buffer specified by
Data. On output, indicates the amount of data actually returned.

Data A pointer to the buffer of data that will be returned.

typedef enum {

 // For local device only

 EfiBluetoothSmpLocalIR, /* If Key hierarchy is supported */

 EfiBluetoothSmpLocalER, /* If Key hierarchy is supported */

 EfiBluetoothSmpLocalDHK, /* If Key hierarchy is supported. OPTIONAL */

 // For peer specific

 EfiBluetoothSmpKeysDistributed = 0x1000,

 EfiBluetoothSmpKeySize,

 EfiBluetoothSmpKeyType,

 EfiBluetoothSmpPeerLTK,

 EfiBluetoothSmpPeerIRK,

 EfiBluetoothSmpPeerCSRK,

 EfiBluetoothSmpPeerRand,

 EfiBluetoothSmpPeerEDIV,

 EfiBluetoothSmpPeerSignCounter,

 EfiBluetoothSmpLocalLTK, /* If Key hierarchy not supported */

 EfiBluetoothSmpLocalIRK, /* If Key hierarchy not supported */

 EfiBluetoothSmpLocalCSRK, /* If Key hierarchy not supported */

 EfiBluetoothSmpLocalSignCounter,

 EfiBluetoothSmpLocalDIV,

 EfiBluetoothSmpPeerAddressList,

 EfiBluetoothSmpMax,

} EFI_BLUETOOTH_LE_SMP_DATA_TYPE;

EfiBlutoothSmpLocalIR

It is a 128-bit Identity Root (IR) key to generate IRK. Data structure is
UINT8[16]. See Bluetooth specification. This is only required when
Bluetooth key hierarchy is supported. This type is for the local device
only.

EfiBlutoothSmpLocalER

It is a 128-bit Encryption Root (ER) key to generate LTK and CSRK.
Data structure is UINT8[16]. See Bluetooth specification. This is
UEFI Forum, Inc. March 2019 1206

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
only required when Bluetooth key hierarchy is supported. This type is
for the local device only.

EfiBlutoothSmpLocalDHK

It is a 128-bit Diversifier Hiding Key (DHK) to generate EDIV. Data
structure is UINT8[16].See Bluetooth specification. This is only
required when Bluetooth key hierarchy is supported. This type is for
the local device only.

EfiBlutoothSmpKeysDistributed

It is LE Key Distribution Format. Data structure is UINT8. See
Bluetooth specification. This is the peer device specific information.

EfiBlutoothSmpKeySize

It indicates the size of keys in bytes. It is the negotiated key size
between local device and peer device. Data structure is UINTN. This
is the peer device specific information.

EfiBlutoothSmpKeyType

Indicates support for MITM/Secure connection. It is the negotiated
Authentication Requirements between local device and peer device.
See Bluetooth Spec 3.H.3.5.1. Data structure is UINT8. BIT0: MITM,
BIT1: SC. This is the peer device specific information.

EfiBlutoothSmpPeerLTK

It is a 128-bit Long-Term Key (LTK) to generate the contributory
session key for an encrypted connection. Data structure is
UINT8[16]. See Bluetooth specification. This is the peer device
specific information.

EfiBlutoothSmpPeerIRK

It is a 128-bit Identity Resolving Key (IRK) to generate and resolve
random addresses. Data structure is UINT8[16]. See Bluetooth
specification. This is the peer device specific information.

EfiBlutoothSmpPeerCSRK

It is a 128-bit Connection-Signature Resolving Key (CSRK) to sign data
and verify signatures on the receiving device. Data structure is
UINT8[16]. See Bluetooth specification. This is the peer device
specific information.

EfiBlutoothSmpPeerRand

It is a 64-bit Random number (Rand) to identify the LTK distributed
during LE legacy pairing. Data structure is UINT64. See Bluetooth
specification. This is the peer device specific information.

EfiBlutoothSmpPeerEDIV

It is a 16-bit Encrypted Diversifier (EDIV) to identify the LTK
distributed during LE legacy pairing. Data structure is UINT16. See
Bluetooth specification. This is the peer device specific information.
UEFI Forum, Inc. March 2019 1207

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
EfiBlutoothSmpPeerSignCounter

It is a 32-bit Sign Counter to assist MAC generation. Data structure is
UINT32. See Bluetooth specification. This is the peer device specific
information.

EfiBlutoothSmpLocakLTK

It is a 128-bit Long-Term Key (LTK) to generate the contributory
session key for an encrypted connection. Data structure is
UINT8[16]. See Bluetooth specification. This is only required when
Bluetooth key hierarchy is not supported. This is the peer specific
local device information.

EfiBlutoothSmpLocalIRK

It is a 128-bit Identity Resolving Key (IRK) to generate and resolve
random addresses. Data structure is UINT8[16]. See Bluetooth
specification. This is only required when Bluetooth key hierarchy is
not supported. This is the peer specific local device information.

EfiBlutoothSmpLocalCSRK

It is a 128-bit Connection-Signature Resolving Key (CSRK) to sign data
and verify signatures on the receiving device. Data structure is
UINT8[16]. See Bluetooth specification. This is only required when
Bluetooth key hierarchy is not supported. This is the peer specific
local device information.

EfiBlutoothSmpLocalSignCounter

It is a 32-bit Sign Counter to assist MAC generation. Data structure is
UINT32. See Bluetooth specification. This is the peer specific local
device information.

EfiBlutoothSmpLocalDIV

It is a 16-bit Diversifier (DIV) to be used as index to recover LTK. Data
structure is UINT16. See Bluetooth specification. This is the peer
specific local device information.

EfiBluetoothSmpPeerAddressList

A list of Bluetooth peer addresses that have been connected before.
The data structure is BLUETOOTH_LE_ADDRESS[]. The data size must
be a multiple of sizeof(BLUETOOTH_LE_ADDRESS).

Status Codes Returned

EFI_SUCCESS The SMP get data callback function is registered successfully.
EFI_ALREADY_STARTED A callback function is already registered on the same attribute opcode

and attribute handle, when the Callback is not NULL.
EFI_NOT_STARTED A callback function is not registered on the same attribute opcode and

attribute handle, when the Callback is NULL.
UEFI Forum, Inc. March 2019 1208

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpSetDataCallback

Summary

Register a callback function to set SMP related data.

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_BLUETOOTH_LE_CONFIG_REGISTER_SMP_SET_DATA_CALLBACK
)(

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_LE_CONFIG_SMP_SET_DATA_CALLBACK Callback,

 IN VOID *Context

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Callback Callback function for SMP set data.

Context Data passed into callback function. This is optional parameter and
may be NULL.

Description

The RegisterSmpSetDataCallback() function registers a callback function to set SMP related
data.

Related Definitions

typedef

EFI_STATUS

(EFIAPI * EFI_BLUETOOTH_LE_CONFIG_SMP_SET_DATA_CALLBACK) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,

 IN EFI_BLUETOOTH_LE_SMP_DATA_TYPE Type,

 IN UINTN DataSize,

 IN VOID *Data

);

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Context Data passed into callback function. This is optional parameter and
may be NULL.

BDAddr Remote BluetoothLE device address.

DataType Data type in EFI_BLUETOOTH_LE_SMP_DATA_TYPE.

DataSize Indicates the size, in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data.
UEFI Forum, Inc. March 2019 1209

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Status Codes Returned

BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback

Summary

Register link connect complete callback function.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN EFI_BLUETOOTH_LE_CONFIG_CONNECT_COMPLETE_CALLBACK Callback,

 IN VOID *Context

);

Parameters

This Pointer to the EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter and
may be NULL.

Description

The RegisterLinkConnectCompleteCallback() function registers Bluetooth link connect
complete callback function. The Bluetooth Configuration driver may call
RegisterLinkConnectCompleteCallback() to register a callback function.
During pairing, Bluetooth bus driver must trigger this callback function to report
device state, if it is registered. Then Bluetooth Configuration driver will get
information on device connection, according to CallbackType defined by
EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE.

EFI_SUCCESS The SMP get data callback function is registered successfully.
EFI_ALREADY_STARTED A callback function is already registered on the same attribute opcode

and attribute handle, when the Callback is not NULL.
EFI_NOT_STARTED A callback function is not registered on the same attribute opcode and

attribute handle, when the Callback is NULL.
UEFI Forum, Inc. March 2019 1210

UEFI Specification, Version 2.8 Network Protocols — Bluetooth
Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_BLUETOOTH_LE_CONFIG_CONNECT_COMPLETE_CALLBACK) (

 IN EFI_BLUETOOTH_LE_CONFIG_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE CallbackType,

 IN BLUETOOTH_LE_ADDRESS *BDAddr,

 IN VOID *InputBuffer,

 IN UINTN InputBufferSize

);

This Pointer to the
EFI_BLUETOOTH_LE_CONFIG_PROTOCOL instance.

Context Context passed from registration.

CallbackType Callback type in
EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE.

BDAddr A pointer to BluetoothLE device address.

InputBuffer A pointer to the buffer of data that is input from callback caller.

InputBufferSize Indicates the size, in bytes, of the data buffer specified by
InputBuffer.

Status Codes Returned

EFI_SUCCESS The link connect complete callback function is registered
successfully.

EFI_ALREADY_STARTED A callback function is already registered on the same attribute opcode

and attribute handle, when the Callback is not NULL.
EFI_NOT_STARTED A callback function is not registered on the same attribute opcode and

attribute handle, when the Callback is NULL.
UEFI Forum, Inc. March 2019 1211

UEFI Specification, Version 2.8
27 - Network Protocols — VLAN, EAP, Wi-Fi and Supplicant

27.1 VLAN Configuration Protocol

EFI_VLAN_CONFIG_PROTOCOL

Summary

This protocol is to provide manageability interface for VLAN configuration.

GUID

#define EFI_VLAN_CONFIG_PROTOCOL_GUID \

 {0x9e23d768, 0xd2f3, 0x4366, \

 {0x9f, 0xc3, 0x3a, 0x7a, 0xba, 0x86, 0x43, 0x74}}

Protocol Interface Structure

typedef struct _EFI_VLAN_CONFIG_PROTOCOL {

 EFI_VLAN_CONFIG_SET Set;

 EFI_VLAN_CONFIG_FIND Find;

 EFI_VLAN_CONFIG_REMOVE Remove;

} EFI_VLAN_CONFIG_PROTOCOL;

Parameters

Set Create new VLAN device or modify configuration parameter of an
already-configured VLAN

Find Find configuration information for specified VLAN or all configured
VLANs.

Remove Remove a VLAN device.

Description

This protocol is to provide manageability interface for VLAN setting. The intended VLAN tagging
implementation is IEEE802.1Q.

EFI_VLAN_CONFIG_PROTOCOL.Set ()

Summary

Create a VLAN device or modify the configuration parameter of an already-configured VLAN
UEFI Forum, Inc. March 2019 1212

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_VLAN_CONFIG_SET) (

 IN EFI_VLAN_CONFIG_PROTOCOL *This,

 IN UINT16 VlanId,

 IN UINT8 Priority
);

Parameters

This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId A unique identifier (1-4094) of the VLAN which is being created or
modified, or zero (0).

Priority 3 bit priority in VLAN header. Priority 0 is default value. If VlanId is
zero (0), Priority is ignored.

Description

The Set() function is used to create a new VLAN device or change the VLAN configuration parameters. If
the VlanId hasn’t been configured in the physical Ethernet device, a new VLAN device will be created. If
a VLAN with this VlanId is already configured, then related configuration will be updated as the input
parameters.

If VlanId is zero, the VLAN device will send and receive untagged frames. Otherwise, the VLAN device
will send and receive VLAN-tagged frames containing the VlanId.

If VlanId is out of scope of (0-4094), EFI_INVALID_PARAMETER is returned

If Priority is out of the scope of (0-7), then EFI_INVALID_PARAMETER is returned.

If there is not enough system memory to perform the registration, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_VLAN_CONFIG_PROTOCOL.Find()

Summary

Find configuration information for specified VLAN or all configured VLANs.

EFI_SUCCESS The VLAN is successfully configured

EFI_INVALID_PARAMETER One or more of following conditions is TRUE

• This is NULL

• VlanId is an invalid VLAN Identifier

• Priority is invalid

EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration.
UEFI Forum, Inc. March 2019 1213

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_VLAN_CONFIG_FIND) (

 IN EFI_VLAN_CONFIG_PROTOCOL *This,

 IN UINT16 *VlanId, OPTIONAL

 OUT UINT16 *NumberOfVlan,

 OUT EFI_VLAN_FIND_DATA **Entries
);

Parameters

This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId Pointer to VLAN identifier. Set to NULL to find all configured VLANs

NumberOfVlan The number of VLANs which is found by the specified criteria

Entries The buffer which receive the VLAN configuration. Type
EFI_VLAN_FIND_DATA is defined below.

Description

The Find() function is used to find the configuration information for matching VLAN and allocate a
buffer into which those entries are copied.

Related Definitions

//**

// EFI_VLAN_FIND_DATA

//**

typedef struct {

 UINT16 VlanId;

 UINT8 Priority;
} EFI_VLAN_FIND_DATA;

VlanId Vlan Identifier

Priority Priority of this VLAN

Status Codes Returned

EFI_SUCCESS The VLAN is successfully found

EFI_INVALID_PARAMETER One or more of following conditions is TRUE
• This is NULL

• Specified VlanId is invalid

EFI_NOT_FOUND No matching VLAN is found
UEFI Forum, Inc. March 2019 1214

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_VLAN_CONFIG_PROTOCOL.Remove ()

Summary

Remove the configured VLAN device

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_VLAN_CONFIG_REMOVE) (

 IN EFI_VLAN_CONFIG_PROTOCOL *This,

 IN UINT16 VlanId
);

Parameters

This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId Identifier (0-4094) of the VLAN to be removed.

Description

The Remove() function is used to remove the specified VLAN device. If the VlanId is out of the scope of
(0-4094), EFI_INVALID_PARAMETER is returned. If specified VLAN hasn’t been previously configured,
EFI_NOT_FOUND is returned.

Status Codes Returned

27.2 EAP Protocol

This section defines the EAP protocol. This protocol is designed to make the EAP framework configurable
and extensible. It is intended for the supplicant side.

EFI_EAP_PROTOCOL

Summary

This protocol is used to abstract the ability to configure and extend the EAP framework.

EFI_SUCCESS The VLAN is successfully removed

EFI_INVALID_PARAMETER One or more of following conditions is TRUE
• This is NULL

• VlanId is an invalid parameter.

EFI_NOT_FOUND The to-be-removed VLAN does not exist
UEFI Forum, Inc. March 2019 1215

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
GUID

#define EFI_EAP_PROTOCOL_GUID \

 { 0x5d9f96db, 0xe731, 0x4caa,\

 {0xa0, 0x0d, 0x72, 0xe1, 0x87, 0xcd, 0x77, 0x62 }}

Protocol Interface Structure

typedef struct _EFI_EAP_PROTOCOL {

 EFI_EAP_SET_DESIRED_AUTHENTICATION_METHOD SetDesiredAuthMethod;

 EFI_EAP_REGISTER_AUTHENTICATION_METHOD RegisterAuthMethod;
} EFI_EAP_PROTOCOL;

Parameters

SetDesiredAuthMethodSet the desired EAP authentication method for the Port. See the
SetDesiredAuthMethod() function description.

RegisterAuthMethodRegister an EAP authentication method. See the
RegisterAuthMethod() function description.

Description

EFI_EAP_PROTOCOL is used to configure the desired EAP authentication method for the EAP framework
and extend the EAP framework by registering new EAP authentication method on a Port. The EAP
framework is built on a per-Port basis. Herein, a Port means a NIC. For the details of EAP protocol, please
refer to RFC 2284.

Related Definitions

//

// Type for the identification number assigned to the Port by the // System in
which the Port resides.

//

typedef VOID * EFI_PORT_HANDLE;

EFI_EAP.SetDesiredAuthMethod()

Summary

Set the desired EAP authentication method for the Port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_SET_DESIRED_AUTHENTICATION_METHOD) (

 IN struct _EFI_EAP_PROTOCOL *This,

 IN UINT8 EapAuthType
);

Parameters

This A pointer to the EFI_EAP_PROTOCOL instance that indicates the
calling context. Type EFI_EAP_PROTOCOL is defined in Section 1.1.
UEFI Forum, Inc. March 2019 1216

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EapAuthType The type of the desired EAP authentication method for the Port. It
should be the type value defined by RFC. See RFC 2284 for details.
Current valid values are defined in “Related Definitions”.

Related Definitions

//

// EAP Authentication Method Type (RFC 3748)

//

#define EFI_EAP_TYPE_TLS 13 /* REQUIRED - RFC 5216 */

Description

The SetDesiredAuthMethod() function sets the desired EAP authentication method indicated by
EapAuthType for the Port.

If EapAuthType is an invalid EAP authentication type, then EFI_INVALID_PARAMETER is returned.

If the EAP authentication method of EapAuthType is unsupported, then it will return
EFI_UNSUPPORTED.

The cryptographic strength of EFI_EAP_TYPE_TLS shall be at least of hash strength SHA-256 and RSA
key length of at least 2048 bits.

Status Codes Returned

EFI_EAP.RegisterAuthMethod()

Summary

Register an EAP authentication method.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_REGISTER_AUTHENTICATION_METHOD) (

 IN struct _EFI_EAP_PROTOCOL *This,

 IN UINT8 EapAuthType,

 IN EFI_EAP_BUILD_RESPONSE_PACKET Handler
);

Parameters

This A pointer to the EFI_EAP_PROTOCOL instance that indicates the
calling context. Type EFI_EAP_PROTOCOL is defined in Section 1.1.

EapAuthType The type of the EAP authentication method to register. It should be
the type value defined by RFC. See RFC 2284 for details. Current valid

EFI_SUCCESS The desired EAP authentication method is set successfully.

EFI_INVALID_PARAMETER EapAuthType is an invalid EAP authentication type.

EFI_UNSUPPORTED The EAP authentication method of EapAuthType is unsupported by
the Port.
UEFI Forum, Inc. March 2019 1217

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
values are defined in the SetDesiredAuthMethod() function
description.

Handler The handler of the EAP authentication method to register. Type
EFI_EAP_BUILD_RESPONSE_PACKET is defined in “Related
Definitions”.

Related Definitions

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_BUILD_RESPONSE_PACKET) (

IN EFI_PORT_HANDLE PortNumber

IN UINT8 *RequestBuffer,

IN UINTN RequestSize,

IN UINT8 *Buffer,

IN OUT UINTN *BufferSize
)

/*++

 Routine Description:

 Build EAP response packet in response to the EAP request packet specified by
(RequestBuffer, RequestSize).

 Arguments:

 PortNumber - Specified the Port where the EAP request packet comes.

 RequestBuffer - Pointer to the most recently received EAP-Request packet.

 RequestSize - Packet size in bytes for the most recently received EAP-
Request packet.

 Buffer - Pointer to the buffer to hold the built packet.

 BufferSize - Pointer to the buffer size in bytes. On input, it is the
buffer size provided by the caller. On output, it is the buffer size in fact
needed to contain the packet.

 Returns:

 EFI_SUCCESS - The required EAP response packet is built successfully.

 others - Failures are encountered during the packet building process.

--*/

;

Description

The RegisterAuthMethod() function registers the user provided EAP authentication method, the type
of which is EapAuthType and the handler of which is Handler.

If EapAuthType is an invalid EAP authentication type, then EFI_INVALID_PARAMETER is returned.

If there is not enough system memory to perform the registration, then EFI_OUT_OF_RESOURCES is
returned.
UEFI Forum, Inc. March 2019 1218

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

27.2.1 EAPManagement Protocol

This section defines the EAP management protocol. This protocol is designed to provide ease of
management and ease of test for EAPOL state machine. It is intended for the supplicant side. It
conforms to IEEE 802.1x specification.

EFI_EAP_MANAGEMENT_PROTOCOL

Summary

This protocol provides the ability to configure and control EAPOL state machine, and retrieve the status
and the statistics information of EAPOL state machine.

GUID

#define EFI_EAP_MANAGEMENT_PROTOCOL_GUID \

 { 0xbb62e663, 0x625d, 0x40b2, \

 { 0xa0, 0x88, 0xbb, 0xe8, 0x36, 0x23, 0xa2, 0x45 }

Protocol Interface Structure

typedef struct _EFI_EAP_MANAGEMENT_PROTOCOL {

 EFI_EAP_GET_SYSTEM_CONFIGURATION GetSystemConfiguration;

 EFI_EAP_SET_SYSTEM_CONFIGURATION SetSystemConfiguration;

 EFI_EAP_INITIALIZE_PORT InitializePort;

 EFI_EAP_USER_LOGON UserLogon;

 EFI_EAP_USER_LOGOFF UserLogoff;

 EFI_EAP_GET_SUPPLICANT_STATUS GetSupplicantStatus;

 EFI_EAP_SET_SUPPLICANT_CONFIGURATION SetSupplicantConfiguration;

 EFI_EAP_GET_SUPPLICANT_STATISTICS GetSupplicantStatistics;
} EFI_EAP_MANAGEMENT_PROTOCOL;

Parameters

GetSystemConfigurationRead the system configuration information associated with the
Port. See the GetSystemConfiguration() function description.

SetSystemConfigurationSet the system configuration information associated with the
Port. See the SetSystemConfiguration() function description.

InitializePort Cause the EAPOL state machines for the Port to be initialized. See
the InitializePort() function description.

UserLogon Notify the EAPOL state machines for the Port that the user of the
System has logged on. See the UserLogon() function description.

EFI_SUCCESS The EAP authentication method of EapAuthType is registered

successfully.

EFI_INVALID_PARAMETER EapAuthType is an invalid EAP authentication type.

EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration.
UEFI Forum, Inc. March 2019 1219

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
UserLogoff Notify the EAPOL state machines for the Port that the user of the
System has logged off. See the UserLogoff() function
description.

GetSupplicantStatusRead the status of the Supplicant PAE state machine for the Port,
including the current state and the configuration of the operational
parameters. See the GetSupplicantStatus() function
description.

SetSupplicantConfigurationSet the configuration of the operational parameter of the
Supplicant PAE state machine for the Port. See the
SetSupplicantConfiguration() function description.

GetSupplicantStatisticsRead the statistical information regarding the operation of
the Supplicant associated with the Port. See the
GetSupplicantStatistics() function description.

Description

The EFI_EAP_MANAGEMENT protocol is used to control, configure and monitor EAPOL state machine on
a Port. EAPOL state machine is built on a per-Port basis. Herein, a Port means a NIC. For the details of
EAPOL, please refer to IEEE 802.1x specification.

EFI_EAP_MANAGEMENT.GetSystemConfiguration()

Summary

Read the system configuration information associated with the Port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_GET_SYSTEM_CONFIGURATION) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,

 OUT BOOLEAN *SystemAuthControl,

 OUT EFI_EAPOL_PORT_INFO *PortInfo OPTIONAL
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

SystemAuthControl Returns the value of the SystemAuthControl parameter of the
System. TRUE means Enabled. FALSE means Disabled.

PortInfo Returns EFI_EAPOL_PORT_INFO structure to describe the Port's
information. This parameter can be NULL to ignore reading the
Port’s information. Type EFI_EAPOL_PORT_INFO is defined in
“Related Definitions”.
UEFI Forum, Inc. March 2019 1220

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//

// PAE Capabilities

//

#define PAE_SUPPORT_AUTHENTICATOR 0x01

#define PAE_SUPPORT_SUPPLICANT 0x02

typedef struct _EFI_EAPOL_PORT_INFO {

 EFI_PORT_HANDLE PortNumber;

 UINT8 ProtocolVersion;

 UINT8 PaeCapabilities;
} EFI_EAPOL_PORT_INFO;

PortNumber The identification number assigned to the Port by the System in
which the Port resides.

ProtocolVersion The protocol version number of the EAPOL implementation
supported by the Port.

PaeCapabilities The capabilities of the PAE associated with the Port. This field
indicates whether Authenticator functionality, Supplicant
functionality, both, or neither, is supported by the Port's PAE.

Description

The GetSystemConfiguration() function reads the system configuration information associated
with the Port, including the value of the SystemAuthControl parameter of the System is returned in
SystemAuthControl and the Port’s information is returned in the buffer pointed to by PortInfo. The
Port’s information is optional. If PortInfo is NULL, then reading the Port’s information is ignored.

If SystemAuthControl is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_EAP_MANAGEMENT.SetSystemConfiguration()

Summary

Set the system configuration information associated with the Port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_SET_SYSTEM_CONFIGURATION) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,

EFI_SUCCESS The system configuration information of the Port is read successfully.

EFI_INVALID_PARAMETER SystemAuthControl is NULL.
UEFI Forum, Inc. March 2019 1221

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
 IN BOOLEAN SystemAuthControl

);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

SystemAuthControl The desired value of the SystemAuthControl parameter of the
System. TRUE means Enabled. FALSE means Disabled.

Description

The SetSystemConfiguration() function sets the value of the SystemAuthControl parameter of the
System to SystemAuthControl.

Status Codes Returned

EFI_EAP_MANAGEMENT.InitializePort()

Summary

Cause the EAPOL state machines for the Port to be initialized.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_INITIALIZE_PORT) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

Description

The InitializePort() function causes the EAPOL state machines for the Port.

EFI_SUCCESS The system configuration information of the Port is set successfully.
UEFI Forum, Inc. March 2019 1222

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_EAP_MANAGEMENT.UserLogon()

Summary

Notify the EAPOL state machines for the Port that the user of the System has logged on.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_USER_LOGON) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

Description

The UserLogon() function notifies the EAPOL state machines for the Port.

Status Codes Returned

EFI_EAP_MANAGEMENT.UserLogoff()

Summary

Notify the EAPOL state machines for the Port that the user of the System has logged off.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_USER_LOGOFF) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

EFI_SUCCESS The Port is initialized successfully.

EFI_SUCCESS The Port is notified successfully.
UEFI Forum, Inc. March 2019 1223

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The UserLogoff() function notifies the EAPOL state machines for the Port.

Status Codes Returned

EFI_EAP_MANAGEMENT.GetSupplicantStatus()

Summary

Read the status of the Supplicant PAE state machine for the Port, including the current state and the
configuration of the operational parameters.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_GET_SUPPLICANT_STATUS) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,

 OUT EFI_EAPOL_SUPPLICANT_PAE_STATE *CurrentState,

 IN OUT EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION *Configuration
OPTIONAL

);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

CurrentState Returns the current state of the Supplicant PAE state machine for
the Port. Type EFI_EAPOL_SUPPLICANT_PAE_STATE is defined in
“Related Definitions”.

Configuration Returns the configuration of the operational parameters of the
Supplicant PAE state machine for the Port as required. This
parameter can be NULL to ignore reading the configuration. On
input, Configuration.ValidFieldMask specifies the
operational parameters to be read. On output, Configuration
returns the configuration of the required operational parameters.
Type EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION is defined
in “Related Definitions”.

EFI_SUCCESS The Port is notified successfully.
UEFI Forum, Inc. March 2019 1224

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//

// Supplicant PAE state machine (IEEE Std 802.1X Section 8.5.10)

//

typedef enum _EFI_EAPOL_SUPPLICANT_PAE_STATE {

 Logoff,

 Disconnected,

 Connecting,

 Acquired,

 Authenticating,

 Held,

 Authenticated,

 MaxSupplicantPaeState

} EFI_EAPOL_SUPPLICANT_PAE_STATE;

//

// Definitions for ValidFieldMask

//

#define AUTH_PERIOD_FIELD_VALID 0x01

#define HELD_PERIOD_FIELD_VALID 0x02

#define START_PERIOD_FIELD_VALID 0x04

#define MAX_START_FIELD_VALID 0x08

typedef struct _EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION {

 UINT8 ValidFieldMask;

 UINTN AuthPeriod;

 UINTN HeldPeriod;

 UINTN StartPeriod;

 UINTN MaxStart;

} EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION;

ValidFieldMask Indicates which of the following fields are valid.

AuthPeriod The initial value for the authWhile timer. Its default value is 30 s.

HeldPeriod The initial value for the heldWhile timer. Its default value is 60 s.

StartPeriod The initial value for the startWhen timer. Its default value is 30 s.

MaxStart The maximum number of successive EAPOL-Start messages will be
sent before the Supplicant assumes that there is no Authenticator
present. Its default value is 3.

Description

The GetSupplicantStatus() function reads the status of the Supplicant PAE state machine for the
Port, including the current state CurrentState and the configuration of the operational parameters
Configuration. The configuration of the operational parameters is optional. If Configuration is
NULL, then reading the configuration is ignored. The operational parameters in Configuration to be
read can also be specified by Configuration.ValidFieldMask.
UEFI Forum, Inc. March 2019 1225

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
If CurrentState is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()

Summary

Set the configuration of the operational parameter of the Supplicant PAE state machine for the Port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_SET_SUPPLICANT_CONFIGURATION) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,

 IN EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION *Configuration
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

Configuration The desired configuration of the operational parameters of the
Supplicant PAE state machine for the Port as required. Type
EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION is defined in the
GetSupplicantStatus() function description.

Description

The SetSupplicantConfiguration() function sets the configuration of the operational parameter of the
Supplicant PAE state machine for the Port to Configuration. The operational parameters in Configuration
to be set can be specified by Configuration.ValidFieldMask.

If Configuration is NULL, then EFI_INVALID_PARAMETER is returned.

EFI_SUCCESS The status of the Supplicant PAE state machine for the Port is read
successfully.

EFI_INVALID_PARAMETER CurrentState is NULL.
UEFI Forum, Inc. March 2019 1226

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_EAP_MANAGEMENT.GetSupplicantStatistics()

Summary

Read the statistical information regarding the operation of the Supplicant associated with the Port.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_GET_SUPPLICANT_STATISTICS) (

 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,

 OUT EFI_EAPOL_SUPPLICANT_PAE_STATISTICS *Statistics
);

Parameters

This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance that
indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
<Hyperlink>Section 27.2.1.

Statistics Returns the statistical information regarding the operation of the
Supplicant for the Port. Type
EFI_EAPOL_SUPPLICANT_PAE_STATISTICS is defined in
“Related Definitions”.

EFI_SUCCESS The configuration of the operational parameter of the Supplicant PAE
state machine for the Port is set successfully.

EFI_INVALID_PARAMETER Configuration is NULL.
UEFI Forum, Inc. March 2019 1227

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//

// Supplicant Statistics (IEEE Std 802.1X Section 9.5.2)

//

typedef struct _EFI_EAPOL_SUPPLICANT_PAE_STATISTICS {

 UINTN EapolFramesReceived;

 UINTN EapolFramesTransmitted;

 UINTN EapolStartFramesTransmitted;

 UINTN EapolLogoffFramesTransmitted;

 UINTN EapRespIdFramesTransmitted;

 UINTN EapResponseFramesTransmitted;

 UINTN EapReqIdFramesReceived;

 UINTN EapRequestFramesReceived;

 UINTN InvalidEapolFramesReceived;

 UINTN EapLengthErrorFramesReceived;

 UINTN LastEapolFrameVersion;

 UINTN LastEapolFrameSource;

} EFI_EAPOL_SUPPLICANT_PAE_STATISTICS;

EapolFramesReceived

The number of EAPOL frames of any type that have been received by this Supplicant.

EapolFramesTransmitted

The number of EAPOL frames of any type that have been transmitted by this
Supplicant.

EapolStartFramesTransmitted

The number of EAPOL Start frames that have been transmitted by this Supplicant.

EapolLogoffFramesTransmitted

The number of EAPOL Logoff frames that have been transmitted by this Supplicant.

EapRespIdFramesTransmitted

The number of EAP Resp/Id frames that have been transmitted by this Supplicant.

EapResponseFramesTransmitted

The number of valid EAP Response frames (other than Resp/Id frames) that have
been transmitted by this Supplicant.

EapReqIdFramesReceived

The number of EAP Req/Id frames that have been received by this Supplicant.

EapRequestFramesReceived

The number of EAP Request frames (other than Rq/Id frames) that have been
received by this Supplicant.

InvalidEapolFramesReceived

The number of EAPOL frames that have been received by this Supplicant in which the
frame type is not recognized.
UEFI Forum, Inc. March 2019 1228

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EapLengthErrorFramesReceived

The number of EAPOL frames that have been received by this Supplicant in which the
Packet Body Length field (7.5.5) is invalid.

LastEapolFrameVersion

The protocol version number carried in the most recently received EAPOL frame.

LastEapolFrameSource

The source MAC address carried in the most recently received EAPOL frame.

Description

The GetSupplicantStatistics() function reads the statistical information Statistics regarding
the operation of the Supplicant associated with the Port.

If Statistics is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

27.2.2 EFI EAP Management2 Protocol

EFI_EAP_MANAGEMENT2_PROTOCOL

Summary

This protocol provides the ability to configure and control EAPOL state machine, and retrieve the
information, status and the statistics information of EAPOL state machine.

GUID

#define EFI_EAP_MANAGEMENT2_PROTOCOL_GUID \

 { 0x5e93c847, 0x456d, 0x40b3, \

 { 0xa6, 0xb4, 0x78, 0xb0, 0xc9, 0xcf, 0x7f, 0x20 }}

Protocol Interface Structure

typedef struct _EFI_EAP_MANAGEMENT2_PROTOCOL {

 // Same as EFI_EAP_MANAGEMENT_PROTOCOL

 EFI_EAP_GET_KEY GetKey;
} EFI_EAP_MANAGMENT2_PROTOCOL;

Parameters

GetKey Provide Key information parsed from EAP packet. See the GetKey()
function description.

EFI_SUCCESS The statistical information regarding the operation of the Supplicant
for the Port is read successfully.

EFI_INVALID_PARAMETER Statistics is NULL.
UEFI Forum, Inc. March 2019 1229

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The EFI_EAP_MANAGEMENT2_PROTOCOL is used to control, configure and monitor EAPOL state machine
on a Port, and return information of the Port. EAPOL state machine is built on a per-Port basis. Herein, a
Port means a NIC. For the details of EAPOL, please refer to IEEE 802.1x specification.

EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()

Summary

Return key generated through EAP process.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_GET_KEY)(

 IN EFI_EAP_MANAGEMENT2_PROTOCOL *This,

 IN OUT UINT8 *Msk,

 IN OUT UINTN *MskSize,

 IN OUT UINT8 *Emsk,

 IN OUT UINT8 *EmskSize
);

Parameters

This Pointer to the EFI_EAP_MANAGEMENT2_PROTOCOL instance.

Msk Pointer to MSK (Master Session Key) buffer.

MskSize MSK buffer size.

Emsk Pointer to EMSK (Extended Master Session Key) buffer.

EmskSize EMSK buffer size.

Description

The GetKey() function return the key generated through EAP process, so that the 802.11 MAC layer
driver can use MSK to derive more keys, e.g. PMK (Pairwise Master Key).
UEFI Forum, Inc. March 2019 1230

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

27.2.3 EFI EAP Configuration Protocol

EFI_EAP_CONFIGURATION_PROTOCOL

Summary

This protocol provides a way to set and get EAP configuration.

GUID

#define EFI_EAP_CONFIGURATION_PROTOCOL_GUID \

 { 0xe5b58dbb, 0x7688, 0x44b4, \

 { 0x97, 0xbf, 0x5f, 0x1d, 0x4b, 0x7c, 0xc8, 0xdb }}

Protocol Interface Structure

typedef struct _EFI_EAP_CONFIGURATION_PROTOCOL {

 EFI_EAP_CONFIGURATION_SET_DATA SetData;

 EFI_EAP_CONFIGURATION_GET_DATA GetData;
} EFI_EAP_CONFIGURATION_PROTOCOL;

Parameters

SetData Set EAP configuration data. See the SetData() function
description.

GetData Get EAP configuration data. See the GetData() function
description.

Description

The EFI_EAP_CONFIGURATION_PROTOCOL is designed to provide a way to set and get EAP
configuration, such as Certificate, private key file.

EFI_EAP_CONFIGURATION_PROTOCOL.SetData()

Summary

Set EAP configuration data.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Msk is NULL.

• MskSize is NULL.

• Emsk is NULL.

• EmskSize is NULL.

EFI_NOT_READY MSK and EMSK are not generated in current session yet.
UEFI Forum, Inc. March 2019 1231

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_CONFIGURATION_SET_DATA)(

 IN EFI_EAP_CONFIGURATION_PROTOCOL *This,

 IN EFI_EAP_TYPE EapType,

 IN EFI_EAP_CONFIG_DATA_TYPE DataType,

 IN VOID *Data,

 IN UINTN DataSize
);

Parameters

This Pointer to the EFI_EAP_CONFIGURATION_PROTOCOL instance.

EapType EAP type. See EFI_EAP_TYPE.

DataType Configuration data type. See EFI_EAP_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data.

Description

The SetData() function sets EAP configuration to non-volatile storage or volatile storage.
UEFI Forum, Inc. March 2019 1232

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//

// Make sure it not conflict with any real EapTypeXXX

//

#define EFI_EAP_TYPE_ATTRIBUTE 0

typedef enum {

 // EFI_EAP_TYPE_ATTRIBUTE

 EfiEapConfigEapAuthMethod,

 EfiEapConfigEapSupportedAuthMethod,

 // EapTypeIdentity

 EfiEapConfigIdentityString,

 // EapTypeEAPTLS/EapTypePEAP

 EfiEapConfigEapTlsCACert,

 EfiEapConfigEapTlsClientCert,

 EfiEapConfigEapTlsClientPrivateKeyFile,

 EfiEapConfigEapTlsClientPrivateKeyFilePassword,\

 // ASCII format, Volatile

 EfiEapConfigEapTlsCipherSuite,

 EfiEapConfigEapTlsSupportedCipherSuite,

 // EapTypeMSChapV2

 EfiEapConfigEapMSChapV2Password, // UNICODE format, Volatile

 // EapTypePEAP

 EfiEapConfigEap2ndAuthMethod,

 // More...

} EFI_EAP_CONFIG_DATA_TYPE;

//

// EFI_EAP_TYPE

//

typedef UINT8 EFI_EAP_TYPE;

#define EFI_EAP_TYPE_ATTRIBUTE 0

#define EFI_EAP_TYPE_IDENTITY 1

#define EFI_EAP_TYPE_NOTIFICATION 2

#define EFI_EAP_TYPE_NAK 3

#define EFI_EAP_TYPE_MD5CHALLENGE 4

#define EFI_EAP_TYPE_OTP 5

#define EFI_EAP_TYPE_GTC 6

#define EFI_EAP_TYPE_EAPTLS 13

#define EFI_EAP_TYPE_EAPSIM 18

#define EFI_EAP_TYPE_TTLS 21

#define EFI_EAP_TYPE_PEAP 25

#define EFI_EAP_TYPE_MSCHAPV2 26

#define EFI_EAP_TYPE_EAP_EXTENSION 33

......
UEFI Forum, Inc. March 2019 1233

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_EAP_CONFIGURATION_PROTOCOL.GetData()

Summary

Get EAP configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_EAP_CONFIGURATION_GET_DATA)(

 IN EFI_EAP_CONFIGURATION_PROTOCOL *This,

 IN EFI_EAP_TYPE EapType,

 IN EFI_EAP_CONFIG_DATA_TYPE DataType,

 IN OUT VOID *Data,

 IN OUT UINTN *DataSize
);

Parameters

This Pointer to the EFI_EAP_CONFIGURATION_PROTOCOL instance.

EapType EAP type. See EFI_EAP_TYPE.

DataType Configuration data type. See EFI_EAP_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data. On input, it means the size of Data
buffer. On output, it means the size of copied Data buffer if
EFI_SUCCESS, and means the size of desired Data buffer if
EFI_BUFFER_TOO_SMALL.

Description

The GetData() function gets EAP configuration.

• Status Codes Returned

EFI_SUCCESS The EAP configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The EapType or DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_SUCCESS The EAP configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is NULL.

EFI_UNSUPPORTED The EapType or DataType is unsupported.
UEFI Forum, Inc. March 2019 1234

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
27.3 EFI Wireless MAC Connection Protocol

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL

Summary

This protocol provides management service interfaces of 802.11 MAC layer. It is used by network
applications (and drivers) to establish wireless connection with an access point (AP).

GUID

#define EFI_WIRELESS_MAC_CONNECTION_PROTOCOL_GUID \

 { 0xda55bc9, 0x45f8, 0x4bb4, \

 { 0x87, 0x19, 0x52, 0x24, 0xf1, 0x8a, 0x4d, 0x45 }}

Protocol Interface Structure

typedef struct _EFI_WIRELESS_MAC_CONNECTION_PROTOCOL {

 EFI_WIRELESS_MAC_CONNECTION_SCAN Scan;

 EFI_WIRELESS_MAC_CONNECTION_ASSOCIATE Associate;

 EFI_WIRELESS_MAC_CONNECTION_DISASSOCIATE Disassociate;

 EFI_WIRELESS_MAC_CONNECTION_AUTHENTICATE Authenticate;

 EFI_WIRELESS_MAC_CONNECTION_DEAUTHENTICATE Deauthenticate;
} EFI_WIRELESS_MAC_CONNECTION_PROTOCOL;

Parameters

Scan Determine the characteristics of the available BSSs. See the Scan()
function description.

Associate Places an association request with a specific peer MAC entity. See
the Associate() function description.

Disassociate Reports a disassociation with a specific peer MAC entity. See the
Disassociate() function description.

Authenticate Requests authentication with a specific peer MAC entity. See the
Authenticate() function description.

Deauthenticate Invalidates an authentication relationship with a peer MAC entity.
See the Deauthenticate() function description.

Description

The EFI_WIRELESS_MAC_CONNECTION_PROTOCOL is designed to provide management service
interfaces for the EFI wireless network stack to establish wireless connection with AP. An EFI Wireless
MAC Connection Protocol instance will be installed on each communication device that the EFI wireless
network stack runs on.

EFI_NOT_FOUND The EAP configuration data is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
UEFI Forum, Inc. March 2019 1235

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan()

Summary

Request a survey of potential BSSs that administrator can later elect to try to join.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_SCAN)(

 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,

 IN EFI_80211_SCAN_DATA_TOKEN *Data
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
instance.

Data Pointer to the scan token. Type EFI_80211_SCAN_DATA_TOKEN is
defined in “Related Definitions” below.

Description

The Scan() function returns the description of the set of BSSs detected by the scan process. Passive scan
operation is performed by default.

Related Definitions

//**

// EFI_80211_SCAN_DATA_TOKEN 
//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_80211_SCAN_DATA *Data;

 EFI_80211_SCAN_RESULT_CODE ResultCode;

 EFI_80211_SCAN_RESULT *Result;
} EFI_80211_SCAN_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI Wireless MAC Connection Protocol driver. The type of Event
must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Scan operation completed successfully.

EFI_NOT_FOUND: Failed to find available BSS.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.
UEFI Forum, Inc. March 2019 1236

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_ACCESS_DENIED: The scan operation is not completed due to
some underlying hardware or software state.

EFI_NOT_READY: The scan operation is started but not yet
completed.

Data Pointer to the scan data. Type EFI_80211_SCAN_DATA is defined
below.

ResultCode Indicates the scan state. Type EFI_80211_SCAN_RESULT_CODE is
defined below.

Result Indicates the scan result. It is caller’s responsibility to free this
buffer. Type EFI_80211_SCAN_RESULT is defined below.

The EFI_80211_SCAN_DATA_TOKEN structure is defined to support the process of determining the
characteristics of the available BSSs. As input, the Data field must be filled in by the caller of EFI Wireless
MAC Connection Protocol. After the scan operation completes, the EFI Wireless MAC Connection
Protocol driver updates the Status, ResultCode and Result field and the Event is signaled.

//**

// EFI_80211_SCAN_DATA 
//**

typedef struct {

 EFI_80211_BSS_TYPE BSSType;

 EFI_80211_MAC_ADDRESS BSSId;

 UINT8 SSIdLen;

 UINT8 *SSId;

 BOOLEAN PassiveMode;

 UINT32 ProbeDelay;

 UINT32 *ChannelList;

 UINT32 MinChannelTime;

 UINT32 MaxChannelTime;

 EFI_80211_ELEMENT_REQ *RequestInformation;

 EFI_80211_ELEMENT_SSID *SSIDList;

 EFI_80211_ACC_NET_TYPE AccessNetworkType;

 UINT8 *VendorSpecificInfo;
} EFI_80211_SCAN_DATA;

BSSType Determines whether infrastructure BSS, IBSS, MBSS, or all, are
included in the scan. Type EFI_80211_BSS_TYPE is defined below.

BSSId Indicates a specific or wildcard BSSID. Use all binary 1s to represent
all SSIDs. Type EFI_80211_MAC_ADDRESS is defined below.

SSIdLen Length in bytes of the SSId. If zero, ignore SSId field.

SSId Specifies the desired SSID or the wildcard SSID. Use NULL to
represent all SSIDs.

PassiveMode Indicates passive scanning if TRUE.
UEFI Forum, Inc. March 2019 1237

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
ProbeDelay The delay in microseconds to be used prior to transmitting a Probe
frame during active scanning. If zero, the value can be overridden
by an implementation-dependent default value.

ChannelList Specifies a list of channels that are examined when scanning for a
BSS. If set to NULL, all valid channels will be scanned.

MinChannelTime Indicates the minimum time in TU to spend on each channel when
scanning. If zero, the value can be overridden by an
implementation-dependent default value.

MaxChannelTime Indicates the maximum time in TU to spend on each channel when
scanning. If zero, the value can be overridden by an
implementation-dependent default value.

RequestInformationPoints to an optionally present element. This is an optional
parameter and may be NULL. Type EFI_80211_ELEMENT_REQ is
defined below.

SSIDList Indicates one or more SSID elements that are optionally present.
This is an optional parameter and may be NULL. Type
EFI_80211_ELEMENT_SSID is defined below.

AccessNetworkType Specifies a desired specific access network type or the wildcard
access network type. Use 15 as wildcard access network type. Type
EFI_80211_ACC_NET_TYPE is defined below.

VendorSpecificInfo Specifies zero or more elements. This is an optional parameter and
may be NULL.

//**

// EFI_80211_BSS_TYPE

//**

typedef enum {

 IeeeInfrastructureBSS,

 IeeeIndependentBSS,

 IeeeMeshBSS,

 IeeeAnyBss

} EFI_80211_BSS_TYPE;

The EFI_80211_BSS_TYPE is defined to enumerate BSS type.

//**

// EFI_80211_MAC_ADDRESS

//**

typedef struct {

 UINT8 Addr[6];

} EFI_80211_MAC_ADDRESS;

The EFI_80211_MAC_ADDRESS is defined to record a 48-bit MAC address.
UEFI Forum, Inc. March 2019 1238

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_ELEMENT_REQ

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 RequestIDs[1];

} EFI_80211_ELEMENT_REQ;

Hdr Common header of an element. Type
EFI_80211_ELEMENT_HEADER is defined below.

RequestIDs Start of elements that are requested to be included in the Probe
Response frame. The elements are listed in order of increasing
element ID.

//**

// EFI_80211_ELEMENT_HEADER

//**

typedef struct {

 UINT8 ElementID;

 UINT8 Length;
} EFI_80211_ELEMENT_HEADER;

ElementID A unique element ID defined in IEEE 802.11 specification.

Length Specifies the number of octets in the element body.

//**

// EFI_80211_ELEMENT_SSID

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 SSId[32];
} EFI_80211_ELEMENT_SSID;

Hdr Common header of an element.

SSId Service set identifier. If Hdr.Length is zero, this field is ignored.
UEFI Forum, Inc. March 2019 1239

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_ACC_NET_TYPE

//**

typedef enum {

 IeeePrivate = 0,

 IeeePrivatewithGuest = 1,

 IeeeChargeablePublic = 2,

 IeeeFreePublic = 3,

 IeeePersonal = 4,

 IeeeEmergencyServOnly = 5,

 IeeeTestOrExp = 14,

 IeeeWildcard = 15

} EFI_80211_ACC_NET_TYPE;

The EFI_80211_ACC_NET_TYPE records access network types defined in IEEE 802.11 specification.

//**

// EFI_80211_SCAN_RESULT_CODE

//**

typedef enum {

 ScanSuccess,

 ScanNotSupported

} EFI_80211_SCAN_RESULT_CODE;

ScanSuccess The scan operation finished successfully.

ScanNotSupported The scan operation is not supported in current implementation.

//**

// EFI_80211_SCAN_RESULT

//**

typedef struct {

 UINTN NumOfBSSDesp;

 EFI_80211_BSS_DESCRIPTION **BSSDespSet;

 UINTN NumofBSSDespFromPilot;

 EFI_80211_BSS_DESP_PILOT **BSSDespFromPilotSet;

 UINT8 *VendorSpecificInfo;
} EFI_80211_SCAN_RESULT;

NumOfBSSDesp The number of EFI_80211_BSS_DESCRIPTION in BSSDespSet. If
zero, BSSDespSet should be ignored.

BSSDespSet Points to zero or more instances of
EFI_80211_BSS_DESCRIPTION. Type
EFI_80211_BSS_DESCRIPTION is defined below.

NumOfBSSDespFromPilot

The number of EFI_80211_BSS_DESP_PILOT in
BSSDespFromPilotSet. If zero, BSSDespFromPilotSet should
be ignored.
UEFI Forum, Inc. March 2019 1240

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
BSSDespFromPilotSetPoints to zero or more instances of
EFI_80211_BSS_DESP_PILOT. Type
EFI_80211_BSS_DESP_PILOT is defined below.

VendorSpecificInfoSpecifies zero or more elements. This is an optional parameter and
may be NULL.

//**

// EFI_80211_BSS_DESCRIPTION

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 UINT8 *SSId;

 UINT8 SSIdLen;

 EFI_80211_BSS_TYPE BSSType;

 UINT16 BeaconPeriod;

 UINT64 Timestamp;

 UINT16 CapabilityInfo;

 UINT8 *BSSBasicRateSet;

 UINT8 *OperationalRateSet;

 EFI_80211_ELEMENT_COUNTRY *Country;

 EFI_80211_ELEMENT_RSN RSN;

 UINT8 RSSI;

 UINT8 RCPIMeasurement;

 UINT8 RSNIMeasurement;

 UINT8 *RequestedElements;

 UINT8 *BSSMembershipSelectorSet;

 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;
} EFI_80211_BSS_DESCRIPTION;

BSSId Indicates a specific BSSID of the found BSS.

SSId Specifies the SSID of the found BSS. If NULL, ignore SSIdLen field.

SSIdLen Length in bytes of the SSId. If zero, ignore SSId field.

BSSType Specifies the type of the found BSS.

BeaconPeriod The beacon period in TU of the found BSS.

Timestamp The timestamp of the received frame from the found BSS.

CapabilityInfo The advertised capabilities of the BSS.

BSSBasicRateSet The set of data rates that shall be supported by all STAs that desire
to join this BSS.

OperationalRateSet The set of data rates that the peer STA desires to use for
communication within the BSS.

Country The information required to identify the regulatory domain in which
the peer STA is located. Type EFI_80211_ELEMENT_COUNTRY is
defined below.
UEFI Forum, Inc. March 2019 1241

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
RSN The cipher suites and AKM suites supported in the BSS. Type
EFI_80211_ELEMENT_RSN is defined below.

RSSI Specifies the RSSI of the received frame.

RCPIMeasurement Specifies the RCPI of the received frame.

RSNIMeasurement Specifies the RSNI of the received frame.

RequestedElements Specifies the elements requested by the request element of the
Probe Request frame. This is an optional parameter and may be
NULL.

BSSMembershipSelectorSetSpecifies the BSS membership selectors that represent the
set of features that shall be supported by all STAs to join this BSS.

ExtCapElement Specifies the parameters within the Extended Capabilities element
that are supported by the MAC entity. This is an optional parameter
and may be NULL. Type EFI_80211_ELEMENT_EXT_CAP is defined
below.

//**

// EFI_80211_ELEMENT_COUNTRY

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 CountryStr[3];

 EFI_80211_COUNTRY_TRIPLET CountryTriplet[1];
} EFI_80211_ELEMENT_COUNTRY;

Hdr Common header of an element.

CountryStr Specifies country strings in 3 octets.

CountryTriplet Indicates a triplet that repeated in country element. The number of
triplets is determined by the Hdr.Length field.

//**

// EFI_80211_COUNTRY_TRIPLET

//**

typedef union {

 EFI_80211_COUNTRY_TRIPLET_SUBBAND Subband;

 EFI_80211_COUNTRY_TRIPLET_OPERATE Operating;
} EFI_80211_COUNTRY_TRIPLET;

Subband The subband triplet.

Operating The operating triplet.
UEFI Forum, Inc. March 2019 1242

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_COUNTRY_TRIPLET_SUBBAND

//**

typedef struct {

 UINT8 FirstChannelNum;

 UINT8 NumOfChannels;

 UINT8 MaxTxPowerLevel;
} EFI_80211_COUNTRY_TRIPLET_SUBBAND;

FirstChannelNum Indicates the lowest channel number in the subband. It has a
positive integer value less than 201.

NumOfChannels Indicates the number of channels in the subband.

MaxTxPowerLevel Indicates the maximum power in dBm allowed to be transmitted.

//**

// EFI_80211_COUNTRY_TRIPLET_OPERATE

//**

typedef struct {

 UINT8 OperatingExtId;

 UINT8 OperatingClass;

 UINT8 CoverageClass;
} EFI_80211_COUNTRY_TRIPLET_OPERATE;

OperatingExtId Indicates the operating extension identifier. It has a positive integer
value of 201 or greater.

OperatingClass Index into a set of values for radio equipment set of rules.

CoverageClass Specifies aAirPropagationTime characteristics used in BSS operation.
Refer the definition of aAirPropagationTime in IEEE 802.11
specification.

//**

// EFI_80211_ELEMENT_RSN

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 EFI_80211_ELEMENT_DATA_RSN *Data;
} EFI_80211_ELEMENT_RSN;

Hdr Common header of an element.

Data Points to RSN element. Type EFI_80211_ELEMENT_DATA_RSN is
defined below. The size of a RSN element is limited to 255 octets.
UEFI Forum, Inc. March 2019 1243

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_ELEMENT_DATA_RSN

//**

typedef struct {

 UINT16 Version;

 UINT32 GroupDataCipherSuite;
//UINT16 PairwiseCipherSuiteCount;

//UINT32 PairwiseCipherSuiteList[PairwiseCipherSuiteCount];

//UINT16 AKMSuiteCount;

//UINT32 AKMSuiteList[AKMSuiteCount];

//UINT16 RSNCapabilities;

//UINT16 PMKIDCount;

//UINT8 PMKIDList[PMKIDCount][16];

//UINT32 GroupManagementCipherSuite;
} EFI_80211_ELEMENT_DATA_RSN;

Version Indicates the version number of the RSNA protocol. Value 1 is
defined in current IEEE 802.11 specification.

GroupDataCipherSuiteSpecifies the cipher suite selector used by the BSS to protect
group address frames.

PairwiseCipherSuiteCountIndicates the number of pairwise cipher suite selectors that
are contained in PairwiseCipherSuiteList.

PairwiseCipherSuiteListContains a series of cipher suite selectors that indicate the
pairwise cipher suites contained in this element.

AKMSuiteCount Indicates the number of AKM suite selectors that are contained in
AKMSuiteList.

AKMSuiteList Contains a series of AKM suite selectors that indicate the AKM suites
contained in this element.

RSNCapabilities Indicates requested or advertised capabilities.

PMKIDCount Indicates the number of PKMIDs in the PMKIDList.

PMKIDList Contains zero or more PKMIDs that the STA believes to be valid for
the destination AP.

GroupManagementCipherSuite

Specifies the cipher suite selector used by the BSS to protect group
addressed robust management frames.

//**

// EFI_80211_ELEMENT_EXT_CAP

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 Capabilities[1];
} EFI_80211_ELEMENT_EXT_CAP;

Hdr Common header of an element.
UEFI Forum, Inc. March 2019 1244

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Capabilities Indicates the capabilities being advertised by the STA transmitting
the element. This is a bit field with variable length. Refer to IEEE
802.11 specification for bit value.

//**

// EFI_80211_BSS_DESP_PILOT

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 EFI_80211_BSS_TYPE BSSType;

 UINT8 ConCapInfo;

 UINT8 ConCountryStr[2];

 UINT8 OperatingClass;

 UINT8 Channel;

 UINT8 Interval;

 EFI_80211_MULTIPLE_BSSID *MultipleBSSID;

 UINT8 RCPIMeasurement;

 UINT8 RSNIMeasurement;
} EFI_80211_BSS_DESP_PILOT;

BSSId Indicates a specific BSSID of the found BSS.

BSSType Specifies the type of the found BSS.

ConCapInfo One octet field to report condensed capability information.

ConCountryStr Two octet’s field to report condensed country string.

OperatingClass Indicates the operating class value for the operating channel.

Channel Indicates the operating channel.

Interval Indicates the measurement pilot interval in TU.

MultipleBSSID Indicates that the BSS is within a multiple BSSID set.

RCPIMeasurement Specifies the RCPI of the received frame.

RSNIMeasurement Specifies the RSNI of the received frame.

//**

// EFI_80211_MULTIPLE_BSSID

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 Indicator;

 EFI_80211_SUBELEMENT_INFO SubElement[1];
} EFI_80211_MULTIPLE_BSSID;

Hdr Common header of an element.

Indicator Indicates the maximum number of BSSIDs in the multiple BSSID set.

When Indicator is set to n, 2n is the maximum number.

SubElement Contains zero or more sub-elements. Type
EFI_80211_SUBELEMENT_INFO is defined below.
UEFI Forum, Inc. March 2019 1245

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_SUBELEMENT_INFO

//**

typedef struct {

 UINT8 SubElementID;

 UINT8 Length;

 UINT8 Data[1];
} EFI_80211_SUBELEMENT_INFO;

SubElementID Indicates the unique identifier within the containing element or sub-
element.

Length Specifies the number of octets in the Data field.

Data A variable length data buffer.

Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate()

Summary

Request an association with a specified peer MAC entity that is within an AP.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_ASSOCIATE)(

 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,

 IN EFI_80211_ASSOCIATE_DATA_TOKEN *Data
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
instance.

Data Pointer to the association token. Type
EFI_80211_ASSOCIATE_DATA_TOKEN is defined in Related
Definitions below.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data->Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The scan operation is already started.
UEFI Forum, Inc. March 2019 1246

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The Associate() function provides the capability for MAC layer to become associated with an AP.

Related Definitions

//**

// EFI_80211_ASSOCIATE_DATA_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_80211_ASSOCIATE_DATA *Data;

 EFI_80211_ASSOCIATE_RESULT_CODE ResultCode;

 EFI_80211_ASSOCIATE_RESULT *Result;
} EFI_80211_ASSOCIATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI Wireless MAC Connection Protocol driver. The type of Event
must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Association operation completed successfully.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

Data Pointer to the association data. Type
EFI_80211_ASSOCIATE_DATA is defined below.

ResultCode Indicates the association state. Type
EFI_80211_ASSOCIATE_RESULT_CODE is defined below.

Result Indicates the association result. It is caller’s responsibility to free this
buffer. Type EFI_80211_ ASSOCIATE_RESULT is defined below.

The EFI_80211_ASSOCIATE_DATA_TOKEN structure is defined to support the process of association with
a specified AP. As input, the Data field must be filled in by the caller of EFI Wireless MAC Connection
Protocol. After the association operation completes, the EFI Wireless MAC Connection Protocol driver
updates the Status, ResultCode and Result field and the Event is signaled.
UEFI Forum, Inc. March 2019 1247

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_ASSOCIATE_DATA

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 UINT16 CapabilityInfo;

 UINT32 FailureTimeout;

 UINT32 ListenInterval;

 EFI_80211_ELEMENT_SUPP_CHANNEL *Channels;

 EFI_80211_ELEMENT_RSN RSN;

 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;

 UINT8 *VendorSpecificInfo;
} EFI_80211_ASSOCIATE_DATA;

BSSId Specifies the address of the peer MAC entity to associate with.

CapabilityInfo Specifies the requested operational capabilities to the AP in 2 octets.

FailureTimeout Specifies a time limit in TU, after which the associate procedure is
terminated.

ListenInterval Specifies if in power save mode, how often the STA awakes and
listens for the next beacon frame in TU.

Channels Indicates a list of channels in which the STA is capable of operating. .
Type EFI_80211_ELEMENT_SUPP_CHANNEL is defined below.

RSN The cipher suites and AKM suites selected by the STA.

ExtCapElement Specifies the parameters within the Extended Capabilities element
that are supported by the MAC entity. This is an optional parameter
and may be NULL.

VendorSpecificInfo Specifies zero or more elements. This is an optional parameter and
may be NULL.

//**

// EFI_80211_ELEMENT_SUPP_CHANNEL

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE Subband[1];
} EFI_80211_ELEMENT_SUPP_CHANNEL;

Hdr Common header of an element.

Subband Indicates one or more tuples of (first channel, number of channels).
Type EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE is defined
below.
UEFI Forum, Inc. March 2019 1248

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE

//**

typedef struct {

 UINT8 FirstChannelNumber;

 UINT8 NumberOfChannels;
} EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE;

FirstChannelNumberThe first channel number in a subband of supported channels.

NumberOfChannels The number of channels in a subband of supported channels.

//**

// EFI_80211_ASSOCIATE_RESULT_CODE

//**

typedef enum {

 AssociateSuccess,

 AssociateRefusedReasonUnspecified,

 AssociateRefusedCapsMismatch,

 AssociateRefusedExtReason,

 AssociateRefusedAPOutOfMemory,

 AssociateRefusedBasicRatesMismatch,

 AssociateRejectedEmergencyServicesNotSupported,

 AssociateRefusedTemporarily

} EFI_80211_ASSOCIATE_RESULT_CODE;

The EFI_80211_ASSOCIATE_RESULT_CODE records the result responses to the association request,
which are defined in IEEE 802.11 specification.

//**

// EFI_80211_ASSOCIATE_RESULT

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 UINT16 CapabilityInfo;

 UINT16 AssociationID;

 UINT8 RCPIValue;

 UINT8 RSNIValue;

 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;

 EFI_80211_ELEMENT_TIMEOUT_VAL TimeoutInterval;

 UINT8 *VendorSpecificInfo;
} EFI_80211_ASSOCIATE_RESULT;

BSSId Specifies the address of the peer MAC entity from which the
association request was received.

CapabilityInfo Specifies the operational capabilities advertised by the AP.

AssociationID Specifies the association ID value assigned by the AP.
UEFI Forum, Inc. March 2019 1249

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
RCPIValue Indicates the measured RCPI of the corresponding association
request frame. It is an optional parameter and is set to zero if
unavailable.

RSNIValue Indicates the measured RSNI at the time the corresponding
association request frame was received. It is an optional parameter
and is set to zero if unavailable.

ExtCapElement Specifies the parameters within the Extended Capabilities element
that are supported by the MAC entity. This is an optional parameter
and may be NULL.

TimeoutInterval Specifies the timeout interval when the result code is
AssociateRefusedTemporarily.

VendorSpecificInfo

Specifies zero or more elements. This is an optional parameter and
may be NULL.

//**

// EFI_80211_ELEMENT_TIMEOUT_VAL

//**

typedef struct {

 EFI_80211_ELEMENT_HEADER Hdr;

 UINT8 Type;

 UINT32 Value;
} EFI_80211_ELEMENT_TIMEOUT_VAL;

Hdr Common header of an element.

Type Specifies the timeout interval type.

Value Specifies the timeout interval value.
UEFI Forum, Inc. March 2019 1250

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate()

Summary

Request a disassociation with a specified peer MAC entity.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_DISASSOCIATE)(

 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,

 IN EFI_80211_DISASSOCIATE_DATA_TOKEN *Data
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
instance.

Data Pointer to the disassociation token. Type EFI_80211_
DISASSOCIATE_DATA_TOKEN is defined in Related Definitions
below.

Description

The Disassociate() function is invoked to terminate an existing association. Disassociation is a
notification and cannot be refused by the receiving peer except when management frame protection is
negotiated and the message integrity check fails.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data->Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The association process is already started.

EFI_NOT_READY Authentication is not performed before this association process.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1251

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//**

// EFI_80211_DISASSOCIATE_DATA_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_80211_DISASSOCIATE_DATA *Data;

 EFI_80211_DISASSOCIATE_RESULT_CODE ResultCode;
} EFI_80211_DISASSOCIATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI Wireless MAC Connection Protocol driver. The type of Event
must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Disassociation operation completed successfully.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

EFI_ACCESS_DENIED: The disassociation operation is not
completed due to some underlying hardware or software state.

EFI_NOT_READY: The disassociation operation is started but not yet
completed.

Data Pointer to the disassociation data. Type
EFI_80211_DISASSOCIATE_DATA is defined below.

ResultCode Indicates the disassociation state. Type
EFI_80211_DISASSOCIATE_RESULT_CODE is defined below.

//**

// EFI_80211_DISASSOCIATE_DATA

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 EFI_80211_REASON_CODE ReasonCode;

 UINT8 *VendorSpecificInfo;
} EFI_80211_DISASSOCIATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to perform
the disassociation process.

ReasonCode Specifies the reason for initiating the disassociation process.

VendorSpecificInfoZero or more elements, may be NULL.
UEFI Forum, Inc. March 2019 1252

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_REASON_CODE

//**

typedef enum {

 Ieee80211UnspecifiedReason = 1,

 Ieee80211PreviousAuthenticateInvalid = 2,

 Ieee80211DeauthenticatedSinceLeaving = 3,

 Ieee80211DisassociatedDueToInactive = 4,

 Ieee80211DisassociatedSinceApUnable = 5,

 Ieee80211Class2FrameNonauthenticated = 6,

 Ieee80211Class3FrameNonassociated = 7,

 Ieee80211DisassociatedSinceLeaving = 8,

 // ...

} EFI_80211_REASON_CODE;

Note: The reason codes are defined in chapter 8.4.1.7 Reason Code field, IEEE 802.11-2012.

//** 
// EFI_80211_DISASSOCIATE_RESULT_CODE

//**

typedef enum {

 DisassociateSuccess,

 DisassociateInvalidParameters

} EFI_80211_DISASSOCIATE_RESULT_CODE;

DisassociateSuccess Disassociation process completed successfully.

DisassociateInvalidParameters

Disassociation failed due to any input parameter is invalid.

Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate()

Summary

Request the process of establishing an authentication relationship with a peer MAC entity.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

EFI_ALREADY_STARTED The disassociation process is already started.

EFI_NOT_READY The disassociation service is invoked to a nonexistent association
relationship.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1253

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_AUTHENTICATE)(

 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,

 IN EFI_80211_AUTHENTICATE_DATA_TOKEN *Data
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
instance.

Data Pointer to the authentication token. Type
EFI_80211_AUTHENTICATE_DATA_TOKEN is defined in Related
Definitions below.

Description

The Authenticate() function requests authentication with a specified peer MAC
entity. This service might be time-consuming thus is designed to be invoked
independently of the association service.

Related Definitions

//**

// EFI_80211_AUTHENTICATE_DATA_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_80211_AUTHENTICATE_DATA *Data;

 EFI_80211_AUTHENTICATE_RESULT_CODE ResultCode;

 EFI_80211_AUTHENTICATE_RESULT *Result;
} EFI_80211_AUTHENTICATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI Wireless MAC Connection Protocol driver. The type of Event
must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Authentication operation completed successfully.

EFI_PROTOCOL_ERROR: Peer MAC entity rejects the
authentication.

EFI_NO_RESPONSE: Peer MAC entity does not response the
authentication request.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

EFI_ACCESS_DENIED: The authentication operation is not
completed due to some underlying hardware or software state.
UEFI Forum, Inc. March 2019 1254

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_NOT_READY: The authentication operation is started but not
yet completed.

Data Pointer to the authentication data. Type
EFI_80211_AUTHENTICATE_DATA is defined below.

ResultCode Indicates the association state. Type
EFI_80211_AUTHENTICATE_RESULT_CODE is defined below.

Result Indicates the association result. It is caller’s responsibility to free this
buffer. Type EFI_80211_AUTHENTICATE_RESULT is defined
below.

//**

// EFI_80211_AUTHENTICATION_DATA

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 EFI_80211_AUTHENTICATION_TYPE AuthType;

 UINT32 FailureTimeout;

 UINT8 *FTContent;

 UINT8 *SAEContent;

 UINT8 *VendorSpecificInfo;
} EFI_80211_AUTHENTICATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to perform
the authentication process.

AuthType Specifies the type of authentication algorithm to use during the
authentication process.

FailureTimeout Specifies a time limit in TU after which the authentication procedure
is terminated.

FTContent Specifies the set of elements to be included in the first message of
the FT authentication sequence, may be NULL.

SAEContent Specifies the set of elements to be included in the SAE Commit
Message or SAE Confirm Message, may be NULL.

VendorSpecificInfoZero or more elements, may be NULL.

//**

// EFI_80211_AUTHENTICATION_TYPE

//**

typedef enum {

 OpenSystem,

 SharedKey,

 FastBSSTransition,

 SAE

} EFI_80211_AUTHENTICATION_TYPE;

OpenSystem Open system authentication, admits any STA to the DS.
UEFI Forum, Inc. March 2019 1255

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
SharedKey Shared Key authentication relies on WEP to demonstrate knowledge
of a WEP encryption key.

FastBSSTransition FT authentication relies on keys derived during the initial mobility
domain association to authenticate the stations.

SAE SAE authentication uses finite field cryptography to prove
knowledge of a shared password.

//**

// EFI_80211_AUTHENTICATION_RESULT_CODE

//**

typedef enum {

 AuthenticateSuccess,

 AuthenticateRefused,

 AuthenticateAnticLoggingTokenRequired,

 AuthenticateFiniteCyclicGroupNotSupported,

 AuthenticationRejected,

 AuthenticateInvalidParameter

} EFI_80211_AUTHENTICATE_RESULT_CODE;

The result code indicates the result response to the authentication request from the peer MAC entity.

//**

// EFI_80211_AUTHENTICATION_RESULT

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 UINT8 *FTContent;

 UINT8 *SAEContent;

 UINT8 *VendorSpecificInfo;
} EFI_80211_AUTHENTICATE_RESULT;

BSSId Specifies the address of the peer MAC entity from which the
authentication request was received.

FTContent Specifies the set of elements to be included in the second message
of the FT authentication sequence, may be NULL.

SAEContent Specifies the set of elements to be included in the SAE Commit
Message or SAE Confirm Message, may be NULL.

VendorSpecificInfoZero or more elements, may be NULL.
UEFI Forum, Inc. March 2019 1256

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate()

Summary

Invalidate the authentication relationship with a peer MAC entity.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_DEAUTHENTICATE)(

 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,

 IN EFI_80211_DEAUTHENTICATE_DATA_TOKEN *Data
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION _PROTOCOL
instance.

Data Pointer to the deauthentication token. Type
EFI_80211_DEAUTHENTICATE_DATA_TOKEN is defined in Related
Definitions below.

Description

The Deauthenticate() function requests that the authentication relationship with a specified peer
MAC entity be invalidated. Deauthentication is a notification and when it is sent out the association at
the transmitting station is terminated.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data.Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The authentication process is already started.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1257

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//**

// EFI_80211_DEAUTHENTICATE_DATA_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_80211_DEAUTHENTICATE_DATA *Data;
} EFI_80211_DEAUTHENTICATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI Wireless MAC Connection Protocol driver. The type of Event
must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Deauthentication operation completed
successfully.

EFI_DEVICE_ERROR: An unexpected network or system
error occurred.

EFI_ACCESS_DENIED:The deauthentication operation is not
completed due to some underlying hardware or software state.

EFI_NOT_READY: The deauthentication operation is started but not
yet completed.

Data Pointer to the deauthentication data. Type
EFI_80211_DEAUTHENTICATE_DATA is defined below.

//**

// EFI_80211_DEAUTHENTICATE_DATA

//**

typedef struct {

 EFI_80211_MAC_ADDRESS BSSId;

 EFI_80211_REASON_CODE ReasonCode;

 UINT8 *VendorSpecificInfo;
} EFI_80211_DEAUTHENTICATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to perform
the deauthentication process.

ReasonCode Specifies the reason for initiating the deauthentication process.

VendorSpecificInfoZero or more elements, may be NULL.
UEFI Forum, Inc. March 2019 1258

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

27.4 EFI Wireless MAC Connection II Protocol

This section provides a detailed description of EFI Wireless MAC Connection II Protocol.

EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL

Summary

The EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL provides network management service
interfaces for 802.11 network stack. It is used by network applications (and drivers) to establish wireless
connection with a wireless network.

GUID

#define EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL_GUID \
 { 0x1b0fb9bf, 0x699d, 0x4fdd, \
 { 0xa7, 0xc3, 0x25, 0x46, 0x68, 0x1b, 0xf6, 0x3b }}

Protocol Interface Structure

typedef struct _EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL {

 EFI_WIRELESS_MAC_CONNECTION_II_GET_NETWORKS GetNetworks;
 EFI_WIRELESS_MAC_CONNECTION_II_CONNECT_NETWORK ConnectNetwork;
 EFI_WIRELESS_MAC_CONNECTION_II_DISCONNECT_NETWORK DisconnectNetwork;
} EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL;

Parameters

GetNetworks Get a list of nearby detectable wireless network. See the
GetNetworks() function description.

ConnectNetwork Places a connection request with a specific wireless network. See the
ConnectNetwork() function description.

DisconnectNetwork Places a disconnection request with a specific wireless network. See
the DisconnectNetwork() function description.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data.Data is NULL.

EFI_ALREADY_STARTED The deauthentication process is already started.

EFI_NOT_READY The deauthentication service is invoked to a nonexistent association or
authentication relationship.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1259

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL is designed to provide management service
interfaces for the EFI wireless network stack to establish relationship with a wireless network (identified
by EFI_80211_NETWORK defined below). An EFI Wireless MAC Connection II Protocol instance will be
installed on each communication device that the EFI wireless network stack runs on.

EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.GetNetworks()

Summary

Request a survey of potential wireless networks that administrator can later elect to try to join.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_II_GET_NETWORKS)(

 IN EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL *This,
 IN EFI_80211_GET_NETWORKS_TOKEN *Token
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL
instance.

Token Pointer to the token for getting wireless network. Type
EFI_80211_GET_NETWORKS_TOKEN is defined in Related
Definitions below.

Description

The GetNetworks() function returns the description of a list of wireless networks detected by wireless
UNDI driver. This function is always non-blocking. If the operation succeeds or fails due to any error, the
Token->Event will be signaled and Token->Status will be updated accordingly. The caller of this
function is responsible for inputting SSIDs in case of searching hidden networks.

Related Definitions

//**
// EFI_80211_GET_NETWORKS_TOKEN
//**
typedef struct {

 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_GET_NETWORKS_DATA *Data;
 EFI_80211_GET_NETWORKS_RESULT *Result;
} EFI_80211_GET_NETWORKS_TOKEN;

Event If the status code returned by GetNetworks() is EFI_SUCCESS,
then this Event will be signaled after the Status field is updated by
UEFI Forum, Inc. March 2019 1260

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
the EFI Wireless MAC Connection Protocol II driver. The type of
Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: The operation completed successfully.

EFI_NOT_FOUND: Failed to find available wireless networks.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

EFI_ACCESS_DENIED: The operation is not completed due to
some underlying hardware or software state.

EFI_NOT_READY: The operation is started but not yet

completed.

Data Pointer to the input data for getting networks. Type
EFI_80211_GET_NETWORKS_DATA is defined below.

Result Indicates the scan result. It is caller's responsibility to free this
buffer. Type EFI_80211_GET_NETWORKS_RESULT is defined
below.

//**
// EFI_80211_GET_NETWORKS_DATA
//**
typedef struct {

 UINT32 NumOfSSID;
 EFI_80211_SSID SSIDList[1];
} EFI_80211_GET_NETWORKS_DATA;

NumOfSSID The number of EFI_80211_SSID in SSIDList. If zero, SSIDList
should be ignored.

SSIDList The SSIDList is a pointer to an array of EFI_80211_SSID
instances. The number of entries is specified by NumOfSSID. The
array should only include SSIDs of hidden networks. It is suggested
that the caller inputs less than 10 elements in the SSIDList. It is
the caller's responsibility to free this buffer. Type EFI_80211_SSID
is defined below.

#define EFI_MAX_SSID_LEN 32

//**
// EFI_80211_SSID
//**
typedef struct {

 UINT8 SSIdLen;
 UINT8 SSId[EFI_MAX_SSID_LEN];
} EFI_80211_SSID;

SSIdLen Length in bytes of the SSId. If zero, ignore SSId field.

SSId Specifies the service set identifier.
UEFI Forum, Inc. March 2019 1261

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_GET_NETWORKS_RESULT
//**
typedef struct {

 UINT8 NumOfNetworkDesc;
 EFI_80211_NETWORK_DESCRIPTION NetworkDesc[1];
} EFI_80211_GET_NETWORKS_RESULT;

NumOfNetworkDesc The number of elements in NetworkDesc. If zero, NetworkDesc
should be ignored.

NetworkDesc The NetworkDesc is a variable-length array of elements of type
EFI_80211_NETWORK_DESCRIPTION. Type
EFI_80211_NETWORK_DESCRIPTION is defined below.

//**
// EFI_80211_NETWORK_DESCRIPTION
//**
typedef struct {

 EFI_80211_NETWORK Network;
 UINT8 NetworkQuality;
} EFI_80211_NETWORK_DESCRIPTION;

Network Specifies the found wireless network. Type EFI_80211_NETWORK is
defined below.

NetworkQuality Indicates the network quality as a value between 0 to 100, where
100 indicates the highest network quality.

//**
// EFI_80211_NETWORK
//**
typedef struct {

 EFI_80211_BSS_TYPE BSSType;
 EFI_80211_SSID SSId;
 EFI_80211_AKM_SUITE_SELECTOR *AKMSuite;
 EFI_80211_CIPHER_SUITE_SELECTOR *CipherSuite;
} EFI_80211_NETWORK;

BSSType Specifies the type of the BSS. Type EFI_80211_BSS_TYPE is
defined below.

SSId Specifies the SSID of the BSS. Type EFI_80211_SSID is defined
above.

AKMSuite Pointer to the AKM suites supported in the wireless network. Type
EFI_80211_AKM_SUITE_SELECTOR is defined below.

CipherSuite Pointer to the cipher suites supported in the wireless network. Type
EFI_80211_CIPHER_SUITE_SELECTOR is defined below.
UEFI Forum, Inc. March 2019 1262

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_BSS_TYPE
 //**
typedef enum {
 IeeeInfrastructureBSS,
 IeeeIndependentBSS,
 IeeeMeshBSS,
 IeeeAnyBss
} EFI_80211_BSS_TYPE;

The EFI_80211_BSS_TYPE is defined to enumerate BSS type.

//**

// EFI_80211_SUITE_SELECTOR

//**

typedef struct {

UINT8 Oui[3];
UINT8 SuiteType;

} EFI_80211_SUITE_SELECTOR;

Oui Organization Unique Identifier, as defined in IEEE 802.11 standard,
usually set to 00-0F-AC.

SuiteType Suites types, as defined in IEEE 802.11 standard.

//**

// EFI_80211_AKM_SUITE_SELECTOR

//**

typedef struct {

 UINT16 AKMSuiteCount;

 EFI_80211_SUITE_SELECTOR AKMSuiteList[1];
} EFI_80211_AKM_SUITE_SELECTOR;

AKMSuiteCount Indicates the number of AKM suite selectors that are contained in
AKMSuiteList. If zero, the AKMSuiteList is ignored.

AKMSuiteList A variable-length array of AKM suites, as defined in IEEE 802.11
standard, Table 8-101. The number of entries is specified by
AKMSuiteCount.
UEFI Forum, Inc. March 2019 1263

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_80211_CIPHER_SUITE_SELECTOR

//**

typedef struct {

 UINT16 CipherSuiteCount;

 EFI_80211_SUITE_SELECTOR CipherSuiteList[1];
} EFI_80211_CIPHER_SUITE_SELECTOR;

CipherSuiteCount Indicates the number of cipher suites that are contained in
CipherSuiteList. If zero, the CipherSuiteList is ignored.

CipherSuiteList A variable-length array of cipher suites, as defined in IEEE 802.11
standard, Table 8-99. The number of entries is specified by
CipherSuiteCount.

Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.ConnectNetwork()

Summary

Connect a wireless network specified by a particular SSID, BSS type and Security type.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_II_CONNECT_NETWORK)(

 IN EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL *This,
 IN EFI_80211_CONNECT_NETWORK_TOKEN *Token
);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL
instance.

Token Pointer to the token for connecting wireless network. Type
EFI_80211_CONNECT_NETWORK_TOKEN is defined in Related
Definitions below.

EFI_SUCCESS The operation started, and an event will eventually be raised for the
caller.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL.
Token is NULL.

EFI_UNSUPPORTED One or more of the input parameters is not supported by this
implementation.

EFI_ALREADY_STARTED The operation of getting wireless network is already started.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1264

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The ConnectNetwork() function places a request to wireless UNDI driver to connect a wireless
network specified by a particular SSID, BSS type, Authentication method and cipher. This function will
trigger wireless UNDI driver to perform authentication and association process to establish connection
with a particular Access Point for the specified network. This function is always non-blocking. If the
connection succeeds or fails due to any error, the Token->Event will be signaled and Token->Status
will be updated accordingly.

After having signaled a successful connection completion, the UNDI driver will update the network
connection state using the network media state information type in the
EFI_ADAPTER_INFORMATION_PROTOCOL. If needed, the caller should use
EFI_ADAPTER_INFORMATION_PROTOCOL to regularly get the network media state to find if the UNDI
driver is still connected to the wireless network (EFI_SUCCESS) or not (EFI_NO_MEDIA).

Generally a driver or application in WiFi stack would provide user interface to end user to manage
profiles for selecting which wireless network to join and other state management. This module should
prompt the user to select a network and input WiFi security data such as certificate, private key file,
password, etc. Then the module should deploy WiFi security data through EFI Supplicant Protocol and/ or
EFI EAP Configuration Protocol before calling ConnectNetwork() function.

Related Definitions

//**
// EFI_80211_CONNECT_NETWORK_TOKEN
//**
typedef struct {

 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_CONNECT_NETWORK_DATA *Data;
 EFI_80211_CONNECT_NETWORK_RESULT_CODE ResultCode;
} EFI_80211_CONNECT_NETWORK_TOKEN;

Event If the status code returned by ConnectNetwork() is
EFI_SUCCESS, then this Event will be signaled after the Status
field is updated by the EFI Wireless MAC Connection Protocol II
driver. The type of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: The operation completed successfully.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

EFI_ACCESS_DENIED: The operation is not completed due to some
underlying hardware or software state.

EFI_NOT_READY: The operation is started but not yet completed.

Data Pointer to the connection data. Type
EFI_80211_CONNECT_NETWORK_DATA is defined below.

ResultCode Indicates the connection state. Type
EFI_80211_CONNECT_NETWORK_RESULT_CODE is defined below.
UEFI Forum, Inc. March 2019 1265

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
The EFI_80211_CONNECT_NETWORK_TOKEN structure is defined to support the process of determining
the characteristics of the available networks. As input, the Data field must be filled in by the caller of EFI
Wireless MAC Connection II Protocol. After the operation completes, the EFI Wireless MAC Connection II
Protocol driver updates the Status and ResultCode field and the Event is signaled.

//**
// EFI_80211_CONNECT_NETWORK_DATA //
**
typedef struct {

 EFI_80211_NETWORK *Network;
 UINT32 FailureTimeout;
} EFI_80211_CONNECT_NETWORK_DATA;

Network Specifies the wireless network to connect to. Type
EFI_80211_NETWORK is defined above.

FailureTimeout Specifies a time limit in seconds that is optionally present, after
which the connection establishment procedure is terminated by the
UNDI driver. This is an optional parameter and may be 0. Values of 5
seconds or higher are recommended.

//**
// EFI_80211_CONNECT_NETWORK_RESULT_CODE //
**
typedef enum {
 ConnectSuccess,
 ConnectRefused,
 ConnectFailed,
 ConnectFailureTimeout,
 ConnectFailedReasonUnspecified
} EFI_80211_CONNECT_NETWORK_RESULT_CODE;

ConnectSuccess The connection establishment operation finished successfully.

ConnectRefused The connection was refused by the Network.

ConnectFailed The connection establishment operation failed (i.e, Network is not
detected).

ConnectFailureTimeout

The connection establishment operation was terminated on
timeout.

ConnectFailedReasonUnspecified

The connection establishment operation failed on other reason.
UEFI Forum, Inc. March 2019 1266

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.DisconnectNetwork()

Summary

Request a disconnection with current connected wireless network.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_II_DISCONNECT_NETWORK)(

 IN EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL *This,
 IN EFI_80211_DISCONNECT_NETWORK_TOKEN *Token

);

Parameters

This Pointer to the EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL
instance.

Token Pointer to the token for disconnecting wireless network. Type
EFI_80211_DISCONNECT_NETWORK_TOKEN is defined in Related
Definitions below.

Description

The DisconnectNetwork() function places a request to wireless UNDI driver to disconnect from the
wireless network it is connected to. This function will trigger the wireless UNDI driver to perform
disassociation and deauthentication process to terminate an existing connection. This function is always
non-blocking. After wireless UNDI driver received acknowledgment frame from AP and freed up
corresponding resources, the Token->Event will be signaled and Token->Status will be updated
accordingly.

EFI_SUCCESS The operation started successfully. Results will be notified eventually.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL.
Token is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The connection process is already started.

EFI_NOT_FOUND The specified wireless network is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1267

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//**
// EFI_80211_DISCONNECT_NETWORK_TOKEN //
**
typedef struct {

 EFI_EVENT Event;
 EFI_STATUS Status;
} EFI_80211_DISCONNECT_NETWORK_TOKEN;

Event If the status code returned by DisconnectNetwork() is
EFI_SUCCESS, then this Event will be signaled after the Status field
is updated by the EFI Wireless MAC Connection Protocol II driver.
The type of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: The operation completed successfully

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

EFI_ACCESS_DENIED: The operation is not completed due to some
underlying hardware or software state.

Status Codes Returned

27.5 EFI Supplicant Protocol

This section defines the EFI Supplicant Protocol.

27.5.1 Supplicant Service Binding Protocol

EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL

Summary

The EFI Supplicant Service Binding Protocol is used to locate EFI Supplicant Protocol drivers to create and
destroy child of the driver to communicate with other host using Supplicant protocol.

GUID

EFI_SUCCESS The operation started successfully. Results will be notified eventually.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL.
Token is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_NOT_FOUND Not connected to a wireless network.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1268

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
#define EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL_GUID \

 { 0x45bcd98e, 0x59ad, 0x4174, \

 { 0x95, 0x46, 0x34, 0x4a, 0x7, 0x48, 0x58, 0x98 }}

Description

A module that requires supplicant services can call one of the protocol handler services, such as BS-
>LocateHandleBuffer(), to search devices that publish an EFI Supplicant Service Binding Protocol
GUID. Such device supports the EFI Supplicant Protocol and may be available for use. After a successful
call to the EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI Supplicant Protocol driver is in an un-configured state; it is not ready to do any
operation until configured via SetData(). Every successful call to the
EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with
a call to the EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL.DestroyChild()function to release
the protocol driver.

27.5.2 Supplicant Protocol

EFI_SUPPLICANT_PROTOCOL

Summary

This protocol provides services to process authentication and data encryption/decryption for security
management.

GUID

#define EFI_SUPPLICANT_PROTOCOL_GUID \

 { 0x54fcc43e, 0xaa89, 0x4333, \

 { 0x9a, 0x85, 0xcd, 0xea, 0x24, 0x5, 0x1e, 0x9e }}

Protocol Interface Structure

typedef struct _EFI_SUPPLICANT_PROTOCOL {

 EFI_SUPPLICANT_BUILD_RESPONSE_PACKET BuildResponsePacket;

 EFI_SUPPLICANT_PROCESS_PACKET ProcessPacket;

 EFI_SUPPLICANT_SET_DATA SetData;

 EFI_SUPPLICANT_GET_DATA GetData;
} EFI_SUPPLICANT_PROTOCOL;

Parameters

BuildResponsePacketThis API processes security data for handling key management. See
the BuildResponsePacket() function description.

ProcessPacket This API processes frame for encryption or decryption. See the
ProcessPacket()function description.

SetData This API sets the information needed during key generated in
handshake. See the SetData()function description.

GetData This API gets the information generated in handshake. See the
GetData() function description.
UEFI Forum, Inc. March 2019 1269

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Description

The EFI_SUPPLICANT_PROTOCOL is designed to provide unified place for WIFI and EAP security
management. Both PSK authentication and 802.1X EAP authentication can be managed via this protocol
and driver or application as a consumer can only focus on about packet transmitting or receiving. For
802.1X EAP authentication, an instance of EFI_EAP_CONFIGURATION_PROTOCOL must be installed to
the same handle as the EFI Supplicant Protocol.

EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket()

Summary

BuildResponsePacket() is called during STA and AP authentication is in progress. Supplicant derives
the PTK or session keys depend on type of authentication is being employed.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SUPPLICANT_BUILD_RESPONSE_PACKET)(

 IN EFI_SUPPLICANT_PROTOCOL *This,

 IN UINT8 *RequestBuffer, OPTIONAL

 IN UINTN RequestBufferSize, OPTIONAL

 OUT UINT8 *Buffer,

 IN OUT UINTN *BufferSize
);

Parameters

This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

RequestBuffer Pointer to the most recently received EAPOL packet. NULL means
the supplicant need initiate the EAP authentication session and send
EAPOL-Start message.

RequestSize Packet size in bytes for the most recently received EAPOL packet. 0 is
only valid when RequestBuffer is NULL.

Buffer Pointer to the buffer to hold the built packet.

BufferSize Pointer to the buffer size in bytes. On input, it is the buffer size
provided by the caller. On output, it is the buffer size in fact needed
to contain the packet.

Description

The consumer calls BuildResponsePacket() when it receives the security frame. It simply passes the
data to supplicant to process the data. It could be WPA-PSK which starts the 4-way handshake, or WPA-
EAP first starts with Authentication process and then 4-way handshake, or 2-way group key handshake.
In process of authentication, 4-way handshake or group key handshake, Supplicant needs to
communicate with its peer (AP/AS) to fill the output buffer parameter. Once the 4 way handshake or
group key handshake is over, and PTK (Pairwise Transient keys) and GTK (Group Temporal Key) are
generated.
UEFI Forum, Inc. March 2019 1270

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_SUPPLICANT_PROTOCOL.ProcessPacket()

Summary

ProcessPacket() is called to Supplicant driver to encrypt or decrypt the data depending type of
authentication type.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SUPPLICANT_PROCESS_PACKET)(

 IN EFI_SUPPLICANT_PROTOCOL *This,

 IN OUT EFI_SUPPLICANT_FRAGMENT_DATA **FragmentTable,

 IN UINT32 *FragmentCount,

 IN EFI_SUPPLICANT_CRYPT_MODE CryptMode
);

Parameters

This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

FragmentTable Pointer to a list of fragment. The caller will take responsible to
handle the original FragmentTable while it may be reallocated in
Supplicant driver.

FragmentCount Number of fragment.

CryptMode Crypt mode.

Description

ProcessPacket() is responsible for encrypting or decrypting the data traffic as per authentication
type. The consumer routes the data frame as it is to Supplicant module and encrypts or decrypts packet
with updated length comes as output parameter. Supplicant holds the derived PTK and GTKs and uses
this key to encrypt or decrypt the network traffic.

If the Supplicant driver does not support any encryption and decryption algorithm, then
EFI_UNSUPPORTED is returned.

EFI_SUCCESS The required EAPOL packet is built successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• RequestBuffer is NULL, but RequestSize is NOT 0.

• RequestSize is 0.

• Buffer is NULL, but RequestBuffer is NOT 0.

• RequestSize is 0.

• BufferSize is NULL.

EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the response packet.

EFI_NOT_READY Current EAPOL session state is NOT ready to build

ResponsePacket.
UEFI Forum, Inc. March 2019 1271

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//**

// EFI_SUPPLICANT_FRAGMENT_DATA

//**

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_SUPPLICANT_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.

FragmentBuffer Pointer to the data buffer in the fragment.

//**

// EFI_SUPPLICANT_CRYPT_MODE

//**

typedef enum {

 EfiSupplicantEncrypt,

 EfiSupplicantDecrypt,

} EFI_SUPPLICANT_CRYPT_MODE;

EfiSupplicantEncryptEncrypt data provided in the fragment buffers.

EfiSupplicantDecryptDecrypt data provided in the fragment buffers.

Status Codes Returned

EFI_SUPPLICANT_PROTOCOL.SetData()

Summary

Set Supplicant configuration data.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• FragmentTable is NULL.

• FragmentCount is NULL.

• CryptMode is invalid.

EFI_NOT_READY Current supplicant state is NOT Authenticated.

EFI_ABORTED Something wrong decryption the message.

EFI_UNSUPPORTED This API is not supported.
UEFI Forum, Inc. March 2019 1272

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SUPPLICANT_SET_DATA)(

 IN EFI_SUPPLICANT_PROTOCOL *This,

 IN EFI_SUPPLICANT_DATA_TYPE DataType,

 IN VOID *Data,

 IN UINTN DataSize
);

Parameters

This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

DataType The type of data.

Data Pointer to the buffer to hold the data.

DataSize Pointer to the buffer size in bytes.

Description

The SetData() function sets Supplicant configuration. For example, Supplicant driver need to know
Password and TargetSSIDName to calculate PSK. Supplicant driver need to know StationMac and
TargetSSIDMac to calculate PTK. Then it can derive KCK(key confirmation key) which is needed to
calculate MIC, and KEK(key encryption key) which is needed to unwrap GTK.
UEFI Forum, Inc. March 2019 1273

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions

//**

// EFI_SUPPLICANT_DATA_TYPE

//**

typedef enum {

 //

 // Session Configuration

 //

 EfiSupplicant80211AKMSuite,

 EfiSupplicant80211GroupDataCipherSuite,

 EfiSupplicant80211PairwiseCipherSuite,

 EfiSupplicant80211PskPassword,

 EfiSupplicant80211TargetSSIDName,

 EfiSupplicant80211StationMac,

 EfiSupplicant80211TargetSSIDMac,

 //

 // Session Information

 //

 EfiSupplicant80211PTK,

 EfiSupplicant80211GTK,

 EfiSupplicantState,

 EfiSupplicant80211LinkState,

 EfiSupplicantKeyRefresh,

 //

 // Session Configuration

 //

 EfiSupplicant80211SupportedAKMSuites,

 EfiSupplicant80211SupportedSoftwareCipherSuites,

 EfiSupplicant80211SupportedHardwareCipherSuites,

 //

 // Session Information

 //

 EfiSupplicant80211IGTK,

 EfiSupplicant80211PMK,

 EfiSupplicantDataTypeMaximum

} EFI_SUPPLICANT_DATA_TYPE;

EfiSupplicant80211AKMSuite

Current authentication type in use. The corresponding Data is of
type EFI_80211_AKM_SUITE_SELECTOR.

EfiSupplicant80211GroupDataCipherSuite

Group data encryption type in use. The corresponding Data is of type
EFI_80211_CIPHER_SUITE_SELECTOR.
UEFI Forum, Inc. March 2019 1274

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EfiSupplicant80211PairwiseCipherSuite

Pairwise encryption type in use. The corresponding Data is of type
EFI_80211_CIPHER_SUITE_SELECTOR.

EfiSupplicant80211PskPassword

PSK password. The corresponding Data is a NULL-terminated ASCII
string.

EfiSupplicant80211TargetSSIDName

Target SSID name. The corresponding Data is of type
EFI_80211_SSID.

EfiSupplicant80211StationMac

Station MAC address. The corresponding Data is of type
EFI_80211_MAC_ADDRESS.

EfiSupplicant80211TargetSSIDMac

Target SSID MAC address. The corresponding Data is 6 bytes MAC
address.

EfiSupplicant80211PTK

802.11 PTK. The corresponding Data is of type
EFI_SUPPLICANT_KEY.

EfiSupplicant80211GTK

802.11 GTK. The corresponding Data is of type
EFI_SUPPLICANT_GTK_LIST.

EfiSupplicantState

Supplicant state. The corresponding Data is
EFI_EAPOL_SUPPLICANT_PAE_STATE.

EfiSupplicant80211LinkState

802.11 link state. The corresponding Data is EFI_
80211_LINK_STATE.

EfiSupplicantKeyRefresh

Flag indicates key is refreshed. The corresponding Data is
EFI_SUPPLICANT_KEY_REFRESH.

EfiSupplicant80211SupportedAKMSuites

Supported authentication types. The corresponding Data is of type
EFI_80211_AKM_SUITE_SELECTOR.

EfiSupplicant80211SupportedSoftwareCipherSuites

Supported software encryption types provided by supplicant driver.
The corresponding Data is of type
EFI_80211_CIPHER_SUITE_SELECTOR.

EfiSupplicant80211SupportedHardwareCipherSuites

Supported hardware encryption types provided by wireless UNDI
driver. The corresponding Data is of type
EFI_80211_CIPHER_SUITE_SELECTOR.

EfiSupplicant80211IGTK
UEFI Forum, Inc. March 2019 1275

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
802.11 Integrity GTK. The corresponding Data is of type
EFI_SUPPLICANT_GTK_LIST.

EfiSupplicant80211IPMK

802.11 PMK. The corresponding Data is 32 bytes pairwise master
key.

//**

// EFI_80211_LINK_STATE

//**

typedef enum {

 Ieee80211UnauthenticatedUnassociated,

 Ieee80211AuthenticatedUnassociated,

 Ieee80211PendingRSNAuthentication,

 Ieee80211AuthenticatedAssociated

} EFI_80211_LINK_STATE;

Ieee80211UnauthenticatedUnassociated

Indicates initial start state, unauthenticated, unassociated.

Ieee80211AuthenticatedUnassociated

Indicates authenticated, unassociated.

Ieee80211PendingRSNAuthentication

Indicates authenticated and associated, but pending RSN
authentication.

Ieee80211AuthenticatedAssociated

Indicates authenticated and associated.

//**

// EFI_SUPPLICANT_KEY_REFRESH

//**

typedef struct {

 BOOLEAN GTKRefresh;
} EFI_SUPPLICANT_KEY_REFRESH;

GTKRefresh If TRUE, indicates GTK is just refreshed after a successful call to
EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket().

//**

// EFI_SUPPLICANT_GTK_LIST

//**

typedef struct {

 UINT8 GTKCount;

 EFI_SUPPLICANT_KEY GTKList[1];
} EFI_SUPPLICANT_GTK_LIST;

GTKCount Indicates the number of GTKs that are contained in GTKList.
UEFI Forum, Inc. March 2019 1276

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
GTKList A variable-length array of GTKs of type EFI_SUPPLICANT_KEY. The
number of entries is specified by GTKCount.

#define EFI_MAX_KEY_LEN 64

//**

// EFI_SUPPLICANT_KEY

//**

typedef struct {

 UINT8 Key[EFI_MAX_KEY_LEN];

 UINT8 KeyLen;

 UINT8 KeyId;

 EFI_SUPPLICANT_KEY_TYPE KeyType;

 EFI_80211_MAC_ADDRESS Addr;

 UINT8 Rsc[8];

 UINT8 RscLen;

 BOOLEAN IsAuthenticator;

 EFI_80211_SUITE_SELECTOR CipherSuite;

 EFI_SUPPLICANT_KEY_DIRECTION Direction;
} EFI_SUPPLICANT_KEY;

The EFI_SUPPLICANT_KEY descriptor is defined in the IEEE 802.11 standard, section
6.3.19.1.2.

Key The key value.

KeyLen Length in bytes of the Key. Should be up to EFI_MAX_KEY_LEN.

KeyId The key identifier.

KeyType Defines whether this key is a group key, pairwise key, PeerKey, or
Integrity Group.

Addr The value is set according to the KeyType.

RSC The Receive Sequence Count value.

RscLen Length in bytes of the Rsc. Should be up to 8.

IsAuthenticator Indicates whether the key is configured by the Authenticator or
Supplicant. The value true indicates Authenticator.

CipherSuite The cipher suite required for this association.

Direction Indicates the direction for which the keys are to be installed.
UEFI Forum, Inc. March 2019 1277

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**

// EFI_SUPPLICANT_KEY_TYPE (IEEE Std 802.11

// Section 6.3.19.1.2)

//**

typedef enum {

 Group,

 Pairwise,

 PeerKey,

 IGTK

} EFI_SUPPLICANT_KEY_TYPE;

The EFI_SUPPLICANT_KEY_TYPE is defined in the IEEE 802.11 specification.

//**

// EFI_SUPPLICANT_KEY_DIRECTION (IEEE Std 802.11

// Section 6.3.19.1.2)

//**

typedef enum {

 Receive,

 Transmit,

 Both

} EFI_SUPPLICANT_KEY_DIRECTION;

Receive Indicates that the keys are being installed for the receive direction.

Transmit Indicates that the keys are being installed for the transmit direction.

Both Indicates that the keys are being installed for both the receive and
transmit directions.

Status Codes Returned

EFI_SUPPLICANT_PROTOCOL.GetData()

Summary

Get Supplicant configuration data.

EFI_SUCCESS The Supplicant configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1278

UEFI Specification, Version 2.8 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SUPPLICANT_GET_DATA)(

 IN EFI_SUPPLICANT_PROTOCOL *This,

 IN EFI_SUPPLICANT_DATA_TYPE DataType,

 OUT UINT8 *Data, OPTIONAL

 IN OUT UINTN *DataSize
);

Parameters

This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

DataType The type of data.

Data Pointer to the buffer to hold the data. Ignored if DataSize is 0.

DataSize Pointer to the buffer size in bytes. On input, it is the buffer size
provided by the caller. On output, it is the buffer size in fact needed
to contain the packet.

Description

The GetData() function gets Supplicant configuration. The typical example is PTK and GTK derived from
handshake. The wireless NIC can support software encryption or hardware encryption. If the consumer
uses software encryption, it can call ProcessPacket() to get result. If the consumer supports
hardware encryption, it can get PTK and GTK via GetData()and program to hardware register.

Status Codes Returned

EFI_SUCCESS The Supplicant configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The Supplicant configuration data is not found.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data and

the required size is returned in DataSize.
UEFI Forum, Inc. March 2019 1279

UEFI Specification, Version 2.8
28 - Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations

28.1 EFI TCPv4 Protocol

This section defines the EFI TCPv4 (Transmission Control Protocol version 4) Protocol.

28.1.1 TCP4 Service Binding Protocol

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI TCPv4 Service Binding Protocol is used to locate EFI TCPv4 Protocol drivers
to create and destroy child of the driver to communicate with other host using TCP
protocol.

GUID

#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0x00720665,0x67EB,0x4a99,\

 {0xBA,0xF7,0xD3,0xC3,0x3A,0x1C,0x7C,0xC9}}

Description

A network application that requires TCPv4 I/O services can call one of the protocol handler services, such
as BS->LocateHandleBuffer(), to search devices that publish an EFI TCPv4 Service Binding Protocol
GUID. Such device supports the EFI TCPv4 Protocol and may be available for use.

After a successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI TCPv4 Protocol driver is in an un-configured state; it is not ready to do any
operation except Poll() send and receive data packets until configured as the purpose of the user and
perhaps some other indispensable function belonged to TCPv4 Protocol driver is called properly.

Every successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function
must be matched with a call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.DestroyChild()
function to release the protocol driver.

28.1.2 TCP4 Protocol

EFI_TCP4_PROTOCOL

Summary

The EFI TCPv4 Protocol provides services to send and receive data stream.
UEFI Forum, Inc. March 2019 1279

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GUID

#define EFI_TCP4_PROTOCOL_GUID \

 {0x65530BC7,0xA359,0x410f,\

 {0xB0,0x10,0x5A,0xAD,0xC7,0xEC,0x2B,0x62}}

Protocol Interface Structure

typedef struct _EFI_TCP4_PROTOCOL {

 EFI_TCP4_GET_MODE_DATA GetModeData;

 EFI_TCP4_CONFIGURE Configure;

 EFI_TCP4_ROUTES Routes;

 EFI_TCP4_CONNECT Connect;

 EFI_TCP4_ACCEPT Accept;

 EFI_TCP4_TRANSMIT Transmit;

 EFI_TCP4_RECEIVE Receive;

 EFI_TCP4_CLOSE Close;

 EFI_TCP4_CANCEL Cancel;

 EFI_TCP4_POLL Poll;

} EFI_TCP4_PROTOCOL;

Parameters

GetModeData Get the current operational status. See the GetModeData()
function description.

Configure Initialize, change, or brutally reset operational settings of the
EFI TCPv4 Protocol. See the Configure() function
description.

Routes Add or delete routing entries for this TCP4 instance. See the
Routes() function description.

Connect Initiate the TCP three-way handshake to connect to the
remote peer configured in this TCP instance. The function is a
nonblocking operation. See the Connect() function
description.

Accept Listen for incoming TCP connection request. This function is a
nonblocking operation. See the Accept() function
description.

Transmit Queue outgoing data to the transmit queue. This function is a
nonblocking operation. See the Transmit() function
description.

Receive Queue a receiving request token to the receive queue. This
function is a nonblocking operation. See the Receive()
function description.

Close Gracefully disconnecting a TCP connection follow RFC 793 or
reset a TCP connection. This function is a nonblocking
operation. See the Close() function description.

Cancel Abort a pending connect, listen, transmit or receive request.
See the Cancel() function description.
UEFI Forum, Inc. March 2019 1280

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Poll Poll to receive incoming data and transmit outgoing TCP
segments. See the Poll() function description.

Description

The EFI_TCP4_PROTOCOL defines the EFI TCPv4 Protocol child to be used by any network drivers or
applications to send or receive data stream. It can either listen on a specified port as a service or actively
connected to remote peer as a client. Each instance has its own independent settings, such as the routing
table.

Note: In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order unless explicitly specified.

EFI_TCP4_PROTOCOL.GetModeData()

Summary

Get the current operational status.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_GET_MODE_DATA) (

 IN EFI_TCP4_PROTOCOL *This,

 OUT EFI_TCP4_CONNECTION_STATE *Tcp4State OPTIONAL,
 OUT EFI_TCP4_CONFIG_DATA *Tcp4ConfigData OPTIONAL,

 OUT EFI_IPv4_MODE_DATA *Ip4ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
Tcp4State Pointer to the buffer to receive the current TCP state. Type

EFI_TCP4_CONNECTION_STATE is defined in “Related
Definitions” below.

Tcp4ConfigData Pointer to the buffer to receive the current TCP configuration.
Type EFI_TCP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the buffer to receive the current IPv4 configuration
data used by the TCPv4 instance. Type EFI_IP4_MODE_DATA is
defined in EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the buffer to receive the current MNP configuration
data used indirectly by the TCPv4 instance. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the buffer to receive the current SNP configuration
data used indirectly by the TCPv4 instance. Type
UEFI Forum, Inc. March 2019 1281

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function copies the current operational settings of this EFI TCPv4 Protocol instance
into user-supplied buffers. This function can also be used to retrieve the operational setting of underlying
drivers such as IPv4, MNP, or SNP.

Related Definition

typedef struct {

 BOOLEAN UseDefaultAddress;

 EFI_IPv4_ADDRESS StationAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT16 StationPort;

 EFI_IPv4_ADDRESS RemoteAddress;

 UINT16 RemotePort;

 BOOLEAN ActiveFlag;
} EFI_TCP4_ACCESS_POINT;

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
underlying EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG2_PROTOCOL to retrieve the IP address and
subnet information.

StationAddress The local IP address assigned to this EFI TCPv4 Protocol
instance. The EFI TCPv4 and EFI IPv4 Protocol drivers will only
deliver incoming packets whose destination addresses exactly
match the IP address. Not used when UseDefaultAddress is
TRUE.

SubnetMask The subnet mask associated with the station address. Not
used when UseDefaultAddress is TRUE.

StationPort The local port number to which this EFI TCPv4 Protocol
instance is bound. If the instance doesn’t care the local port
number, set StationPort to zero to use an ephemeral port.

RemoteAddress The remote IP address to which this EFI TCPv4 Protocol
instance is connected. If ActiveFlag is FALSE (i.e., a passive
TCPv4 instance), the instance only accepts connections from
the RemoteAddress. If ActiveFlag is TRUE the instance is
connected to the RemoteAddress, i.e., outgoing segments will
be sent to this address and only segments from this address
will be delivered to the application. When ActiveFlag is
FALSE it can be set to zero and means that incoming
connection request from any address will be accepted.

RemotePort The remote port to which this EFI TCPv4 Protocol instance is
connects or connection request from which is accepted by
this EFI TCPv4 Protocol instance. If ActiveFlag is FALSE it can
be zero and means that incoming connection request from
UEFI Forum, Inc. March 2019 1282

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
any port will be accepted. Its value can not be zero when
ActiveFlag is TRUE.

ActiveFlag Set it to TRUE to initiate an active open. Set it to FALSE to
initiate a passive open to act as a server.

typedef struct {

 UINT32 ReceiveBufferSize;

 UINT32 SendBufferSize;

 UINT32 MaxSynBackLog;

 UINT32 ConnectionTimeout;

 UINT32 DataRetries;

 UINT32 FinTimeout;

 UINT32 TimeWaitTimeout;

 UINT32 KeepAliveProbes;

 UINT32 KeepAliveTime;

 UINT32 KeepAliveInterval;

 BOOLEAN EnableNagle;

 BOOLEAN EnableTimeStamp;

 BOOLEAN EnableWindowScaling;

 BOOLEAN EnableSelectiveAck;

 BOOLEAN EnablePathMtuDiscovery;

} EFI_TCP4_OPTION;

ReceiveBufferSize The size of the TCP receive buffer.
SendBufferSize The size of the TCP send buffer.
MaxSynBackLog The length of incoming connect request queue for a passive

instance. When set to zero, the value is implementation
specific.

ConnectionTimeout The maximum seconds a TCP instance will wait for before a
TCP connection established. When set to zero, the value is
implementation specific.

DataRetries The number of times TCP will attempt to retransmit a packet
on an established connection. When set to zero, the value is
implementation specific.

FinTimeout How many seconds to wait in the FIN_WAIT_2 states for a final
FIN flag before the TCP instance is closed. This timeout is in
effective only if the application has called Close() to
disconnect the connection completely. It is also called
FIN_WAIT_2 timer in other implementations. When set to
zero, it should be disabled because the FIN_WAIT_2 timer
itself is against the standard.

TimeWaitTimeout How many seconds to wait in TIME_WAIT state before the
TCP instance is closed. The timer is disabled completely to
provide a method to close the TCP connection quickly if it is
set to zero. It is against the related RFC documents.
UEFI Forum, Inc. March 2019 1283

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
KeepAliveProbes The maximum number of TCP keep-alive probes to send
before giving up and resetting the connection if no response
from the other end. Set to zero to disable keep-alive probe.

KeepAliveTime The number of seconds a connection needs to be idle before
TCP sends out periodical keep-alive probes. When set to zero,
the value is implementation specific. It should be ignored if
keep-alive probe is disabled.

KeepAliveInterval The number of seconds between TCP keep-alive probes after
the periodical keep-alive probe if no response. When set to
zero, the value is implementation specific. It should be
ignored if keep-alive probe is disabled.

EnableNagle Set it to TRUE to enable the Nagle algorithm as defined in
RFC896. Set it to FALSE to disable it.

EnableTimeStamp Set it to TRUE to enable TCP timestamps option as defined in
RFC7323. Set to FALSE to disable it.

EnableWindowScalingSet it to TRUE to enable TCP window scale option as defined
in RFC7323. Set it to FALSE to disable it.

EnableSelectiveAckSet it to TRUE to enable selective acknowledge mechanism
described in RFC 2018. Set it to FALSE to disable it.
Implementation that supports SACK can optionally support
DSAK as defined in RFC 2883.

EnablePathMtudiscovery
Set it to TRUE to enable path MTU discovery as defined in
RFC 1191. Set to FALSE to disable it.

Option setting with digital value will be modified by driver if it is set out of the implementation specific
range and an implementation specific default value will be set accordingly.
UEFI Forum, Inc. March 2019 1284

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// EFI_TCP4_CONFIG_DATA

//***

typedef struct {

 // Receiving Filters

 // I/O parameters

 UINT8 TypeOfService;

 UINT8 TimeToLive;

 // Access Point

 EFI_TCP4_ACCESS_POINT AccessPoint;

 // TCP Control Options

 EFI_TCP4_OPTION * ControlOption;

} EFI_TCP4_CONFIG_DATA;

TypeOfService TypeOfService field in transmitted IPv4 packets.
TimeToLive TimeToLive field in transmitted IPv4 packets.
AccessPoint Used to specify TCP communication end settings for a TCP

instance.
ControlOption Used to configure the advance TCP option for a connection. If

set to NULL, implementation specific options for TCP
connection will be used.
UEFI Forum, Inc. March 2019 1285

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// EFI_TCP4_CONNECTION_STATE

//***

typedef enum {

 Tcp4StateClosed = 0,

 Tcp4StateListen = 1,

 Tcp4StateSynSent = 2,

 Tcp4StateSynReceived = 3,

 Tcp4StateEstablished = 4,

 Tcp4StateFinWait1 = 5,

 Tcp4StateFinWait2 = 6,

 Tcp4StateClosing = 7,

 Tcp4StateTimeWait = 8,

 Tcp4StateCloseWait = 9,

 Tcp4StateLastAck = 10

} EFI_TCP4_CONNECTION_STATE;

Status Codes Returned

EFI_TCP4_PROTOCOL.Configure()

Summary

Initialize or brutally reset the operational parameters for this EFI TCPv4 instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_CONFIGURE) (

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_CONFIG_DATA *TcpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
TcpConfigData Pointer to the configure data to configure the instance.

Description

The Configure() function does the following:

• Initialize this EFI TCPv4 instance, i.e., initialize the communication end setting, specify active
open or passive open for an instance.

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED No configuration data is available because this instance hasn’t been
started.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 1286

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
• Reset this TCPv4 instance brutally, i.e., cancel all pending asynchronous tokens, flush
transmission and receiving buffer directly without informing the communication peer.

No other TCPv4 Protocol operation can be executed by this instance until it is configured properly. For an
active TCP4 instance, after a proper configuration it may call Connect() to initiates the three-way
handshake. For a passive TCP4 instance, its state will transit to Tcp4StateListen after configuration, and
Accept() may be called to listen the incoming TCP connection request. If TcpConfigData is set to
NULL, the instance is reset. Resetting process will be done brutally, the state machine will be set to
Tcp4StateClosed directly, the receive queue and transmit queue will be flushed, and no traffic is allowed
through this instance.
UEFI Forum, Inc. March 2019 1287

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP4_PROTOCOL.Routes()

Summary

Add or delete routing entries.

EFI_SUCCESS The operational settings are set, changed, or reset successfully.

EFI_NO_MAPPING When using a default address, configuration (through DHCP,
BOOTP, RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• TcpConfigData
->AccessPoint.StationAddress
isn’t a valid unicast IPv4 address when TcpConfigData
->AccessPoint.UseDefaultAddress is

FALSE.

• TcpConfigData
->AccessPoint.SubnetMask isn’t a valid IPv4

address mask when TcpConfigData
-> AccessPoint.UseDefaultAddress is

FALSE. The subnet mask must be contiguous.

• TcpConfigData
->AccessPoint.RemoteAddress isn’t a valid
unicast IPv4 address.

• TcpConfigData
->AccessPoint.RemoteAddress is zero or

TcpConfigData
->AccessPoint.RemotePort is zero when

TcpConfigData
->AccessPoint.ActiveFlag is TRUE.

• A same access point has been configured in other TCP
instance properly.

EFI_ACCESS_DENIED Configuring TCP instance when it is configured without calling

Configure() with NULL to reset it.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_UNSUPPORTED One or more of the control options are not supported in the
implementation.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when executing

Configure().
UEFI Forum, Inc. March 2019 1288

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_ROUTES) (

 IN EFI_TCP4_PROTOCOL *This,

 IN BOOLEAN DeleteRoute,

 IN EFI_IPv4_ADDRESS *SubnetAddress,

 IN EFI_IPv4_ADDRESS *SubnetMask,

 IN EFI_IPv4_ADDRESS *GatewayAddress

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
DeleteRoute Set it to TRUE to delete this route from the routing table. Set it

to FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the
keywords to search route entry.

SubnetAddress The destination network.
SubnetMask The subnet mask of the destination network.
GatewayAddress The gateway address for this route. It must be on the same

subnet with the station address unless a direct route is
specified.

Description

The Routes() function adds or deletes a route from the instance’s routing table.

The most specific route is selected by comparing the SubnetAddress with the
destination IP address’s arithmetical AND to the SubnetMask.

The default route is added with both SubnetAddress and SubnetMask set to 0.0.0.0.
The default route matches all destination IP addresses if there is no more specific
route.

Direct route is added with GatewayAddress set to 0.0.0.0. Packets are sent to the
destination host if its address can be found in the Address Resolution Protocol
(ARP) cache or it is on the local subnet. If the instance is configured to use default
address, a direct route to the local network will be added automatically.

Each TCP instance has its own independent routing table. Instance that uses the
default IP address will have a copy of the EFI_IP4_CONFIG2_PROTOCOL’s routing
table. The copy will be updated automatically whenever the IP driver reconfigures
its instance. As a result, the previous modification to the instance’s local copy will be
lost.

The priority of checking the route table is specific with IP implementation and every
IP implementation must comply with RFC 1122.
UEFI Forum, Inc. March 2019 1289

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Note: There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI TCP4 variable.

Status Codes Returned

EFI_TCP4_PROTOCOL.Connect()

Summary

Initiate a nonblocking TCP connection request for an active TCP instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_CONNECT) (

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_CONNECTION_TOKEN *ConnectionToken,
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
ConnectionToken Pointer to the connection token to return when the TCP three

way handshake finishes. Type EFI_TCP4_CONNECTION_TOKEN
is defined in “Related Definition” below.

Description

The Connect() function will initiate an active open to the remote peer configured
in current TCP instance if it is configured active. If the connection succeeds or fails

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not NULL a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address or it is not in
the same subnet.

EFI_OUT_OF_RESOURCES Could not allocate enough resources to add the entry to the routing
table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.

EFI_UNSUPPORTED The TCP driver does not support this operation.
UEFI Forum, Inc. March 2019 1290

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
due to any error, the ConnectionToken->CompletionToken.Event will be signaled
and ConnectionToken->CompletionToken.Status will be updated accordingly.
This function can only be called for the TCP instance in Tcp4StateClosed state. The
instance will transfer into Tcp4StateSynSent if the function returns EFI_SUCCESS.
If TCP three way handshake succeeds, its state will become
Tcp4StateEstablished, otherwise, the state will return to Tcp4StateClosed.

Related Definitions

//***

// EFI_TCP4_COMPLETION_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

} EFI_TCP4_COMPLETION_TOKEN;

Event The Event to signal after request is finished and Status field
is updated by the EFI TCPv4 Protocol driver. The type of
Event must be EVT_NOTIFY_SIGNAL, and its Task Priority
Level (TPL) must be lower than or equal to TPL_CALLBACK.

Status The variable to receive the result of the completed operation.
EFI_NO_MEDIA. There was a media error

The EFI_TCP4_COMPLETION_TOKEN is used as a common header for various asynchronous tokens.

//***

// EFI_TCP4_CONNECTION_TOKEN

//***

typedef struct {

 EFI_TCP4_COMPLETION_TOKEN CompletionToken;

} EFI_TCP4_CONNECTION_TOKEN;

Status The Status in the CompletionToken will be set to one of the
following values if the active open succeeds or an unexpected
error happens:
EFI_SUCCESS. The active open succeeds and the instance is
in Tcp4StateEstablished.
EFI_CONNECTION_RESET. The connect fails because the
connection is reset either by instance itself or communication
peer.
EFI_CONNECTION_REFUSED: The connect fails because this
connection is initiated with an active open and the connection
is refused.
EFI_ABORTED. The active open was aborted.
UEFI Forum, Inc. March 2019 1291

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TIMEOUT. The connection establishment timer expired
and no more specific information is available.
EFI_NETWORK_UNREACHABLE. The active open fails because
an ICMP network unreachable error is received.
EFI_HOST_UNREACHABLE. The active open fails because an
ICMP host unreachable error is received.
EFI_PROTOCOL_UNREACHABLE. The active open fails because
an ICMP protocol unreachable error is received.
EFI_PORT_UNREACHABLE. The connection establishment
timer times out and an ICMP port unreachable error is
received.
EFI_ICMP_ERROR. The connection establishment timer
timeout and some other ICMP error is received.
EFI_DEVICE_ERROR. An unexpected system or network error
occurred.

Status Codes Returned

EFI_TCP4_PROTOCOL.Accept()

Summary

Listen on the passive instance to accept an incoming connection request. This is a
nonblocking operation.

EFI_SUCCESS The connection request is successfully initiated and the state of this

TCPv4 instance has been changed to Tcp4StateSynSent.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

• This instance is not configured as an active one.

• This instance is not in Tcp4StateClosed state.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ConnectionToken is NULL.

• ConnectionToken
->CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES The driver can’t allocate enough resource to initiate the active open.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1292

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_ACCEPT) (

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_LISTEN_TOKEN *ListenToken

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
ListenToken Pointer to the listen token to return when operation finishes.

Type EFI_TCP4_LISTEN_TOKEN is defined in “Related
Definition” below.

Related Definitions

//***

// EFI_TCP4_LISTEN_TOKEN

//***

typedef struct {

 EFI_TCP4_COMPLETION_TOKEN CompletionToken;

 EFI_HANDLE NewChildHandle;

} EFI_TCP4_LISTEN_TOKEN;

Status The Status in CompletionToken will be set to the following
value if accept finishes:
EFI_SUCCESS. A remote peer has successfully established a
connection to this instance. A new TCP instance has also
been created for the connection.
EFI_CONNECTION_RESET. The accept fails because the
connection is reset either by instance itself or communication
peer.
EFI_ABORTED. The accept request has been aborted.

NewChildHandle The new TCP instance handle created for the established
connection.

Description

The Accept() function initiates an asynchronous accept request to wait for an
incoming connection on the passive TCP instance. If a remote peer successfully
establishes a connection with this instance, a new TCP instance will be created and
its handle will be returned in ListenToken->NewChildHandle. The newly created
instance is configured by inheriting the passive instance’s configuration and is ready
for use upon return. The instance is in the Tcp4StateEstablished state.

The ListenToken->CompletionToken.Event will be signaled when a new
connection is accepted, user aborts the listen or connection is reset.

This function only can be called when current TCP instance is in Tcp4StateListen
state.
UEFI Forum, Inc. March 2019 1293

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP4_PROTOCOL.Transmit()

Summary

Queues outgoing data into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_TRANSMIT) (

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_IO_TOKEN *Token

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
Token Pointer to the completion token to queue to the transmit

queue. Type EFI_TCP4_IO_TOKEN is defined in “Related
Definitions” below.

Description

The Transmit() function queues a sending request to this TCPv4 instance along
with the user data. The status of the token is updated and the event in the token will
be signaled once the data is sent out or some error occurs.

EFI_SUCCESS The listen token has been queued successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• This instance is not a passive instance.

• This instance is not in Tcp4StateListen state.

• The same listen token has already existed in the listen token
queue of this TCP instance.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ListenToken is NULL.

• ListentToken->CompletionToken.Event is

NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
UEFI Forum, Inc. March 2019 1294

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions

//***

// EFI_TCP4_IO_TOKEN

//***

typedef struct {

 EFI_TCP4_COMPLETION_TOKEN CompletionToken;

 union {

 EFI_TCP4_RECEIVE_DATA *RxData;

 EFI_TCP4_TRANSMIT_DATA *TxData;

 } Packet;

} EFI_TCP4_IO_TOKEN;

Status When transmission finishes or meets any unexpected error it
will be set to one of the following values:
EFI_SUCCESS. The receiving or transmission operation
completes successfully.
EFI_CONNECTION_FIN: The receiving operation fails because
the communication peer has closed the connection and there
is no more data in the receive buffer of the instance.
EFI_CONNECTION_RESET. The receiving or transmission
operation fails because this connection is reset either by
instance itself or communication peer.
EFI_ABORTED. The receiving or transmission is aborted.
EFI_TIMEOUT. The transmission timer expires and no more
specific information is available.
EFI_NETWORK_UNREACHABLE. The transmission fails because
an ICMP network unreachable error is received.
EFI_HOST_UNREACHABLE. The transmission fails because an
ICMP host unreachable error is received.
EFI_PROTOCOL_UNREACHABLE. The transmission fails
because an ICMP protocol unreachable error is received.
EFI_PORT_UNREACHABLE. The transmission fails and an ICMP
port unreachable error is received.
EFI_ICMP_ERROR. The transmission fails and some other
ICMP error is received.
EFI_DEVICE_ERROR. An unexpected system or network error
occurs.
EFI_NO_MEDIA. There was a media error

RxData When this token is used for receiving, RxData is a pointer to
EFI_TCP4_RECEIVE_DATA. Type EFI_TCP4_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer
to EFI_TCP4_TRANSMIT_DATA. Type
EFI_TCP4_TRANSMIT_DATA is defined below.
UEFI Forum, Inc. March 2019 1295

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI_TCP4_IO_TOKEN structures are used for both transmit and receive operations.

When used for transmitting, the CompletionToken.Event and TxData fields must be filled in by the
user. After the transmit operation completes, the CompletionToken.Status field is updated by the
instance and the Event is signaled.

• When used for receiving, the CompletionToken.Event and RxData fields must be filled in
by the user. After a receive operation completes, RxData and Status are updated by the
instance and the Event is signaled.

// TCP4 Token Status definition

//

#define EFI_CONNECTION_FIN EFIERR (104)

#define EFI_CONNECTION_RESET EFIERR (105)

#define EFI_CONNECTION_REFUSED EFIERR (106)

Note: EFIERR() sets the maximum bit. Similar to how error codes are described in Appendix D.

//***

// EFI_TCP4_RECEIVE_DATA

//***

typedef struct {

 BOOLEAN UrgentFlag;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];

} EFI_TCP4_RECEIVE_DATA;

UrgentFlag Whether those data are urgent. When this flag is set, the
instance is in urgent mode. The implementations of this
specification should follow RFC793 to process urgent data,
and should NOT mix the data across the urgent point in one
token.

DataLength When calling Receive() function, it is the byte counts of all
Fragmentbuffer in FragmentTable allocated by user. When
the token is signaled by TCPv4 driver it is the length of
received data in the fragments.

FragmentCount Number of fragments.
FragmentTable An array of fragment descriptors. Type

EFI_TCP4_FRAGMENT_DATA is defined below.
UEFI Forum, Inc. March 2019 1296

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
When TCPv4 driver wants to deliver received data to the application, it will pick up the first queued
receiving token, update its Token->Packet.RxData then signal the Token-
>CompletionToken.Event.

• The FragmentBuffers in FragmentTable are allocated by the application when calling
Receive() function and received data will be copied to those buffers by the driver.
FragmentTable may contain multiple buffers that are NOT in the continuous memory
locations. The application should combine those buffers in the FragmentTable to process
data if necessary.

//***

// EFI_TCP4_FRAGMENT_DATA

//***

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;

} EFI_TCP4_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.
FragmentBuffer Pointer to the data buffer in the fragment.

EFI_TCP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The purpose of
this structure is to provide scattered read and write.

//**

// EFI_TCP4_TRANSMIT_DATA

//**

typedef struct {

 BOOLEAN Push;

 BOOLEAN Urgent;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];

} EFI_TCP4_TRANSMIT_DATA;

Push If TRUE, data must be transmitted promptly, and the PUSH bit
in the last TCP segment created will be set. If FALSE, data
transmission may be delay to combine with data from
subsequent Transmit()s for efficiency.

Urgent The data in the fragment table are urgent and urgent point is
in effect if TRUE. Otherwise those data are NOT considered
urgent.

DataLength Length of the data in the fragments.
FragmentCount Number of fragments.
UEFI Forum, Inc. March 2019 1297

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
FragmentTable A array of fragment descriptors. Type
EFI_TCP4_FRAGMENT_DATA is defined above.

The EFI TCPv4 Protocol user must fill this data structure before sending a packet. The packet may contain
multiple buffers in non-continuous memory locations.

Status Codes Returned

EFI_TCP4_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.TxData is NULL.

• Token->Packet.FragmentCount is zero.

• Token->Packet.DataLength is not equal to the sum of
fragment lengths.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A transmit completion token with the same Token->
CompletionToken.Event was already in the
transmission queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in

Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource shortage.

EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1298

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_RECEIVE) (

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_IO_TOKEN *Token

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
Token Pointer to a token that is associated with the receive data

descriptor. Type EFI_TCP4_IO_TOKEN is defined in
EFI_TCP4_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue.
This function is always asynchronous. The caller must allocate the Token-
>CompletionToken.Event and the FragmentBuffer used to receive data. He also
must fill the DataLength which represents the whole length of all FragmentBuffer.
When the receive operation completes, the EFI TCPv4 Protocol driver updates the
Token->CompletionToken.Status and Token->Packet.RxData fields and the
Token->CompletionToken.Event is signaled. If got data the data and its length will
be copy into the FragmentTable, in the same time the full length of received data
will be recorded in the DataLength fields. Providing a proper notification function
and context for the event will enable the user to receive the notification and
receiving status. That notification function is guaranteed to not be re-entered.
UEFI Forum, Inc. March 2019 1299

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP4_PROTOCOL.Close()

Summary

Disconnecting a TCP connection gracefully or reset a TCP connection. This function
is a nonblocking operation.

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) is
not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.RxData is NULL.

• Token->Packet.RxData->DataLength is 0.

• The Token->Packet.RxData->DataLength is not the

sum of all FragmentBuffer length in FragmentTable.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI TCPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A receive completion token with the same Token-
>CompletionToken.Event was already in the receive queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in

Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_CONNECTION_FIN The communication peer has closed the connection and there is no any
buffered data in the receive buffer of this instance.

EFI_NOT_READY The receive request could not be queued because the receive queue is
full.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1300

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_CLOSE)(

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_CLOSE_TOKEN *CloseToken

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
CloseToken Pointer to the close token to return when operation finishes.

Type EFI_TCP4_CLOSE_TOKEN is defined in “Related
Definition” below.

Related Definitions

//***

// EFI_TCP4_CLOSE_TOKEN

//***

typedef struct {

 EFI_TCP4_COMPLETION_TOKEN CompletionToken;

 BOOLEAN AbortOnClose;

} EFI_TCP4_CLOSE_TOKEN;

Status When close finishes or meets any unexpected error it will be
set to one of the following values:
EFI_SUCCESS. The close operation completes successfully.
EFI_ABORTED. User called configure with NULL without close
stopping.

AbortOnClose Abort the TCP connection on close instead of the standard
TCP close process when it is set to TRUE. This option can be
used to satisfy a fast disconnect.

Description

Initiate an asynchronous close token to TCP driver. After Close() is called, any
buffered transmission data will be sent by TCP driver and the current instance will
have a graceful close working flow described as RFC 793 if AbortOnClose is set to
FALSE, otherwise, a rest packet will be sent by TCP driver to fast disconnect this
connection. When the close operation completes successfully the TCP instance is in
Tcp4StateClosed state, all pending asynchronous operation is signaled and any
buffers used for TCP network traffic is flushed.
UEFI Forum, Inc. March 2019 1301

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP4_PROTOCOL.Cancel()

Summary

Abort an asynchronous connection, listen, transmission or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_CANCEL)(

 IN EFI_TCP4_PROTOCOL *This,

 IN EFI_TCP4_COMPLETION_TOKEN *Token OPTIONAL

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_TCP4_PROTOCOL.Connect(),
EFI_TCP4_PROTOCOL.Accept(),
EFI_TCP4_PROTOCOL.Transmit() or
EFI_TCP4_PROTOCOL.Receive(). If NULL, all pending tokens
issued by above four functions will be aborted. Type
EFI_TCP4_COMPLETION_TOKEN is defined in
EFI_TCP4_PROTOCOL.Connect().

Description

The Cancel() function aborts a pending connection, listen, transmit or receive
request. If Token is not NULL and the token is in the connection, listen, transmission
or receive queue when it is being cancelled, its Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of
the queues, which usually means that the asynchronous operation has completed,

EFI_SUCCESS The Close() is called successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• Configure() has been called with TcpConfigData set

to NULL and this function has not returned.

• Previous Close() call on this instance has not finished.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• CloseToken is NULL.

• CloseToken->CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
UEFI Forum, Inc. March 2019 1302

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_NOT_FOUND is returned. If Token is NULL all asynchronous token issued by
Connect(), Accept(), Transmit() and Receive()will be aborted.

Status Codes Returned

EFI_TCP4_PROTOCOL.Poll()

Summary

Poll to receive incoming data and transmit outgoing segments.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP4_POLL) (

 IN EFI_TCP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Description

The Poll() function increases the rate that data is moved between the network and
application and can be called when the TCP instance is created successfully. Its use
is optional.

In some implementations, the periodical timer in the MNP driver may not poll the
underlying communications device fast enough to avoid drop packets. Drivers and
applications that are experiencing packet loss should try calling the Poll() function
in a high frequency.

EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event is

signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) hasn’t finished yet.

EFI_NOT_FOUND The asynchronous I/O request isn’t found in the transmission or receive

queue. It has either completed or wasn’t issued by Transmit() and

Receive().

EFI_UNSUPPORTED The implementation does not support this function.
UEFI Forum, Inc. March 2019 1303

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.2 EFI TCPv6 Protocol

This section defines the EFI TCPv6 (Transmission Control Protocol version 6) Protocol.

28.2.1 TCPv6 Service Binding Protocol

EFI_TCP6_SERVICE_BINDING_PROTOCOL

Summary

The EFI TCPv6 Service Binding Protocol is used to locate EFI TCPv6 Protocol drivers
to create and destroy protocol child instance of the driver to communicate with
other host using TCP protocol.

GUID

#define EFI_TCP6_SERVICE_BINDING_PROTOCOL_GUID \

 {0xec20eb79,0x6c1a,0x4664,\

 {0x9a,0x0d,0xd2,0xe4,0xcc,0x16,0xd6, 0x64}}

Description

A network application that requires TCPv6 I/O services can call one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search devices that
publish an EFI TCPv6 Service Binding Protocol GUID. Such device supports the EFI
TCPv6 Protocol and may be available for use.

After a successful call to the
EFI_TCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI TCPv6 Protocol driver is in an un-configured state; it is not ready to
do any operation except Poll() send and receive data packets until configured.

Every successful call to the
EFI_TCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be
matched with a call to the
EFI_TCP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function to release the
protocol driver.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1304

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
28.2.2 TCPv6 Protocol

EFI_TCP6_PROTOCOL

Summary

The EFI TCPv6 Protocol provides services to send and receive data stream.

GUID

#define EFI_TCP6_PROTOCOL_GUID \

 {0x46e44855,0xbd60,0x4ab7,\

 {0xab,0x0d,0xa6,0x79,0xb9,0x44,0x7d,0x77}}

Protocol Interface Structure

typedef struct _EFI_TCP6_PROTOCOL {

 EFI_TCP6_GET_MODE_DATA GetModeData;

 EFI_TCP6_CONFIGURE Configure;

 EFI_TCP6_CONNECT Connect;

 EFI_TCP6_ACCEPT Accept;

 EFI_TCP6_TRANSMIT Transmit;

 EFI_TCP6_RECEIVE Receive;

 EFI_TCP6_CLOSE Close;

 EFI_TCP6_CANCEL Cancel;

 EFI_TCP6_POLL Poll;
} EFI_TCP6_PROTOCOL;

Parameters

GetModeData Get the current operational status. See the GetModeData()
function description.

Configure Initialize, change, or brutally reset operational settings of the
EFI TCPv6 Protocol. See the Configure() function
description.

Connect Initiate the TCP three-way handshake to connect to the
remote peer configured in this TCP instance. The function is a
nonblocking operation. See the Connect() function
description.

Accept Listen for incoming TCP connection requests. This function is
a nonblocking operation. See the Accept() function
description.

Transmit Queue outgoing data to the transmit queue. This function is a
nonblocking operation. See the Transmit() function
description.

Receive Queue a receiving request token to the receive queue. This
function is a nonblocking operation. See the Receive()
function description.
UEFI Forum, Inc. March 2019 1305

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Close Gracefully disconnect a TCP connection follow RFC 793 or
reset a TCP connection. This function is a nonblocking
operation. See the Close() function description.

Cancel Abort a pending connect, listen, transmit or receive request.
See the Cancel() function description.

Poll Poll to receive incoming data and transmit outgoing TCP
segments. See the Poll() function description.

Description
The EFI_TCP6_PROTOCOL defines the EFI TCPv6 Protocol child to be used by any
network drivers or applications to send or receive data stream. It can either listen on
a specified port as a service or actively connect to remote peer as a client. Each
instance has its own independent settings.

Note: Byte Order: In this document, all IPv6 addresses and incoming/outgoing packets are stored in
network byte order. All other parameters in the functions and data structures that are defined in
this document are stored in host byte order unless explicitly specified.

EFI_TCP6_PROTOCOL.GetModeData()

Summary

Get the current operational status.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_GET_MODE_DATA) (

 IN EFI_TCP6_PROTOCOL *This,

 OUT EFI_TCP6_CONNECTION_STATE *Tcp6State OPTIONAL,

 OUT EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL,

 OUT EFI_IPv6_MODE_DATA *Ip6ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
Tcp6State The buffer in which the current TCP state is returned. Type

EFI_TCP6_CONNECTION_STATE is defined in "Related
Definitions" below.

Tcp6ConfigData The buffer in which the current TCP configuration is returned.
Type EFI_TCP6_CONFIG_DATA is defined in "Related
Definitions" below.

Ip6ModeData The buffer in which the current IPv6 configuration data used
by the TCP instance is returned. Type EFI_IP6_MODE_DATA is
defined in EFI_IP6_PROTOCOL.GetModeData().
UEFI Forum, Inc. March 2019 1306

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
MnpConfigData The buffer in which the current MNP configuration data used
indirectly by the TCP instance is returned. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData The buffer in which the current SNP mode data used indirectly
by the TCP instance is returned. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function copies the current operational settings of this EFI TCPv6 Protocol instance
into user-supplied buffers. This function can also be used to retrieve the operational setting of underlying
drivers such as IPv6, MNP, or SNP.

Related Definition

typedef struct {

 EFI_IPv6_ADDRESS StationAddress;

 UINT16 StationPort;

 EFI_IPv6_ADDRESS RemoteAddress;

 UINT16 RemotePort;

 BOOLEAN ActiveFlag;
} EFI_TCP6_ACCESS_POINT;

StationAddress The local IP address assigned to this TCP instance. The EFI
TCPv6 driver will only deliver incoming packets whose
destination addresses exactly match the IP address. Set to
zero to let the underlying IPv6 driver choose a source address.
If not zero it must be one of the configured IP addresses in the
underlying IPv6 driver.

StationPort The local port number to which this EFI TCPv6 Protocol
instance is bound. If the instance doesn’t care the local port
number, set StationPort to zero to use an ephemeral port.

RemoteAddress The remote IP address to which this EFI TCPv6 Protocol
instance is connected. If ActiveFlag is FALSE (i.e., a passive
TCPv6 instance), the instance only accepts connections from
the RemoteAddress. If ActiveFlag is TRUE the instance will
connect to the RemoteAddress, i.e., outgoing segments will be
sent to this address and only segments from this address will
be delivered to the application. When ActiveFlag is FALSE, it
can be set to zero and means that incoming connection
requests from any address will be accepted.

RemotePort The remote port to which this EFI TCPv6 Protocol instance
connects or from which connection request will be accepted
by this EFI TCPv6 Protocol instance. If ActiveFlag is FALSE it
can be zero and means that incoming connection request
from any port will be accepted. Its value can not be zero when
ActiveFlag is TRUE.
UEFI Forum, Inc. March 2019 1307

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
ActiveFlag Set it to TRUE to initiate an active open. Set it to FALSE to
initiate a passive open to act as a server.

//***

// EFI_TCP6_OPTION

//***

typedef struct {

 UINT32 ReceiveBufferSize;

 UINT32 SendBufferSize;

 UINT32 MaxSynBackLog;

 UINT32 ConnectionTimeout;

 UINT32 DataRetries;

 UINT32 FinTimeout;

 UINT32 TimeWaitTimeout;

 UINT32 KeepAliveProbes;

 UINT32 KeepAliveTime;

 UINT32 KeepAliveInterval;

 BOOLEAN EnableNagle;

 BOOLEAN EnableTimeStamp;

 BOOLEAN EnableWindowScaling;

 BOOLEAN EnableSelectiveAck;

 BOOLEAN EnablePathMtuDiscovery;
} EFI_TCP6_OPTION;

ReceiveBufferSize The size of the TCP receive buffer.
SendBufferSize The size of the TCP send buffer.
MaxSynBackLog The length of incoming connect request queue for a passive

instance. When set to zero, the value is implementation
specific.

ConnectionTimeout The maximum seconds a TCP instance will wait for before a
TCP connection established. When set to zero, the value is
implementation specific.

DataRetries The number of times TCP will attempt to retransmit a packet
on an established connection. When set to zero, the value is
implementation specific.

FinTimeout How many seconds to wait in the FIN_WAIT_2 states for a final
FIN flag before the TCP instance is closed. This timeout is in
effective only if the application has called Close() to
disconnect the connection completely. It is also called
FIN_WAIT_2 timer in other implementations. When set to
zero, it should be disabled because the FIN_WAIT_2 timer
itself is against the standard.

TimeWaitTimeout How many seconds to wait in TIME_WAIT state before the
TCP instance is closed. The timer is disabled completely to
UEFI Forum, Inc. March 2019 1308

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
provide a method to close the TCP connection quickly if it is
set to zero. It is against the related RFC documents.

KeepAliveProbes The maximum number of TCP keep-alive probes to send
before giving up and resetting the connection if no response
from the other end. Set to zero to disable keep-alive probe.

KeepAliveTime The number of seconds a connection needs to be idle before
TCP sends out periodical keep-alive probes. When set to zero,
the value is implementation specific. It should be ignored if
keep-alive probe is disabled.

KeepAliveInterval The number of seconds between TCP keep-alive probes after
the periodical keep-alive probe if no response. When set to
zero, the value is implementation specific. It should be
ignored if keep-alive probe is disabled.

EnableNagle Set it to TRUE to enable the Nagle algorithm as defined in
RFC896. Set it to FALSE to disable it.

EnableTimeStamp Set it to TRUE to enable TCP timestamps option as defined in
RFC7323. Set to FALSE to disable it.

EnableWindowScalingSet it to TRUE to enable TCP window scale option as defined
in RFC7323. Set it to FALSE to disable it.

EnableSelectiveAckSet it to TRUE to enable selective acknowledge mechanism
described in RFC 2018. Set it to FALSE to disable it.
Implementation that supports SACK can optionally support
DSAK as defined in RFC 2883.

EnablePathMtudiscoverySet it to TRUE to enable path MTU discovery as defined in
RFC 1191. Set to FALSE to disable it.

Option setting with digital value will be modified by driver if it is set out of the implementation specific
range and an implementation specific default value will be set accordingly.

//***

// EFI_TCP6_CONFIG_DATA

//***

typedef struct {

 UINT8 TrafficClass;

 UINT8 HopLimit;

 EFI_TCP6_ACCESS_POINT AccessPoint;

 EFI_TCP6_OPTION *ControlOption;
} EFI_TCP6_CONFIG_DATA;

TrafficClass TrafficClass field in transmitted IPv6 packets.
HopLimit HopLimit field in transmitted IPv6 packets.
AccessPoint Used to specify TCP communication end settings for a TCP

instance.
UEFI Forum, Inc. March 2019 1309

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
ControlOption Used to configure the advance TCP option for a connection. If
set to NULL, implementation specific options for TCP
connection will be used.

//***

// EFI_TCP6_CONNECTION_STATE

//***

typedef enum {

 Tcp6StateClosed = 0,

 Tcp6StateListen = 1,

 Tcp6StateSynSent = 2,

 Tcp6StateSynReceived = 3,

 Tcp6StateEstablished = 4,

 Tcp6StateFinWait1 = 5,

 Tcp6StateFinWait2 = 6,

 Tcp6StateClosing = 7,

 Tcp6StateTimeWait = 8,

 Tcp6StateCloseWait = 9,

 Tcp6StateLastAck = 10

} EFI_TCP6_CONNECTION_STATE;

Status Codes Returned

EFI_TCP6_PROTOCOL.Configure()

Summary

Initialize or brutally reset the operational parameters for this TCP instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_CONFIGURE) (

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
Tcp6ConfigData Pointer to the configure data to configure the instance.

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED No configuration data is available because this instance hasn’t been
started.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 1310

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The Configure() function does the following:

•Initialize this TCP instance, i.e., initialize the communication end settings and specify
active open or passive open for an instance.

•Reset this TCP instance brutally, i.e., cancel all pending asynchronous tokens, flush
transmission and receiving buffer directly without informing the communication peer.

No other TCPv6 Protocol operation except Poll() can be executed by this instance
until it is configured properly. For an active TCP instance, after a proper
configuration it may call Connect() to initiates the three-way handshake. For a
passive TCP instance, its state will transit to Tcp6StateListen after configuration,
and Accept() may be called to listen the incoming TCP connection requests. If
Tcp6ConfigData is set to NULL, the instance is reset. Resetting process will be done
brutally, the state machine will be set to Tcp6StateClosed directly, the receive
queue and transmit queue will be flushed, and no traffic is allowed through this
instance.

Status Codes Returned

EFI_SUCCESS The operational settings are set, changed, or reset successfully.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:

• This is NULL.

• Tcp6ConfigData-
>AccessPoint.StationAddress is neither zero nor one
of the configured IP addresses in the underlying IPv6 driver.

• Tcp6ConfigData->AccessPoint.RemoteAddress
isn’t a valid unicast IPv6 address.

• Tcp6ConfigData->AccessPoint.RemoteAddress

is zero or Tcp6ConfigData-
>AccessPoint.RemotePort is zero when

Tcp6ConfigData->AccessPoint.ActiveFlag is

TRUE.

• A same access point has been configured in other TCP instance
properly.

EFI_ACCESS_DENIED Configuring TCP instance when it is configured without calling

Configure() with NULL to reset it.

EFI_UNSUPPORTED One or more of the control options are not supported in the
implementation.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when executing

Configure().

EFI_DEVICE_ERROR An unexpected network or system error occurred.
UEFI Forum, Inc. March 2019 1311

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TCP6_PROTOCOL.Connect()

Summary

Initiate a nonblocking TCP connection request for an active TCP instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_CONNECT) (

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_CONNECTION_TOKEN *ConnectionToken
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
ConnectionToken Pointer to the connection token to return when the TCP

three-way handshake finishes. Type
EFI_TCP6_CONNECTION_TOKEN is defined in Related Definition
below.

Description

The Connect() function will initiate an active open to the remote peer configured in
current TCP instance if it is configured active. If the connection succeeds or fails due
to any error, the ConnectionToken->CompletionToken.Event will be signaled and
ConnectionToken->CompletionToken.Status will be updated accordingly. This
function can only be called for the TCP instance in Tcp6StateClosed state. The
instance will transfer into Tcp6StateSynSent if the function returns EFI_SUCCESS. If
TCP three-way handshake succeeds, its state will become Tcp6StateEstablished,
otherwise, the state will return to Tcp6StateClosed.

Related Definitions

//***

// EFI_TCP6_COMPLETION_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;
} EFI_TCP6_COMPLETION_TOKEN;

Event The Event to signal after request is finished and Status field
is updated by the EFI TCPv6 Protocol driver. The type of Event
must be EVT_NOTIFY_SIGNAL.

Status The result of the completed operation. EFI_NO_MEDIA. There
was a media error
UEFI Forum, Inc. March 2019 1312

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI_TCP6_COMPLETION_TOKEN is used as a common header for various asynchronous tokens.

//***

// EFI_TCP6_CONNECTION_TOKEN

//***

typedef struct {

 EFI_TCP6_COMPLETION_TOKEN CompletionToken;
} EFI_TCP6_CONNECTION_TOKEN;

Status The Status in the CompletionToken will be set to one of the
following values if the active open succeeds or an unexpected
error happens:
EFI_SUCCESS: The active open succeeds and the instance’s
state is Tcp6StateEstablished.
EFI_CONNECTION_RESET: The connect fails because the
connection is reset either by instance itself or the
communication peer.
EFI_CONNECTION_REFUSED: The receiving or transmission
operation fails because this connection is refused.
EFI_ABORTED: The active open is aborted.
EFI_TIMEOUT: The connection establishment timer expires
and no more specific information is available.
EFI_NETWORK_UNREACHABLE: The active open fails
because an ICMP network unreachable error is received.
EFI_HOST_UNREACHABLE: The active open fails because an
ICMP host unreachable error is received.
EFI_PROTOCOL_UNREACHABLE: The active open fails
because an ICMP protocol unreachable error is received.
EFI_PORT_UNREACHABLE: The connection establishment
timer times out and an ICMP port unreachable error is
received.
EFI_ICMP_ERROR: The connection establishment timer times
out and some other ICMP error is received.
EFI_DEVICE_ERROR: An unexpected system or network error
occurred.
EFI_SECURITY_VIOLATION: The active open was failed
because of IPSec policy check.
UEFI Forum, Inc. March 2019 1313

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP6_PROTOCOL.Accept()

Summary

Listen on the passive instance to accept an incoming connection request. This is a nonblocking
operation.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_ACCEPT) (

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_LISTEN_TOKEN *ListenToken
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.

ListenToken Pointer to the listen token to return when operation fin-
ishes. Type EFI_TCP6_LISTEN_TOKEN is defined in
Related Definition below.

Related Definitions

//***

// EFI_TCP6_LISTEN_TOKEN

//***

typedef struct {

 EFI_TCP6_COMPLETION_TOKEN CompletionToken;

 EFI_HANDLE NewChildHandle;
} EFI_TCP6_LISTEN_TOKEN;

EFI_SUCCESS The connection request is successfully initiated and the state of this

TCP instance has been changed to Tcp6StateSynSent.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

This instance is not configured as an active one.

This instance is not in Tcp6StateClosed state.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

ConnectionToken is NULL.

 ConnectionToken->CompletionToken.Event
is NULL.

EFI_OUT_OF_RESOURCES The driver can’t allocate enough resource to initiate the active open.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1314

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status The Status in CompletionToken will be set to the following
value if accept finishes:
EFI_SUCCESS: A remote peer has successfully established a
connection to this instance. A new TCP instance has also been
created for the connection.
EFI_CONNECTION_RESET: The accept fails because the
connection is reset either by instance itself or communication
peer.
EFI_ABORTED: The accept request has been aborted.
EFI_SECURITY_VIOLATION: The accept operation was failed
because of IPSec policy check.

NewChildHandle The new TCP instance handle created for the established
connection.

Description

The Accept() function initiates an asynchronous accept request to wait for an
incoming connection on the passive TCP instance. If a remote peer successfully
establishes a connection with this instance, a new TCP instance will be created and
its handle will be returned in ListenToken->NewChildHandle. The newly created
instance is configured by inheriting the passive instance’s configuration and is ready
for use upon return. The new instance is in the Tcp6StateEstablished state.

The ListenToken->CompletionToken.Event will be signaled when a new
connection is accepted, user aborts the listen or connection is reset.

This function only can be called when current TCP instance is in Tcp6StateListen
state.

Status Codes Returned

EFI_SUCCESS The listen token has been queued successfully.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

This instance is not a passive instance.

This instance is not in Tcp6StateListen state.

The same listen token has already existed in the listen token queue
of this TCP instance.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

ListenToken is NULL.

ListentToken->CompletionToken.Event is

NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
UEFI Forum, Inc. March 2019 1315

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TCP6_PROTOCOL.Transmit()

Summary

Queues outgoing data into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_TRANSMIT) (

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_IO_TOKEN *Token
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
Token Pointer to the completion token to queue to the transmit

queue. Type EFI_TCP6_IO_TOKEN is defined in "Related
Definitions" below.

Description

The Transmit() function queues a sending request to this TCP instance along with the user data.
The status of the token is updated and the event in the token will be signaled once the data is sent
out or some error occurs.

Related Definitions

//***

// EFI_TCP6_IO_TOKEN

//***

typedef struct {

EFI_TCP6_COMPLETION_TOKEN CompletionToken;
union {

 EFI_TCP6_RECEIVE_DATA *RxData;

 EFI_TCP6_TRANSMIT_DATA *TxData;

} Packet;
} EFI_TCP6_IO_TOKEN;

Status When transmission finishes or meets any unexpected error it
will be set to one of the following values:
EFI_SUCCESS: The receiving or transmission operation
completes successfully.
EFI_CONNECTION_FIN: The receiving operation fails because
the communication peer has closed the connection and there
is no more data in the receive buffer of the instance.
UEFI Forum, Inc. March 2019 1316

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_CONNECTION_RESET: The receiving or transmission
operation fails because this connection is reset either by
instance itself or the communication peer.
EFI_ABORTED: The receiving or transmission is aborted.
EFI_TIMEOUT: The transmission timer expires and no more
specific information is available.
EFI_NETWORK_UNREACHABLE: The transmission fails because
an ICMP network unreachable error is received.
EFI_HOST_UNREACHABLE: The transmission fails because an
ICMP host unreachable error is received.
EFI_PROTOCOL_UNREACHABLE: The transmission fails because
an ICMP protocol unreachable error is received.
EFI_PORT_UNREACHABLE: The transmission fails and an ICMP
port unreachable error is received.
EFI_ICMP_ERROR: The transmission fails and some other ICMP
error is received.
EFI_DEVICE_ERROR: An unexpected system or network error
occurs.
EFI_SECURITY_VIOLATION: The receiving or transmission
operation was failed because of IPSec policy check.

RxData When this token is used for receiving, RxData is a pointer to
EFI_TCP6_RECEIVE_DATA. Type EFI_TCP6_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer
to EFI_TCP6_TRANSMIT_DATA. Type
EFI_TCP6_TRANSMIT_DATA is defined below.

The EFI_TCP6_IO_TOKEN structure is used for both transmit and receive operations.

When used for transmitting, the CompletionToken.Event and TxData fields must be filled in by the user.
After the transmit operation completes, the CompletionToken.Status field is updated by the instance and
the Event is signaled.

When used for receiving, the CompletionToken.Event and RxData fields must be filled in by the user.
After a receive operation completes, RxData and Status are updated by the instance and the Event is
signaled.
UEFI Forum, Inc. March 2019 1317

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_TCP6_RECEIVE_DATA

//**

typedef struct {

 BOOLEAN UrgentFlag;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP6_RECEIVE_DATA;

UrgentFlag Whether the data is urgent. When this flag is set, the instance
is in urgent mode. The implementations of this specification
should follow RFC793 to process urgent data, and should
NOT mix the data across the urgent point in one token.

DataLength When calling Receive() function, it is the byte counts of all
Fragmentbuffer in FragmentTable allocated by user. When
the token is signaled by TCPv6 driver it is the length of
received data in the fragments.

FragmentCount Number of fragments.
FragmentTable An array of fragment descriptors. Type

EFI_TCP6_FRAGMENT_DATA is defined below.

When TCPv6 driver wants to deliver received data to the application, it will pick up
the first queued receiving token, update its Token->Packet.RxData then signal the
Token->CompletionToken.Event.

The FragmentBuffer in FragmentTable is allocated by the application when calling
Receive() function and received data will be copied to those buffers by the driver.
FragmentTable may contain multiple buffers that are NOT in the continuous
memory locations. The application should combine those buffers in the
FragmentTable to process data if necessary.

//**

// EFI_TCP6_FRAGMENT_DATA

//**

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_TCP6_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.
FragmentBuffer Pointer to the data buffer in the fragment.
UEFI Forum, Inc. March 2019 1318

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TCP6_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The purpose of
this structure is to provide scattered read and write.

//**

// EFI_TCP6_TRANSMIT_DATA

//**

typedef struct {

 BOOLEAN Push;

 BOOLEAN Urgent;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP6_TRANSMIT_DATA;

Push If TRUE, data must be transmitted promptly, and the PUSH bit
in the last TCP segment created will be set. If FALSE, data
transmission may be delayed to combine with data from
subsequent Transmit()s for efficiency.

Urgent The data in the fragment table are urgent and urgent point is
in effect if TRUE. Otherwise those data are NOT considered
urgent.

DataLength Length of the data in the fragments.
FragmentCount Number of fragments.
FragmentTable An array of fragment descriptors. Type

EFI_TCP6_FRAGMENT_DATA is defined above.

The EFI TCPv6 Protocol user must fill this data structure before sending a packet. The packet may contain
multiple buffers in non-continuous memory locations.
UEFI Forum, Inc. March 2019 1319

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_TCP6_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_TCP6_RECEIVE) (

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_IO_TOKEN *Token
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.TxData is NULL.

• Token->Packet.FragmentCount is zero.

• Token->Packet.DataLength is not equal to the sum
of fragment lengths.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

A transmit completion token with the same Token->
CompletionToken.Event was already in the transmission

queue.
The current instance is in Tcp6StateClosed state.
The current instance is a passive one and it is in

Tcp6StateListen state.

User has called Close() to disconnect this connection.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource shortage.

EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1320

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_TCP6_IO_TOKEN is defined in
EFI_TCP6_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue.
This function is always asynchronous. The caller must allocate the Token-
>CompletionToken.Event and the FragmentBuffer used to receive data. The caller
also must fill the DataLength which represents the whole length of all
FragmentBuffer. When the receive operation completes, the EFI TCPv6 Protocol
driver updates the Token->CompletionToken.Status and Token->Packet.RxData
fields and the Token->CompletionToken.Event is signaled. If got data the data and
its length will be copied into the FragmentTable, at the same time the full length of
received data will be recorded in the DataLength fields. Providing a proper
notification function and context for the event will enable the user to receive the
notification and receiving status. That notification function is guaranteed to not be
re-entered.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address for
this instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.RxData is NULL.

• Token->Packet.RxData->DataLength is 0.

• The Token->Packet.RxData->DataLength is not the sum

of all FragmentBuffer length in FragmentTable.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI TCPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A receive completion token with the same Token-
>CompletionToken.Event was already in the receive queue.

• The current instance is in Tcp6StateClosed state.

• The current instance is a passive one and it is in Tcp6StateListen
state.

• User has called Close() to disconnect this connection.

EFI_CONNECTION_FIN The communication peer has closed the connection and there is no any
buffered data in the receive buffer of this instance.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.
UEFI Forum, Inc. March 2019 1321

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TCP6_PROTOCOL.Close()

Summary

Disconnecting a TCP connection gracefully or reset a TCP connection. This function
is a nonblocking operation.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_CLOSE)(

 IN EFI_TCP6_PROTOCOL *This,

 IN EFI_TCP6_CLOSE_TOKEN *CloseToken
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
CloseToken Pointer to the close token to return when operation finishes.

Type EFI_TCP6_CLOSE_TOKEN is defined in Related Definition
below.

Related Definitions

//***

// EFI_TCP6_CLOSE_TOKEN

//***

typedef struct {

 EFI_TCP6_COMPLETION_TOKEN CompletionToken;

 BOOLEAN AbortOnClose;
} EFI_TCP6_CLOSE_TOKEN;

Status When close finishes or meets any unexpected error it will be
set to one of the following values:
EFI_SUCCESS: The close operation completes successfully.
EFI_ABORTED: User called configure with NULL without close
stopping.
EFI_SECURITY_VIOLATION: The close operation was failed
because of IPSec policy check

AbortOnClose Abort the TCP connection on close instead of the standard
TCP close process when it is set to TRUE. This option can be
used to satisfy a fast disconnect.

Description

Initiate an asynchronous close token to TCP driver. After Close() is called, any
buffered transmission data will be sent by TCP driver and the current instance will

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1322

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
have a graceful close working flow described as RFC 793 if AbortOnClose is set to
FALSE, otherwise, a rest packet will be sent by TCP driver to fast disconnect this
connection. When the close operation completes successfully the TCP instance is in
Tcp6StateClosed state, all pending asynchronous operations are signaled and any
buffers used for TCP network traffic are flushed.

Status Codes Returned

EFI_TCP6_PROTOCOL.Cancel()

Summary

Abort an asynchronous connection, listen, transmission or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_CANCEL)(

 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_COMPLETION_TOKEN *Token OPTIONAL

);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_TCP6_PROTOCOL.Connect(),
EFI_TCP6_PROTOCOL.Accept(),
EFI_TCP6_PROTOCOL.Transmit() or
EFI_TCP6_PROTOCOL.Receive(). If NULL, all pending tokens
issued by above four functions will be aborted. Type
EFI_TCP6_COMPLETION_TOKEN is defined in
EFI_TCP6_PROTOCOL.Connect().

EFI_SUCCESS The Close() is called successfully.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

CloseToken or CloseToken-
>CompletionToken.Event is already in use.

Previous Close() call on this instance has not finished.

EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:

This is NULL.

CloseToken is NULL.

CloseToken->CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
UEFI Forum, Inc. March 2019 1323

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The Cancel() function aborts a pending connection, listen, transmit or receive
request. If Token is not NULL and the token is in the connection, listen, transmission
or receive queue when it is being cancelled, its Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of
the queues, which usually means that the asynchronous operation has completed,
EFI_NOT_FOUND is returned. If Token is NULL all asynchronous token issued by
Connect(), Accept(), Transmit() and Receive() will be aborted.

Status Codes Returned

EFI_TCP6_PROTOCOL.Poll()

Summary

Poll to receive incoming data and transmit outgoing segments.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCP6_POLL) (

 IN EFI_TCP6_PROTOCOL *This
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.

Description

The Poll() function increases the rate that data is moved between the network and
application and can be called when the TCP instance is created successfully. Its use
is optional.

In some implementations, the periodical timer in the MNP driver may not poll the
underlying communications device fast enough to avoid drop packets. Drivers and
applications that are experiencing packet loss should try calling the Poll() function
in a high frequency.

EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event is

signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NOT_FOUND The asynchronous I/O request isn’t found in the transmission or receive

queue. It has either completed or wasn’t issued by Transmit() and

Receive().

EFI_UNSUPPORTED The implementation does not support this function.
UEFI Forum, Inc. March 2019 1324

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.3 EFI IPv4 Protocol

This section defines the EFI IPv4 (Internet Protocol version 4) Protocol interface. It is split into the
following three main sections:

• EFI IPv4 Service Binding Protocol

• EFI IPv4 Variable

• EFI IPv4 Protocol

The EFI IPv4 Protocol provides basic network IPv4 packet I/O services, which includes support for a subset
of the Internet Control Message Protocol (ICMP) and may include support for the Internet Group
Management Protocol (IGMP).

The EFI IPv4 Protocol supports IPv4 classless IP addressing, and deprecates the original IPv4 classful IP
addressing. Please see links to the following RFC documents at http://uefi.org/uefi :

1. RFC 1122 – “Requirements for Internet Hosts -- Communication Layers”,

2. RFC 4632 – “Classless Inter-domain Routing (CIDR): The Internet Address Assignment and
Aggregation Plan”,

3. RFC 3021 – “Using 31-Bit Prefixes on IPv4 Point-to-Point Links”

28.3.1 IP4 Service Binding Protocol

EFI_IP4_SERVICE_BINDING_PROTOCOL
Summary

The EFI IPv4 Service Binding Protocol is used to locate communication devices that are supported by an
EFI IPv4 Protocol driver and to create and destroy instances of the EFI IPv4 Protocol child protocol driver
that can use the underlying communications device.

GUID

#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0xc51711e7,0xb4bf,0x404a,\

 {0xbf,0xb8,0x0a,0x04,0x8e,0xf1,0xff,0xe4}}

Description

A network application that requires basic IPv4 I/O services can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for
devices that publish an EFI IPv4 Service Binding Protocol GUID. Each device with a

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1325

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
published EFI IPv4 Service Binding Protocol GUID supports the EFI IPv4 Protocol
and may be available for use.

After a successful call to the
EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI IPv4 Protocol driver is in an unconfigured state; it is not ready to
send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_IP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

28.3.2 IP4 Protocol

EFI_IP4_PROTOCOL

Summary

The EFI IPv4 Protocol implements a simple packet-oriented interface that can be
used by drivers, daemons, and applications to transmit and receive network
packets.

GUID

#define EFI_IP4_PROTOCOL_GUID \

 {0x41d94cd2,0x35b6,0x455a,\

 {0x82,0x58,0xd4,0xe5,0x13,0x34,0xaa,0xdd}}

Protocol Interface Structure

typedef struct _EFI_IP4_PROTOCOL {

 EFI_IP4_GET_MODE_DATA GetModeData;

 EFI_IP4_CONFIGURE Configure;

 EFI_IP4_GROUPS Groups;

 EFI_IP4_ROUTES Routes;

 EFI_IP4_TRANSMIT Transmit;

 EFI_IP4_RECEIVE Receive;

 EFI_IP4_CANCEL Cancel;

 EFI_IP4_POLL Poll;

} EFI_IP4_PROTOCOL;

Parameters

GetModeData Gets the current operational settings for this instance of the
EFI IPv4 Protocol driver. See the GetModeData() function
description.

Configure Changes or resets the operational settings for the EFI IPv4
Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Adds and deletes routing table entries. See the Routes()
function description.
UEFI Forum, Inc. March 2019 1326

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Transmit Places outgoing data packets into the transmit queue. See the
Transmit() function description.

Receive Places a receiving request into the receiving queue. See the
Receive() function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_IP4_PROTOCOL defines a set of simple IPv4, ICMPv4, and IGMPv4 services
that can be used by any network protocol driver, daemon, or application to transmit
and receive IPv4 data packets.

Note: All the IPv4 addresses that are described in EFI_IP4_PROTOCOL are stored in network byte
order. Both incoming and outgoing IP packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_IP4_PROTOCOL.GetModeData()

Summary

Gets the current operational settings for this instance of the EFI IPv4 Protocol driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_GET_MODE_DATA) (

 IN EFI_IP4_PROTOCOL *This,

 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type

EFI_IP4_MODE_DATA is defined in “Related Definitions” below.
MnpConfigData Pointer to the managed network configuration data structure.

Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.
UEFI Forum, Inc. March 2019 1327

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The GetModeData() function returns the current operational mode data for this driver instance. The
data fields in EFI_IP4_MODE_DATA are read only. This function is used optionally to retrieve the
operational mode data of underlying networks or drivers.

Related Definitions

//**

// EFI_IP4_MODE_DATA

//**

typedef struct {

 BOOLEAN IsStarted;

 UINT32 MaxPacketSize;
 EFI_IP4_CONFIG_DATA ConfigData;

 BOOLEAN IsConfigured;

 UINT32 GroupCount;

 EFI_IPv4_ADDRESS *GroupTable;

 UINT32 RouteCount;

 EFI_IP4_ROUTE_TABLE *RouteTable;

 UINT32 IcmpTypeCount;

 EFI_IP4_ICMP_TYPE *IcmpTypeList;

} EFI_IP4_MODE_DATA;

IsStarted Set to TRUE after this EFI IPv4 Protocol instance has been
successfully configured with operational parameters by
calling the Configure() interface when EFI IPv4 Protocol
instance is stopped All other fields in this structure are
undefined until this field is TRUE.
Set to FALSE when the instance's operational parameter has
been reset.

MaxPackeSize The maximum packet size, in bytes, of the packet which the
upper layer driver could feed.

ConfigData Current configuration settings. Undefined until IsStarted is
TRUE. Type EFI_IP4_CONFIG_DATA is defined below.

IsConfigured Set to TRUE when the EFI IPv4 Protocol instance has a station
address and subnet mask. If it is using the default address, the
default address has been acquired. 
Set to FALSE when the EFI IPv4 Protocol driver is not
configured.

GroupCount Number of joined multicast groups. Undefined until
IsConfigured is TRUE.

GroupTable List of joined multicast group addresses. Undefined until
IsConfigured is TRUE.

RouteCount Number of entries in the routing table. Undefined until
IsConfigured is TRUE.
UEFI Forum, Inc. March 2019 1328

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
RouteTable Routing table entries. Undefined until IsConfigured is TRUE.
Type EFI_IP4_ROUTE_TABLE is defined below.

IcmpTypeCount Number of entries in the supported ICMP types list.
IcmpTypeList Array of ICMP types and codes that are supported by this EFI

IPv4 Protocol driver. Type EFI_IP4_ICMP_TYPE is defined
below.

The EFI_IP4_MODE_DATA structure describes the operational state of this IPv4 interface.

//**

// EFI_IP4_CONFIG_DATA

//**

typedef struct {

 UINT8 DefaultProtocol;

 BOOLEAN AcceptAnyProtocol;

 BOOLEAN AcceptIcmpErrors;

 BOOLEAN AcceptBroadcast;

 BOOLEAN AcceptPromiscuous;

 BOOLEAN UseDefaultAddress;

 EFI_IPv4_ADDRESS StationAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT8 TypeOfService;

 UINT8 TimeToLive;

 BOOLEAN DoNotFragment;

 BOOLEAN RawData;

 UINT32 ReceiveTimeout;

 UINT32 TransmitTimeout;

} EFI_IP4_CONFIG_DATA;

DefaultProtocol The default IPv4 protocol packets to send and receive.
Ignored when AcceptPromiscuous is TRUE. An updated list
of protocol numbers can be found at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “IANA
Assigned Internet Protocol Numbers list”.

AcceptAnyProtocol Set to TRUE to receive all IPv4 packets that get through the
receive filters. 
Set to FALSE to receive only the DefaultProtocol IPv4
packets that get through the receive filters. Ignored when
AcceptPromiscuous is TRUE.

AcceptIcmpErrors Set to TRUE to receive ICMP error report packets. Ignored
when AcceptPromiscuous or AcceptAnyProtocol is TRUE.

AcceptBroadcast Set to TRUE to receive broadcast IPv4 packets. Ignored when
AcceptPromiscuous is TRUE.
Set to FALSE to stop receiving broadcast IPv4 packets.
UEFI Forum, Inc. March 2019 1329

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
AcceptPromiscuous Set to TRUE to receive all IPv4 packets that are sent to any
hardware address or any protocol address. 
Set to FALSE to stop receiving all promiscuous IPv4 packets.

UseDefaultAddress Set to TRUE to use the default IPv4 address and default
routing table. If the default IPv4 address is not available yet,
then the EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG2_PROTOCOL to retrieve the IPv4 address and
subnet information. (This field can be set and changed only
when the EFI IPv4 driver is transitioning from the stopped to
the started states.)

StationAddress The station IPv4 address that will be assigned to this EFI
IPv4Protocol instance. The EFI IPv4 Protocol driver will deliver
only incoming IPv4 packets whose destination matches this
IPv4 address exactly. Address 0.0.0.0 is also accepted as a
special case in which incoming packets destined to any
station IP address are always delivered. When
EFI_IP4_CONFIG_DATA is used in Configure (), it is ignored
if UseDefaultAddress is TRUE; When EFI_IP4_CONFIG_DATA
is used in GetModeData (), it contains the default address if
UseDefaultAddress is TRUE and the default address has been
acquired.

SubnetMask The subnet address mask that is associated with the station
address. When EFI_IP4_CONFIG_DATA is used in Configure
(), it is ignored if UseDefaultAddress is TRUE; When
EFI_IP4_CONFIG_DATA is used in GetModeData (), it contains
the default subnet mask if UseDefaultAddress is TRUE and
the default address has been acquired.

TypeOfService TypeOfService field in transmitted IPv4 packets.
TimeToLive TimeToLive field in transmitted IPv4 packets.
DoNotFragment State of the DoNotFragment bit in transmitted IPv4 packets.
RawData Set to TRUE to send and receive unformatted packets. The

other IPv4 receive filters are still applied. Fragmentation is
disabled for RawData mode. NOTE: Unformatted packets
include the IP header and payload. The media header is
appended automatically for outgoing packets by underlying
network drivers.

ReceiveTimeout The timer timeout value (number of microseconds) for the
receive timeout event to be associated with each assembled
packet. Zero means do not drop assembled packets.

TransmitTimeout The timer timeout value (number of microseconds) for the
transmit timeout event to be associated with each outgoing
packet. Zero means do not drop outgoing packets.

The EFI_IP4_CONFIG_DATA structure is used to report and change IPv4 session parameters.
UEFI Forum, Inc. March 2019 1330

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IP4_ROUTE_TABLE

//**

typedef struct {

 EFI_IPv4_ADDRESS SubnetAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 EFI_IPv4_ADDRESS GatewayAddress;

} EFI_IP4_ROUTE_TABLE;

SubnetAddress The subnet address to be routed.
SubnetMask The subnet mask. If (DestinationAddress & SubnetMask

== SubnetAddress), then the packet is to be directed to the
GatewayAddress.

GatewayAddress The IPv4 address of the gateway that redirects packets to this
subnet. If the IPv4 address is 0.0.0.0, then packets to this
subnet are not redirected.

EFI_IP4_ROUTE_TABLE is the entry structure that is used in routing tables.

//**

// EFI_IP4_ICMP_TYPE

//**

typedef struct {

 UINT8 Type;

 UINT8 Code;

} EFI_IP4_ICMP_TYPE

Type The type of ICMP message. See RFC 792 and RFC 950.
Code The code of the ICMP message, which further describes the

different ICMP message formats under the same Type. See
RFC 792 and RFC 950.

EFI_IP4_ICMP_TYPE is used to describe those ICMP messages that are supported by this EFI IPv4
Protocol driver.
UEFI Forum, Inc. March 2019 1331

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_PROTOCOL.Configure()

Summary

Assigns an IPv4 address and subnet mask to this EFI IPv4 Protocol driver instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIGURE) (

 IN EFI_IP4_PROTOCOL *This,

 IN EFI_IP4_CONFIG_DATA *IpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
IpConfigData Pointer to the EFI IPv4 Protocol configuration data structure.

Type EFI_IP4_CONFIG_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

Description

The Configure() function is used to set, change, or reset the operational parameters and filter settings
for this EFI IPv4 Protocol instance. Until these parameters have been set, no network traffic can be sent
or received by this instance. Once the parameters have been reset (by calling this function with
IpConfigData set to NULL), no more traffic can be sent or received until these parameters have been
set again. Each EFI IPv4 Protocol instance can be started and stopped independently of each other by
enabling or disabling their receive filter settings with the Configure() function.

When IpConfigData.UseDefaultAddress is set to FALSE, the new station address will be
appended as an alias address into the addresses list in the EFI IPv4 Protocol driver. While set to TRUE,
Configure() will trigger the EFI_IP4_CONFIG2_PROTOCOL to retrieve the default IPv4 address if it is
not available yet. Clients could frequently call GetModeData() to check the status to ensure that the
default IPv4 address is ready.

If operational parameters are reset or changed, any pending transmit and receive requests will be
cancelled. Their completion token status will be set to EFI_ABORTED and their events will be signaled.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
UEFI Forum, Inc. March 2019 1332

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_GROUPS) (

 IN EFI_IP4_PROTOCOL *This,

 IN BOOLEAN JoinFlag,

 IN EFI_IPv4_ADDRESS *GroupAddress OPTIONAL

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
JoinFlag Set to TRUE to join the multicast group session and FALSE to

leave.
GroupAddress Pointer to the IPv4 multicast address.

Description

The Groups() function is used to join and leave multicast group sessions. Joining a group will enable
reception of matching multicast packets. Leaving a group will disable the multicast packet reception.

EFI_SUCCESS The driver instance was successfully opened.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_IP_ADDRESS_CONFLICT There is an address conflict in response to the Arp invocation

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• IpConfigData.StationAddress is not a unicast IPv4
address.

• IpConfigData.SubnetMask is not a valid IPv4 subnet mask.

EFI_UNSUPPORTED One or more of the following conditions is TRUE:

• A configuration protocol (DHCP, BOOTP, RARP, etc.) could not be
located when clients choose to use the default IPv4 address. This EFI
IPv4 Protocol implementation does not support this requested filter
or timeout setting.

EFI_OUT_OF_RESOURCES The EFI IPv4 Protocol driver instance data could not be allocated.

EFI_ALREADY_STARTED The interface is already open and must be stopped before the IPv4
address or subnet mask can be changed. The interface must also be
stopped when switching to/from raw packet mode.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv4 Protocol
driver instance is not opened.
UEFI Forum, Inc. March 2019 1333

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.

Status Codes Returned

EFI_IP4_PROTOCOL.Routes()

Summary

Adds and deletes routing table entries.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_ROUTES) (

 IN EFI_IP4_PROTOCOL *This,

 IN BOOLEAN DeleteRoute,

 IN EFI_IPv4_ADDRESS *SubnetAddress,

 IN EFI_IPv4_ADDRESS *SubnetMask,

 IN EFI_IPv4_ADDRESS *GatewayAddress

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
DeleteRoute Set to TRUE to delete this route from the routing table. Set to

FALSE to add this route to the routing table. SubnetAddress
and SubnetMask are used as the key to each route entry.

SubnetAddress The address of the subnet that needs to be routed.
SubnetMask The subnet mask of SubnetAddress.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• JoinFlag is TRUE and GroupAddress is NULL.

• GroupAddress is not NULL and * GroupAddress is not a
multicast IPv4 address.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_OUT_OF_RESOURCES System resources could not be allocated.

EFI_UNSUPPORTED This EFI IPv4 Protocol implementation does not support multicast
groups.

EFI_ALREADY_STARTED The group address is already in the group table (when JoinFlag is

TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1334

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GatewayAddress The unicast gateway IPv4 address for this route.

Description

The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IPv4 address
arithmetically AND-ed with the SubnetMask. The gateway address must be on the same subnet as the
configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The default route
matches all destination IPv4 addresses that do not match any other routes.

A GatewayAddress that is zero is a nonroute. Packets are sent to the destination IP address if it can be
found in the ARP cache or on the local subnet. One automatic nonroute entry will be inserted into the
routing table for outgoing packets that are addressed to a local subnet (gateway address of 0.0.0.0).

Each EFI IPv4 Protocol instance has its own independent routing table. Those EFI IPv4 Protocol instances
that use the default IPv4 address will also have copies of the routing table that was provided by the
EFI_IP4_CONFIG2_PROTOCOL, and these copies will be updated whenever the EIF IPv4 Protocol driver
reconfigures its instances. As a result, client modification to the routing table will be lost.
UEFI Forum, Inc. March 2019 1335

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Note: There is no way to set up routes to other network interface cards because each network interface
card has its own independent network stack that shares information only through EFI IPv4
variable..

Status Codes Returned

EFI_IP4_PROTOCOL.Transmit()

Summary

Places outgoing data packets into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_TRANSMIT) (

 IN EFI_IP4_PROTOCOL *This,

 IN EFI_IP4_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
Token Pointer to the transmit token. Type

EFI_IP4_COMPLETION_TOKEN is defined in “Related
Definitions” below.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IPv4 address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is TRUE).

EFI_ACCESS_DENIED The route is already defined in the routing table (when DeleteRoute
is FALSE).
UEFI Forum, Inc. March 2019 1336

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The Transmit() function places a sending request in the transmit queue of this EFI IPv4 Protocol
instance. Whenever the packet in the token is sent out or some errors occur, the event in the token will
be signaled and the status is updated.

Related Definitions

//**

// EFI_IP4_COMPLETION_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 union {

 EFI_IP4_RECEIVE_DATA *RxData;

 EFI_IP4_TRANSMIT_DATA *TxData;

 } Packet;

} EFI_IP4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI IPv4 Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event
must be lower than or equal to TPL_CALLBACK.

Status Will be set to one of the following values:
EFI_SUCCESS. The receive or transmit completed
successfully.
EFI_ABORTED. The receive or transmit was aborted.
EFI_TIMEOUT. The transmit timeout expired.
EFI_ICMP_ERROR. An ICMP error packet was received.
EFI_DEVICE_ERROR. An unexpected system or network error
occurred.
EFI_NO_MEDIA. There was a media error

RxData When this token is used for receiving, RxData is a pointer to
the EFI_IP4_RECEIVE_DATA. Type EFI_IP4_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer
to the EFI_IP4_TRANSMIT_DATA. Type
EFI_IP4_TRANSMIT_DATA is defined below.

EFI_IP4_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When the structure is used for transmitting, the Event and TxData fields must be filled in by the EFI
IPv4 Protocol client. After the transmit operation completes, EFI IPv4 Protocol updates the Status field
and the Event is signaled.

When the structure is used for receiving, only the Event field must be filled in by the EFI IPv4 Protocol
client. After a packet is received, the EFI IPv4 Protocol fills in the RxData and Status fields and the
UEFI Forum, Inc. March 2019 1337

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Event is signaled. If the packet is an ICMP error message, the Status is set to EFI_ICMP_ERROR, and
the packet is delivered up as usual. The protocol from the IP head in the ICMP error message is used to
de-multiplex the packet.

//**

// EFI_IP4_RECEIVE_DATA

//**

typedef struct {

 EFI_TIME TimeStamp;

 EFI_EVENT RecycleSignal;

 UINT32 HeaderLength;

 EFI_IP4_HEADER *Header;

 UINT32 OptionsLength;

 VOID *Options;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_IP4_FRAGMENT_DATA FragmentTable[1];

} EFI_IP4_RECEIVE_DATA;

TimeStamp Time when the EFI IPv4 Protocol driver accepted the
packet.TimeStamp is zero filled if receive timestamps are
disabled or unsupported.

RecycleSignal After this event is signaled, the receive data structure is
released and must not be referenced.

HeaderLength Length of the IPv4 packet header. Zero if
ConfigData.RawData is TRUE.

Header Pointer to the IPv4 packet header. If the IPv4 packet was
fragmented, this argument is a pointer to the header in the
first fragment. NULL if ConfigData.RawData is TRUE. Type
EFI_IP4_HEADER is defined below.

OptionsLength Length of the IPv4 packet header options. May be zero.
Options Pointer to the IPv4 packet header options. If the IPv4 packet

was fragmented, this argument is a pointer to the options in
the first fragment. May be NULL.

DataLength Sum of the lengths of IPv4 packet buffers in FragmentTable.
May be zero.

FragmentCount Number of IPv4 payload (or raw) fragments. If
ConfigData.RawData is TRUE, this count is the number of raw
IPv4 fragments received so far. May be zero.

FragmentTable Array of payload (or raw) fragment lengths and buffer
pointers. If ConfigData.RawData is TRUE, each buffer points
to a raw IPv4 fragment and thus IPv4 header and options are
included in each buffer. Otherwise, IPv4 headers and options
UEFI Forum, Inc. March 2019 1338

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
are not included in these buffers. Type
EFI_IP4_FRAGMENT_DATA is defined below.

The EFI IPv4 Protocol receive data structure is filled in when IPv4 packets have been assembled (or when
raw packets have been received). In the case of IPv4 packet assembly, the individual packet fragments
are only verified and are not reorganized into a single linear buffer.

The FragmentTable contains a sorted list of zero or more packet fragment descriptors. The referenced
packet fragments may not be in contiguous memory locations.

//**

// EFI_IP4_HEADER

//**

#pragma pack(1)

typedef struct {

 UINT8 HeaderLength:4;

 UINT8 Version:4;

 UINT8 TypeOfService;

 UINT16 TotalLength;

 UINT16 Identification;

 UINT16 Fragmentation;

 UINT8 TimeToLive;

 UINT8 Protocol;

 UINT16 Checksum;

 EFI_IPv4_ADDRESS SourceAddress;

 EFI_IPv4_ADDRESS DestinationAddress;
} EFI_IP4_HEADER;

#pragma pack()

The fields in the IPv4 header structure are defined in the Internet Protocol version 4 specification, which
can be found at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Internet
Protocol version 4 Specification”.

//**

// EFI_IP4_FRAGMENT_DATA

//**

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_IP4_FRAGMENT_DATA;

FragmentLength Length of fragment data. This field may not be set to zero.
FragmentBuffer Pointer to fragment data. This field may not be set to NULL.
UEFI Forum, Inc. March 2019 1339

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI_IP4_FRAGMENT_DATA structure describes the location and length of the IPv4 packet fragment
to transmit or that has been received.

//**

// EFI_IP4_TRANSMIT_DATA

//**

typedef struct {

 EFI_IPv4_ADDRESS DestinationAddress;

 EFI_IP4_OVERRIDE_DATA *OverrideData;

 UINT32 OptionsLength;

 VOID *OptionsBuffer;

 UINT32 TotalDataLength;

 UINT32 FragmentCount;

 EFI_IP4_FRAGMENT_DATA FragmentTable[1];

} EFI_IP4_TRANSMIT_DATA;

DestinationAddress
The destination IPv4 address. Ignored if RawData is TRUE.

OverrideData If not NULL, the IPv4 transmission control override data.
Ignored if RawData is TRUE. Type EFI_IP4_OVERRIDE_DATA is
defined below.

OptionsLength Length of the IPv4 header options data. Must be zero if the
IPv4 driver does not support IPv4 options. Ignored if RawData
is TRUE.

OptionsBuffer Pointer to the IPv4 header options data. Ignored if
OptionsLength is zero. Ignored if RawData is TRUE.

TotalDataLength Total length of the FragmentTable data to transmit.
FragmentCount Number of entries in the fragment data table.
FragmentTable Start of the fragment data table. Type

EFI_IP4_FRAGMENT_DATA is defined above.

The EFI_IP4_TRANSMIT_DATA structure describes a possibly fragmented packet to be transmitted.
UEFI Forum, Inc. March 2019 1340

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IP4_OVERRIDE_DATA

//**

typedef struct {

 EFI_IPv4_ADDRESS SourceAddress;

 EFI_IPv4_ADDRESS GatewayAddress;

 UINT8 Protocol;

 UINT8 TypeOfService;

 UINT8 TimeToLive;

 BOOLEAN DoNotFragment;

} EFI_IP4_OVERRIDE_DATA;

SourceAddress Source address override.
GatewayAddress Gateway address to override the one selected from the

routing table. This address must be on the same subnet as
this station address. If set to 0.0.0.0, the gateway address
selected from routing table will not be overridden.

Protocol Protocol type override.
TypeOfService Type-of-service override.
TimeToLive Time-to-live override.
DoNotFragment Do-not-fragment override.

The information and flags in the override data structure will override default parameters or settings for
one Transmit() function call.
UEFI Forum, Inc. March 2019 1341

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_PROTOCOL.Receive()

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL

• Token.Packet.TxData is NULL.

• Token.Packet.TxData.OverrideData.
GatewayAddress in the override data structure is not a unicast

IPv4 address if OverrideData is not NULL.

• Token.Packet.TxData.OverrideData.
SourceAddress is not a unicast IPv4 address if

OverrideData is not NULL.

• Token.Packet.OptionsLength is not zero and

Token.Packet.OptionsBuffer is NULL.

• Token.Packet.FragmentCount is zero.

• One or more of the

Token.Packet.TxData.FragmentTable[].
FragmentLength fields is zero.

• One or more of the

Token.Packet.TxData.FragmentTable[].
FragmentBuffer fields is NULL.

• Token.Packet.TxData.TotalDataLength is zero or
not equal to the sum of fragment lengths.

• The IP header in FragmentTable is not a well-formed header

when RawData is TRUE.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event was

already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit queue
is full.

EFI_NOT_FOUND Not route is found to destination address.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too short to

transmit.

EFI_BAD_BUFFER_SIZE The length of the IPv4 header + option length + total data length is
greater than MTU (or greater than the maximum packet size if

Token.Packet.TxData.OverrideData.
DoNotFragment is TRUE.)

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1342

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Summary

Places a receiving request into the receiving queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_RECEIVE) (

 IN EFI_IP4_PROTOCOL *This,

 IN EFI_IP4_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
Token Pointer to a token that is associated with the receive data

descriptor. Type EFI_IP4_COMPLETION_TOKEN is defined in
“Related Definitions” of above Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The Token.Event field in the completion token must be filled in by the caller and cannot be NULL.
When the receive operation completes, the EFI IPv4 Protocol driver updates the Token.Status and
Token.Packet.RxData fields and the Token.Event is signaled.
UEFI Forum, Inc. March 2019 1343

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_PROTOCOL.Cancel()

Summary

Abort an asynchronous transmit or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CANCEL)(

 IN EFI_IP4_PROTOCOL *This,

 IN EFI_IP4_COMPLETION_TOKEN *Token OPTIONAL

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_IP4_PROTOCOL.Transmit() or
EFI_IP4_PROTOCOL.Receive(). If NULL, all pending tokens are
aborted. Type EFI_IP4_COMPLETION_TOKEN is defined in
EFI_IP4_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of the queues, which

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI IPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token with the same Token.Event was

already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is
full.

EFI_ICMP_ERROR An ICMP error packet was received.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1344

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
usually means the asynchronous operation has completed, this function will not signal the token and
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_IP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_POLL) (

 IN EFI_IP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Description

The Poll() function polls for incoming data packets and processes outgoing data packets. Network
drivers and applications can call the EFI_IP4_PROTOCOL.Poll() function to increase the rate that
data packets are moved between the communications device and the transmit and receive queues.

In some systems the periodic timer event may not poll the underlying communications device fast
enough to transmit and/or receive all data packets without missing incoming packets or dropping
outgoing packets. Drivers and applications that are experiencing packet loss should try calling the
EFI_IP4_PROTOCOL.Poll() function more often.

EFI_SUCCESS The asynchronous I/O request was aborted and Token.->Event

was signaled. When Token is NULL, all pending requests were aborted

and their events were signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or was

not issued by Transmit() and Receive().
UEFI Forum, Inc. March 2019 1345

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.4 EFI IPv4 Configuration Protocol

This section provides a detailed description of the EFI IPv4 Configuration Protocol.

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

EFI_IP4_CONFIG_PROTOCOL
IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary

The EFI_IP4_CONFIG_PROTOCOL driver performs platform- and policy-dependent configuration for
the EFI IPv4 Protocol driver.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1346

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GUID

#define EFI_IP4_CONFIG_PROTOCOL_GUID \

 {0x3b95aa31,0x3793,0x434b,\

 {0x86,0x67,0xc8,0x07,0x08,0x92,0xe0,0x5e}}

Protocol Interface Structure

typedef struct _EFI_IP4_CONFIG_PROTOCOL {

 EFI_IP4_CONFIG_START Start;

 EFI_IP4_CONFIG_STOP Stop;

 EFI_IP4_CONFIG_GET_DATA GetData;

} EFI_IP4_CONFIG_PROTOCOL;

Parameters

Start Starts running the configuration policy for the EFI IPv4
Protocol driver. See the Start() function description.

Stop Stops running the configuration policy for the EFI IPv4
Protocol driver. See the Stop() function description.

GetData Returns the default configuration data (if any) for the EFI IPv4
Protocol driver. See the GetData() function description.

Description

In an effort to keep platform policy code out of the EFI IPv4 Protocol driver, the
EFI_IP4_CONFIG_PROTOCOL driver will be used as the central repository of any platform- and policy-
specific configuration for the EFI IPv4 Protocol driver.

An EFI IPv4 Configuration Protocol interface will be installed on each communications device handle that
is managed by the platform setup policy. The driver that is responsible for creating EFI IPv4 variable must
open the EFI IPv4 Configuration Protocol driver interface BY_DRIVER|EXCLUSIVE.

An example of a configuration policy decision for the EFI IPv4 Protocol driver would be to use a static IP
address/subnet mask pair on the platform management network interface and then use dynamic IP
addresses that are configured by DHCP on the remaining network interfaces.

EFI_IP4_CONFIG_PROTOCOL.Start()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary

Starts running the configuration policy for the EFI IPv4 Protocol driver.
UEFI Forum, Inc. March 2019 1347

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG_START) (

 IN EFI_IP4_CONFIG_PROTOCOL *This,

 IN EFI_EVENT DoneEvent,

 IN EFI_EVENT ReconfigEvent

);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.
DoneEvent Event that will be signaled when the EFI IPv4 Protocol driver

configuration policy completes execution. This event must be
of type EVT_NOTIFY_SIGNAL.

ReconfigEvent Event that will be signaled when the EFI IPv4 Protocol driver
configuration needs to be updated. This event must be of type
EVT_NOTIFY_SIGNAL.

Description

The Start() function is called to determine and to begin the platform configuration policy by the EFI IPv4
Protocol driver. This determination may be as simple as returning EFI_UNSUPPORTED if there is no EFI
IPv4 Protocol driver configuration policy. It may be as involved as loading some defaults from nonvolatile
storage, downloading dynamic data from a DHCP server, and checking permissions with a site policy
server.

Starting the configuration policy is just the beginning. It may finish almost instantly or it may take several
minutes before it fails to retrieve configuration information from one or more servers. Once the policy is
started, drivers should use the DoneEvent parameter to determine when the configuration policy has
completed. EFI_IP4_CONFIG_PROTOCOL.GetData() must then be called to determine if the
configuration succeeded or failed.

Until the configuration completes successfully, EFI IPv4 Protocol driver instances that are attempting to
use default configurations must return EFI_NO_MAPPING.

Once the configuration is complete, the EFI IPv4 Configuration Protocol driver signals DoneEvent. The
configuration may need to be updated in the future, however; in this case, the EFI IPv4 Configuration
Protocol driver must signal ReconfigEvent, and all EFI IPv4 Protocol driver instances that are using
default configurations must return EFI_NO_MAPPING until the configuration policy has been rerun.
UEFI Forum, Inc. March 2019 1348

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_CONFIG_PROTOCOL.Stop()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary

Stops running the configuration policy for the EFI IPv4 Protocol driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG_STOP) (

 IN EFI_IP4_CONFIG_PROTOCOL *This

);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

Description

The Stop() function stops the configuration policy for the EFI IPv4 Protocol driver. All configuration data
will be lost after calling Stop().

EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver is now running.

EFI_INVALID_PARAMETER One or more of the following parameters is NULL:

• This

• DoneEvent

• ReconfigEvent

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ALREADY_STARTED The configuration policy for the EFI IPv4 Protocol driver was already
started.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.

EFI_UNSUPPORTED This interface does not support the EFI IPv4 Protocol driver
configuration.
UEFI Forum, Inc. March 2019 1349

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_CONFIG_PROTOCOL.GetData()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary

Returns the default configuration data (if any) for the EFI IPv4 Protocol driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG_GET_DATA) (

 IN EFI_IP4_CONFIG_PROTOCOL *This,

 IN OUT UINTN *IpConfigDataSize,

 OUT EFI_IP4_IPCONFIG_DATA *IpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.
IpConfigDataSize On input, the size of the IpConfigData buffer. On output, the

count of bytes that were written into the IpConfigData
buffer.

IpConfigData Pointer to the EFI IPv4 Configuration Protocol driver
configuration data structure. Type EFI_IP4_IPCONFIG_DATA
is defined in “Related Definitions” below.

Description

The GetData() function returns the current configuration data for the EFI IPv4 Protocol driver after the
configuration policy has completed.

EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver has been stopped.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver was not started.
UEFI Forum, Inc. March 2019 1350

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions
//**

// EFI_IP4_IPCONFIG_DATA

//**

typedef struct {

 EFI_IPv4_ADDRESS StationAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT32 RouteTableSize;

 EFI_IP4_ROUTE_TABLE *RouteTable OPTIONAL;

} EFI_IP4_IPCONFIG_DATA;

StationAddress Default station IP address, stored in network byte order.
SubnetMask Default subnet mask, stored in network byte order.
RouteTableSize Number of entries in the following RouteTable. May be zero.
RouteTable Default routing table data (stored in network byte order).

Ignored if RouteTableSize is zero. Type
EFI_IP4_ROUTE_TABLE is defined in
EFI_IP4_PROTOCOL.GetModeData().

EFI_IP4_IPCONFIG_DATA contains the minimum IPv4 configuration data that is needed to start basic
network communication. The StationAddress and SubnetMask must be a valid unicast IP address
and subnet mask.

If RouteTableSize is not zero, then RouteTable contains a properly formatted routing table for the
StationAddress/SubnetMask, with the last entry in the table being the default route.

Status Codes Returned

28.5 EFI IPv4 Configuration II Protocol

This section provides a detailed description of the EFI IPv4 Configuration II Protocol.

EFI_IP4_CONFIG2_PROTOCOL

Summary

The EFI_IP4_CONFIG2_PROTOCOL provides the mechanism to set and get various types of
configurations for the EFI IPv4 network stack.

EFI_SUCCESS The EFI IPv4 Protocol driver configuration has been returned.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver is not running.

EFI_NOT_READY EFI IPv4 Protocol driver configuration is still running.

EFI_ABORTED EFI IPv4 Protocol driver configuration could not complete.

EFI_BUFFER_TOO_SMALL *IpConfigDataSize is smaller than the configuration data buffer

or IpConfigData is NULL.
UEFI Forum, Inc. March 2019 1351

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GUID

#define EFI_IP4_CONFIG2_PROTOCOL_GUID \

{ 0x5b446ed1, 0xe30b, 0x4faa,\

 { 0x87, 0x1a, 0x36, 0x54, 0xec, 0xa3, 0x60, 0x80 }}

Protocol Interface Structure

typedef struct _EFI_IP4_CONFIG2_PROTOCOL {

 EFI_IP4_CONFIG2_SET_DATA SetData;

 EFI_IP4_CONFIG2_GET_DATA GetData;

 EFI_IP4_CONFIG2_REGISTER_NOTIFY RegisterDataNotify;

 EFI_IP4_CONFIG2_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IP4_CONFIG2_PROTOCOL;

Parameters

SetData Set the configuration for the EFI IPv4 network stack running
on the communication device this EFI IPv4 Configuration II
Protocol instance manages. See the SetData() function
description.

GetData Get the configuration for the EFI IPv4 network stack running
on the communication device this EFI IPv4 Configuration II
Protocol instance manages. See the GetData() function
description.

RegiseterDataNotify
Register an event that is to be signaled whenever a
configuration process on the specified configuration data is
done.

UnregisterDataNotify
Remove a previously registered event for the specified
configuration data.

Description

The EFI_IP4_CONFIG2_PROTOCOL is designed to be the central repository for the common
configurations and the administrator configurable settings for the EFI IPv4 network stack.

An EFI IPv4 Configuration II Protocol instance will be installed on each communication device that the EFI
IPv4 network stack runs on.

Note: All the network addresses described in EFI_IP4_CONFIG2_PROTOCOL are stored in network
byte order. All other parameters defined in functions or data structures are stored in host byte
order.

EFI_IP4_CONFIG2_PROTOCOL.SetData()

Summary

Set the configuration for the EFI IPv4 network stack running on the communication device this EFI IPv4
Configuration II Protocol instance manages.
UEFI Forum, Inc. March 2019 1352

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG2_SET_DATA) (

 IN EFI_IP4_CONFIG2_PROTOCOL *This,

 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,

 IN UINTN DataSize,

 IN VOID *Data
);

Parameters

This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.
DataType The type of data to set. Type EFI_IP4_CONFIG2_DATA_TYPE

is defined in “Related Definitions” below.
DataSize Size of the buffer pointed to by Data in bytes.
Data The data buffer to set. The type of the data buffer is

associated with the DataType. The various types are defined
in “Related Definitions” below.

Description

This function is used to set the configuration data of type DataType for the EFI IPv4 network stack
running on the communication device this EFI IPv4 Configuration II Protocol instance manages. The
successfully configured data is valid after system reset or power-off.

The DataSize is used to calculate the count of structure instances in the Data for some DataType that
multiple structure instances are allowed.

This function is always non-blocking. When setting some type of configuration data, an asynchronous
process is invoked to check the correctness of the data, such as doing address conflict detection on the
manually set local IPv4 address. EFI_NOT_READY is returned immediately to indicate that such an
asynchronous process is invoked and the process is not finished yet. The caller willing to get the result of
the asynchronous process is required to call RegisterDataNotify() to register an event on the
specified configuration data. Once the event is signaled, the caller can call GetData() to get back the
configuration data in order to know the result. For other types of configuration data that do not require
an asynchronous configuration process, the result of the operation is immediately returned.
UEFI Forum, Inc. March 2019 1353

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions

//***

// EFI_IP4_CONFIG2_DATA_TYPE

//***

typedef enum {

 Ip4Config2DataTypeInterfaceInfo,

 Ip4Config2DataTypePolicy,

 Ip4Config2DataTypeManualAddress,

 Ip4Config2DataTypeGateway,

 Ip4Config2DataTypeDnsServer,

 Ip4Config2DataTypeMaximum

} EFI_IP4_CONFIG2_DATA_TYPE;

Ip4Config2DataTypeInterfaceInfo

The interface information of the communication device this
EFI IPv4 Configuration II Protocol instance manages. This type
of data is read only. The corresponding Data is of type
EFI_IP4_CONFIG2_INTERFACE_INFO.

Ip4Config2DataTypePolicy

The general configuration policy for the EFI IPv4 network
stack running on the communication device this EFI IPv4
Configuration II Protocol instance manages. The policy will
affect other configuration settings. The corresponding Data is
of type EFI_IP4_CONFIG2_POLICY.

Ip4Config2DataTypeManualAddress

The station addresses set manually for the EFI IPv4 network
stack. It is only configurable when the policy is
Ip4Config2PolicyStatic. The corresponding Data is of type
EFI_IP4_CONFIG2_MANUAL_ADDRESS. When DataSize is 0
and Data is NULL, the existing configuration is cleared from
the EFI IPv4 Configuration II Protocol instance.

Ip4Config2DataTypeGateway

The gateway addresses set manually for the EFI IPv4 network
stack running on the communication device this EFI IPv4
Configuration II Protocol manages. It is not configurable when
the policy is Ip4Config2PolicyDhcp. The gateway addresses
must be unicast IPv4 addresses. The corresponding Data is a
pointer to an array of EFI_IPv4_ADDRESS instances. When
DataSize is 0 and Data is NULL, the existing configuration is
cleared from the EFI IPv4 Configuration II Protocol instance.
UEFI Forum, Inc. March 2019 1354

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Ip4Config2DataTypeDnsServer

The DNS server list for the EFI IPv4 network stack running on
the communication device this EFI IPv4 Configuration II
Protocol manages. It is not configurable when the policy is
Ip4Config2PolicyDhcp.The DNS server addresses must be
unicast IPv4 addresses. The corresponding Data is a pointer
to an array of EFI_IPv4_ADDRESS instances. When DataSize
is 0 and Data is NULL, the existing configuration is cleared
from the EFI IPv4 Configuration II Protocol instance.

//***

// EFI_IP4_CONFIG2_INTERFACE_INFO related definitions

//***

#define EFI_IP4_CONFIG2_INTERFACE_INFO_NAME_SIZE 32//

// EFI_IP4_CONFIG2_INTERFACE_INFO

//***

typedef struct {

 CHAR16 Name[EFI_IP4_CONFIG2_INTERFACE_INFO_NAME_SIZE];

 UINT8 IfType;

 UINT32 HwAddressSize;

 EFI_MAC_ADDRESS HwAddress;
 EFI_IPv4_ADDRESS StationAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT32 RouteTableSize;

 EFI_IP4_ROUTE_TABLE *RouteTable OPTIONAL;
} EFI_IP4_CONFIG2_INTERFACE_INFO;

Name The name of the interface. It is a NULL-terminated Unicode
string.

IfType The interface type of the network interface. See RFC 1700,
section “Number Hardware Type”.

HwAddressSize The size, in bytes, of the network interface’s hardware
address.

HwAddress The hardware address for the network interface.
StationAddress The station IPv4 address of this EFI IPv4 network stack.
SubnetMask The subnet address mask that is associated with the station

address.
RouteTableSize Size of the following RouteTable , in bytes. May be zero.
RouteTable The route table of the IPv4 network stack runs on this

interface. Set to NULL if RouteTableSize is zero. Type
EFI_IP4_ROUTE_TABLE is defined in
EFI_IP4_PROTOCOL.GetModeData().
UEFI Forum, Inc. March 2019 1355

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI_IP4_CONFIG2_INTERFACE_INFO structure describes the operational state of the interface
this EFI IPv4 Configuration II Protocol instance manages. This type of data is read-only. When reading, the
caller allocated buffer is used to return all of the data, i.e., the first part of the buffer is
EFI_IP4_CONFIG2_INTERFACE_INFO and the followings are the route table if present. The caller
should NOT free the buffer pointed to by RouteTable, and the caller is only required to free the whole
buffer if the data is not needed any more.

//***

// EFI_IP4_CONFIG2_POLICY

//***

typedef enum {

 Ip4Config2PolicyStatic,

 Ip4Config2PolicyDhcp,

 Ip4Config2PolicyMax

} EFI_IP4_CONFIG2_POLICY;

Ip4Config2PolicyStatic

Under this policy, the Ip4Config2DataTypeManualAddress,
Ip4Config2DataTypeGateway and
Ip4Config2DataTypeDnsServer configuration data are
required to be set manually. The EFI IPv4 Protocol will get all
required configuration such as IPv4 address, subnet mask and
gateway settings from the EFI IPv4 Configuration II protocol.

Ip4Config2PolicyDhcp

Under this policy, the Ip4Config2DataTypeManualAddress,
Ip4Config2DataTypeGateway and
Ip4Config2DataTypeDnsServer configuration data are not
allowed to set via SetData(). All of these configurations are
retrieved from DHCP server or other auto-configuration
mechanism.

The EFI_IP4_CONFIG2_POLICY defines the general configuration policy the EFI IPv4 Configuration II
Protocol supports. The default policy for a newly detected communication device is beyond the scope of
this document. An implementation might leave it to platform to choose the default policy.

The configuration data of type Ip4Config2DataTypeManualAddress,
Ip4Config2DataTypeGateway and Ip4Config2DataTypeDnsServer will be flushed if the policy is
changed from Ip4Config2PolicyStatic to Ip4Config2PolicyDhcp.
UEFI Forum, Inc. March 2019 1356

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// EFI_IP4_CONFIG2_MANUAL_ADDRESS

//***

typedef struct {

 EFI_IPv4_ADDRESS Address;

 EFI_IPv4_ADDRESS SubnetMask;
} EFI_IP4_CONFIG2_MANUAL_ADDRESS;

Address The IPv4 unicast address.
SubnetMask The subnet mask.

The EFI_IP4_CONFIG2_MANUAL_ADDRESS structure is used to set the station address information for
the EFI IPv4 network stack manually when the policy is Ip4Config2PolicyStatic.

The EFI_IP4_CONFIG2_DATA_TYPE includes current supported data types; this specification allows
future extension to support more data types.

Status Codes Returned

EFI_IP4_CONFIG2_PROTOCOL.GetData()

Summary

Get the configuration data for the EFI IPv4 network stack running on the communication device this EFI
IPv4 Configuration II Protocol instance manages.

EFI_SUCCESS The specified configuration data for the EFI IPv4 network stack is set
successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.
• One or more fields in Data and DataSize do not match the

requirement of the data type indicated by DataType.

EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified configuration
data can not be set under the current policy.

EFI_ACCESS_DENIED Another set operation on the specified configuration data is already in
process.

EFI_NOT_READY An asynchronous process is invoked to set the specified configuration data and
the process is not finished yet.

EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type indicated by

DataType.

EFI_UNSUPPORTED This DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.
UEFI Forum, Inc. March 2019 1357

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG2_GET_DATA) (

 IN EFI_IP4_CONFIG2_PROTOCOL *This,

 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,

 IN OUT UINTN *DataSize,

 IN VOID *Data OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.
DataType The type of data to get. Type EFI_IP4_CONFIG2_DATA_TYPE

is defined in EFI_IP4_CONFIG2_PROTOCOL.SetData().
DataSize On input, in bytes, the size of Data. On output, in bytes, the

size of buffer required to store the specified configuration
data.

Data The data buffer in which the configuration data is returned.
The type of the data buffer is associated with the DataType.
Ignored if DataSize is 0. The various types are defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Description

This function returns the configuration data of type DataType for the EFI IPv4 network stack running on
the communication device this EFI IPv4 Configuration II Protocol instance manages.

The caller is responsible for allocating the buffer used to return the specified configuration data and the
required size will be returned to the caller if the size of the buffer is too small.

EFI_NOT_READY is returned if the specified configuration data is not ready due to an already in progress
asynchronous configuration process. The caller can call RegisterDataNotify() to register an event
on the specified configuration data. Once the asynchronous configuration process is finished, the event
will be signaled and a subsequent GetData() call will return the specified configuration data.
UEFI Forum, Inc. March 2019 1358

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify ()

Summary

Register an event that is to be signaled whenever a configuration process on the specified
configuration data is done.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG2_REGISTER_NOTIFY) (

IN EFI_IP4_CONFIG2_PROTOCOL *This,

IN EFI_IP4_CONFIG2_DATA_TYPE DataType,

 IN EFI_EVENT Event

);

Parameters

This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.
DataType The type of data to unregister the event for. Type

EFI_IP4_CONFIG2_DATA_TYPE is defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Event The event to register.

Description

This function registers an event that is to be signaled whenever a configuration process on the specified
configuration data is done. An event can be registered for different DataType simultaneously and the
caller is responsible for determining which type of configuration data causes the signaling of the event in
such case.

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data and

the required size is returned in DataSize.

EFI_NOT_READY The specified configuration data is not ready due to an already in
progress asynchronous configuration process.

EFI_NOT_FOUND The specified configuration data is not found.
UEFI Forum, Inc. March 2019 1359

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify ()

Summary

Remove a previously registered event for the specified configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP4_CONFIG2_UNREGISTER_NOTIFY) (

 IN EFI_IP4_CONFIG2_PROTOCOL *This,

 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,
 IN EFI_EVENT Event

);

Parameters

This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.
DataType The type of data to remove the previously registered event

for. Type EFI_IP4_CONFIG2_DATA_TYPE is defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Event The event to unregister.

Description

This function removes a previously registered event for the specified configuration data.

Status Codes Returned

28.6 EFI IPv6 Protocol

This section defines the EFI IPv6 (Internet Protocol version 6) Protocol interface. It is split into the
following three main sections:

• EFI IPv6 Service Binding Protocol

• EFI IPv6 Variable

EFI_SUCCESS The notification event for the specified configuration data is registered.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The configuration data type specified by DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The Event is already registered for the DataType.

EFI_SUCCESS The event registered for the specified configuration data is removed.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_NOT_FOUND The Event has not been registered for the specified DataType.
UEFI Forum, Inc. March 2019 1360

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
• EFI IPv6 Protocol

The EFI IPv6 Protocol provides basic network IPv6 packet I/O services, which includes support for
Neighbor Discovery Protocol (ND), Multicast Listener Discovery Protocol (MLD), and a subset of the
Internet Control Message Protocol (ICMPv6).

28.6.1 IPv6 Service Binding Protocol

EFI_IP6_SERVICE_BINDING_PROTOCOL

Summary

The EFI IPv6 Service Binding Protocol is used to locate communication devices that are supported by an
EFI IPv6 Protocol driver and to create and destroy EFI IPv6 Protocol child instances of the IP6 driver that
can use the underlying communications device.

GUID

#define EFI_IP6_SERVICE_BINDING_PROTOCOL _GUID \

 {0xec835dd3,0xfe0f,0x617b,\

 {0xa6,0x21,0xb3,0x50,0xc3,0xe1,0x33,0x88}}

Description

A network application that requires basic IPv6 I/O services can use one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search for devices that publish an EFI IPv6 Service Binding
Protocol GUID. Each device with a published EFI IPv6 Service Binding Protocol GUID supports the EFI IPv6
Protocol and may be available for use.

After a successful call to the EFI_IP6_SERVICE_BINDING_PROTOCOL.CreateChild() function, the
newly created child EFI IPv6 Protocol driver is in an un-configured state; it is not ready to send and
receive data packets.

Before a network application terminates execution, every successful call to the
EFI_IP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_IP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

28.6.2 IPv6 Protocol

EFI_IP6_PROTOCOL

Summary
The EFI IPv6 Protocol implements a simple packet-oriented interface that can be used by drivers,
daemons, and applications to transmit and receive network packets.
UEFI Forum, Inc. March 2019 1361

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GUID

#define EFI_IP6_PROTOCOL_GUID \

 {0x2c8759d5,0x5c2d,0x66ef,\

 {0x92,0x5f,0xb6,0x6c,0x10,0x19,0x57,0xe2}}

Protocol Interface Structure

typedef struct _EFI_IP6_PROTOCOL {

 EFI_IP6_GET_MODE_DATA GetModeData;

 EFI_IP6_CONFIGURE Configure;

 EFI_IP6_GROUPS Groups;

 EFI_IP6_ROUTES Routes;

 EFI_IP6_NEIGHBORS Neighbors;

 EFI_IP6_TRANSMIT Transmit;

 EFI_IP6_RECEIVE Receive;

 EFI_IP6_CANCEL Cancel;

 EFI_IP6_POLL Poll;
} EFI_IP6_PROTOCOL;

Parameters

GetModeData Gets the current operational settings for this instance of the
EFI IPv6 Protocol driver. See the GetModeData() function
description.

Configure Changes or resets the operational settings for the EFI IPv6
Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Adds and deletes routing table entries. See the Routes()
function description.

Neighbors Adds and deletes neighbor cache entries. See the
Neighbors() function description.

Transmit Places outgoing data packets into the transmit queue. See the
Transmit() function description.

Receive Places a receiving request into the receiving queue. See the
Receive() function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_IP6_PROTOCOL defines a set of simple IPv6, and ICMPv6 services that can be used by any
network protocol driver, daemon, or application to transmit and receive IPv6 data packets.
UEFI Forum, Inc. March 2019 1362

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Note: Byte Order: All the IPv6 addresses that are described in EFI_IP6_PROTOCOL are stored in network
byte order. Both incoming and outgoing IP packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_IP6_PROTOCOL.GetModeData()

Summary

Gets the current operational settings for this instance of the EFI IPv6 Protocol driver.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_IP6_GET_MODE_DATA) (

 IN EFI_IP6_PROTOCOL *This,

 OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
Ip6ModeData Pointer to the EFI IPv6 Protocol mode data structure. Type

EFI_IP6_MODE_DATA is defined in "Related Definitions" below.
MnpConfigData Pointer to the managed network configuration data structure.

Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function returns the current operational mode data for this driver instance. The
data fields in EFI_IP6_MODE_DATA are read only. This function is used optionally to retrieve the
operational mode data of underlying networks or drivers.
UEFI Forum, Inc. March 2019 1363

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions

//**

// EFI_IP6_MODE_DATA

//**

typedef struct {

 BOOLEAN IsStarted;

 UINT32 MaxPacketSize;

 EFI_IP6_CONFIG_DATA ConfigData;

 BOOLEAN IsConfigured;

 UINT32 AddressCount;

 EFI_IP6_ADDRESS_INFO *AddressList;

 UINT32 GroupCount;

 EFI_IPv6_ADDRESS *GroupTable;

 UINT32 RouteCount;

 EFI_IP6_ROUTE_TABLE *RouteTable;

 UINT32 NeighborCount;

 EFI_IP6_NEIGHBOR_CACHE *NeighborCache;

 UINT32 PrefixCount;

 EFI_IP6_ADDRESS_INFO *PrefixTable;

 UINT32 IcmpTypeCount;

 EFI_IP6_ICMP_TYPE *IcmpTypeList;
} EFI_IP6_MODE_DATA;

IsStarted

Set to TRUE after this EFI IPv6 Protocol instance is started. All other fields in this
structure are undefined until this field is TRUE. Set to FALSE
when the EFI IPv6 Protocol instance is stopped.

MaxPackeSize The maximum packet size, in bytes, of the packet which the
upper layer driver could feed.

ConfigData Current configuration settings. Undefined until IsStarted is
TRUE. Type EFI_IP6_CONFIG_DATA is defined below.

IsConfigured Set to TRUE when the EFI IPv6 Protocol instance is configured.
The instance is configured when it has a station address and
corresponding prefix length.
Set to FALSE when the EFI IPv6 Protocol instance is not
configured.

AddressCount Number of configured IPv6 addresses on this interface.
AddressList List of currently configured IPv6 addresses and

corresponding prefix lengths assigned to this interface. It is
caller’s responsibility to free this buffer. Type
EFI_IP6_ADDRESS_INFO is defined below.

GroupCount Number of joined multicast groups. Undefined until
IsConfigured is TRUE.
UEFI Forum, Inc. March 2019 1364

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GroupTable List of joined multicast group addresses. It is caller’s
responsibility to free this buffer. Undefined until
IsConfigured is TRUE.

RouteCount Number of entries in the routing table. Undefined until
IsConfigured is TRUE.

RouteTable Routing table entries. It is caller’s responsibility to free this
buffer. Type EFI_IP6_ROUTE_TABLE is defined below.

NeighborCount Number of entries in the neighbor cache. Undefined until
IsConfigured is TRUE.

NeighborCache Neighbor cache entries. It is caller’s responsibility to free this
buffer. Undefined until IsConfigured is TRUE. Type
EFI_IP6_NEIGHBOR_CACHE is defined below.

PrefixCount Number of entries in the prefix table. Undefined until
IsConfigured is TRUE.

PrefixTable On-link Prefix table entries. It is caller’s responsibility to free
this buffer. Undefined until IsConfigured is TRUE. Type
EFI_IP6_ADDRESS_INFO is defined below.

IcmpTypeCount Number of entries in the supported ICMP types list.
IcmpTypeList Array of ICMP types and codes that are supported by this EFI

IPv6 Protocol driver. It is caller’s responsibility to free this
buffer. Type EFI_IP6_ICMP_TYPE is defined below.

//**

// EFI_IP6_CONFIG_DATA

//**

typedef struct {

 UINT8 DefaultProtocol;

 BOOLEAN AcceptAnyProtocol;

 BOOLEAN AcceptIcmpErrors;

 BOOLEAN AcceptPromiscuous;

 EFI_IPv6_ADDRESS DestinationAddress;

 EFI_IPv6_ADDRESS StationAddress;

 UINT8 TrafficClass;

 UINT8 HopLimit;

 UINT32 FlowLabel;

 UINT32 ReceiveTimeout;

 UINT32 TransmitTimeout;
} EFI_IP6_CONFIG_DATA;

DefaultProtocol For the IPv6 packet to send and receive, this is the default
value of the ‘Next Header’ field in the last IPv6 extension
header or in the IPv6 header if there are no extension headers.
Ignored when AcceptPromiscuous is TRUE. An updated list of
protocol numbers can be found at “Links to UEFI-Related
UEFI Forum, Inc. March 2019 1365

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Documents” (http://uefi.org/uefi) under the heading “IANA
Assigned Internet Protocol Numbers”. The following values
are illegal: 0 (IPv6 Hop-by-Hop Option), 1(ICMP), 2(IGMP),
41(IPv6), 43(Routing Header for IPv6), 44(Fragment Header
for IPv6), 59(No Next Header for IPv6), 60(Destination Options
for IPv6), 124(ISIS over IPv4).

AcceptAnyProtocol Set to TRUE to receive all IPv6 packets that get through the
receive filters. 
Set to FALSE to receive only the DefaultProtocol IPv6
packets that get through the receive filters. Ignored when
AcceptPromiscuous is TRUE.

AcceptIcmpErrors Set to TRUE to receive ICMP error report packets. Ignored
when AcceptPromiscuous or AcceptAnyProtocol is TRUE.

AcceptPromiscuous Set to TRUE to receive all IPv6 packets that are sent to any
hardware address or any protocol address. Set to FALSE to
stop receiving all promiscuous IPv6 packets.

DestinationAddress The destination address of the packets that will be
transmitted. Ignored if it is unspecified.

StationAddress The station IPv6 address that will be assigned to this EFI IPv6
Protocol instance. This field can be set and changed only
when the EFI IPv6 driver is transitioning from the stopped to
the started states. If the StationAddress is specified, the EFI
IPv6 Protocol driver will deliver only incoming IPv6 packets
whose destination matches this IPv6 address exactly. The
StationAddress is required to be one of currently configured
IPv6 addresses. An address containing all zeroes is also
accepted as a special case. Under this situation, the IPv6
driver is responsible for binding a source address to this EFI
IPv6 protocol instance according to the source address
selection algorithm. Only incoming packets destined to the
selected address will be delivered to the user. And the
selected station address can be retrieved through later
GetModeData() call. If no address is available for selecting,
EFI_NO_MAPPING will be returned, and the station address will
only be successfully bound to this EFI IPv6 protocol instance
after IP6ModeData.IsConfigured changed to TRUE.

TrafficClass TrafficClass field in transmitted IPv6 packets. Default value
is zero.

HopLimit HopLimit field in transmitted IPv6 packets.
FlowLabel FlowLabel field in transmitted IPv6 packets. Default value is

zero.
ReceiveTimeout The timer timeout value (number of microseconds) for the

receive timeout event to be associated with each assembled
packet. Zero means do not drop assembled packets.

TransmitTimeout The timer timeout value (number of microseconds) for the
transmit timeout event to be associated with each outgoing
packet. Zero means do not drop outgoing packets.
UEFI Forum, Inc. March 2019 1366

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI_IP6_CONFIG_DATA structure is used to report and change IPv6 session parameters.

//**

// EFI_IP6_ADDRESS_INFO //**

typedef struct {

 EFI_IPv6_ADDRESS Address;

 UINT8 PrefixLength;
} EFI_IP6_ADDRESS_INFO;

Address The IPv6 address.
PrefixLength The length of the prefix associated with the Address.

//**

// EFI_IP6_ROUTE_TABLE

//**

typedef struct {

 EFI_IPv6_ADDRESS Gateway;

 EFI_IPv6_ADDRESS Destination;

 UINT8 PrefixLength;
} EFI_IP6_ROUTE_TABLE;

Gateway The IPv6 address of the gateway to be used as the next hop
for packets to this prefix. If the IPv6 address is all zeros, then
the prefix is on-link.

Destination The destination prefix to be routed.
PrefixLength The length of the prefix associated with the Destination.

EFI_IP6_ROUTE_TABLE is the entry structure that is used in routing tables.

//**

// EFI_IP6_NEIGHBOR_CACHE

//**

typedef struct {

 EFI_IPv6_ADDRESS Neighbor;

 EFI_MAC_ADDRESS LinkAddress;

 EFI_IP6_NEIGHBOR_STATE State;
} EFI_IP6_NEIGHBOR_CACHE;

Neighbor The on-link unicast / anycast IP address of the neighbor.
LinkAddress Link-layer address of the neighbor.
UEFI Forum, Inc. March 2019 1367

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
State State of this neighbor cache entry.

EFI_IP6_NEIGHBOR_CACHE is the entry structure that is used in neighbor cache. It records a set of
entries about individual neighbors to which traffic has been sent recently.

//**

// EFI_IP6_NEIGHBOR_STATE

//**

typedef enum {

 EfiNeighborInComplete,

 EfiNeighborReachable,

 EfiNeighborStale,

 EfiNeighborDelay,

 EfiNeighborProbe

} EFI_IP6_NEIGHBOR_STATE;

Following is a description of the fields in the above enumeration.

EfiNeighborInCompleteAddress resolution is being performed on this entry.
Specially, Neighbor Solicitation has been sent to the solicited-
node multicast address of the target, but corresponding
Neighbor Advertisement has not been received.

EfiNeighborReachablePositive confirmation was received that the forward path to
the neighbor was functioning properly.

EfiNeighborStale Reachable Time has elapsed since the last positive
confirmation was received. In this state, the forward path to
the neighbor was functioning properly.

EfiNeighborDelay This state is an optimization that gives upper-layer protocols
additional time to provide reachability confirmation.

EfiNeighborProbe A reachability confirmation is actively sought by
retransmitting Neighbor Solicitations every RetransTimer
milliseconds until a reachability confirmation is received.

//**

// EFI_IP6_ICMP_TYPE

//**

typedef struct {

 UINT8 Type;

 UINT8 Code;
} EFI_IP6_ICMP_TYPE;

Type The type of ICMP message. See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Internet
UEFI Forum, Inc. March 2019 1368

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Control Message Protocol Version 6 (ICMPv6) Parameters” for
the complete list of ICMP message type.

Code The code of the ICMP message, which further describes the
different ICMP message formats under the same Type. See
“Links to UEFI-Related Documents” (http://uefi.org/uefi)
under the heading “Internet Control Message Protocol
Version 6 (ICMPv6) Parameters” for details for code of ICMP
message.

EFI_IP6_ICMP_TYPE is used to describe those ICMP messages that are supported by this EFI IPv6
Protocol driver.
UEFI Forum, Inc. March 2019 1369

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// ICMPv6 type definitions for error messages

//***

#define ICMP_V6_DEST_UNREACHABLE 0x1

#define ICMP_V6_PACKET_TOO_BIG 0x2

#define ICMP_V6_TIME_EXCEEDED 0x3

#define ICMP_V6_PARAMETER_PROBLEM 0x4

//***

// ICMPv6 type definition for informational messages

//***

#define ICMP_V6_ECHO_REQUEST 0x80

#define ICMP_V6_ECHO_REPLY 0x81

#define ICMP_V6_LISTENER_QUERY 0x82

#define ICMP_V6_LISTENER_REPORT 0x83

#define ICMP_V6_LISTENER_DONE 0x84

#define ICMP_V6_ROUTER_SOLICIT 0x85

#define ICMP_V6_ROUTER_ADVERTISE 0x86

#define ICMP_V6_NEIGHBOR_SOLICIT 0x87

#define ICMP_V6_NEIGHBOR_ADVERTISE 0x88

#define ICMP_V6_REDIRECT 0x89

#define ICMP_V6_LISTENER_REPORT_2 0x8F

//***

// ICMPv6 code definitions for ICMP_V6_DEST_UNREACHABLE

//***

#define ICMP_V6_NO_ROUTE_TO_DEST 0x0

#define ICMP_V6_COMM_PROHIBITED 0x1

#define ICMP_V6_BEYOND_SCOPE 0x2

#define ICMP_V6_ADDR_UNREACHABLE 0x3

#define ICMP_V6_PORT_UNREACHABLE 0x4

#define ICMP_V6_SOURCE_ADDR_FAILED 0x5

#define ICMP_V6_ROUTE_REJECTED 0x6

//***

// ICMPv6 code definitions for ICMP_V6_TIME_EXCEEDED

//***

#define ICMP_V6_TIMEOUT_HOP_LIMIT 0x0

#define ICMP_V6_TIMEOUT_REASSEMBLE 0x1

UEFI Forum, Inc. March 2019 1370

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// ICMPv6 code definitions for ICMP_V6_PARAMETER_PROBLEM

//***

#define ICMP_V6_ERRONEOUS_HEADER 0x0

#define ICMP_V6_UNRECOGNIZE_NEXT_HDR 0x1

#define ICMP_V6_UNRECOGNIZE_OPTION 0x2

Status Codes Returned

EFI_IP6_PROTOCOL.Configure()

Summary

Assign IPv6 address and other configuration parameter to this EFI IPv6 Protocol driver instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CONFIGURE) (

 IN EFI_IP6_PROTOCOL *This,

 IN EFI_IP6_CONFIG_DATA *Ip6ConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
Ip6ConfigData Pointer to the EFI IPv6 Protocol configuration data structure.

Type EFI_IP6_CONFIG_DATA is defined in
EFI_IP6_PROTOCOL.GetModeData().

Description

The Configure() function is used to set, change, or reset the operational parameters and filter settings
for this EFI IPv6 Protocol instance. Until these parameters have been set, no network traffic can be sent
or received by this instance. Once the parameters have been reset (by calling this function with
Ip6ConfigData set to NULL), no more traffic can be sent or received until these parameters have been
set again. Each EFI IPv6 Protocol instance can be started and stopped independently of each other by
enabling or disabling their receive filter settings with the Configure() function.

If Ip6ConfigData.StationAddress is a valid non-zero IPv6 unicast address, it is required to be one
of the currently configured IPv6 addresses list in the EFI IPv6 drivers, or else EFI_INVALID_PARAMETER
will be returned. If Ip6ConfigData.StationAddress is unspecified, the IPv6 driver will bind a source
address according to the source address selection algorithm. Clients could frequently call
GetModeData() to check get currently configured IPv6 address list in the EFI IPv6 driver. If both

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
UEFI Forum, Inc. March 2019 1371

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Ip6ConfigData.StationAddress and Ip6ConfigData.Destination are unspecified, when
transmitting the packet afterwards, the source address filled in each outgoing IPv6 packet is decided
based on the destination of this packet.

If operational parameters are reset or changed, any pending transmit and receive requests will be
cancelled. Their completion token status will be set to EFI_ABORTED and their events will be signaled.

Status Codes Returned

EFI_IP6_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_GROUPS) (

 IN EFI_IP6_PROTOCOL *This,

 IN BOOLEAN JoinFlag,

 IN EFI_IPv6_ADDRESS *GroupAddress OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
JoinFlag Set to TRUE to join the multicast group session and FALSE to

leave.

EFI_SUCCESS The driver instance was successfully opened.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Ip6ConfigData.StationAddress is neither zero nor a

unicast IPv6 address.

Ip6ConfigData.StationAddress is neither zero nor one of

the configured IP addresses in the EFI IPv6 driver.

Ip6ConfigData.DefaultProtocol is illegal.

EFI_OUT_OF_RESOURCES The EFI IPv6 Protocol driver instance data could not be allocated.

EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for this
instance, but no source address was available for use.

EFI_ALREADY_STARTED The interface is already open and must be stopped before the IPv6
address or prefix length can be changed.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv6 Protocol
driver instance is not opened.

EFI_UNSUPPORTED Default protocol specified through

Ip6ConfigData.DefaulProtocol isn’t supported.
UEFI Forum, Inc. March 2019 1372

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GroupAddress Pointer to the IPv6 multicast address.

Description

The Groups() function is used to join and leave multicast group sessions. Joining a group will enable
reception of matching multicast packets. Leaving a group will disable reception of matching multicast
packets. Source-Specific Multicast isn’t required to be supported.

If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.

Status Codes Returned

EFI_IP6_PROTOCOL.Routes()

Summary

Adds and deletes routing table entries.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

This is NULL.

JoinFlag is TRUE and GroupAddress is NULL.

GroupAddress is not NULL and *GroupAddress is not a

multicast IPv6 address.

GroupAddress is not NULL and *GroupAddress is in the

range of SSM destination address.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES System resources could not be allocated.

EFI_UNSUPPORTED This EFI IPv6 Protocol implementation does not support multicast
groups.

EFI_ALREADY_STARTED The group address is already in the group table (when JoinFlag is

TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1373

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_ROUTES) (

 IN EFI_IP6_PROTOCOL *This,

 IN BOOLEAN DeleteRoute,

 IN EFI_IPv6_ADDRESS *Destination OPTIONAL,

 IN UINT8 PrefixLength,

 IN EFI_IPv6_ADDRESS *GatewayAddress OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
DeleteRoute Set to TRUE to delete this route from the routing table. Set to

FALSE to add this route to the routing table. Destination,
PrefixLength and Gateway are used as the key to each route
entry.

Destination The address prefix of the subnet that needs to be routed.
PrefixLength The prefix length of Destination. Ignored if Destination is

NULL.
GatewayAddress The unicast gateway IPv6 address for this route.

Description

The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the leftmost PrefixLength bits of Destination with the
destination IPv6 address arithmetically. The gateway address must be on the same subnet as the
configured station address.

The default route is added with Destination and PrefixLegth both set to all zeros. The default route
matches all destination IPv6 addresses that do not match any other routes.

All EFI IPv6 Protocol instances share a routing table.
UEFI Forum, Inc. March 2019 1374

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Note: There is no way to set up routes to other network interface cards because each network interface
card has its own independent network stack that shares information only through the EFI IPv6
variable.

Status Codes Returned

EFI_IP6_PROTOCOL.Neighbors()

Summary

Add or delete Neighbor cache entries.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_NEIGHBORS) (

 IN EFI_IP6_PROTOCOL *This,

 IN BOOLEAN DeleteFlag,

 IN EFI_IPv6_ADDRESS *TargetIp6Address,

 IN EFI_MAC_ADDRESS *TargetLinkAddress OPTIONAL

 IN UINT32 Timeout,

 IN BOOLEAN Override
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
DeleteFlag Set to TRUE to delete the specified cache entry, set to FALSE to

add (or update, if it already exists and Override is TRUE) the
specified cache entry. TargetIp6Address is used as the key
to find the requested cache entry.

TargetIp6Address Pointer to Target IPv6 address.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

When DeleteRoute is TRUE, both Destination and
GatewayAddress are NULL
When DeleteRoute is FALSE, either Destination or
GatewayAddress is NULL
*GatewayAddress is not a valid unicast IPv6 address.

*GatewayAddress is one of the local configured IPv6 addresses.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is TRUE).

EFI_ACCESS_DENIED The route is already defined in the routing table (when DeleteRoute
is FALSE).
UEFI Forum, Inc. March 2019 1375

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
TargetLinkAddress Pointer to link-layer address of the target. Ignored if NULL.
Timeout Time in 100-ns units that this entry will remain in the

neighbor cache, it will be deleted after Timeout. A value of
zero means that the entry is permanent. A non-zero value
means that the entry is dynamic.

Override If TRUE, the cached link-layer address of the matching entry
will be overridden and updated; if FALSE, EFI_ACCESS_DENIED
will be returned if a corresponding cache entry already
existed.

Description

The Neighbors() function is used to add, update, or delete an entry from neighbor cache.

IPv6 neighbor cache entries are typically inserted and updated by the network protocol driver as network
traffic is processed. Most neighbor cache entries will time out and be deleted if the network traffic stops.
Neighbor cache entries that were inserted by Neighbors() may be static (will not timeout) or dynamic
(will time out).

The implementation should follow the neighbor cache timeout mechanism which is defined in RFC4861.
The default neighbor cache timeout value should be tuned for the expected network environment.

Status Codes Returned

EFI_IP6_PROTOCOL.Transmit()

Summary

Places outgoing data packets into the transmit queue.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

TargetIpAddress is NULL.

*TargetLinkAddress is invalid when not NULL.
*TargetIpAddress is not a valid unicast IPv6 address.

*TargetIpAddress is one of the local configured IPv6 addresses.

EFI_OUT_OF_RESOURCES Could not add the entry to the neighbor cache.

EFI_NOT_FOUND This entry is not in the neighbor cache (when DeleteFlag is TRUE

or when DeleteFlag is FALSE while TargetLinkAddress

is NULL.).

EFI_ACCESS_DENIED The to-be-added entry is already defined in the neighbor cache, and that

entry is tagged as un-overridden (when DeleteFlag is FALSE).
UEFI Forum, Inc. March 2019 1376

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_TRANSMIT) (

 IN EFI_IP6_PROTOCOL *This,

 IN EFI_IP6_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
Token Pointer to the transmit token. Type

EFI_IP6_COMPLETION_TOKEN is defined in "Related
Definitions" below.

Description

The Transmit() function places a sending request in the transmit queue of this EFI IPv6 Protocol
instance. Whenever the packet in the token is sent out or some errors occur, the event in the token will
be signaled and the status is updated.

Related Definitions

//**

// EFI_IP6_COMPLETION_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;
 union {

 EFI_IP6_RECEIVE_DATA *RxData;

 EFI_IP6_TRANSMIT_DATA *TxData;

 } Packet;
} EFI_IP6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated by
the EFI IPv6 Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:
EFI_SUCCESS: The receive or transmit completed successfully.
EFI_ABORTED: The receive or transmit was aborted.
EFI_TIMEOUT: The transmit timeout expired.
EFI_ICMP_ERROR: An ICMP error packet was received.
EFI_DEVICE_ERROR: An unexpected system or network error
occurred.
EFI_SECURITY_VIOLATION: The transmit or receive was failed
because of an IPsec policy check.
UEFI Forum, Inc. March 2019 1377

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
RxData

When the Token is used for receiving, RxData is a pointer to the
EFI_IP6_RECEIVE_DATA. Type EFI_IP6_RECEIVE_DATA is
defined below.

TxData

When the Token is used for transmitting, TxData is a pointer to the
EFI_IP6_TRANSMIT_DATA. Type EFI_IP6_TRANSMIT_DATA is defined below.

EFI_IP6_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When the structure is used for transmitting, the Event and TxData fields must be filled in by the EFI
IPv6 Protocol client. After the transmit operation completes, the EFI IPv6 Protocol driver updates the
Status field and the Event is signaled.

When the structure is used for receiving, only the Event field must be filled in by the EFI IPv6 Protocol
client. After a packet is received, the EFI IPv6 Protocol driver fills in the RxData and Status fields and the
Event is signaled

//**

// EFI_IP6_RECEIVE_DATA

//**

typedef struct _EFI_IP6_RECEIVE_DATA {

 EFI_TIME TimeStamp;

 EFI_EVENT RecycleSignal;

 UINT32 HeaderLength;

 EFI_IP6_HEADER *Header;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_IP6_FRAGMENT_DATA FragmentTable[1];
} EFI_IP6_RECEIVE_DATA;

TimeStamp Time when the EFI IPv6 Protocol driver accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported.

RecycleSignal After this event is signaled, the receive data structure is
released and must not be referenced.

HeaderLength Length of the IPv6 packet headers, including both the IPv6
header and any extension headers.

Header Pointer to the IPv6 packet header. If the IPv6 packet was
fragmented, this argument is a pointer to the header in the
first fragment. Type EFI_IP6_HEADER is defined below.

DataLength Sum of the lengths of IPv6 packet buffers in FragmentTable.
May be zero.

FragmentCount Number of IPv6 payload fragments. May be zero.
FragmentTable Array of payload fragment lengths and buffer pointers. Type

EFI_IP6_FRAGMENT_DATA is defined below.
UEFI Forum, Inc. March 2019 1378

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
The EFI IPv6 Protocol receive data structure is filled in when IPv6 packets have been assembled. In the
case of IPv6 packet assembly, the individual packet fragments are only verified and are not reorganized
into a single linear buffer.

The FragmentTable contains a sorted list of zero or more packet fragment descriptors. The refer-

enced packet fragments may not be in contiguous memory locations.

//**

// EFI_IP6_HEADER

//**

#pragma pack(1)

typedef struct _EFI_IP6_HEADER {

 UINT8 TrafficClassH:4;

 UINT8 Version:4;

 UINT8 FlowLabelH:4;

 UINT8 TrafficClassL:4;

 UINT16 FlowLabelL;

 UINT16 PayloadLength;

 UINT8 NextHeader;

 UINT8 HopLimit;

 EFI_IPv6_ADDRESS SourceAddress;

 EFI_IPv6_ADDRESS DestinationAddress;
} EFI_IP6_HEADER;

#pragma pack

The fields in the IPv6 header structure are defined in the Internet Protocol version6 specification,
which can be found at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Internet Protocol version 6 Specification”.

//**

// EFI_IP6_FRAGMENT_DATA

//**

typedef struct _EFI_IP6_FRAGMENT_DATA {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_IP6_FRAGMENT_DATA;

FragmentLength Length of fragment data. This field may not be set to zero.
FragmentBuffer Pointer to fragment data. This field may not be set to NULL.

The EFI_IP6_FRAGMENT_DATA structure describes the location and length of the IPv6 packet fragment
to transmit or that has been received.
UEFI Forum, Inc. March 2019 1379

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IP6_TRANSMIT_DATA

//**

typedef struct _EFI_IP6_TRANSMIT_DATA {

 EFI_IPv6_ADDRESS DestinationAddress;

 EFI_IP6_OVERRIDE_DATA *OverrideData;

 UINT32 ExtHdrsLength;

 VOID *ExtHdrs;

 UINT8 NextHeader;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_IP6_FRAGMENT_DATA FragmentTable[1];
} EFI_IP6_TRANSMIT_DATA;

DestinationAddressThe destination IPv6 address. If it is unspecified,
ConfigData.DestinationAddress will be used instead.

OverrideData If not NULL, the IPv6 transmission control override data. Type
EFI_IP6_OVERRIDE_DATA is defined below.

ExtHdrsLength Total length in byte of the IPv6 extension headers specified in
ExtHdrs

ExtHdrs Pointer to the IPv6 extension headers. The IP layer will
append the required extension headers if they are not
specified by ExtHdrs. Ignored if ExtHdrsLength is zero.

NextHeader The protocol of first extension header in ExtHdrs. Ignored if
ExtHdrsLength is zero.

DataLength Total length in bytes of the FragmentTable data to transmit.
FragmentCount Number of entries in the fragment data table.
FragmentTable Start of the fragment data table. Type

EFI_IP6_FRAGMENT_DATA is defined above.

The EFI_IP6_TRANSMIT_DATA structure describes a possibly fragmented packet to be transmitted.

//**

// EFI_IP6_OVERRIDE_DATA

//**

typedef struct _EFI_IP6_OVERRIDE_DATA {

 UINT8 Protocol;

 UINT8 HopLimit;

 UINT32 FlowLabel;
} EFI_IP6_OVERRIDE_DATA;

Protocol Protocol type override.
HopLimit Hop-Limit override.
UEFI Forum, Inc. March 2019 1380

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
FlowLabel Flow-Label override.

The information and flags in the override data structure will override default parameters or settings for
one Transmit() function call.
UEFI Forum, Inc. March 2019 1381

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for this
transmission, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL

• Token.Packet.TxData is NULL.
• Token.Packet.ExtHdrsLength is not zero and

Token.Packet.ExtHdrs is NULL.

• Token.Packet.FragmentCount is zero.

• One or more of the

Token.Packet.TxData.FragmentTable[].Fragme
ntLength fields is zero.

• One or more of the

Token.Packet.TxData.FragmentTable[].Fragme
ntBuffer fields is NULL.

• Token.Packet.TxData.DataLength is zero or not equal
to the sum of fragment lengths.

• Token.Packet.TxData.DestinationAddress is

non-zero when DestinationAddress is configured as non-

zero when doing Configure() for this EFI IPv6 protocol instance.

• Token.Packet.TxData.DestinationAddress is

unspecified when DestinationAddress is unspecified when

doing Configure() for this EFI IPv6 protocol instance.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event was

already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit queue
is full.

EFI_NOT_FOUND No route was found to destination address.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_BUFFER_TOO_SMALL Token.Packet.TxData.DataLength is too short to

transmit.

EFI_BAD_BUFFER_SIZE If Token.Packet.TxData.DataLength is beyond the

maximum that which can be described through the Fragment Offset field
in Fragment header when performing fragmentation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1382

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_IP6_PROTOCOL.Receive()

Summary

Places a receiving request into the receiving queue.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_IP6_RECEIVE) (

 IN EFI_IP6_PROTOCOL *This,

 IN EFI_IP6_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
Token Pointer to a token that is associated with the receive data

descriptor. Type EFI_IP6_COMPLETION_TOKEN is defined in
"Related Definitions" of above Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The Token.Event field in the completion token must be filled in by the caller and cannot be NULL.
When the receive operation completes, the EFI IPv6 Protocol driver updates the Token.Status
and Token.Packet.RxData fields and the Token.Event is signaled.
UEFI Forum, Inc. March 2019 1383

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP6_PROTOCOL.Cancel()

Summary

Abort an asynchronous transmits or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CANCEL)(

 IN EFI_IP6_PROTOCOL *This,

 IN EFI_IP6_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_PROTOCOL instance.
Token Pointer to a token that has been issued by EFI_IP6_PROTOCOL

.Transmit() or EFI_IP6_PROTOCOL.Receive(). If NULL, all
pending tokens are aborted. Type
EFI_IP6_COMPLETION_TOKEN is defined in
EFI_IP6_PROTOCOL.Transmit().

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.

EFI_NO_MAPPING When IP6 driver responsible for binding source address to this instance, while no
source address is available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI IPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already in the

receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1384

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token->Status will be set to EFI_ABORTED
and then Token->Event will be signaled. If the token is not in one of the queues, which usually means the
asynchronous operation has completed, this function will not signal the token and EFI_NOT_FOUND is
returned.

Status Codes Returned

EFI_IP6_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_POLL) (

 IN EFI_IP6_PROTOCOL *This
);

Description

The Poll() function polls for incoming data packets and processes outgoing data packets. Net-
work drivers and applications can call the EFI_IP6_PROTOCOL.Poll() function to increase the
rate that data packets are moved between the communications device and the transmit and receive
queues.

In some systems the periodic timer event may not poll the underlying communications device fast
enough to transmit and/or receive all data packets without missing incoming packets or dropping
outgoing packets. Drivers and applications that are experiencing packet loss should try calling the
EFI_IP6_PROTOCOL.Poll() function more often.

EFI_SUCCESS The asynchronous I/O request was aborted and Token->Event was

signaled. When Token is NULL, all pending requests were aborted and

their events were signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or was

not issued by Transmit() and Receive().

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1385

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.7 EFI IPv6 Configuration Protocol

This section provides a detailed description of the EFI IPv6 Configuration Protocol.

EFI_IP6_CONFIG_PROTOCOL

Summary

The EFI_IP6_CONFIG_PROTOCOL provides the mechanism to set and get various types of
configurations for the EFI IPv6 network stack.

GUID

#define EFI_IP6_CONFIG_PROTOCOL_GUID \

 {0x937fe521,0x95ae,0x4d1a,\

 {0x89,0x29,0x48,0xbc,0xd9,0x0a,0xd3,0x1a}

Protocol Interface Structure

typedef struct _EFI_IP6_CONFIG_PROTOCOL {

 EFI_IP6_CONFIG_SET_DATA SetData;

 EFI_IP6_CONFIG_GET_DATA GetData;

 EFI_IP6_CONFIG_REGISTER_NOTIF RegisterDataNotify;

 EFI_IP6_CONFIG_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IP6_CONFIG_PROTOCOL;

Parameters

SetData Set the configuration for the EFI IPv6 network stack running
on the communication device this EFI IPv6 Configuration
Protocol instance manages. See the SetData() function
description.

GetData Get the configuration or register an event to monitor the
change of the configuration for the EFI IPv6 network stack
running on the communication device this EFI IPv6
Configuration Protocol instance manages. See the GetData()
function description.

RegiseterDataNotify

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1386

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Register an event that is to be signaled whenever a
configuration process on the specified configuration data is
done.

UnregisterDataNotify

Remove a previously registered event for the specified
configuration data.

Description

The EFI_IP6_CONFIG_PROTOCOL is designed to be the central repository for the common
configurations and the administrator configurable settings for the EFI IPv6 network stack.

An EFI IPv6 Configuration Protocol instance will be installed on each communication device that the EFI
IPv6 network stack runs on.

EFI_IP6_CONFIG_PROTOCOL.SetData()

Summary

Set the configuration for the EFI IPv6 network stack running on the communication device this EFI IPv6
Configuration Protocol instance manages.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CONFIG_SET_DATA) (

 IN EFI_IP6_CONFIG_PROTOCOL *This,

 IN EFI_IP6_CONFIG_DATA_TYPE DataType,

 IN UINTN DataSize,

 IN VOID *Data
);

Parameters

This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
DataType The type of data to set. Type EFI_IP6_CONFIG_DATA_TYPE is

defined in "Related Definitions" below.
DataSize Size of the buffer pointed to by Data in bytes.
Data The data buffer to set. The type of the data buffer is

associated with the DataType. The various types are defined
in "Related Definitions" below.

Description

This function is used to set the configuration data of type DataType for the EFI IPv6 network stack
running on the communication device this EFI IPv6 Configuration Protocol instance manages.

The DataSize is used to calculate the count of structure instances in the Data for some DataType that
multiple structure instances are allowed.
UEFI Forum, Inc. March 2019 1387

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
This function is always non-blocking. When setting some type of configuration data, an asynchronous
process is invoked to check the correctness of the data, such as doing Duplicate Address Detection on the
manually set local IPv6 addresses. EFI_NOT_READY is returned immediately to indicate that such an
asynchronous process is invoked and the process is not finished yet. The caller willing to get the result of
the asynchronous process is required to call RegisterDataNotify() to register an event on the
specified configuration data. Once the event is signaled, the caller can call GetData() to get back the
configuration data in order to know the result. For other types of configuration data that do not require
an asynchronous configuration process, the result of the operation is immediately returned.

Related Definitions

//***

// EFI_IP6_CONFIG_DATA_TYPE

//***

typedef enum {

 Ip6ConfigDataTypeInterfaceInfo,

 Ip6ConfigDataTypeAltInterfaceId,

 Ip6ConfigDataTypePolicy,

 Ip6ConfigDataTypeDupAddrDetectTransmits,

 Ip6ConfigDataTypeManualAddress,

 Ip6ConfigDataTypeGateway,

 Ip6ConfigDataTypeDnsServer,

 Ip6ConfigDataTypeMaximum

} EFI_IP6_CONFIG_DATA_TYPE;

Ip6ConfigDataTypeInterfaceInfoThe interface information of the
communication device this EFI IPv6 Configuration Protocol
instance manages. This type of data is read only. The
corresponding Data is of type
EFI_IP6_CONFIG_INTERFACE_INFO.

Ip6ConfigDataTypeAltInterfaceId The alternative interface ID for the
communication device this EFI IPv6 Configuration Protocol
instance manages if the link local IPv6 address generated
from the interfaced ID based on the default source the EFI
IPv6 Protocol uses is a duplicate address. The length of the
interface ID is 64 bit. The corresponding Data is of type
EFI_IP6_CONFIG_INTERFACE_ID.

Ip6ConfigDataTypePolicyThe general configuration policy for the EFI IPv6
network stack running on the communication device this EFI
IPv6 Configuration Protocol instance manages. The policy will
affect other configuration settings. The corresponding Data is
of type EFI_IP6_CONFIG_POLICY.

Ip6ConfigDataTypeDupAddrDetectTransmits The number of consecutive
Neighbor Solicitation messages sent while performing
Duplicate Address Detection on a tentative address. A value of
zero indicates that Duplicate Address Detection will not be
performed on tentative addresses. The corresponding Data is
of type EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS.
UEFI Forum, Inc. March 2019 1388

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Ip6ConfigDataTypeManualAddress The station addresses set manually for the EFI
IPv6 network stack. It is only configurable when the policy is
Ip6ConfigPolicyManual. The corresponding Data is a
pointer to an array of EFI_IPv6_ADDRESS instances. When
DataSize is 0 and Data is NULL, the existing configuration is
cleared from the EFI IPv6 Configuration Protocol instance.

Ip6ConfigDataTypeGateway The gateway addresses set manually for the EFI IPv6
network stack running on the communication device this EFI
IPv6 Configuration Protocol manages. It is not configurable
when the policy is Ip6ConfigPolicyAutomatic. The gateway
addresses must be unicast IPv6 addresses. The
corresponding Data is a pointer to an array of
EFI_IPv6_ADDRESS instances. When DataSize is 0 and Data
is NULL, the existing configuration is cleared from the EFI IPv6
Configuration Protocol instance.

Ip6ConfigDataTypeDnsServer The DNS server list for the EFI IPv6 network stack
running on the communication device this EFI IPv6
Configuration Protocol manages. It is not configurable when
the policy is Ip6ConfigPolicyAutomatic.The DNS server
addresses must be unicast IPv6 addresses. The
corresponding Data is a pointer to an array of
EFI_IPv6_ADDRESS instances. When DataSize is 0 and Data
is NULL, the existing configuration is cleared from the EFI IPv6
Configuration Protocol instance.

//***

// EFI_IP6_CONFIG_INTERFACE_INFO

//***

typedef struct {

 CHAR16 Name[32];

 UINT8 IfType;

 UINT32 HwAddressSize;

 EFI_MAC_ADDRESS HwAddress;

 UINT32 AddressInfoCount;

 EFI_IP6_ADDRESS_INFO *AddressInfo;

 UINT32 RouteCount;

 EFI_IP6_ROUTE_TABLE *RouteTable;
} EFI_IP6_CONFIG_INTERFACE_INFO;

Name The name of the interface. It is a NULL-terminated string.
IfType The interface type of the network interface. See RFC 3232,

section “Number Hardware Type”.
HwAddressSize The size, in bytes, of the network interface’s hardware

address.
HwAddress The hardware address for the network interface.
AddressInfoCount Number of EFI_IP6_ADDRESS_INFO structures pointed to by

AddressInfo.
UEFI Forum, Inc. March 2019 1389

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
AddressInfo Pointer to an array of EFI_IP6_ADDRESS_INFO instances
which contain the local IPv6 addresses and the corresponding
prefix length information. Set to NULL if AddressInfoCount is
zero. Type EFI_IP6_ADDRESS_INFO is defined in
EFI_IP6_PROTOCOL.GetModeData().

RouteCount Number of route table entries in the following RouteTable.
RouteTable The route table of the IPv6 network stack runs on this

interface. Set to NULL if RouteCount is zero. Type
EFI_IP6_ROUTE_TABLE is defined in
EFI_IP6_PROTOCOL.GetModeData().

The EFI_IP6_CONFIG_INTERFACE_INFO structure describes the operational state of the interface this EFI
IPv6 Configuration Protocol instance manages. This type of data is read-only. When reading, the caller
allocated buffer is used to return all of the data, i.e., the first part of the buffer is
EFI_IP6_CONFIG_INTERFACE_INFO and the followings are the array of EFI_IP6_ADDRESS_INFO and the
route table if present. The caller should NOT free the buffer pointed to by AddressInfo or RouteTable, and
the caller is only required to free the whole buffer if the data is not needed any more.

//***

// EFI_IP6_CONFIG_INTERFACE_ID

//***

typedef struct {

 UINT8 Id[8];
} EFI_IP6_CONFIG_INTERFACE_ID;

The EFI_IP6_CONFIG_INTERFACE_ID structure describes the 64-bit interface ID.

//***

// EFI_IP6_CONFIG_POLICY

//***

typedef enum {

 Ip6ConfigPolicyManual,

 Ip6ConfigPolicyAutomatic

} EFI_IP6_CONFIG_POLICY;

Ip6ConfigPolicyManualUnder this policy, the
IpI6ConfigDataTypeManualAddress,
Ip6ConfigDataTypeGateway and
Ip6ConfigDataTypeDnsServer configuration data are
required to be set manually. The EFI IPv6 Protocol will get all
required configuration such as address, prefix and gateway
settings from the EFI IPv6 Configuration protocol.

Ip6ConfigPolicyAutomaticUnder this policy, the
IpI6ConfigDataTypeManualAddress,
Ip6ConfigDataTypeGateway and
Ip6ConfigDataTypeDnsServer configuration data are not
allowed to set via SetData(). All of these configurations are
retrieved from some auto configuration mechanism. The EFI
UEFI Forum, Inc. March 2019 1390

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
IPv6 Protocol will use the IPv6 stateless address
autoconfiguration mechanism and/or the IPv6 stateful
address autoconfiguration mechanism described in the
related RFCs to get address and other configuration
information.

The EFI_IP6_CONFIG_POLICY defines the general configuration policy the EFI IPv6 Configuration
Protocol supports. The default policy for a newly detected communication device is beyond the scope of
this document. An implementation might leave it to platform to choose the default policy.

The configuration data of type IpI6ConfigDataTypeManualAddress,
Ip6ConfigDataTypeGateway and Ip6ConfigDataTypeDnsServer will be flushed if the policy is
changed from Ip6ConfigPolicyManual to Ip6ConfigPolicyAutomatic.

//***

// EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS

//***

typedef struct {

 UINT32 DupAddrDetectTransmits;
} EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS;

The EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS structure describes the number of
consecutive Neighbor Solicitation messages sent while performing Duplicate Address Detection on a
tentative address. The default value for a newly detected communication device is 1.

//***

// EFI_IP6_CONFIG_MANUAL_ADDRESS

//***

typedef struct {

 EFI_IPv6_ADDRESS Address;

 BOOLEAN IsAnycast;

 UINT8 PrefixLength;
} EFI_IP6_CONFIG_MANUAL_ADDRESS;

Address The IPv6 unicast address.
IsAnycast Set to TRUE if Address is anycast.
PrefixLength The length, in bits, of the prefix associated with this Address.

The EFI_IP6_CONFIG_MANUAL_ADDRESS structure is used to set the station address information
for the EFI IPv6 network stack manually when the policy is Ip6ConfigPolicyManual.
UEFI Forum, Inc. March 2019 1391

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IP6_CONFIG_PROTOCOL.GetData()

Summary

Get the configuration data for the EFI IPv6 network stack running on the communication device this EFI
IPv6 Configuration Protocol instance manages.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CONFIG_GET_DATA) (

 IN EFI_IP6_CONFIG_PROTOCOL *This,

 IN EFI_IP6_CONFIG_DATA_TYPE DataType,

 IN OUT UINTN *DataSize,

 IN VOID *Data OPTIONAL
);

Parameters

This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
DataType The type of data to get. Type EFI_IP6_CONFIG_DATA_TYPE is

defined in EFI_IP6_CONFIG_PROTOCOL.SetData().
DataSize On input, in bytes, the size of Data. On output, in bytes, the

size of buffer required to store the specified configuration
data.

EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack is set
successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.
One or more fields in Data and DataSize do not match the

requirement of the data type indicated by DataType.

EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified
configuration data can not be set under the current policy.

EFI_ACCESS_DENIED Another set operation on the specified configuration data is already in
process.

EFI_NOT_READY An asynchronous process is invoked to set the specified configuration
data and the process is not finished yet.

EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type indicated by

DataType.

EFI_UNSUPPORTED This DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.
UEFI Forum, Inc. March 2019 1392

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Data The data buffer in which the configuration data is returned.
The type of the data buffer is associated with the DataType.
Ignored if DataSize is 0. The various types are defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Description

This function returns the configuration data of type DataType for the EFI IPv6 network stack running on
the communication device this EFI IPv6 Configuration Protocol instance manages.

The caller is responsible for allocating the buffer used to return the specified configuration data and the
required size will be returned to the caller if the size of the buffer is too small.

EFI_NOT_READY is returned if the specified configuration data is not ready due to an already in
progress asynchronous configuration process. The caller can call RegisterDataNotify() to reg-
ister an event on the specified configuration data. Once the asynchronous configuration process is
finished, the event will be signaled and a subsequent GetData() call will return the specified con-
figuration data.

Status Codes Returned

EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify ()

Summary

Register an event that is to be signaled whenever a configuration process on the specified configu-
ration data is done.

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data and

the required size is returned in DataSize.

EFI_NOT_READY The specified configuration data is not ready due to an already in
progress asynchronous configuration process.

EFI_NOT_FOUND The specified configuration data is not found.
UEFI Forum, Inc. March 2019 1393

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CONFIG_REGISTER_NOTIFY) (

 IN EFI_IP6_CONFIG_PROTOCOL *This,

 IN EFI_IP6_CONFIG_DATA_TYPE DataType,

 IN EFI_EVENT Event
);

Parameters

This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
DataType The type of data to unregister the event for. Type

EFI_IP6_CONFIG_DATA_TYPE is defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Event The event to register.

Description

This function registers an event that is to be signaled whenever a configuration process on the specified
configuration data is done. An event can be registered for different DataType simultaneously and the
caller is responsible for determining which type of configuration data causes the signaling of the event in
such case.

Status Codes Returned

EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()

Summary

Remove a previously registered event for the specified configuration data.

EFI_SUCCESS The notification event for the specified configuration data is registered.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The configuration data type specified by DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The Event is already registered for the DataType.
UEFI Forum, Inc. March 2019 1394

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_IP6_CONFIG_UNREGISTER_NOTIFY) (

 IN EFI_IP6_CONFIG_PROTOCOL *This,

 IN EFI_IP6_CONFIG_DATA_TYPE DataType,

 IN EFI_EVENT Event
);

Parameters

This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
DataType The type of data to remove the previously registered event

for. Type EFI_IP6_CONFIG_DATA_TYPE is defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Event The event to unregister.

Description

This function removes a previously registered event for the specified configuration data.

Status Codes Returned

28.8 IPsec

28.8.1 IPsec Overview

IPsec is a framework of open standards that provides data confidentiality, data integrity, data
authentication and replay protection between participating peers. A set of security services is provided
by IPsec for traffic at the IP layer, in both the IPv4 and IPv6 environment. To the stronger, IPV6 requires
IPSec support.

IPsec is documented in a series of Internet RFCs. The overall IPsec architecture and implementation are
guided by “Security Architecture for the Internet Protocol”, RFC 4301.

Two different security protocols – Authentication Header (AH, described in RFC 4302) and Encapsulated
Security Payload (ESP, described in RFC 4303) – are used to provide package-level security for IP
datagram.

This section attempts to capture the generic configuration for an IPsec implementation in an EFI
environment.

EFI_SUCCESS The event registered for the specified configuration data is removed.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_NOT_FOUND The Event has not been registered for the specified Data-
Type.
UEFI Forum, Inc. March 2019 1395

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
28.8.2 EFI IPsec Configuration Protocol

This section provides a detailed description of the EFI IPsec Configuration Protocol. This protocol sets and
obtains the IPsec configuration information.

EFI_IPSEC_CONFIG_PROTOCOL

Summary

The EFI_IPSEC_CONFIG_PROTOCOL provides the mechanism to set and retrieve security and pol-
icy related information for the EFI IPsec protocol driver.

GUID

#define EFI_IPSEC_CONFIG_PROTOCOL_GUID \

 {0xce5e5929,0xc7a3,0x4602,\

 {0xad,0x9e,0xc9,0xda,0xf9,0x4e,0xbf,0xcf}}

Protocol Interface Structure

typedef struct _EFI_IPSEC_CONFIG_PROTOCOL {

 EFI_IPSEC_CONFIG_SET_DATA SetData;

 EFI_IPSEC_CONFIG_GET_DATA GetData;

 EFI_IPSEC_CONFIG_GET_NEXT_SELECTOR GetNextSelector;

 EFI_IPSEC_CONFIG_REGISTER_NOTIFY RegisterDataNotify;

 EFI_IPSEC_CONFIG_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IPSEC_CONFIG_PROTOCOL;

Parameters

SetData Set the configuration and control information for the EFI IPsec
protocol driver. See the SetData() function description.

GetData Look up and retrieve the IPsec configuration data. See the
GetData() function description.

GetNextSelector Enumerates the current IPsec configuration data entry
selector. See the GetNextSelector() function description.

RegiseterNotify
Register an event that is to be signaled whenever a
configuration process on the specified IPsec configuration
data is done.

UnregisterNotify
Remove a registered event for the specified IPsec
configuration data.

Description
The EFI_IPSEC_CONFIG_PROTOCOL provides the ability to set and lookup the IPsec SAD (Security
Association Database), SPD (Security Policy Database) data entry and configure the security association
management protocol such as IKEv2. This protocol is used as the central repository of any policy-specific
configuration for EFI IPsec driver.
UEFI Forum, Inc. March 2019 1396

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_IPSEC_CONFIG_PROTOCOL can be bound to both IPv4 and IPv6 stack. User can use this pro-
tocol for IPsec configuration in both IPv4 and IPv6 environment.

EFI_IPSEC_CONFIG_PROTOCOL.SetData()

Summary

Set the security association, security policy and peer authorization configuration information for the EFI
IPsec driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_CONFIG_SET_DATA) (

 IN EFI_IPSEC_CONFIG_PROTOCOL *This,

 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,

 IN EFI_IPSEC_CONFIG_SELECTOR *Selector,

 IN VOID *Data

 IN EFI_IPSEC_CONFIG_SELECTOR *InsertBefore OPTIONAL
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.
InsertBefore Pointer to one entry selector which describes the expected

position the new data entry will be added. If InsertBefore is
NULL, the new entry will be appended the end of database.

DataType The type of data to be set. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in "Related
Definitions" below.

Selector Pointer to an entry selector on operated configuration data
specified by DataType. A NULL Selector causes the entire
specified-type configuration information to be flushed.

Data The data buffer to be set. The structure of the data buffer is
associated with the DataType. The various types are defined
in "Related Definitions" below.

Description
This function is used to set the IPsec configuration information of type DataType for the EFI IPsec driver.

The IPsec configuration data has a unique selector/identifier separately to identify a data entry. The
selector structure depends on DataType’s definition.

Using SetData() with a Data of NULL causes the IPsec configuration data entry identified by
DataType and Selector to be deleted.
UEFI Forum, Inc. March 2019 1397

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions
//**

// EFI_IPSEC_CONFIG_DATA_TYPE

//**

typedef enum {

 IPsecConfigDataTypeSpd,

 IPsecConfigDataTypeSad,

 IPsecConfigDataTypePad,

 IPsecConfigDataTypeMaximum

} EFI_IPSEC_CONFIG_DATA_TYPE;

IPsecConfigDataTypeSpd
The IPsec Security Policy Database (aka SPD) setting. In IPsec,
an essential element of Security Association (SA) processing is
underlying SPD that specifies what services are to be offered
to IP datagram and in what fashion. The SPD must be
consulted during the processing of all traffic (inbound and
outbound), including traffic not protected by IPsec, that
traverses the IPsec boundary. With this DataType, SetData()
function is to set the SPD entry information, which may add
one new entry, delete one existed entry or flush the whole
database according to the parameter values. The
corresponding Data is of type EFI_IPSEC_SPD_DATA.

IPsecConfigDataTypeSad
The IPsec Security Association Database (aka SAD) setting. A
SA is a simplex connection that affords security services to the
traffic carried by it. Security services are afforded to an SA by
the use of AH, or ESP, but not both. The corresponding Data is
of type EFI_IPSEC_SA_DATA2 or EFI_IPSEC_SAD_DATA.
Compared with EFI_IPSEC_SA_DATA, the
EFI_IPSEC_SA_DATA2 contains the extra Tunnel Source
Address and Tunnel Destination Address thus it is
recommended to be use if the implementation supports
tunnel mode.

IPsecConfigDataTypePad
The IPsec Peer Authorization Database (aka PAD) setting,
which provides the link between the SPD and a security
association management protocol. The PAD entry specifies
the authentication protocol (e.g. IKEv1, IKEv2) method used
and the authentication data. The corresponding Data is of
type EFI_IPSEC_PAD_DATA.
UEFI Forum, Inc. March 2019 1398

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IPSEC_CONFIG_SELECTOR

//**

typedef union {

 EFI_IPSEC_SPD_SELECTOR SpdSelector;

 EFI_IPSEC_SA_ID SaId;

 EFI_IPSEC_PAD_ID PadId;
} EFI_IPSEC_CONFIG_SELECTOR;

The EFI_IPSEC_CONFIG_SELECTOR describes the expected IPsec configuration data selector of
type EFI_IPSEC_CONFIG_DATA_TYPE.

//**

// EFI_IPSEC_SPD_SELECTOR

//**

typedef struct _EFI_IPSEC_SPD_SELECTOR {

 UINT32 LocalAddressCount;

 EFI_IP_ADDRESS_INFO *LocalAddress;

 UINT32 RemoteAddressCount;

 EFI_IP_ADDRESS_INFO *RemoteAddress;

 UINT16 NextLayerProtocol;

 // Several additional selectors depend on the ProtoFamily

 UINT16 LocalPort;

 UINT16 LocalPortRange;

 UINT16 RemotePort;

 UINT16 RemotePortRange;
} EFI_IPSEC_SPD_SELECTOR;

LocalAddressCount Specifies the actual number of entries in LocalAddress.
LocalAddress A list of ranges of IPv4 or IPv6 addresses, which refers to the

addresses being protected by IPsec policy.
RemoteAddressCount

Specifies the actual number of entries in RemoteAddress.
RemoteAddress A list of ranges of IPv4 or IPv6 addresses, which are peer

entities to LocalAddress.
NextLayerProtocol

Next layer protocol. Obtained from the IPv4 Protocol or the
IPv6 Next Header fields. The next layer protocol is whatever
comes after any IP extension headers that are present. A zero
value is a wildcard that matches any value in
NextLayerProtocol field.

LocalPort Local Port if the Next Layer Protocol uses two ports (as do
TCP, UDP, and others). A zero value is a wildcard that matches
any value in LocalPort field.
UEFI Forum, Inc. March 2019 1399

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
LocalPortRange A designed port range size. The start port is LocalPort, and
the total number of ports is described by LocalPortRange.
This field is ignored if NextLayerProtocol does not use
ports.

RemotePort Remote Port if the Next Layer Protocol uses two ports. A zero
value is a wildcard that matches any value in RemotePort field.

RemotePortRange A designed port range size. The start port is RemotePort, and
the total number of ports is described by RemotePortRange.
This field is ignored if NextLayerProtocol does not use
ports.

Note: The LocalPort and RemotePort selectors have different meaning depending on the
NextLayerProtocol field. for example, if NextLayerProtocol value is ICMP, LocalPort
and RemotePort describe the ICMP message type and code. This is described in section 4.4.1.1 of
RFC 4301).

//**

// EFI_IP_ADDRESS_INFO

//**

typedef struct _EFI_IP_ADDRESS_INFO {

 EFI_IP_ADDRESS Address;

 UINT8 PrefixLength;
} EFI_IP_ADDRESS_INFO;

Address The IPv4 or IPv6 address.
PrefixLength The length of the prefix associated with the Address.

#define MAX_PEERID_LEN 128

//**

// EFI_IPSEC_SPD_DATA

//**

typedef struct _EFI_IPSEC_SPD_DATA {

 UINT8 *Name[MAX_PEERID_LEN];

 UINT32 PackageFlag;

 EFI_IPSEC_TRAFFIC_DIR TrafficDirection;

 EFI_IPSEC_ACTION Action;

 EFI_IPSEC_PROCESS_POLICY *ProcessingPolicy;

 UINTN SaIdCount;

 EFI_IPSEC_SA_ID *SaId[1];
} EFI_IPSEC_SPD_DATA;

Name A null-terminated ASCII name string which is used as a
symbolic identifier for an IPsec Local or Remote address. The
Name is optional, and can be NULL.

PackageFlag Bit-mapped list describing Populate from Packet flags. When
creating a SA, if PackageFlag bit is set to TRUE, instantiate
the selector from the corresponding field in the package that
UEFI Forum, Inc. March 2019 1400

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
triggered the creation of the SA, else from the value(s) in the
corresponding SPD entry. The PackageFlag bit setting for
corresponding selector field of EFI_IPSEC_SPD_SELECTOR:
 Bit 0: EFI_IPSEC_SPD_SELECTOR.LocalAddress
 Bit 1: EFI_IPSEC_SPD_SELECTOR.RemoteAddress
 Bit 2: EFI_IPSEC_SPD_SELECTOR.NextLayerProtocol
 Bit 3: EFI_IPSEC_SPD_SELECTOR.LocalPort
 Bit 4: EFI_IPSEC_SPD_SELECTOR.RemotePort
 Others: Reserved.

TrafficDirection
The traffic direction of data gram.

Action Processing choices to indicate which action is required by this
policy.

ProcessingPolicy
The policy and rule information for a SPD entry. The type
EFI_IPSEC_PROCESSPOLICY is defined in below.

SaIdCount Specifies the actual number of entries in SaId list.
SaId Pointer to the SAD entry used for the traffic processing. The

existed SAD entry links indicate this is the manual key case.
//**

// EFI_IPSEC_TRAFFIC_DIR

//**

typedef enum {

 EfiIPsecInBound,

 EfiIPsecOutBound

} EFI_IPSEC_TRAFFIC_DIR;

The EFI_IPSEC_TRAFFIC_DIR represents the directionality in an SPD entry. The EfiIPsecInBound
refers to traffic entering an IPsec implementation via the unprotected interface or emitted by the
implementation on the unprotected side of the boundary and directed towards the protected interface.
The EfiIPsecOutBound refers to traffic entering the implementation via the protected interface, or
emitted by the implementation on the protected side of the boundary and directed toward the
unprotected interface.

//**

// EFI_IPSEC_ACTION

//**

typedef enum {

 EfiIPsecActionDiscard,

 EfiIPsecActionBypass,

 EfiIPsecActionProtect

} EFI_IPSEC_ACTION;

For any inbound or outbound datagram, EFI_IPSEC_ACTION represents three possible processing
choices:
UEFI Forum, Inc. March 2019 1401

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EfiIPsecActionDiscard
Refers to traffic that is not allowed to traverse the IPsec
boundary (in the direction specified by
EFI_IPSEC_TRAFFIC_DIR;

EfiIPsecActionByPass
Refers to traffic that is allowed to cross the IPsec boundary
without protection.

EfiIPsecActionProtect
Refers to traffic that is afforded IPsec protection, and for such
traffic the SPD must specify the security protocols to be
employed, their mode, security service options, and the
cryptographic algorithms to be used.

//***

// EFI_IPSEC_PROCESS_POLICY

//***

typedef struct _EFI_IPSEC_PROCESS_POLICY {

 BOOLEAN ExtSeqNum;

 BOOLEAN SeqOverflow;

 BOOLEAN FragCheck;

 EFI_IPSEC_SA_LIFETIME SaLifetime;

 EFI_IPSEC_MODE Mode;

 EFI_IPSEC_TUNNEL_OPTION *TunnelOption;

 EFI_IPSEC_PROTOCOL_TYPE Proto;

 UINT8 AuthAlgoId;

 UINT8 EncAlgoId;
} EFI_IPSEC_PROCESS_POLICY;

If required action of an SPD entry is EfiIPsecActionProtect, the EFI_IPSEC_PROCESS_POLICY
structure describes a policy list for traffic processing.

ExtSeqNum Extended Sequence Number. Is this SA using extended
sequence numbers. 64 bit counter is used if TRUE.

SeqOverflow A flag indicating whether overflow of the sequence number
counter should generate an auditable event and prevent
transmission of additional packets on the SA, or whether
rollover is permitted.

FragCheck Is this SA using stateful fragment checking. TRUE represents
stateful fragment checking.

SaLifetime A time interval after which a SA must be replaced with a new
SA (and new SPI) or terminated. The type
EFI_IPSEC_SA_LIFETIME is defined in below.

Mode IPsec mode: tunnel or transport
UEFI Forum, Inc. March 2019 1402

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
TunnelOption Tunnel Option. TunnelOption is ignored if Mode is
EfiIPsecTransport. The type EFI_IPSEC_TUNNEL_OPTION is
defined in below

Proto IPsec protocol: AH or ESP
AuthAlgoId Cryptographic algorithm type used for authentication
EncAlgoId Cryptographic algorithm type used for encryption. EncAlgo is

NULL when IPsec protocol is AH. For ESP protocol, EncAlgo
can also be used to describe the algorithm if a combined
mode algorithm is used.

//**

// EFI_IPSEC_SA_LIFETIME

//**

typedef struct _EFI_IPSEC_SA_LIFETIME {

 UINT64 ByteCount;

 UINT64 SoftLifetime;

 UINT64 HardLifetime
} EFI_IPSEC_SA_LIFETIME;

EFI_IPSEC_SA_LIFETIME defines the lifetime of an SA, which represents when a SA must be replaced
or terminated. A value of all 0 for each field removes the limitation of a SA lifetime.

ByteCount The number of bytes to which the IPsec cryptographic
algorithm can be applied. For ESP, this is the encryption
algorithm and for AH, this is the authentication algorithm. The
ByteCount includes pad bytes for cryptographic operations.

SoftLifetime A time interval in second that warns the implementation to
initiate action such as setting up a replacement SA.

HardLifetime A time interval in second when the current SA ends and is
destroyed.

//**

// EFI_IPSEC_MODE

//**

typedef enum {

 EfiIPsecTransport,

 EfiIPsecTunnel

} EFI_IPSEC_MODE;

There are two modes of IPsec operation: transport mode and tunnel mode. In EfiIPsecTransport
mode, AH and ESP provide protection primarily for next layer protocols; In EfiIPsecTunnel mode, AH
and ESP are applied to tunneled IP packets.
UEFI Forum, Inc. March 2019 1403

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
typedef enum {

 EfiIPsecTunnelClearDf,

 EfiIPsecTunnelSetDf,

 EfiIPsecTunnelCopyDf

} EFI_IPSEC_TUNNEL_DF_OPTION;

The option of copying the DF bit from an outbound package to the tunnel mode header that it emits,
when traffic is carried via a tunnel mode SA. This applies to SAs where both inner and outer headers are
IPv4. The value can be:

EfiIPsecTunnelClearDf: Clear DF bit from inner header

EfiIPsecTunnelSetDf: Set DF bit from inner header

EfiIPsecTunnelCopyDf: Copy DF bit from inner header

//***

// EFI_IPSEC_TUNNEL_OPTION

//***

typedef struct _EFI_IPSEC_TUNNEL_OPTION {

 EFI_IP_ADDRESS LocalTunnelAddress;

 EFI_IP_ADDRESS RemoteTunnelAddress;

 EFI_IPSEC_TUNNEL_DF_OPTION DF;
} EFI_IPSEC_TUNNEL_OPTION;

LocalTunnelAddressLocal tunnel address when IPsec mode is EfiIPsecTunnel
RemoteTunnelAddressRemote tunnel address when IPsec mode is

EfiIPsecTunnel

DF The option of copying the DF bit from an outbound package
to the tunnel mode header that it emits, when traffic is carried
via a tunnel mode SA.

//**

// EFI_IPSEC_PROTOCOL_TYPE

//**

typedef enum {

 EfiIPsecAH,

 EfiIPsecESP

} EFI_IPSEC_PROTOCOL_TYPE;

IPsec protocols definition. EfiIPsecAH is the IP Authentication Header protocol which is specified in
RFC 4302. EfiIPsecESP is the IP Encapsulating Security Payload which is specified in RFC 4303.
UEFI Forum, Inc. March 2019 1404

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//***

// EFI_IPSEC_SA_ID

//***

typedef struct _EFI_IPSEC_SA_ID {

 UINT32 Spi;

 EFI_IPSEC_PROTOCOL_TYPE Proto;

 EFI_IP_ADDRESS DestAddress;
} EFI_IPSEC_SA_ID;

A triplet to identify an SA, consisting of the following members:

Spi Security Parameter Index (aka SPI). An arbitrary 32-bit value
that is used by a receiver to identity the SA to which an
incoming package should be bound.

Proto IPsec protocol: AH or ESP
DestAddress Destination IP address.

//***

// EFI_IPSEC_SA_DATA

//***

typedef struct _EFI_IPSEC_SA_DATA {

 EFI_IPSEC_MODE Mode;

 UINT64 SNCount;

 UINT8 AntiReplayWindows;

 EFI_IPSEC_ALGO_INFO AlgoInfo;

 EFI_IPSEC_SA_LIFETIME SaLifetime;

 UINT32 PathMTU;

 EFI_IPSEC_SPD_SELECTOR *SpdSelector;

 BOOLEAN ManualSet
} EFI_IPSEC_SA_DATA;

The data items defined in one SAD entry:

Mode IPsec mode: tunnel or transport
SNCount Sequence Number Counter. A 64-bit counter used to generate

the sequence number field in AH or ESP headers.
ReplayWindows Anti-Replay Window. A 64-bit counter and a bit-map used to

determine whether an inbound AH or ESP packet is a replay.
AlgoInfo AH/ESP cryptographic algorithm, key and parameters.
SaLifeTime Lifetime of this SA.
PathMTU Any observed path MTU and aging variables. The Path MTU

processing is defined in section 8 of RFC 4301.
SpdSelector Link to one SPD entry.
UEFI Forum, Inc. March 2019 1405

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
ManualSet Indication of whether it’s manually set or negotiated
automatically. If ManualSet is FALSE, the corresponding SA
entry is inserted through IKE protocol negotiation

//***

// EFI_IPSEC_SA_DATA2

//***

typedef struct _EFI_IPSEC_SA_DATA2 {

 EFI_IPSEC_MODE Mode;

 UINT64 SNCount;

 UINT8 AntiReplayWindows;

 EFI_IPSEC_ALGO_INFO AlgoInfo;

 EFI_IPSEC_SA_LIFETIME SaLifetime;

 UINT32 PathMTU;

 EFI_IPSEC_SPD_SELECTOR *SpdSelector;

 BOOLEAN ManualSet;

 EFI_IP_ADDRESS TunnelSourceAddress;

 EFI_IP_ADDRESS TunnelDestinationAddress
} EFI_IPSEC_SA_DATA2;

The data items defined in one SAD entry:

Mode IPsec mode: tunnel or transport
SNCount Sequence Number Counter. A 64-bit counter used to generate

the sequence number field in AH or ESP headers.
ReplayWindows Anti-Replay Window. A 64-bit counter and a bit-map used to

determine whether an inbound AH or ESP packet is a replay.
AlgoInfo AH/ESP cryptographic algorithm, key and parameters.
SaLifeTime Lifetime of this SA.
PathMTU Any observed path MTU and aging variables. The Path MTU

processing is defined in section 8 of RFC 4301.
SpdSelector Link to one SPD entry.
ManualSet Indication of whether it's manually set or negotiated

automatically. If ManualSet is FALSE, the corresponding SA
entry is inserted through IKE protocol negotiation

TunnelSourceAddress

The tunnel header IP source address.
TunnelDestinationAddress

The tunnel header IP destination address.
UEFI Forum, Inc. March 2019 1406

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IPSEC_ALGO_INFO

//**

typedef union {

 EFI_IPSEC_AH_ALGO_INFO AhAlgoInfo;

 EFI_IPSEC_ESP_ALGO_INFO EspAlgoInfo;
} EFI_IPSEC_ALGO_INFO;

//**

// EFI_IPSEC_AH_ALGO_INFO

//**

typedef struct _EFI_IPSEC_AH_ALGO_INFO {

 UINT8 AuthAlgoId;

 UINTN KeyLength;

 VOID *Key;
} EFI_IPSEC_AH_ALGO_INFO;

The security algorithm selection for IPsec AH authentication. The required authentication algorithm is
specified in RFC 4305.

//**

// EFI_IPSEC_ESP_ALGO_INFO

//**

typedef struct _EFI_IPSEC_ESP_ALGO_INFO {

 UINT8 EncAlgoId;

 UINTN EncKeyLength;

 VOID *EncKey;

 UINT8 AuthAlgoId;

 UINTN AuthKeyLength;

 VOID *AuthKey;
} EFI_IPSEC_ESP_ALGO_INFO;

The security algorithm selection for IPsec ESP encryption and authentication. The required
authentication algorithm is specified in RFC 4305. EncAlgoId fields can also specify an ESP combined
mode algorithm (e.g. AES with CCM mode, specified in RFC 4309), which provides both confidentiality
and authentication services.
UEFI Forum, Inc. March 2019 1407

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_IPSEC_PAD_ID

//**

typedef struct _EFI_IPSEC_PAD_ID {

 BOOLEAN PeerIdValid;
 union {

 EFI_IP_ADDRESS_INFO IpAddress;

 UINT8 PeerId [MAX_PEERID_LEN];
 } Id;

} EFI_IPSEC_PAD_ID;

The entry selector for IPsec PAD that represents how to authenticate each peer. EFI_IPSEC_PAD_ID
specifies the identifier for PAD entry, which is also used for SPD lookup.

IpAddress Pointer to the IPv4 or IPv6 address range.
PeerId Pointer to a null-terminated ASCII string representing the

symbolic names. A PeerId can be a DNS name, Distinguished
Name, RFC 822 email address or Key ID (specified in section
4.4.3.1 of RFC 4301)

//**

// EFI_IPSEC_PAD_DATA

//**

typedef struct _EFI_IPSEC_PAD_DATA {

 EFI_IPSEC_AUTH_PROTOCOL_TYPE AuthProtocol;

 EFI_IPSEC_AUTH_METHOD AuthMethod;

 BOOLEAN IkeIdFlag;

 UINTN AuthDataSize;

 VOID *AuthData;

 UINTN RevocationDataSize;

 VOID *RevocationData;
} EFI_IPSEC_PAD_DATA;

The data items defined in one PAD entry:

AuthProtocol Authentication Protocol for IPsec security association
management

AuthMethod Authentication method used.
IkeIdFlag The IKE ID payload will be used as a symbolic name for SPD

lookup if IkeIdFlag is TRUE. Otherwise, the remote IP address
provided in traffic selector payloads will be used.

AuthDataSize The size of Authentication data buffer, in bytes.
AuthData Buffer for Authentication data, (e.g., the pre-shared secret or

the trust anchor relative to which the peer's certificate will be
validated).

RevocationDataSize
The size of RevocationData, in bytes.
UEFI Forum, Inc. March 2019 1408

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
RevocationData Pointer to CRL or OCSP data, if certificates are used for
authentication method.

//**

// EFI_IPSEC_AUTH_PROTOCOL

//**

typedef enum {

 EfiIPsecAuthProtocolIKEv1,

 EfiIPsecAuthProtocolIKEv2,

 EfiIPsecAuthProtocolMaximum

} EFI_IPSEC_AUTH_PROTOCOL_TYPE;

EFI_IPSEC_AUTH_PROTOCOL_TYPE defines the possible authentication protocol for IPsec security
association management.

//**

// EFI_IPSEC_AUTH_METHOD

//**

typedef enum {

 EfiIPsecAuthMethodPreSharedSecret,

 EfiIPsecAuthMethodCertificates,

 EfiIPsecAuthMethodMaximum

} EFI_IPSEC_AUTH_METHOD;

EfiIPsecAuthMethodPreSharedScret

Using Pre-shared Keys for manual security associations.

EfiIPsecAuthMethodCertificates

IKE employs X.509 certificates for SA establishment.

Status Codes Returned

EFI_IPSEC_CONFIG_PROTOCOL.GetData()

Summary

Return the configuration value for the EFI IPsec driver.

EFI_SUCCESS The specified configuration entry data is set successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL..

EFI_UNSUPPORTED The specified DataType is not supported.

EFI_OUT_OF_RESOURCES The required system resource could not be allocated.
UEFI Forum, Inc. March 2019 1409

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_CONFIG_GET_DATA) (

 IN EFI_IPSEC_CONFIG_PROTOCOL *This,

 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,

 IN EFI_IPSEC_CONFIG_SELECTOR *Selector,

 IN OUT UINTN *DataSize,

 OUT VOID *Data
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.
DataType The type of data to retrieve. Type

EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData().

Selector Pointer to an entry selector which is an identifier of the IPsec
configuration data entry. Type EFI_IPSEC_CONFIG_SELECTOR
is defined in the EFI_IPSEC_CONFIG_PROTOCOL.SetData()
function description.

DataSize On output the size of data returned in Data.
Data The buffer to return the contents of the IPsec configuration

data. The type of the data buffer is associated with the
DataType.

Description

This function lookup the data entry from IPsec database or IKEv2 configuration information. The
expected data type and unique identification are described in DataType and Selector parameters.
UEFI Forum, Inc. March 2019 1410

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector()

Summary

Enumerates the current selector for IPsec configuration data entry.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_CONFIG_GET_NEXT_SELECTOR) (

 IN EFI_IPSEC_CONFIG_PROTOCOL *This,

 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,

 IN OUT UINTN *SelectorSize,

 IN OUT EFI_IPSEC_CONFIG_SELECTOR *Selector,
);

Parameters

This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.
DataType The type of IPsec configuration data to retrieve. Type

EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData().

SelectorSize The size of the Selector buffer.
Selector On input, supplies the pointer to last Selector that was

returned by GetNextSelector(). On output, returns one copy
of the current entry Selector of a given DataType. Type
EFI_IPSEC_CONFIG_SELECTOR is defined in the
EFI_IPSEC_CONFIG_PROTOCOL.SetData() function
description.

Description

This function is called multiple times to retrieve the entry Selector in IPsec configuration database. On
each call to GetNextSelector(), the next entry Selector are retrieved into the output interface. If
the entire IPsec configuration database has been iterated, the error EFI_NOT_FOUND is returned. If the

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• Selector is NULL.

• DataSize is NULL.

• Data is NULL.

EFI_NOT_FOUND The configuration data specified by Selector is not found.

EFI_UNSUPPORTED The specified DataType is not supported.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has been

updated with the size needed to complete the request.
UEFI Forum, Inc. March 2019 1411

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Selector buffer is too small for the next Selector copy, an EFI_BUFFER_TOO_SMALL error is returned,
and SelectorSize is updated to reflect the size of buffer needed.

On the initial call to GetNextSelector() to start the IPsec configuration database search, a
pointer to the buffer with all zero value is passed in Selector. Calls to SetData() between calls
to GetNextSelector may produce unpredictable results.

Status Codes Returned

EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify ()

Summary
Register an event that is to be signaled whenever a configuration process on the specified IPsec
configuration information is done.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_CONFIG_REGISTER_NOTIFY) (

 IN EFI_IPSEC_CONFIG_PROTOCOL *This,

 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,

 IN EFI_EVENT Event
);

Parameters

This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.
DataType The type of data to be registered the event for. Type

EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData()function
description.

Event The event to be registered.

Description

This function registers an event that is to be signaled whenever a configuration process on the specified
IPsec configuration data is done (e.g. IPsec security policy database configuration is ready). An event can

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• SelectorSize is NULL.

• Selector is NULL.

EFI_NOT_FOUND The next configuration data entry was not found.

EFI_UNSUPPORTED The specified DataType is not supported.

EFI_BUFFER_TOO_SMALL The SelectorSize is too small for the result. This parameter has

been updated with the size needed to complete the search request.
UEFI Forum, Inc. March 2019 1412

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
be registered for different DataType simultaneously and the caller is responsible for determining which
type of configuration data causes the signaling of the event in such case.

Status Codes Returned

EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify ()

Summary

Remove the specified event that is previously registered on the specified IPsec configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_CONFIG_UNREGISTER_NOTIFY) (

 IN EFI_IPSEC_CONFIG_PROTOCOL *This,

 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,

 IN EFI_EVENT Event
);

Parameters

This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

DataType The configuration data type to remove the registered event for.
Type EFI_IPSEC_CONFIG_DATA_TYPE is defined in EFI_IPSEC_-
CONFIG_PROTOCOL.SetData() function description.

Event The event to be unregistered.

Description

This function removes a previously registered event for the specified configuration data.

EFI_SUCCESS The event is registered successfully.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_ACCESS_DENIED The Event is already registered for the DataType.

EFI_UNSUPPORTED The notify registration unsupported or the specified DataType is not

supported.
UEFI Forum, Inc. March 2019 1413

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.8.3 EFI IPsec Protocol

This section provides a detailed description of the EFI_IPSEC_PROTOCOL. This protocol handles IPsec-
protected traffic.

EFI_IPSEC_PROTOCOL

Summary

The EFI_IPSEC_PROTOCOL is used to abstract the ability to deal with the individual packets sent and
received by the host and provide packet-level security for IP datagram.

GUID

#define EFI_IPSEC_PROTOCOL_GUID \

 {0xdfb386f7,0xe100,0x43ad,\

 {0x9c,0x9a,0xed,0x90,0xd0,0x8a,0x5e,0x12 }}

Protocol Interface Structure

typedef struct _EFI_IPSEC_PROTOCOL {

 EFI_IPSEC_PROCESS Process;

 EFI_EVENT DisabledEvent;

 BOOLEAN DisabledFlag;
} EFI_IPSEC_PROTOCOL;

Parameters
Process Handle the IPsec message.
DisabledEvent Event signaled when the interface is disabled.
DisabledFlag State of the interface.

Description
The EFI_IPSEC_PROTOCOL provides the ability for securing IP communications by

authenticating and/or encrypting each IP packet in a data stream.

EFI_IPSEC_PROTOCOL can be consumed by both the IPv4 and IPv6 stack. A user can

EFI_SUCCESS The event is removed successfully.

EFI_NOT_FOUND The Event specified by DataType could not be found in the

database.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The notify registration unsupported or the specified DataType is not

supported.
UEFI Forum, Inc. March 2019 1414

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
employ this protocol for IPsec package handling in both IPv4 and IPv6

environment.

EFI_IPSEC_PROTOCOL.Process()

Summary

Handles IPsec packet processing for inbound and outbound IP packets.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_PROCESS) (

 IN EFI_IPSEC_PROTOCOL *This,

 IN EFI_HANDLE NicHandle,

 IN UINT8 IpVer,

 IN OUT VOID *IpHead,

 IN UINT8 *LastHead,

 IN VOID *OptionsBuffer,

 IN UINT32 OptionsLength,

 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,

 IN UINT32 *FragmentCount,

 IN EFI_IPSEC_TRAFFIC_DIR TrafficDirection,

 OUT EFI_EVENT *RecycleSignal
)

Related definitions

//** 
// EFI_IPSEC_FRAGMENT_DATA //
** 
typedef struct _EFI_IPSEC_FRAGMENT_DATA {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_IPSEC_FRAGMENT_DATA;

EFI_IPSEC_FRAGMENT_DATA defines the instances of packet fragments.


Parameters

This Pointer to the EFI_IPSEC_PROTOCOL instance.
NicHandle Instance of the network interface.

 IpVer IPV4 or IPV6.
IpHead Pointer to the IP Header.
UEFI Forum, Inc. March 2019 1415

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
LastHead The protocol of the next layer to be processed by IPsec.
OptionsBuffer Pointer to the options buffer.
OptionsLength Length of the options buffer.
FragmentTable Pointer to a list of fragments.
FragmentCount Number of fragments.
TrafficDirection Traffic direction.
RecycleSignal Event for recycling of resources.

Description

The EFI_IPSEC_PROCESS process routine handles each inbound or outbound packet. The behavior is
that it can perform one of the following actions: bypass the packet, discard the packet, or protect the
packet.

Status Codes Returned

28.8.4 EFI IPsec2 Protocol

This section provides a detailed description of the EFI_IPSEC2_PROTOCOL. This protocol handles IPsec-

protected traffic.

EFI_IPSEC2_PROTOCOL

 Summary

 The EFI_IPSEC2_PROTOCOL is used to abstract the ability to deal with the individual packets sent and
received by the host and provide packet-level security for IP datagram..

GUID

#define EFI_IPSEC2_PROTOCOL_GUID \

{0xa3979e64, 0xace8, 0x4ddc, \

 {0xbc, 0x07, 0x4d, 0x66, 0xb8, 0xfd, 0x09, 0x77}};

Protocol Interface Structure

typedef struct _EFI_IPSEC2_PROTOCOL {

 EFI_IPSEC_PROCESSEXT ProcessExt;

 EFI_EVENT DisabledEvent;

 BOOLEAN DisabledFlag;
} EFI_IPSEC2_PROTOCOL;

Parameters
ProcessExt Handle the IPsec message with the extension header

processing support.

EFI_SUCCESS The packet was bypassed and all buffers remain the same.

EFI_SUCCESS The packet was protected.

EFI_ACCESS_DENIED The packet was discarded.
UEFI Forum, Inc. March 2019 1416

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
DisabledEvent Event signaled when the interface is disabled.

DisabledFlag State of the interface.

Description

The EFI_IPSEC2_PROTOCOL provides the ability for securing IP communications by authenticating
and/or encrypting each IP packet in a data stream.

EFI_IPSEC2_PROTOCOL can be consumed by both the IPv4 and IPv6 stack. A user can employ this
protocol for IPsec package handling in both IPv4 and IPv6 environment.

EFI_IPSEC2_PROTOCOL.ProcessExt()

Summary

Handles IPsec processing for both inbound and outbound IP packets. Compare with Process() in
EFI_IPSEC_PROTOCOL, this interface has the capability to process Option(Extension Header).

Prototype
Typedef

EFI_STATUS

(EFIAPI *EFI_IPSEC_PROCESSEXT) (

IN EFI_IPSEC2_PROTOCOL *This,

IN EFI_HANDLE NicHandle,

IN UINT8 IpVer,

IN OUT VOID *IpHead,

IN OUT UINT8 *LastHead,

IN OUT VOID **OptionsBuffer,

IN OUT UINT32 *OptionsLength,

IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,

IN OUT UINT32 *FragmentCount,

IN EFI_IPSEC_TRAFFIC_DIR TrafficDirection,

OUT EFI_EVENT *RecycleSignal
)

Parameters
This Pointer to the EFI_IPSEC2_PROTOCOL instance.
NicHandle Instance of the network interface.
IpVer IP version.IPV4 or IPV6.
IpHead Pointer to the IP Header it is either the EFI_IP4_HEADER or

EFI_IP6_HEADER.On input, it contains the IP header. On
output,
1) in tunnel mode and the traffic direction is inbound, the
buffer will be reset to zero by IPsec;
2) in tunnel mode and the traffic direction is outbound, the
buffer will reset to be the tunnel IP header.
UEFI Forum, Inc. March 2019 1417

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
3) in transport mode, the related fielders (like payload length,
Next header) in IP header will be modified according to the
condition.

LastHead For IP4, it is the next protocol in IP header. For IP6 it is the
Next Header of the last extension header.

OptionsBuffer On input, it contains the options (extensions header) to be
processed by IPsec. On output,
1) in tunnel mode and the traffic direction is outbound, it will
be set to NULL, and that means this contents was wrapped
after inner header and should not be concatenated after
tunnel header again;
 2) in transport mode and the traffic direction is inbound, if
there are IP options (extension headers) protected by IPsec,
IPsec will concatenate the those options after the input
options (extension headers);
 3) on other situations, the output of contents of
OptionsBuffer might be same with input’s. The caller should
take the responsibility to free the buffer both on input and on
output.

OptionsLength On input, the input length of the options buffer. On output,
the output length of the options buffer.

FragmentTable Pointer to a list of fragments. On input, these fragments
contain the IP payload. On output,
1) in tunnel mode and the traffic direction is inbound, the
fragments contain the whole IP payload which is from the IP
inner header to the last byte of the packet;
2) in tunnel mode and the traffic direction is the outbound,
the fragments contains the whole encapsulated payload
which encapsulates the whole IP payload between the
encapsulated header and encapsulated trailer fields.
3) in transport mode and the traffic direction is inbound, the
fragments contains the IP payload which is from the next layer
protocol to the last byte of the packet;
4) in transport mode and the traffic direction is outbound, the
fragments contains the whole encapsulated payload which
encapsulates the next layer protocol information between the
encapsulated header and encapsulated trailer fields.

FragmentCount Number of fragments.
TrafficDirection Traffic direction.
RecycleSignal Event for recycling of resources.

Description

The EFI_IPSEC_PROCESSEXT process routine handles each inbound or outbound packet with the
support of options (extension headers) processing. The behavior is that it can perform one of the
following actions: bypass the packet, discard the packet, or protect the packet.
UEFI Forum, Inc. March 2019 1418

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.9 Network Protocol - EFI FTP Protocol

This section defines the EFI FTPv4 (File Transfer Protocol version 4) Protocol that interfaces over EFI
FTPv4 Protocol

EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary

Summary

The EFI_FTP4_SERVICE_BINDING_PROTOCOL is used to locate communication devices that are
supported by an EFI FTPv4 Protocol driver and to create and destroy instances of the EFI FTPv4 Protocol
child protocol driver that can use the underlying communication device.

GUID

#define EFI_FTP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0xfaaecb1, 0x226e, 0x4782,\

 {0xaa, 0xce, 0x7d, 0xb9, 0xbc, 0xbf, 0x4d, 0xaf}}

Description

A network application or driver that requires FTPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI FTPv4 Service
Binding Protocol GUID. Each device with a published EFI FTPv4 Service Binding Protocol GUID supports
the EFI FTPv4 Protocol service and may be available for use.

After a successful call to the EFI_FTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI FTPv4 Protocol driver instance is in an unconfigured state; it is not ready to
transfer data.

Before a network application terminates execution, every successful call to the
EFI_FTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_FTP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Each instance of the EFI FTPv4 Protocol driver can support one file transfer operation at a time. To
download two files at the same time, two instances of the EFI FTPv4 Protocol driver will need to be
created.

EFI_SUCCESS The packet was bypassed and all buffers remain the same.

EFI_SUCCESS The packet was processed by IPsec successfully.

EFI_ACCESS_DENIED The packet was discarded.

EFI_NOT_READY The IKE negotiation is invoked and the packet was
discarded.

EFI_INVALID_PARAMETER One of more of following are TRUE
If OptionsBuffer is NULL;

If OptionsLength is NULL;

If FragmentTable is NULL;

If FragmentCount is NULL;
UEFI Forum, Inc. March 2019 1419

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Note: Byte Order: f not specifically specified, the IP addresses used in the EFI_FTP4_PROTOCOL are in
network byte order and the ports are in host byte order.

EFI_FTP4_PROTOCOL

Summary

The EFI FTPv4 Protocol provides basic services for client-side FTP (File Transfer Protocol) operations.

GUID`

#define EFI_FTP4_PROTOCOL_GUID \

 {0xeb338826, 0x681b, 0x4295,\

 {0xb3, 0x56, 0x2b, 0x36, 0x4c, 0x75, 0x7b, 0x09}}

Protocol Interface Structure

typedef struct _EFI_FTP4_PROTOCOL {

 EFI_FTP4_GET_MODE_DATA GetModeData;

 EFI_FTP4_CONNECT Connect;

 EFI_FTP4_CLOSE Close;

 EFI_FTP4_CONFIGURE Configure;

 EFI_FTP4_READ_FILE ReadFile;

 EFI_FTP4_WRITE_FILE WriteFile;

 EFI_FTP4_READ_DIRECTORY ReadDirectory;

 EFI_FTP4_POLL Poll;
} EFI_FTP4_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData()function description.

Connect Establish control connection with the FTP server by using the
TELNET protocol according to FTP protocol definition. See
the Connect()function description

Close Gracefully disconnecting a FTP control connection This
function is a nonblocking operation. See the Close() function
description.

Configure Sets and clears operational parameters for an FTP child
driver. See the Configure() function description.

ReadFile Downloads a file from an FTPv4 server. See the ReadFile()
function description.

WriteFile Uploads a file to an FTPv4 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

ReadDirectory Download a related file "directory" from an FTPv4 server. This
function may be unsupported in some implementations. See
the ReadDirectory() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.
UEFI Forum, Inc. March 2019 1420

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_FTP4_PROTOCOL.GetModeData()

Summary

Gets the current operational settings

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_GET_MODE_DATA)(

 IN EFI_FTP4_PROTOCOL *This,

 OUT EFI_FTP4_CONFIG_DATA *ModeData
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
ModeData Pointer to storage for the EFI FTPv4 Protocol driver mode

data. Type EFI_FTP4_CONFIG_DATA is defined in "Related
Definitions" below. The string buffers for Username and
Password in EFI_FTP4_CONFIG_DATA are allocated by the
function, and the caller should take the responsibility to free
the buffer later.

Description

The GetModeData() function reads the current operational settings of this EFI FTPv4 Protocol driver
instance. EFI_FTP4_CONFIG_DATA is defined in the EFI_FTP4_PROTOCOL.Configure.

Status Codes Returned

EFI_FTP4_PROTOCOL.Connect()

Summary

Initiate a FTP connection request to establish a control connection with FTP server

EFI_SUCCESS This function is called successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.
ModeData is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1421

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_CONNECT) (

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_CONNECTION_TOKEN *Token
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
Token Pointer to the token used to establish control connection.

Related Definitions

 //***

// EFI_FTP4_CONNECTION_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;
 } EFI_FTP4_CONNECTION_TOKEN;

Event

The Event to signal after the connection is established and Status field is updated
by the EFI FTP v4 Protocol driver. The type of Event must be
EVENT_NOTIFY_SIGNAL, and its Task Priority Level (TPL) must be lower than or
equal to TPL_CALLBACK. If it is set to NULL, this function will not return until the
function completes

Status The variable to receive the result of the completed operation.

Status Codes Returned

EFI_SUCCESS The FTP connection is established successfully.

EFI_ACCESS_DENIED The FTP server denied the access the user's request to access it.

EFI_CONNECTION_RESET The connect fails because the connection is reset either by instance itself
or communication peer.

EFI_TIMEOUT The connection establishment timer expired and no more specific
information is available.

EFI_NETWORK_UNREACHABLE The active open fails because an ICMP network unreachable error is
received.

EFI_HOST_UNREACHABLE The active open fails because an ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE The active open fails because an ICMP protocol unreachable error is
received.

EFI_PORT_UNREACHABLE The connection establishment timer times out and an ICMP port
unreachable error is received.
UEFI Forum, Inc. March 2019 1422

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The Connect() function will initiate a connection request to the remote FTP server with the corresponding
connection token. If this function returns EFI_SUCCESS, the connection sequence is initiated successfully.
If the connection succeeds or failed due to any error, the Token->Event will be signaled and Token-
>Status will be updated accordingly.

Status Codes Returned

EFI_FTP4_PROTOCOL.Close()

Summary

Disconnecting a FTP connection gracefully.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_CLOSE)(

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_CONNECTION_TOKEN *Token
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
Token Pointer to the token used to close control connection.

Description

The Close() function will initiate a close request to the remote FTP server with the corresponding
connection token. If this function returns EFI_SUCCESS, the control connection with the remote FTP
server is closed.

EFI_ICMP_ERROR The connection establishment timer timeout and some other ICMP error is
received.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_SUCCESS The connection sequence is successfully initiated.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

² This is NULL.
² Token is NULL.
² Token->Event is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1423

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_FTP4_PROTOCOL.Configure()

Summary

Sets or clears the operational parameters for the FTP child driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_CONFIGURE) (

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_CONFIG_DATA *FtpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
FtpConfigData Pointer to configuration data that will be assigned to the FTP

child driver instance. If NULL, the FTP child driver instance is
reset to startup defaults and all pending transmit and receive
requests are flushed.

EFI_SUCCESS The close request is successfully initiated.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ConnectionToken is NULL.

• ConnectionToken->Event is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,

RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1424

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Related Definitions

 //***

// EFI_FTP4_CONFIG_DATA

//***

typedef struct {

 UINT8 *Username;

 UINT8 *Password;

 BOOLEAN Active;

 BOOLEAN UseDefaultSetting;

 EFI_IPv4_ADDRESS StationIp;

 EFI_IPv4_ADDRESS SubnetMask;

 EFI_IPv4_ADDRESS GatewayIp;

 EFI_IPv4_ADDRESS ServerIp;

 UINT16 ServerPort;

 UINT16 AltDataPort;

 UINT8 RepType;

 UINT8 FileStruct;

 UINT8 TransMode;
} EFI_FTP4_CONFIG_DATA;

Username Pointer to a ASCII string that contains user name. The caller is
responsible for freeing Username after GetModeData() is
called.

Password Pointer to a ASCII string that contains password. The caller is
responsible for freeing Password after GetModeData() is
called.

Active Set it to TRUE to initiate an active data connection. Set it to
FALSE to initiate a passive data connection.

UseDefaultSetting Boolean value indicating if default network setting used.
StationIp IP address of station if UseDefaultSetting is FALSE.
SubnetMask Subnet mask of station if UseDefaultSetting is FALSE.
GatewayIp IP address of gateway if UseDefaultSetting is FALSE.
ServerIp IP address of FTPv4 server.
ServerPort FTPv4 server port number of control connection, and the

default value is 21 as convention.
ALtDataPort FTPv4 server port number of data connection. If it is zero, use

(ServerPort - 1) by convention.
RepType A byte indicate the representation type. The right 4 bit is used

for first parameter, the left 4 bit is use for second parameter
• For the first parameter, 0x0 = image, 0x1 = EBCDIC, 0x2 = ASCII, 0x3 =

local
• For the second parameter, 0x0 = Non-print, 0x1 = Telnet format

effectors, 0x2 = Carriage Control
UEFI Forum, Inc. March 2019 1425

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
• If it is a local type, the second parameter is the local byte byte size.
• If it is a image type, the second parameter is undefined.

FileStruct Defines the file structure in FTP used. 0x00 = file, 0x01 =
record, 0x02 = page

TransMode Defines the transfer mode used in FTP. 0x00 = stream, 0x01 = Block,
0x02 = Compressed

Description

The Configure() function will configure the connected FTP session with the configuration setting
specified in FtpConfigData. The configuration data can be reset by calling Configure() with
FtpConfigData set to NULL.

Status Codes Returned.

EFI_FTP4_PROTOCOL.ReadFile()

Summary

Downloads a file from an FTPv4 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_READ_FILE)(

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.

EFI_SUCCESS The FTPv4 driver was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• FtpConfigData.RepType is invalid.

• FtpConfigData.FileStruct is invalid.

• FtpConfigData.TransMode is invalid.

• IP address in FtpConfigData is invalid.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
has not finished yet.

EFI_UNSUPPORTED One or more of the configuration parameters are not supported by this
implementation.

EFI_OUT_OF_RESOURCES The EFI FTPv4 Protocol driver instance data could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI FTPv4 Protocol
driver instance is not configured.
UEFI Forum, Inc. March 2019 1426

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Token Pointer to the token structure to provide the parameters that
are used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "Related Definitions" below.

Related Definitions

//***

// EFI_FTP4_COMMAND_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 UINT8 *Pathname;

 UINT64 DataBufferSize;

 VOID *DataBuffer;

 EFI_FTP4_DATA_CALLBACK DataCallback;

 VOID *Context;

 EFI_STATUS Status;
} EFI_FTP4_COMMAND_TOKEN;

Event The Event to signal after request is finished and Status field
is updated by the EFI FTP v4 Protocol driver. The type of
Event must be EVT_NOTIFY_SIGNAL, and its Task Priority
Level (TPL) must be lower than or equal to TPL_CALLBACK. If it
is set to NULL, related function must wait until the function
completes

Pathname Pointer to a null-terminated ASCII name string.
DataBuffersize The size of data buffer in bytes
DataBuffer Pointer to the data buffer. Data downloaded from FTP server

through connection is downloaded here.
DataCallback Pointer to a callback function. If it is receiving function that leads

to inbound data, the callback function is called when
databuffer is full. Then, old data in the data buffer should be
flushed and new data is stored from the beginning of data
buffer. If it is a transmit function that lead to outbound data
and DataBufferSize of Data in DataBuffer has been
transmitted, this callback function is called to supply
additional data to be transmitted. The size of additional data
to be transmitted is indicated in DataBufferSize, again. If
there is no data remained, DataBufferSize should be set to 0

Context Pointer to the parameter for DataCallback.
Status The variable to receive the result of the completed operation.

EFI_SUCCESS

The FTP command is completed successfully.

EFI_ACCESS_DENIED

The FTP server denied the access to the requested file.
UEFI Forum, Inc. March 2019 1427

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_CONNECTION_RESET

The connect fails because the connection is reset either by instance itself or
communication peer.

EFI_TIMEOUT

The connection establishment timer expired and no more specific information is
available.

EFI_NETWORK_UNREACHABLE

The active open fails because an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE

The active open fails because an ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE

The active open fails because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE

The connection establishment timer times out and an ICMP port unreachable error is
received.

EFI_ICMP_ERROR

The connection establishment timer timeout and some other ICMP error is received.

EFI_DEVICE_ERROR

An unexpected system or network error occurred.

Related Definitions

//**

// EFI_FTP4_DATA_CALLBACK

//**

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_DATA_CALLBACK)(

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_COMMAND_TOKEN *Token,
);

This Pointer to the EFI_FTP4_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "Related Definitions" above.

Description

The ReadFile() function is used to initialize and start an FTPv4 download process and optionally wait
for completion. When the download operation completes, whether successfully or not, the
Token.Status field is updated by the EFI FTPv4 Protocol driver and then Token.Event is signaled (if it
is not NULL).
UEFI Forum, Inc. March 2019 1428

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Data will be downloaded from the FTPv4 server into Token.DataBuffer. If the file size is larger than
Token.DataBufferSize, Token.DataCallback will be called to allow for processing data and then
new data will be placed at the beginning of Token.DataBuffer.

 Status Codes Returned

EFI_FTP4_PROTOCOL.WriteFile()

Summary

Uploads a file from an FTPv4 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_WRITE_FILE)(

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "EFI_FTP4_READ_FILE" .

Description

The WriteFile() function is used to initialize and start an FTPv4 upload process and optionally wait for
completion. When the upload operation completes, whether successfully or not, the Token.Status
field is updated by the EFI FTPv4 Protocol driver and then Token.Event is signaled (if it is not NULL).

Data to be uploaded to server is stored into Token.DataBuffer. Token.DataBufferSize is the
number bytes to be transferred. If the file size is larger than Token.DataBufferSize,
Token.DataCallback will be called to allow for processing data and then new data will be placed at

EFI_SUCCESS The data file is being downloaded successfully.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Pathname is NULL.

• Token. DataBuffer is NULL.

• Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1429

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
the beginning of Token.DataBuffer. Token.DataBufferSize is updated to reflect the actual
number of bytes to be transferred. Token.DataBufferSize is set to 0 by the call back to indicate the
completion of data transfer.

Status Codes Returned

EFI_FTP4_PROTOCOL.ReadDirectory()

Summary

Download a data file "directory" from a FTPv4 server. May be unsupported in some EFI implementations.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_READ_DIRECTORY) (

 IN EFI_FTP4_PROTOCOL *This,

 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "EFI_FTP4_READ_FILE" .

Description

The ReadDirectory() function is used to return a list of files on the FTPv4 server that logically (or
operationally) related to Token.Pathname, and optionally wait for completion. When the download
operation completes, whether successfully or not, the Token.Status field is updated by the EFI FTPv4
Protocol driver and then Token.Event is signaled (if it is not NULL).

EFI_SUCCESS The data file is being uploaded successfully.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

This is NULL.

Token is NULL.

Token.Pathname is NULL.

Token. DataBuffer is NULL.

Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) is not
finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1430

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Data will be downloaded from the FTPv4 server into Token.DataBuffer. If the file size is larger than
Token.DataBufferSize, Token.DataCallback will be called to allow for processing data and then
new data will be placed at the beginning of Token.DataBuffer.

Status Codes Returned

EFI_FTP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FTP4_POLL) (

 IN EFI_FTP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_FTP4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

EFI_SUCCESS The file list information is being downloaded successfully.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token. DataBuffer is NULL.

• Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1431

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.10 EFI TLS Protocols

28.10.1 EFI TLS Service Binding Protocol

EFI_TLS_SERVICE_BINDING_PROTOCOL

Summary

The EFI TLS Service Binding Protocol is used to locate EFI TLS Protocol drivers to create and destroy child
of the driver to communicate with other host using TLS protocol.

GUID

#define EFI_TLS_SERVICE_BINDING_PROTOCOL_GUID \

 { \

 0x952cb795, 0xff36, 0x48cf, 0xa2, 0x49, 0x4d, 0xf4, 0x86, 0xd6, 0xab, 0x8d \

}

Description

The TLS consumer need locate EFI_TLS_SERVICE_BINDING_PROTOCOL and call CreateChild() to
create a new child of EFI_TLS_PROTOCOL and EFI_TLS_CONFIGURATION_PROTOCOL instance. Then
use EFI_TLS_CONFIGURATION_PROTOCOL to set TLS configuration data, and use EFI_TLS_PROTOCOL
to start TLS session. After use, the TLS consumer needs to call DestroyChild() to destroy it.

28.10.2 EFI TLS Protocol

EFI_TLS_PROTOCOL

Summary

This protocol provides the ability to manage TLS session.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI FTPv4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1432

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
GUID

#define EFI_TLS_PROTOCOL_GUID \

 { 0xca959f, 0x6cfa, 0x4db1, \

 {0x95, 0xbc, 0xe4, 0x6c, 0x47, 0x51, 0x43, 0x90 }}

Protocol Interface Structure

typedef struct _EFI_TLS_PROTOCOL {

 EFI_TLS_SET_SESSION_DATA SetSessionData;

 EFI_TLS_GET_SESSION_DATA GetSessionData;

 EFI_TLS_BUILD_RESPONSE_PACKET BuildResponsePacket;

 EFI_TLS_PROCESS_PACKET ProcessPacket;
} EFI_TLS_PROTOCOL;

Parameters

SetSessionData Set TLS session data. See the SetSessionData () function
description.

GetSessionData Get TLS session data. See the GetSessionData () function
description.

BuildResponsePacket Build response packet according to TLS state machine. This
function is only valid for alert, handshake and
change_cipher_spec content type. See the
BuildResponsePacket () function description.

ProcessPacket Decrypt or encrypt TLS packet during session. This function is
only valid after session connected and for application_data
content type. See the ProcessPacket () function
description.

Description

The EFI_TLS_PROTOCOL is used to create, destroy and manage TLS session. For detail of TLS, please
refer to TLS related RFC.

EFI_TLS_PROTOCOL.SetSessionData ()

Summary

Set TLS session data.
UEFI Forum, Inc. March 2019 1433

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_SET_SESSION_DATA)(

 IN EFI_TLS_PROTOCOL *This,

 IN EFI_TLS_SESSION_DATA_TYPE DataType,

 IN VOID *Data,

 IN UINTN DataSize
);

Parameters

This Pointer to the EFI_TLS_PROTOCOL instance.
DataType TLS session data type. See EFI_TLS_SESSION_DATA_TYPE
Data Pointer to session data.
DataSize Total size of session data.

Description

The SetSessionData() function set data for a new TLS session. All session data should be set before
BuildResponsePacket() invoked.

Related Definitions

//**

// EFI_TLS_SESSION_DATA_TYPE

//**

typedef enum {

 EfiTlsVersion,

 EfiTlsConnectionEnd,

 EfiTlsCipherList,

 EfiTlsCompressionMethod,

 EfiTlsExtensionData,

 EfiTlsVerifyMethod,

 EfiTlsSessionID,

 EfiTlsSessionState,

 EfiTlsClientRandom,

 EfiTlsServerRandom,

 EfiTlsKeyMaterial,

 EfiTlsVerifyHost,

 EfiTlsSessionDataTypeMaximum

} EFI_TLS_SESSION_DATA_TYPE;

EfiTlsVersion TLS session Version. The corresponding Data is of type
EFI_TLS_VERSION.

EfiTlsConnectionEnd TLS session as client or as server. The corresponding Data is
of EFI_TLS_CONNECTION_END.
UEFI Forum, Inc. March 2019 1434

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EfiTlsCipherList A priority list of preferred algorithms for the TLS session. The
corresponding Data is a list of EFI_TLS_CIPHER.

EfiTlsCompressionMethod

TLS session compression method. The corresponding Data is
of type EFI_TLS_COMPRESSION.

EfiTlsExtensionData TLS session extension data. The corresponding Data is a list
of type EFI_TLS_EXTENDION.

EfiTlsVerifyMethod TLS session verify method. The corresponding Data is of type
EFI_TLS_VERIFY.

EfiTlsSessionID TLS session data session ID. For SetSessionData(), it is TLS
session ID used for session resumption. For
GetSessionData(), it is the TLS session ID used for current
session. The corresponding Data is of type
EFI_TLS_SESSION_ID.

EfiTlsSessionState TLS session data session state. The corresponding Data is of
type EFI_TLS_SESSION_STATE.

EfiTlsClientRandom TLS session data client random. The corresponding Data is of
type EFI_TLS_RANDOM.

EfiTlsServerRandom TLS session data server random. The corresponding Data is of
type EFI_TLS_RANDOM.

EfiTlsKeyMaterial TLS session data key material. The corresponding Data is of
type EFI_TLS_MASTER_SECRET.

EfiTlsVerifyHost TLS session hostname for validation which is used to verify
whether the name within the peer certificate matches a given
host name. This parameter is invalid when
EfiTlsVerifyMethod is EFI_TLS_VERIFY_NONE. The
corresponding Data is of type EFI_TLS_VERIFY_HOST.
UEFI Forum, Inc. March 2019 1435

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_TLS_VERSION

//**

typedef struct {

 UINT8 Major;

 UINT8 Minor;
} EFI_TLS_VERSION;

Note: The TLS version definition is from SSL3.0 to latest TLS (e.g. 1.2). SSL2.0 is obsolete and should not
be used.

//**

// EFI_TLS_CONNECTION_END

//**

typedef enum {

 EfiTlsClient,

 EfiTlsServer,

} EFI_TLS_CONNECTION_END;

TLS connection end is to define TLS session as client or as server.

//**

// EFI_TLS_CIPHER

//**

typedef struct {

 UINT8 Data1;

 UINT8 Data2;
} EFI_TLS_CIPHER;

Note: The definition of EFI_TLS_CIPHER is from RFC 5246 A.4.1.Hello Messages. The value of
EFI_TLS_CIPHER is from TLS Cipher Suite Registry of IANA.
UEFI Forum, Inc. March 2019 1436

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_TLS_COMPRESSION

//**

typedef UINT8 EFI_TLS_COMPRESSION;

Note: The value of EFI_TLS_COMPRESSION definition is from RFC 3749.

//**

// EFI_TLS_EXTENSION

//**

typedef struct {

 UINT16 ExtensionType;

 UINT16 Length;

 UINT8 Data[];
} EFI_TLS_EXTENSION;

Note: The definition of EFI_TLS_EXTENSION is from RFC 5246 A.4.1. Hello Messages.

//**

// EFI_TLS_VERIFY

//**

typedef UINT32 EFI_TLS_VERIFY;

#define EFI_TLS_VERIFY_NONE 0x0

#define EFI_TLS_VERIFY_PEER 0x1

#define EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT 0x2

#define EFI_TLS_VERIFY_CLIENT_ONCE 0x4

The consumer needs to use either EFI_TLS_VERIFY_NONE or EFI_TLS_VERIFY_PEER.
EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT and EFI_TLS_VERIFY_CLIENT_ONCE can be ORed
with EFI_TLS_VERIFY_PEER. EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT is only meaningful in the
server mode, which means the TLS session will fail if the client certificate is absent.
EFI_TLS_VERIFY_CLIENT_ONCE means the TLS session only verifies the client once, and doesn’t
request a certificate during re-negotiation.

//**

// EFI_TLS_VERIFY_HOST

//**

typedef struct {

 EFI_TLS_VERIFY_HOST_FLAG Flags;

 CHAR8 *HostName;

} EFI_TLS_VERIFY_HOST;

Flags The host name validation flags. The flags arguments can be ORed.

HostName The specified host name to be verified.
UEFI Forum, Inc. March 2019 1437

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_TLS_VERIFY_HOST_FLAG

//**

typedef UINT32 EFI_TLS_VERIFY_HOST_FLAG;

#define EFI_TLS_VERIFY_FLAG_NONE 0x00

#define EFI_TLS_VERIFY_FLAG_ALWAYS_CHECK_SUBJECT 0x01

#define EFI_TLS_VERIFY_FLAG_NO_WILDCARDS 0x02

#define EFI_TLS_VERIFY_FLAG_NO_PARTIAL_WILDCARDS 0x04

#define EFI_TLS_VERIFY_FLAG_MULTI_LABEL_WILDCARDS 0x08

#define EFI_TLS_VERIFY_FLAG_SINGLE_LABEL_SUBDOMAINS 0x10

#define EFI_TLS_VERIFY_FLAG_NEVER_CHECK_SUBJECT 0x20

EFI_TLS_VERIFY_FLAG_NONE means no additional flags set for hostname validation.
Wildcards are supported and they match only in the left-most label.

EFI_TLS_VERIFY_FLAG_ALWAYS_CHECK_SUBJECT means to always check the Subject
Distinguished Name (DN) in the peer certificate even if the certificate contains Subject
Alternative Name (SAN).

EFI_TLS_VERIFY_FLAG_NO_WILDCARDS means to disable the match of all wildcards.

EFI_TLS_VERIFY_FLAG_NO_PARTIAL_WILDCARDS means to disable the "*" as wildcard in
labels that have a prefix or suffix (e.g. "www*" or "*www").

EFI_TLS_VERIFY_FLAG_MULTI_LABEL_WILDCARDS allows the "*" to match more than one
labels. Otherwise, only matches a single label.

EFI_TLS_VERIFY_FLAG_SINGLE_LABEL_SUBDOMAINS restricts to only match direct child
sub-domains which start with ".". For example, a name of ".example.com" would match
"www.example.com" with this flag, but would not match "www.sub.example.com".

EFI_TLS_VERIFY_FLAG_NEVER_CHECK_SUBJECT means never check the Subject
Distinguished Name (DN) even there is no Subject Alternative Name (SAN) in the certificate.

If both EFI_TLS_VERIFY_FLAG_ALWAYS_CHECK_SUBJECT and
EFI_TLS_VERIFY_FLAG_NEVER_CHECK_SUBJECT are specified, EFI_INVALID_PARAMETER
will be returned. If EFI_TLS_VERIFY_FLAG_NO_WILDCARDS is set with
EFI_TLS_VERIFY_FLAG_NO_PARTIAL_WILDCARDS or
EFI_TLS_VERIFY_FLAG_MULTI_LABEL_WILDCARDS, EFI_INVALID_PARAMETER will be
returned.

//**

// EFI_TLS_RANDOM

//**

typedef struct {

 UINT32 GmtUnixTime;

 UINT8 RandomBytes[28];
} EFI_TLS_RANDOM;

Note: The definition of EFI_TLS_RANDOM is from RFC 5246 A.4.1. Hello Messages.
UEFI Forum, Inc. March 2019 1438

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
//**

// EFI_TLS_MASTER_SECRET

//**

typedef struct {

 UINT8 Data[48];
} EFI_TLS_MASTER_SECRET;

Note: The definition of EFI_TLS_MASTER_SECRETE is from RFC 5246 8.1. Computing the Master
Secret.

//**

// EFI_TLS_SESSION_ID

//**

#define MAX_TLS_SESSION_ID_LENGTH 32

typedef struct {

 UINT16 Length;

 UINT8 Data[MAX_TLS_SESSION_ID_LENGTH];
} EFI_TLS_SESSION_ID;

Note: The definition of EFI_TLS_SESSION_ID is from RFC 5246 A.4.1. Hello Messages.

//**

// EFI_TLS_SESSION_STATE

//**

Typedef enum {

 EfiTlsSessionNotStarted,

 EfiTlsSessionHandShaking,

 EfiTlsSessionDataTransferring,

 EfiTlsSessionClosing,

 EfiTlsSessionError,

 EfiTlsSessionStateMaximum

} EFI_TLS_SESSION_STATE;

The definition of EFI_TLS_SESSION_STATE is below:

When a new child of TLS protocol is created, the initial state of TLS session is
EfiTlsSessionNotStarted.

The consumer can call BuildResponsePacket() with NULL to get ClientHello to start the TLS session.
Then the status is EfiTlsSessionHandShaking.

During handshake, the consumer need call BuildResponsePacket() with input data from peer, then
get response packet and send to peer. After handshake finish, the TLS session status becomes
EfiTlsSessionDataTransferring, and consume can use ProcessPacket() for data transferring.

Finally, if consumer wants to active close TLS session, consumer need call SetSessionData to set TLS
session state to EfiTlsSessionClosing, and call BuildResponsePacket() with NULL to get
CloseNotify alert message, and sent it out.
UEFI Forum, Inc. March 2019 1439

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
If any error happen during parsing ApplicationData content type, EFI_ABORT will be returned by
ProcessPacket(), and TLS session state will become EfiTlsSessionError. Then consumer need
call BuildResponsePacket() with NULL to get alert message and sent it out.

Status Codes Returned

EFI_TLS_PROTOCOL.GetSessionData ()

Summary

Get TLS session data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_GET_SESSION_DATA)(

IN EFI_TLS_PROTOCOL *This,

 IN EFI_TLS_SESSION_DATA_TYPE DataType,

 IN OUT VOID *Data, OPTIONAL

 IN OUT UINTN *DataSize
);

Parameters

This Pointer to the EFI_TLS_PROTOCOL instance.
DataType TLS session data type. See EFI_TLS_SESSION_DATA_TYPE
Data Pointer to session data.
DataSize Total size of session data. On input, it means the size of Data

buffer. On output, it means the size of copied Data buffer if
EFI_SUCCESS, and means the size of desired Data buffer if
EFI_BUFFER_TOO_SMALL.

EFI_SUCCESS The TLS session data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_ACCESS_DENIED If the DataType is one of below:

• EfiTlsClientRandom

• EfiTlsServerRandom

• EfiTlsKeyMaterial

EFI_NOT_READY Current TLS session state is NOT

EfiTlsSessionStateNotStarted.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1440

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The GetSessionData() function return the TLS session information.

Status Codes Returned

EFI_TLS_PROTOCOL.BuildResponsePacket ()

Summary

Build response packet according to TLS state machine. This function is only valid for alert, handshake and
change_cipher_spec content type.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_BUILD_RESPONSE_PACKET)(

IN EFI_TLS_PROTOCOL *This,

 IN UINT8 *RequestBuffer, OPTIONAL

 IN UINTN RequestSize, OPTIONAL

 OUT UINT8 *Buffer, OPTIONAL

 IN OUT UINTN *BufferSize
);

Parameters

This Pointer to the EFI_TLS_PROTOCOL instance.
RequestBuffer Pointer to the most recently received TLS packet. NULL

means TLS need initiate the TLS session and response packet
need to be ClientHello.

RequestSize Packet size in bytes for the most recently received TLS packet.
0 is only valid when RequestBuffer is NULL.

Buffer Pointer to the buffer to hold the built packet.
BufferSize Pointer to the buffer size in bytes. On input, it is the buffer size

provided by the caller. On output, it is the buffer size in fact
needed to contain the packet.

EFI_SUCCESS The TLS session data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The TLS session data is not found.

EFI_NOT_READY The DataType is not ready in current session state.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the data.
UEFI Forum, Inc. March 2019 1441

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Description

The BuildResponsePacket() function builds TLS response packet in response to the TLS request
packet specified by RequestBuffer and RequestSize. If RequestBuffer is NULL and RequestSize
is 0, and TLS session status is EfiTlsSessionNotStarted, the TLS session will be initiated and the
response packet needs to be ClientHello. If RequestBuffer is NULL and RequestSize is 0, and TLS
session status is EfiTlsSessionClosing, the TLS session will be closed and response packet needs to
be CloseNotify. If RequestBuffer is NULL and RequestSize is 0, and TLS session status is
EfiTlsSessionError, the TLS session has errors and the response packet needs to be Alert message
based on error type.

Status Codes Returned

EFI_TLS_PROTOCOL.ProcessPacket ()

Summary

Decrypt or encrypt TLS packet during session. This function is only valid after session connected and for
application_data content type.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_PROCESS_PACKET)(

 IN EFI_TLS_PROTOCOL *This,

 IN OUT EFI_TLS_FRAGMENT_DATA **FragmentTable,

 IN UINT32 *FragmentCount,

 IN EFI_TLS_CRYPT_MODE CryptMode
);

Parameters

This Pointer to the EFI_TLS_PROTOCOL instance.
FragmentTable Pointer to a list of fragment. The caller will take responsible to

handle the original FragmentTable while it may be
reallocated in TLS driver. If CryptMode is EfiTlsEncrypt, on
input these fragments contain the TLS header and plain text

EFI_SUCCESS The required TLS packet is built successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• RequestBuffer is NULL but RequestSize is NOT 0.

• RequestSize is 0 but RequestBuffer is NOT NULL.

• BufferSize is NULL.

• Buffer is NULL.if *BufferSize is not zero.

EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the response packet.

EFI_NOT_READY Current TLS session state is NOT ready to build ResponsePacket.

EFI_ABORTED Something wrong build response packet.
UEFI Forum, Inc. March 2019 1442

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
TLS APP payload; on output these fragments contain the TLS
header and cypher text TLS APP payload. If CryptMode is
EfiTlsDecrypt, on input these fragments contain the TLS
header and cypher text TLS APP payload; on output these
fragments contain the TLS header and plain text TLS APP
payload.

FragmentCount Number of fragment.
CryptMode Crypt mode.

Description

The ProcessPacket () function process each inbound or outbound TLS APP packet.

Related Definitions

//**

// EFI_TLS_FRAGMENT_DATA

//**

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_TLS_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.
FragmentBuffer Pointer to the data buffer in the fragment.

//**

// EFI_TLS_CRYPT_MODE

//**

typedef enum {

 EfiTlsEncrypt,

 EfiTlsDecrypt,

} EFI_TLS_CRYPT_MODE;

EfiTlsEncrypt Encrypt data provided in the fragment buffers.
EfiTlsDecrypt Decrypt data provided in the fragment buffers.
UEFI Forum, Inc. March 2019 1443

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

28.10.3 EFI TLS Configuration Protocol

EFI_TLS_CONFIGURATION_PROTOCOL

Summary

This protocol provides a way to set and get TLS configuration.

GUID

#define EFI_TLS_CONFIGURATION_PROTOCOL_GUID \

 { 0x1682fe44, 0xbd7a, 0x4407, \

 {0xb7, 0xc7, 0xdc, 0xa3, 0x7c, 0xa3, 0x92, 0x2d }}

Protocol Interface Structure

typedef struct _EFI_TLS_CONFIGURATION_PROTOCOL {

 EFI_TLS_CONFIGURATION_SET_DATA SetData;

 EFI_TLS_CONFIGURATION_GET_DATA GetData;
} EFI_TLS_CONFIGURATION_PROTOCOL;

Parameters

SetData Set TLS configuration data. See the SetData() function
description.

GetData Get TLS configuration data. See the GetData() function
description.

Description

The EFI_TLS_CONFIGURATION_PROTOCOL is designed to provide a way to set and get TLS
configuration, such as Certificate, private key file.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• FragmentTable is NULL.

• FragmentCount is NULL.

• CryptoMode is invalid.

EFI_NOT_READY Current TLS session state is NOT

EfiTlsSessionDataTransferring.

EFI_ABORTED Something wrong decryption the message. TLS session status will

become EfiTlsSessionError. The caller need call

BuildResponsePacket() to generate Error Alert message and

send it out.

EFI_OUT_OF_RESOURCES No enough resource to finish the operation.
UEFI Forum, Inc. March 2019 1444

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
EFI_TLS_CONFIGURATION_PROTOCOL.SetData()

Summary

Set TLS configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_CONFIGURATION_SET_DATA)(

 IN EFI_TLS_CONFIGURATION_PROTOCOL *This,

 IN EFI_TLS_CONFIG_DATA_TYPE DataType,

 IN VOID *Data,

 IN UINTN DataSize
);

Parameters

This Pointer to the EFI_TLS_CONFIGURATION_PROTOCOL instance.
DataType Configuration data type. See EFI_TLS_CONFIG_DATA_TYPE
Data Pointer to configuration data.
DataSize Total size of configuration data.

Description

The SetData() function sets TLS configuration to non-volatile storage or volatile storage.

Related Definitions

//**

// EFI_TLS_CONFIG_DATA_TYPE

//**

typedef enum {

 EfiTlsConfigDataTypeHostPublicCert,

 EfiTlsConfigDataTypeHostPrivateKey,

 EfiTlsConfigDataTypeCACertificate,

 EfiTlsConfigDataTypeCertRevocationList,

 EfiTlsConfigDataTypeMaximum

} EFI_TLS_CONFIG_DATA_TYPE;

EfiTlsConfigDataTypeHostPublicCert

Local host configuration data: public certificate data.This data
should be DER-encoded binary X.509 certificate or PEM-
encoded X.509 certificate.

EfiTlsConfigDataTypeHostPrivateKey

Local host configuration data: private key data.
EfiTlsConfigDataTypeCACertificate
UEFI Forum, Inc. March 2019 1445

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
CA certificate to verify peer. This data should be PEM-
encoded RSA or PKCS#8 private key.

EfiTlsConfigDataTypeCertRevocationList

 CA-supplied Certificate Revocation List data. This data should
be DER-encoded CRL data.

Status Codes Returned

EFI_TLS_CONFIGURATION_PROTOCOL.GetData()

Summary

Get TLS configuration data.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TLS_CONFIGURATION_GET_DATA)(

 IN EFI_TLS_CONFIGURATION_PROTOCOL *This,

 IN EFI_TLS_CONFIG_DATA_TYPE DataType,

 IN OUT VOID *Data, OPTIONAL

 IN OUT UINTN *DataSize
);

Parameters

This Pointer to the EFI_TLS_CONFIGURATION_PROTOCOL instance.
DataType Configuration data type. See EFI_TLS_CONFIG_DATA_TYPE
Data Pointer to configuration data.
DataSize Total size of configuration data. On input, it means the size of

Data buffer. On output, it means the size of copied Data
buffer if EFI_SUCCESS, and means the size of desired Data
buffer if EFI_BUFFER_TOO_SMALL.

Description

The GetData() function gets TLS configuration.

EFI_SUCCESS The TLS configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
UEFI Forum, Inc. March 2019 1446

UEFI Specification, Version 2.8 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
Status Codes Returned

EFI_SUCCESS The TLS configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• DataSize is NULL

• Data is NULL if *DataSize is not zero.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The TLS configuration data is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the data.
UEFI Forum, Inc. March 2019 1447

UEFI Specification, Version 2.8
29 - Network Protocols — ARP, DHCP, DNS, HTTP and REST

29.1 ARP Protocol

This section defines the EFI Address Resolution Protocol (ARP) Protocol interface. It is split into the
following two main sections:

• ARP Service Binding Protocol (ARPSBP)

• ARP Protocol (ARP)

ARP provides a generic implementation of the Address Resolution Protocol that is described in RFCs 826
and 1122. For RFCs can be found see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “IETF” (RFCs 826 and 1122) for details for code of ICMP message..

EFI_ARP_SERVICE_BINDING_PROTOCOL

Summary

The ARPSBP is used to locate communication devices that are supported by an ARP driver and to create
and destroy instances of the ARP child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol functions.
This section discusses the details that are specific to the ARP.

GUID

#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \

 {0xf44c00ee,0x1f2c,0x4a00,\

 {0xaa,0x09,0x1c,0x9f,0x3e,0x08,0x00,0xa3}}

Description

A network application (or driver) that requires network address resolution can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish a ARPSBP
GUID. Each device with a published ARPSBP GUID supports ARP and may be available for use.

After a successful call to the EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild() function, the
child ARP driver instance is in an unconfigured state; it is not ready to resolve addresses.

All child ARP driver instances that are created by one EFI_ARP_SERVICE_BINDING_PROTOCOL
instance will share an ARP cache to improve efficiency.

Before a network application terminates execution, every successful call to the
EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_ARP_SERVICE_BINDING_PROTOCOL.DestroyChild() function.
UEFI Forum, Inc. March 2019 1448

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Note: All the network addresses that are described in EFI_ARP_PROTOCOL are stored in network byte
order. Both incoming and outgoing ARP packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_ARP_PROTOCOL

Summary

ARP is used to resolve local network protocol addresses into network hardware addresses.

GUID

#define EFI_ARP_PROTOCOL_GUID \

 {0xf4b427bb,0xba21,0x4f16,\

 {0xbc,0x4e,0x43,0xe4,0x16,0xab,0x61,0x9c}}

Protocol Interface Structure

typedef struct _EFI_ARP_PROTOCOL {

 EFI_ARP_CONFIGURE Configure;

 EFI_ARP_ADD Add;

 EFI_ARP_FIND Find;

 EFI_ARP_DELETE Delete;

 EFI_ARP_FLUSH Flush;

 EFI_ARP_REQUEST Request;

 EFI_ARP_CANCEL Cancel;

} EFI_ARP_PROTOCOL;

Parameters

Configure Adds a new station address (protocol type and network address) to
the ARP cache. See the Configure() function description.

Add Manually inserts an entry to the ARP cache for administrative
purpose. See the Add() function description.

Find Locates one or more entries in the ARP cache. See the Find()
function description.

Delete Removes an entry from the ARP cache. See the Delete() function
description.

Flush Removes all dynamic ARP cache entries of a specified protocol type.
See the Flush() function description.

Request Starts an ARP request session. See the Request() function
description.

Cancel Abort previous ARP request session. See the Cancel() function
description.

Description

The EFI_ARP_PROTOCOL defines a set of generic ARP services that can be used by any network protocol
driver to resolve subnet local network addresses into hardware addresses. Normally, a periodic timer
event internally sends and receives packets for ARP. But in some systems where the periodic timer is not
UEFI Forum, Inc. March 2019 1449

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
supported, drivers and applications that are experiencing packet loss should try calling the Poll()
function of the EFI Managed Network Protocol frequently.

Note: Add() and Delete() are typically used for administrative purposes, such as denying traffic to
and from a specific remote machine, preventing ARP requests from coming too fast, and
providing static address pairs to save time. Find() is also used to update an existing ARP cache
entry.

EFI_ARP_PROTOCOL.Configure()

Summary

Assigns a station address (protocol type and network address) to this instance of the ARP cache.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_CONFIGURE) (

 IN EFI_ARP_PROTOCOL *This,

 IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

ConfigData A pointer to the EFI_ARP_CONFIG_DATA structure. Type
EFI_ARP_CONFIG_DATA is defined in “Related Definitions” below.

Description

The Configure() function is used to assign a station address to the ARP cache for this instance of the
ARP driver. Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver will respond to
ARP requests that match this registered station address. A call to Configure()with the ConfigData
field set to NULL will reset this ARP instance.

Once a protocol type and station address have been assigned to this ARP instance, all the following ARP
functions will use this information. Attempting to change the protocol type or station address to a
configured ARP instance will result in errors.
UEFI Forum, Inc. March 2019 1450

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definitions

//**

// EFI_ARP_CONFIG_DATA

//**

typedef struct {

 UINT16 SwAddressType;

 UINT8 SwAddressLength;

 VOID *StationAddress;

 UINT32 EntryTimeOut;

 UINT32 RetryCount;

 UINT32 RetryTimeOut;

} EFI_ARP_CONFIG_DATA;

SwAddressType 16-bit protocol type number in host byte order. For more
information see “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “16-bit protocol type numbers”.

SwAddressLength Length in bytes of the station’s protocol address to register.

StationAddress Pointer to the first byte of the protocol address to register. For
example, if SwAddressType is 0x0800 (IP), then StationAddress
points to the first byte of this station’s IP address stored in network
byte order.

EntryTimeOut The timeout value in 100-ns units that is associated with each new
dynamic ARP cache entry. If it is set to zero, the value is
implementation-specific.

RetryCount The number of retries before a MAC address is resolved. If it is set to
zero, the value is implementation-specific.

RetryTimeOut The timeout value in 100-ns units that is used to wait for the ARP
reply packet or the timeout value between two retries. Set to zero to
use implementation-specific value.
UEFI Forum, Inc. March 2019 1451

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_ARP_PROTOCOL.Add()

Summary

Inserts an entry to the ARP cache.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_ADD) (

 IN EFI_ARP_PROTOCOL *This,

 IN BOOLEAN DenyFlag,

 IN VOID *TargetSwAddress OPTIONAL,

 IN VOID *TargetHwAddress OPTIONAL,

 IN UINT32 TimeoutValue,

 IN BOOLEAN Overwrite

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance..

DenyFlag Set to TRUE if this entry is a “deny” entry. Set to FALSE if this entry is
a “normal” entry.

TargetSwAddress Pointer to a protocol address to add (or deny). May be set to NULL if
DenyFlag is TRUE.

TargetHwAddress Pointer to a hardware address to add (or deny). May be set to NULL
if DenyFlag is TRUE.

TimeoutValue Time in 100-ns units that this entry will remain in the ARP cache. A
value of zero means that the entry is permanent. A nonzero value
will override the one given by Configure() if the entry to be
added is dynamic entry.

Overwrite If TRUE, the matching cache entry will be overwritten with the
supplied parameters. If FALSE, EFI_ACCESS_DENIED is returned if
the corresponding cache entry already exists.

EFI_SUCCESS The new station address was successfully registered.

EFI_INVALID_PARAMETER

• One or more of the following conditions is TRUE:

• This is NULL.

• SwAddressLength is zero when ConfigData is not NULL.

• StationAddress is NULL when ConfigData is not NULL.

EFI_ACCESS_DENIED
The SwAddressType, SwAddressLength, or StationAddress

is different from the one that is already registered.

EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be allocated.
UEFI Forum, Inc. March 2019 1452

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Description

The Add() function is used to insert entries into the ARP cache.

ARP cache entries are typically inserted and updated by network protocol drivers as network traffic is
processed. Most ARP cache entries will time out and be deleted if the network traffic stops. ARP cache
entries that were inserted by the Add() function may be static (will not time out) or dynamic (will time
out).

Default ARP cache timeout values are not covered in most network protocol specifications (although RFC
1122 comes pretty close) and will only be discussed in general in this specification. The timeout values
that are used in the EFI Sample Implementation should be used only as a guideline. Final product
implementations of the EFI network stack should be tuned for their expected network environments.

The Add() function can insert the following two types of entries into the ARP cache:

• “Normal” entries

• “Deny” entries

“Normal” entries must have both a TargetSwAddress and TargetHwAddress and are used to resolve
network protocol addresses into network hardware addresses. Entries are keyed by TargetSwAddress.
Each TargetSwAddress can have only one TargetHwAddress. A TargetHwAddress may be referenced by
multiple TargetSwAddress entries.

 “Deny” entries may have a TargetSwAddress or a TargetHwAddress, but not both. These entries tell
the ARP driver to ignore any traffic to and from (and to) these addresses. If a request comes in from an
address that is being denied, then the request is ignored.

If a normal entry to be added matches a deny entry of this driver, Overwrite decides whether to remove
the matching deny entry. On the other hand, an existing normal entry can be removed based on the value
of Overwrite if a deny entry to be added matches the existing normal entry. Two entries are matched
only when they have the same addresses or when one of the normal entry addresses is the same as the
address of a deny entry.
UEFI Forum, Inc. March 2019 1453

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_ARP_PROTOCOL.Find()

Summary

Locates one or more entries in the ARP cache.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_FIND) (

 IN EFI_ARP_PROTOCOL *This,

 IN BOOLEAN BySwAddress,

 IN VOID *AddressBuffer OPTIONAL,

 OUT UINT32 *EntryLength OPTIONAL,

 OUT UINT32 *EntryCount OPTIONAL,

 OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,

 IN BOOLEAN Refresh

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to look for matching software protocol addresses.
Set to FALSE to look for matching hardware protocol addresses.

AddressBuffer Pointer to address buffer. Set to NULL to match all addresses.

EntryLength The size of an entry in the entries buffer. To keep the
EFI_ARP_FIND_DATA structure properly aligned, this field may be
longer than sizeof(EFI_ARP_FIND_DATA) plus the length of the
software and hardware addresses.

EntryCount The number of ARP cache entries that are found by the specified
criteria.

Entries Pointer to the buffer that will receive the ARP cache entries. Type
EFI_ARP_FIND_DATA is defined in “Related Definitions” below.

EFI_SUCCESS The entry has been added or updated.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

This is NULL.

DenyFlag is FALSE and TargetHwAddress is NULL.

DenyFlag is FALSE and TargetSwAddress is NULL.

TargetHwAddress is NULL and TargetSwAddress is NULL.

Both TargetSwAddress and TargetHwAddress are not NULL
when DenyFlag is TRUE.

EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.

EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite is not TRUE.

EFI_NOT_STARTED The ARP driver instance has not been configured.
UEFI Forum, Inc. March 2019 1454

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Refresh Set to TRUE to refresh the timeout value of the matching ARP cache
entry.

Description

The Find() function searches the ARP cache for matching entries and allocates a buffer into which those
entries are copied. The first part of the allocated buffer is EFI_ARP_FIND_DATA, following which are
protocol address pairs and hardware address pairs.

When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer is not NULL), the
ARP cache timeout for the found entry is reset if Refresh is set to TRUE. If the found ARP cache entry is a
permanent entry, it is not affected by Refresh.

Related Definitions
//***

// EFI_ARP_FIND_DATA

//***

typedef struct {

 UINT32 Size;

 BOOLEAN DenyFlag;

 BOOLEAN StaticFlag;

 UINT16 HwAddressType;

 UINT16 SwAddressType;

 UINT8 HwAddressLength;

 UINT8 SwAddressLength;

} EFI_ARP_FIND_DATA;

Size Length in bytes of this entry.

DenyFlag Set to TRUE if this entry is a “deny” entry.
Set to FALSE if this entry is a “normal” entry.

StaticFlag Set to TRUE if this entry will not time out.
Set to FALSE if this entry will time out.

HwAddressType 16-bit ARP hardware identifier number.

SwAddressType 16-bit protocol type number.

HwAddressLength Length of the hardware address.

SwAddressLength Length of the protocol address.
UEFI Forum, Inc. March 2019 1455

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_ARP_PROTOCOL.Delete()

Summary

Removes entries from the ARP cache.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_DELETE) (

 IN EFI_ARP_PROTOCOL *This,

 IN BOOLEAN BySwAddress,

 IN VOID *AddressBuffer OPTIONAL

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware addresses.

AddressBuffer Pointer to the address buffer that is used as a key to look for the
cache entry. Set to NULL to delete all entries.

Description

The Delete() function removes specified ARP cache entries.

Status Codes Returned

EFI_ARP_PROTOCOL.Flush()

Summary

Removes all dynamic ARP cache entries that were added by this interface.

EFI_SUCCESS The requested ARP cache entries were copied into the buffer.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

• This is NULL.

• Both EntryCount and EntryLength are NULL, when Refresh is

FALSE.

EFI_NOT_FOUND No matching entries were found.

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_SUCCESS The entry was removed from the ARP cache.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND The specified deletion key was not found.

EFI_NOT_STARTED The ARP driver instance has not been configured.
UEFI Forum, Inc. March 2019 1456

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_FLUSH) (

 IN EFI_ARP_PROTOCOL *This

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

Description

The Flush() function deletes all dynamic entries from the ARP cache that match the specified software
protocol type.

Status Codes Returned

EFI_ARP_PROTOCOL.Request()

Summary

Starts an ARP request session.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_REQUEST) (

 IN EFI_ARP_PROTOCOL *This,

 IN VOID *TargetSwAddress OPTIONAL,

 IN EFI_EVENT ResolvedEvent OPTIONAL,

 OUT VOID *TargetHwAddress

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance..

TargetSwAddress Pointer to the protocol address to resolve.

ResolvedEvent Pointer to the event that will be signaled when the address is
resolved or some error occurs.

TargetHwAddress Pointer to the buffer for the resolved hardware address in network
byte order. The buffer must be large enough to hold the resulting
hardware address. TargetHwAddress must not be NULL.

EFI_SUCCESS The cache has been flushed.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND There are no matching dynamic cache entries.

EFI_NOT_STARTED The ARP driver instance has not been configured.
UEFI Forum, Inc. March 2019 1457

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Description

The Request() function tries to resolve the TargetSwAddress and optionally returns a
TargetHwAddress if it already exists in the ARP cache.

If the registered SwAddressType (see EFI_ARP_PROTOCOL.Add()) is IPv4 or IPv6 and the
TargetSwAddress is a multicast address, then the TargetSwAddress is resolved using the underlying
EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac() function.

If the TargetSwAddress is NULL, then the network interface hardware broadcast address is returned
immediately in TargetHwAddress.

If the ResolvedEvent is not NULL and the address to be resolved is not in the ARP cache, then the event
will be signaled when the address request completes and the requested hardware address is returned in
the TargetHwAddress. If the timeout expires and the retry count is exceeded or an unexpected error
occurs, the event will be signaled to notify the caller, which should check the TargetHwAddress to see if
the requested hardware address is available. If it is not available, the TargetHwAddress is filled by zero.

If the address to be resolved is already in the ARP cache and resolved, then the event will be signaled
immediately if it is not NULL, and the requested hardware address is also returned in TargetHwAddress.

Status Codes Returned

EFI_ARP_PROTOCOL.Cancel()

Summary

Cancels an ARP request session.

EFI_SUCCESS
The data was copied from the ARP cache into the TargetHwAddress

buffer.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

This is NULL
TargetHwAddress is NULL

EFI_ACCESS_DENIED
The requested address is not present in the normal ARP cache but is
present in the deny address list. Outgoing traffic to that address is
forbidden.

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_READY The request has been started and is not finished.

EFI_UNSUPPORTED
The requested conversion is not supported in this implementation or
configuration.
UEFI Forum, Inc. March 2019 1458

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ARP_CANCEL) (

 IN EFI_ARP_PROTOCOL *This,

 IN VOID *TargetSwAddress OPTIONAL,

 IN EFI_EVENT ResolvedEvent OPTIONAL

);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

TargetSwAddress Pointer to the protocol address in previous request session.

ResolvedEvent Pointer to the event that is used as the notification event in previous
request session.

Description

The Cancel() function aborts the previous ARP request (identified by This, TargetSwAddress and
ResolvedEvent) that is issued by EFI_ARP_PROTOCOL.Request(). If the request is in the internal ARP
request queue, the request is aborted immediately and its ResolvedEvent is signaled. Only an
asynchronous address request needs to be canceled. If TargeSwAddress and ResolveEvent are both
NULL, all the pending asynchronous requests that have been issued by This instance will be cancelled
and their corresponding events will be signaled.

Status Codes Returned

29.2 EFI DHCPv4 Protocol

This section provides a detailed description of the EFI_DHCP4_PROTOCOL and the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL. The EFI DHCPv4 Protocol is used to collect configuration
information for the EFI IPv4 Protocol drivers and to provide DHCPv4 server and PXE boot server discovery
services.

EFI_SUCCESS
The pending request session(s) is/are aborted and corresponding event(s)
is/are signaled.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

• This is NULL.

• TargetSwAddress is not NULL and ResolvedEvent is NULL.

• TargetSwAddress is NULL and ResolvedEvent is not

NULL

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_FOUND The request is not issued by EFI_ARP_PROTOCOL.Request().
UEFI Forum, Inc. March 2019 1459

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI DHCPv4 Service Binding Protocol is used to locate communication devices that are supported by
an EFI DHCPv4 Protocol driver and to create and destroy EFI DHCPv4 Protocol child driver instances that
can use the underlying communications device.

GUID

#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0x9d9a39d8,0xbd42,0x4a73,\

 {0xa4,0xd5,0x8e,0xe9,0x4b,0xe1,0x13,0x80}}

Description

A network application or driver that requires basic DHCPv4 services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI DHCPv4
Service Binding Protocol GUID. Each device with a published EFI DHCPv4 Service Binding Protocol GUID
supports the EFI DHCPv4 Protocol and may be available for use.

After a successful call to the EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created EFI DHCPv4 Protocol child driver instance is ready to be used by a network application
or driver.

Before a network application or driver terminates execution, every successful call to the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_DHCP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_DHCP4_PROTOCOL

Summary

This protocol is used to collect configuration information for the EFI IPv4 Protocol drivers and to provide
DHCPv4 server and PXE boot server discovery services.
UEFI Forum, Inc. March 2019 1460

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GUID

#define EFI_DHCP4_PROTOCOL_GUID \

 {0x8a219718,0x4ef5,0x4761,\

 {0x91,0xc8,0xc0,0xf0,0x4b,0xda,0x9e,0x56}}

Protocol Interface Structure

typedef struct _EFI_DHCP4_PROTOCOL {

 EFI_DHCP4_GET_MODE_DATA GetModeData;

 EFI_DHCP4_CONFIGURE Configure;

 EFI_DHCP4_START Start;

 EFI_DHCP4_RENEW_REBIND RenewRebind;

 EFI_DHCP4_RELEASE Release;

 EFI_DHCP4_STOP Stop;

 EFI_DHCP4_BUILD Build;

 EFI_DHCP4_TRANSMIT_RECEIVE TransmitReceive;

 EFI_DHCP4_PARSE Parse;

} EFI_DHCP4_PROTOCOL;

Parameters

GetModeData Gets the EFI DHCPv4 Protocol driver status and operational data. See
the GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI DHCPv4
Protocol driver. See the Configure() function description.

Start Starts the DHCP configuration process. See the Start() function
description.

RenewRebind Tries to manually extend the lease time by sending a request packet.
See the RenewRebind() function description.

Release Releases the current configuration and returns the EFI DHCPv4
Protocol driver to the initial state. See the Release() function
description.

Stop Stops the DHCP configuration process no matter what state the
driver is in. After being stopped, this driver will not automatically
communicate with the DHCP server. See the Stop() function
description.

Build Puts together a DHCP or PXE packet. See the Build() function
description.

TransmitReceive Transmits a DHCP or PXE packet and waits for response packets. See
the TransmitReceive() function description.

Parse Parses the packed DHCP or PXE option data. See the Parse()
function description.

Description

The EFI_DHCP4_PROTOCOL is used to collect configuration information for the EFI IPv4 Protocol driver
and provide DHCP server and PXE boot server discovery services.
UEFI Forum, Inc. March 2019 1461

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Byte Order Note

All the IPv4 addresses that are described in EFI_DHCP4_PROTOCOL are stored in network byte order.
Both incoming and outgoing DHCP packets are also in network byte order. All other parameters that are
defined in functions or data structures are stored in host byte order

EFI_DHCP4_PROTOCOL.GetModeData()

Summary

Returns the current operating mode and cached data packet for the EFI DHCPv4 Protocol driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_GET_MODE_DATA)(

 IN EFI_DHCP4_PROTOCOL *This,

 OUT EFI_DHCP4_MODE_DATA *Dhcp4ModeData

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Dhcp4ModeData Pointer to storage for the EFI_DHCP4_MODE_DATA structure. Type
EFI_DHCP4_MODE_DATA is defined in “Related Definitions” below.

Description

The GetModeData() function returns the current operating mode and cached data packet for the EFI
DHCPv4 Protocol driver.

Related Definitions

//**

// EFI_DHCP4_MODE_DATA

//**

typedef struct {

 EFI_DHCP4_STATE State;

 EFI_DHCP4_CONFIG_DATA ConfigData;

 EFI_IPv4_ADDRESS ClientAddress;

 EFI_MAC_ADDRESS ClientMacAddress;

 EFI_IPv4_ADDRESS ServerAddress;

 EFI_IPv4_ADDRESS RouterAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT32 LeaseTime;

 EFI_DHCP4_PACKET *ReplyPacket;

} EFI_DHCP4_MODE_DATA;

State The EFI DHCPv4 Protocol driver operating state. Type
EFI_DHCP4_STATE is defined below.
UEFI Forum, Inc. March 2019 1462

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
ConfigData The configuration data of the current EFI DHCPv4 Protocol driver
instance. Type EFI_DHCP4_CONFIG_DATA is defined in
EFI_DHCP4_PROTOCOL.Configure().

ClientAddress The client IP address that was acquired from the DHCP server. If it is
zero, the DHCP acquisition has not completed yet and the following
fields in this structure are undefined.

ClientMacAddress The local hardware address.

ServerAddress The server IP address that is providing the DHCP service to this
client.

RouterAddress The router IP address that was acquired from the DHCP server. May
be zero if the server does not offer this address.

SubnetMask The subnet mask of the connected network that was acquired from
the DHCP server.

LeaseTime The lease time (in 1-second units) of the configured IP address. The
value 0xFFFFFFFF means that the lease time is infinite. A default
lease of 7 days is used if the DHCP server does not provide a value.

ReplyPacket The cached latest DHCPACK or DHCPNAK or BOOTP REPLY packet.
May be NULL if no packet is cached.

The EFI_DHCP4_MODE_DATA structure describes the operational data of the current DHCP procedure.

//**

// EFI_DHCP4_STATE

//**

typedef enum {

 Dhcp4Stopped = 0x0,

 Dhcp4Init = 0x1,

 Dhcp4Selecting = 0x2,

 Dhcp4Requesting = 0x3,

 Dhcp4Bound = 0x4

 Dhcp4Renewing = 0x5,

 Dhcp4Rebinding = 0x6,

 Dhcp4InitReboot = 0x7,

 Dhcp4Rebooting = 0x8

} EFI_DHCP4_STATE;

Table 1 describes the fields in the above enumeration.

Table 1. DHCP4 Enumerations

Field Description

Dhcp4Stopped

The EFI DHCPv4 Protocol driver is stopped and

EFI_DHCP4_PROTOCOL.Configure() needs to be called. The rest of the

EFI_DHCP4_MODE_DATA structure is undefined in this state.
UEFI Forum, Inc. March 2019 1463

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_STATE defines the DHCP operational states that are described in RFC 2131, which can be
obtained at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “RFC 2131”.

A variable number of EFI DHCPv4 Protocol driver instances can coexist but they share the same state
machine. More precisely, each communication device has a separate DHCP state machine if there are
multiple communication devices. Each EFI DHCPv4 Protocol driver instance that is created by the same
EFI DHCPv4 Service Binding Protocol driver instance shares the same state machine. In this document,
when we refer to the state of EFI DHCPv4 Protocol driver, we actually refer to the state of the
communication device from which the current EFI DHCPv4 Protocol Driver instance is created.

Dhcp4Init

The EFI DHCPv4 Protocol driver is inactive and

EFI_DHCP4_PROTOCOL.Start() needs to be called. The rest of the

EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Selecting
The EFI DHCPv4 Protocol driver is collecting DHCP offer packets from DHCP servers. The

rest of the EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Requesting
The EFI DHCPv4 Protocol driver has sent the request to the DHCP server and is waiting

for a response. The rest of the EFI_DHCP4_MODE_DATA structure is undefined in

this state.

Dhcp4Bound
The DHCP configuration has completed. All of the fields in the

EFI_DHCP4_MODE_DATA structure are defined.

Dhcp4Renewing
The DHCP configuration is being renewed and another request has been sent out, but it
has not received a response from the server yet. All of the fields in the

EFI_DHCP4_MODE_DATA structure are available but may change soon.

Dhcp4Rebinding
The DHCP configuration has timed out and the EFI DHCPv4 Protocol driver is trying to

extend the lease time. The rest of the EFI_DHCP4_MODE structure is undefined in

this state.

Dhcp4InitReboot

The EFI DHCPv4 Protocol driver is initialized with a previously allocated or known IP

address. EFI_DHCP4_PROTOCOL.Start() needs to be called to start the

configuration process. The rest of the EFI_DHCP4_MODE_DATA structure is

undefined in this state.

Dhcp4Rebooting
The EFI DHCPv4 Protocol driver is seeking to reuse the previously allocated IP address by

sending a request to the DHCP server. The rest of the EFI_DHCP4_MODE_DATA

structure is undefined in this state.

Field Description
UEFI Forum, Inc. March 2019 1464

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// EFI_DHCP4_PACKET

//***

#pragma pack(1)

typedef struct {

 UINT32 Size;

 UINT32 Length;

 struct{

 EFI_DHCP4_HEADER Header;

 UINT32 Magik;

 UINT8 Option[1];

 } Dhcp4;

} EFI_DHCP4_PACKET;

#pragma pack()

Size Size of the EFI_DHCP4_PACKET buffer.

Length Length of the EFI_DHCP4_PACKET from the first byte of the Header
field to the last byte of the Option[] field.

Header DHCP packet header.

Magik DHCP magik cookie in network byte order.

Option Start of the DHCP packed option data.

EFI_DHCP4_PACKET defines the format of DHCPv4 packets. See RFC 2131 for more information.

Status Codes Returned

EFI_DHCP4_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the operational settings for the EFI DHCPv4 Protocol driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_CONFIGURE) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN EFI_DHCP4_CONFIG_DATA *Dhcp4CfgData OPTIONAL

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

EFI_SUCCESS The mode data was returned.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 1465

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Dhcp4CfgData Pointer to the EFI_DHCP4_CONFIG_DATA. Type
EFI_DHCP4_CONFIG_DATA is defined in “Related Definitions”
below.

Description

The Configure() function is used to initialize, change, or reset the operational settings of the EFI
DHCPv4 Protocol driver for the communication device on which the EFI DHCPv4 Service Binding Protocol
is installed. This function can be successfully called only if both of the following are true:

• This instance of the EFI DHCPv4 Protocol driver is in the Dhcp4Stopped, Dhcp4Init,
Dhcp4InitReboot, or Dhcp4Bound states.

• No other EFI DHCPv4 Protocol driver instance that is controlled by this EFI DHCPv4 Service
Binding Protocol driver instance has configured this EFI DHCPv4 Protocol driver.

When this driver is in the Dhcp4Stopped state, it can transfer into one of the following two possible initial
states:

• Dhcp4Init

• Dhcp4InitReboot

The driver can transfer into these states by calling Configure() with a non-NULL Dhcp4CfgData. The
driver will transfer into the appropriate state based on the supplied client network address in the
ClientAddress parameter and DHCP options in the OptionList parameter as described in RFC 2131.

When Configure() is called successfully while Dhcp4CfgData is set to NULL, the default configuring
data will be reset in the EFI DHCPv4 Protocol driver and the state of the EFI DHCPv4 Protocol driver will
not be changed. If one instance wants to make it possible for another instance to configure the EFI
DHCPv4 Protocol driver, it must call this function with Dhcp4CfgData set to NULL.

Related Definitions

//**

// EFI_DHCP4_CONFIG_DATA

//**

typedef struct {

 UINT32 DiscoverTryCount;

 UINT32 *DiscoverTimeout;

 UINT32 RequestTryCount;

 UINT32 *RequestTimeout;

 EFI_IPv4_ADDRESS ClientAddress;

 EFI_DHCP4_CALLBACK Dhcp4Callback;

 VOID *CallbackContext;

 UINT32 OptionCount;

 EFI_DHCP4_PACKET_OPTION **OptionList;

} EFI_DHCP4_CONFIG_DATA;

DiscoverTryCount Number of times to try sending a packet during the
Dhcp4SendDiscover event and waiting for a response during the
Dhcp4RcvdOffer event. (This value is also the number of entries in
UEFI Forum, Inc. March 2019 1466

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
the DiscoverTimeout array.) Set to zero to use the default try
counts and timeout values.

DiscoverTimeout Maximum amount of time (in seconds) to wait for returned packets
in each of the retries. Timeout values of zero will default to a
timeout value of one second. Set to NULL to use default timeout
values.

RequestTryCount Number of times to try sending a packet during the
Dhcp4SendRequest event and waiting for a response during the
Dhcp4RcvdAck event before accepting failure. (This value is also the
number of entries in the RequestTimeout array.) Set to zero to use
the default try counts and timeout values.

RequestTimeout Maximum amount of time (in seconds) to wait for return packets in
each of the retries. Timeout values of zero will default to a timeout
value of one second. Set to NULL to use default timeout values.

ClientAddress For a DHCPDISCOVER, setting this parameter to the previously
allocated IP address will cause the EFI DHCPv4 Protocol driver to
enter the Dhcp4InitReboot state. Also, set this field to 0.0.0.0 to
enter the Dhcp4Init state.For a DHCPINFORM this parameter
should be set to the client network address which was assigned to
the client during a DHCPDISCOVER.

Dhcp4Callback The callback function to intercept various events that occurred in the
DHCP configuration process. Set to NULL to ignore all those events.
Type EFI_DHCP4_CALLBACK is defined below.

CallbackContext Pointer to the context that will be passed to Dhcp4Callback when it
is called.

OptionCount Number of DHCP options in the OptionList.

OptionList List of DHCP options to be included in every packet that is sent
during the Dhcp4SendDiscover event. Pad options are appended
automatically by DHCP driver in outgoing DHCP packets. If
OptionList itself contains pad option, they are ignored by the
driver. OptionList can be freed after
EFI_DHCP4_PROTOCOL.Configure() returns. Ignored if
OptionCount is zero. Type EFI_DHCP4_PACKET_OPTION is defined
below.
UEFI Forum, Inc. March 2019 1467

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**

// EFI_DHCP4_CALLBACK

//**

typedef EFI_STATUS (*EFI_DHCP4_CALLBACK)(

 IN EFI_DHCP4_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_DHCP4_STATE CurrentState,

 IN EFI_DHCP4_EVENT Dhcp4Event,

 IN EFI_DHCP4_PACKET *Packet, OPTIONAL

 OUT EFI_DHCP4_PACKET **NewPacket OPTIONAL

);

This Pointer to the EFI DHCPv4 Protocol instance that is used to configure
this callback function.

Context Pointer to the context that is initialized by
EFI_DHCP4_PROTOCOL.Configure().

CurrentState The current operational state of the EFI DHCPv4 Protocol driver.
Type EFI_DHCP4_STATE is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

Dhcp4Event The event that occurs in the current state, which usually means a
state transition. Type EFI_DHCP4_EVENT is defined below.

Packet The DHCP packet that is going to be sent or already received. May be
NULL if the event has no associated packet. Do not cache this packet
except for copying it. Type EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

NewPacket The packet that is used to replace the above Packet. Do not set this
pointer exactly to the above Packet or a modified Packet.
NewPacket can be NULL if the EFI DHCPv4 Protocol driver does not
expect a new packet to be returned. The user may set *NewPacket
to NULL if no replacement occurs.

EFI_DHCP4_CALLBACK is provided by the consumer of the EFI DHCPv4 Protocol driver to intercept
events that occurred in the configuration process. This structure provides advanced control of each state
transition of the DHCP process. The returned status code determines the behavior of the EFI DHCPv4
Protocol driver. There are three possible returned values, which are described in the following table.

EFI_SUCCESS

Tells the EFI DHCPv4 Protocol driver to continue the DHCP process. When

it is in the Dhcp4Selecting state, it tells the EFI DHCPv4 Protocol

driver to stop collecting additional packets. The driver will exit the
Dhcp4Selecting state and enter the Dhcp4Requesting state.

EFI_NOT_READY
Only used in the Dhcp4Selecting state. The EFI DHCPv4 Protocol

driver will continue to wait for more packets until the retry timeout
expires.

EFI_ABORTED
Tells the EFI DHCPv4 Protocol driver to abort the current process and

return to the Dhcp4Init or Dhcp4InitReboot state.
UEFI Forum, Inc. March 2019 1468

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**

// EFI_DHCP4_EVENT

//**

typedef enum {

 Dhcp4SendDiscover = 0x01,

 Dhcp4RcvdOffer = 0x02,

 Dhcp4SelectOffer = 0x03,

 Dhcp4SendRequest = 0x04,

 Dhcp4RcvdAck = 0x05,

 Dhcp4RcvdNak = 0x06,

 Dhcp4SendDecline = 0x07,

 Dhcp4BoundCompleted = 0x08,

 Dhcp4EnterRenewing = 0x09,

 Dhcp4EnterRebinding = 0x0a,

 Dhcp4AddressLost = 0x0b,

 Dhcp4Fail = 0x0c

} EFI_DHCP4_EVENT;

Following is a description of the fields in the above enumeration.

Dhcp4SendDiscover The packet to start the configuration sequence is about to be sent.
The packet is passed to Dhcp4Callback and can be modified or
replaced in Dhcp4Callback.

Dhcp4RcvdOffer A reply packet was just received. This packet is passed to
Dhcp4Callback, which may copy this packet and cache it for
selecting a task later. If the callback returns EFI_SUCCESS, this
driver will finish the selecting state. If EFI_NOT_READY is returned,
this driver will continue to wait for additional reply packets until the
timer expires. In either case, Dhcp4SelectOffer will occur for the
user to select an offer.

Dhcp4SelectOffer It is time for Dhcp4Callback to select an offer. This driver passes the
latest received DHCPOFFER packet to the callback. The
Dhcp4Callback may store one packet in the NewPacket parameter
of the function that was selected from previously received
DHCPOFFER packets. If the latest packet is the selected one or if the
user does not care about it, no extra overhead is needed. Simply
skipping this event is enough.

Dhcp4SendRequest A request packet is about to be sent. The user can modify or replace
this packet.

Dhcp4RcvdAck A DHCPACK packet was received and will be passed to
Dhcp4Callback. The callback may decline this DHCPACK packet by
returning EFI_ABORTED. In this case, the EFI DHCPv4 Protocol
driver will proceed to the Dhcp4SendDecline event.

Dhcp4RcvdNak A DHCPNAK packet was received and will be passed to
Dhcp4Callback. The EFI DHCPv4 Protocol driver will then return to
the Dhcp4Init state no matter what status code is returned from
the callback function.
UEFI Forum, Inc. March 2019 1469

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Dhcp4SendDecline A decline packet is about to be sent. Dhcp4Callback can modify or
replace this packet.The EFI DHCPv4 Protocol driver will then be set
to the Dhcp4Init state.

Dhcp4BoundCompleted The DHCP configuration process has completed. No packet is
associated with this event.

Dhcp4EnterRenewing It is time to enter the Dhcp4Renewing state and to contact the server
that originally issued the network address. No packet is associated
with this event.

Dhcp4EnterRebinding It is time to enter the Dhcp4Rebinding state and to contact any
server. No packet is associated with this event.

Dhcp4AddressLost The configured IP address was lost either because the lease has
expired, the user released the configuration, or a DHCPNAK packet
was received in the Dhcp4Renewing or Dhcp4Rebinding state. No
packet is associated with this event.

Dhcp4Fail The DHCP process failed because a DHCPNAK packet was received or
the user aborted the DHCP process at a time when the configuration
was not available yet. No packet is associated with this event.

//***

// EFI_DHCP4_HEADER

//***

#pragma pack(1)

typedef struct{

 UINT8 OpCode;

 UINT8 HwType;

 UINT8 HwAddrLen;

 UINT8 Hops;

 UINT32 Xid;

 UINT16 Seconds;

 UINT16 Reserved;

 EFI_IPv4_ADDRESS ClientAddr;

 EFI_IPv4_ADDRESS YourAddr;

 EFI_IPv4_ADDRESS ServerAddr;

 EFI_IPv4_ADDRESS GatewayAddr;

 UINT8 ClientHwAddr[16];

 CHAR8 ServerName[64];

 CHAR8 BootFileName[128];

} EFI_DHCP4_HEADER;

#pragma pack()

OpCode Message type. 1 = BOOTREQUEST, 2 = BOOTREPLY.

HwType Hardware address type.

HwAddrLen Hardware address length.

Hops Maximum number of hops (routers, gateways, or relay agents) that
this DHCP packet can go through before it is dropped.

Xid DHCP transaction ID.
UEFI Forum, Inc. March 2019 1470

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Seconds Number of seconds that have elapsed since the client began address
acquisition or the renewal process.

Reserved Reserved for future use.

ClientAddr Client IP address from the client.

YourAddr Client IP address from the server.

ServerAddr IP address of the next server in bootstrap.

GatewayAddr Relay agent IP address.

ClientHwAddr Client hardware address.

ServerName Optional server host name.

BootFileName Boot file name.

EFI_DHCP4_HEADER describes the semantics of the DHCP packet header. This packet header is in
network byte order.

//***

// EFI_DHCP4_PACKET_OPTION

//***

#pragma pack(1)

typedef struct {

 UINT8 OpCode;

 UINT8 Length;

 UINT8 Data[1];

} EFI_DHCP4_PACKET_OPTION;

#pragma pack()

OpCode DHCP option code.

Length Length of the DHCP option data. Not present if OpCode is 0 or 255.

Data Start of the DHCP option data. Not present if OpCode is 0 or 255 or if
Length is zero.

The DHCP packet option data structure is used to reference option data that is packed in the DHCP
packets. Use caution when accessing multibyte fields because the information in the DHCP packet may
not be properly aligned for the machine architecture.
UEFI Forum, Inc. March 2019 1471

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DHCP4_PROTOCOL.Start()

Summary

Starts the DHCP configuration process.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_START) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN EFI_EVENT CompletionEvent OPTIONAL

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

CompletionEvent If not NULL, indicates the event that will be signaled when the EFI
DHCPv4 Protocol driver is transferred into the Dhcp4Bound state or
when the DHCP process is aborted.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to check
the completion status. If NULL, EFI_DHCP4_PROTOCOL.Start()
will wait until the driver is transferred into the Dhcp4Bound state or
the process fails.

EFI_SUCCESS

The EFI DHCPv4 Protocol driver is now in the Dhcp4Init or

Dhcp4InitReboot state, if the original state of this driver was

Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or

Dhcp4Bound and the value of Dhcp4CfgData was not NULL.

Otherwise, the state was left unchanged.

EFI_ACCESS_DENIED

This instance of the EFI DHCPv4 Protocol driver was not in the

Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or

Dhcp4Bound state.

EFI_ACCESS_DENIED
Another instance of this EFI DHCPv4 Protocol driver is already in a valid
configured state.

EFI_INVALID_PARAMETER

• One or more following conditions are TRUE:

• This is NULL.

• DiscoverTryCount > 0 and DiscoverTimeout is NULL

• RequestTryCount > 0 and RequestTimeout is NULL.

• OptionCount >0 and OptionList is NULL.

• ClientAddress is not a valid unicast address.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1472

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Description

The Start() function starts the DHCP configuration process. This function can be called only when the
EFI DHCPv4 Protocol driver is in the Dhcp4Init or Dhcp4InitReboot state.

If the DHCP process completes successfully, the state of the EFI DHCPv4 Protocol driver will be
transferred through Dhcp4Selecting and Dhcp4Requesting to the Dhcp4Bound state. The
CompletionEvent will then be signaled if it is not NULL.

If the process aborts, either by the user or by some unexpected network error, the state is restored to the
Dhcp4Init state. The Start() function can be called again to restart the process.

Refer to RFC 2131 for precise state transitions during this process. At the time when each event occurs in
this process, the callback function that was set by EFI_DHCP4_PROTOCOL.Configure() will be called
and the user can take this opportunity to control the process.

Status Codes Returned

EFI_DHCP4_PROTOCOL.RenewRebind()

Summary

Extends the lease time by sending a request packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_RENEW_REBIND) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN BOOLEAN RebindRequest,

 IN EFI_EVENT CompletionEvent OPTIONAL

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

EFI_SUCCESS
The DHCP configuration process has started, or it has completed when

CompletionEvent is NULL.

EFI_NOT_STARTED
The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped state.

EFI_DHCP4_PROTOCOL.Configure() needs to be called.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TIMEOUT
The DHCP configuration process failed because no response was received
from the server within the specified timeout value.

EFI_ABORTED The user aborted the DHCP process.

EFI_ALREADY_STARTED
Some other EFI DHCPv4 Protocol instance already started the DHCP
process.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1473

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
RebindRequest If TRUE, this function broadcasts the request packets and enters the
Dhcp4Rebinding state. Otherwise, it sends a unicast request packet
and enters the Dhcp4Renewing state.

CompletionEvent If not NULL, this event is signaled when the renew/rebind phase
completes or some error occurs.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to check
the completion status. If NULL,
EFI_DHCP4_PROTOCOL.RenewRebind() will busy-wait until the
DHCP process finishes.

Description

The RenewRebind() function is used to manually extend the lease time when the EFI DHCPv4 Protocol
driver is in the Dhcp4Bound state and the lease time has not expired yet. This function will send a request
packet to the previously found server (or to any server when RebindRequest is TRUE) and transfer the
state into the Dhcp4Renewing state (or Dhcp4Rebinding when RebindingRequest is TRUE). When a
response is received, the state is returned to Dhcp4Bound.

If no response is received before the try count is exceeded (the RequestTryCount field that is specified in
EFI_DHCP4_CONFIG_DATA) but before the lease time that was issued by the previous server expires,
the driver will return to the Dhcp4Bound state and the previous configuration is restored. The outgoing
and incoming packets can be captured by the EFI_DHCP4_CALLBACK function.

Status Codes Returned

EFI_DHCP4_PROTOCOL.Release()

Summary

Releases the current address configuration.

EFI_SUCCESS
The EFI DHCPv4 Protocol driver is now in the Dhcp4Renewing state or

is back to the Dhcp4Bound state.

EFI_NOT_STARTED
The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped state.

EFI_DHCP4_PROTOCOL.Configure()needs to be called.

EFI_INVALID_PARAMETER This is NULL.

EFI_TIMEOUT
There was no response from the server when the try count was
exceeded.

EFI_ACCESS_DENIED The driver is not in the Dhcp4Bound state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
UEFI Forum, Inc. March 2019 1474

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_RELEASE) (

 IN EFI_DHCP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Description

The Release() function releases the current configured IP address by doing either of the following:

• Sending a DHCPRELEASE packet when the EFI DHCPv4 Protocol driver is in the Dhcp4Bound
state

• Setting the previously assigned IP address that was provided with the
EFI_DHCP4_PROTOCOL.Configure() function to 0.0.0.0 when the driver is in
Dhcp4InitReboot state

After a successful call to this function, the EFI DHCPv4 Protocol driver returns to the Dhcp4Init state and
any subsequent incoming packets will be discarded silently.

Status Codes Returned

EFI_DHCP4_PROTOCOL.Stop()

Summary

Stops the DHCP configuration process.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_STOP) (

 IN EFI_DHCP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init phase.

EFI_INVALID_PARAMETER This is NULL.

EFI_ACCESS_DENIED
The EFI DHCPv4 Protocol driver is not in the Dhcp4Bound or

Dhcp4InitReboot state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
UEFI Forum, Inc. March 2019 1475

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Description

The Stop() function is used to stop the DHCP configuration process. After this function is called
successfully, the EFI DHCPv4 Protocol driver is transferred into the Dhcp4Stopped state.
EFI_DHCP4_PROTOCOL.Configure() needs to be called before DHCP configuration process can be
started again. This function can be called when the EFI DHCPv4 Protocol driver is in any state.

Status Codes Returned

EFI_DHCP4_PROTOCOL.Build()

Summary

Builds a DHCP packet, given the options to be appended or deleted or replaced.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_BUILD) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN EFI_DHCP4_PACKET *SeedPacket,

 IN UINT32 DeleteCount,

 IN UINT8 *DeleteList OPTIONAL,

 IN UINT32 AppendCount,

 IN EFI_DHCP4_PACKET_OPTION *AppendList[] OPTIONAL,

 OUT EFI_DHCP4_PACKET **NewPacket

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

SeedPacket Initial packet to be used as a base for building new packet. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

DeleteCount Number of opcodes in the DeleteList.

DeleteList List of opcodes to be deleted from the seed packet. Ignored if
DeleteCount is zero.

AppendCount Number of entries in the OptionList.

AppendList Pointer to a DHCP option list to be appended to SeedPacket. If
SeedPacket also contains options in this list, they are replaced by
new options (except pad option). Ignored if AppendCount is zero.
Type EFI_DHCP4_PACKET_OPTION is defined in
EFI_DHCP4_PROTOCOL.Configure().

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Stopped state.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1476

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
NewPacket Pointer to storage for the pointer to the new allocated packet. Use
the EFI Boot Service FreePool() on the resulting pointer when
done with the packet.

Description

The Build() function is used to assemble a new packet from the original packet by replacing or deleting
existing options or appending new options. This function does not change any state of the EFI DHCPv4
Protocol driver and can be used at any time.

Status Codes Returned

EFI_DHCP4_PROTOCOL.TransmitReceive()

Summary

Transmits a DHCP formatted packet and optionally waits for responses.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_TRANSMIT_RECEIVE) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN *Token

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Token Pointer to the EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN structure.
Type EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN is defined in
“Related Definitions” below.

Description

The TransmitReceive() function is used to transmit a DHCP packet and optionally wait for the
response from servers. This function does not change the state of the EFI DHCPv4 Protocol driver and
thus can be used at any time.

EFI_SUCCESS The new packet was built.

EFI_OUT_OF_RESOURCES Storage for the new packet could not be allocated.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

• This is NULL.

• SeedPacket is NULL.

• SeedPacket is not a well-formed DHCP packet.

• AppendCount is not zero and AppendList is NULL.

• DeleteCount is not zero and DeleteList is NULL.

• NewPacket is NULL

• Both DeleteCount and AppendCount are zero and
NewPacket is not NULL.
UEFI Forum, Inc. March 2019 1477

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definitions

//***

// EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN

//***

typedef struct {

 EFI_STATUS Status;

 EFI_EVENT CompletionEvent;

 EFI_IPv4_ADDRESS RemoteAddress;

 UINT16 RemotePort;

 EFI_IPv4_ADDRESS GatewayAddress;

 UINT32 ListenPointCount;

 EFI_DHCP4_LISTEN_POINT *ListenPoints;

 UINT32 TimeoutValue;

 EFI_DHCP4_PACKET *Packet;

 UINT32 ResponseCount;

 EFI_DHCP4_PACKET *ResponseList;

} EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN;

Status The completion status of transmitting and receiving. Possible values
are described in the “Status Codes Returned” table below. When
CompletionEvent is NULL, this status is the same as the one
returned by the TransmitReceive() function.

CompletionEvent If not NULL, the event that will be signaled when the collection
process completes. If NULL, this function will busy-wait until the
collection process competes.

RemoteAddress Pointer to the server IP address. This address may be a unicast,
multicast, or broadcast address.

RemotePort Server listening port number. If zero, the default server listening port
number (67) will be used.

GatewayAddress Pointer to the gateway address to override the existing setting.

ListenPointCount The number of entries in ListenPoints. If zero, the default station
address and port number 68 are used.

ListenPoints An array of station address and port number pairs that are used as
receiving filters. The first entry is also used as the source address and
source port of the outgoing packet. Type
EFI_DHCP4_LISTEN_POINT is defined below.

TimeoutValue Number of seconds to collect responses. Zero is invalid.

Packet Pointer to the packet to be transmitted. Type EFI_DHCP4_PACKET
is defined in EFI_DHCP4_PROTOCOL.GetModeData().

ResponseCount Number of received packets.

ResponseList Pointer to the allocated list of received packets. The caller must use
the EFI Boot Service FreePool() when done using the received
packets.
UEFI Forum, Inc. March 2019 1478

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// EFI_DHCP4_LISTEN_POINT

//***

typedef struct {

 EFI_IPv4_ADDRESS ListenAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT16 ListenPort;

} EFI_DHCP4_LISTEN_POINT;

ListenAddress Alternate listening address. It can be a unicast, multicast, or
broadcast address. The TransmitReceive() function will collect
only those packets that are destined to this address.

SubnetMask The subnet mask of above listening unicast/broadcast IP address.
Ignored if ListenAddress is a multicast address. If it is 0.0.0.0,
the subnet mask is automatically computed from unicast
ListenAddress. Cannot be 0.0.0.0 if ListenAddress is direct
broadcast address on subnet.

ListenPort Alternate station source (or listening) port number. If zero, then the
default station port number (68) will be used.

Status Codes Returned

EFI_DHCP4_PROTOCOL.Parse()

Summary

Parses the packed DHCP option data.

EFI_SUCCESS The packet was successfully queued for transmission.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

• This is NULL.

• Token.RemoteAddress is zero.

• Token.Packet is NULL.

• Token.Packet is not a well-formed DHCP packet.

• The transaction ID in Token.Packet is in use by another DHCP
process.

EFI_NOT_READY
The previous call to this function has not finished yet. Try to call this
function after collection process completes.

EFI_NO_MAPPING The default station address is not available yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_UNSUPPORTED The implementation doesn’t support this function

EFI_NO_MEDIA There was a media error.

Others Some other unexpected error occurred.
UEFI Forum, Inc. March 2019 1479

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP4_PARSE) (

 IN EFI_DHCP4_PROTOCOL *This,

 IN EFI_DHCP4_PACKET *Packet

 IN OUT UINT32 *OptionCount,

 IN OUT EFI_DHCP4_PACKET_OPTION *PacketOptionList[] OPTIONAL

);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Packet Pointer to packet to be parsed. Type EFI_DHCP4_PACKET is defined
in EFI_DHCP4_PROTOCOL.GetModeData().

OptionCount On input, the number of entries in the PacketOptionList. On
output, the number of entries that were written into the
PacketOptionList.

PacketOptionList
List of packet option entries to be filled in. End option or pad options
are not included. Type EFI_DHCP4_PACKET_OPTION is defined in
EFI_DHCP4_PROTOCOL.Configure().

Description

The Parse() function is used to retrieve the option list from a DHCP packet. If *OptionCount isn’t
zero, and there is enough space for all the DHCP options in the Packet, each element of
PacketOptionList is set to point to somewhere in the Packet->Dhcp4.Option where a new DHCP
option begins. If RFC3396 is supported, the caller should reassemble the parsed DHCP options to get the
finial result. If *OptionCount is zero or there isn’t enough space for all of them, the number of DHCP
options in the Packet is returned in OptionCount.
UEFI Forum, Inc. March 2019 1480

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

29.3 EFI DHCP6 Protocol

This section provides a detailed description of the EFI_DHCP6_PROTOCOL and the
EFI_DHCP6_SERVICE_BINDING_PROTOCOL.

29.3.1 DHCP6 Service Binding Protocol

EFI_DHCP6_SERVICE_BINDING_PROTOCOL

Summary

The EFI DHCPv6 Service Binding Protocol is used to locate communication devices that are supported by
an EFI DHCPv6 Protocol driver and to create and destroy EFI DHCPv6 Protocol child instances that can use
the underlying communications device.

GUID

#define EFI_DHCP6_SERVICE_BINDING_PROTOCOL _GUID \

 {0x9fb9a8a1,0x2f4a,0x43a6,\

 {0x88,0x9c,0xd0,0xf7,0xb6,0xc4,0x7a,0xd5}}

Description

A network application or driver that requires basic DHCPv6 services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI DHCPv6
Service Binding Protocol GUID. Each device with a published EFI DHCPv6 Service Binding Protocol GUID
supports the EFI DHCPv6 Protocol and may be available for use.

After a successful call to the EFI_DHCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created EFI DHCPv6 Protocol child instance is ready to be used by a network application or
driver.

Before a network application or driver terminates execution, every successful call to the
EFI_DHCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_DHCP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_SUCCESS The packet was successfully parsed.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

• This is NULL.

• Packet is NULL.

• Packet is not a well-formed DHCP packet.

• OptionCount is NULL.

EFI_BUFFER_TOO_SMALL

One or more of the following conditions is TRUE:

• *OptionCount is smaller than the number of options that were
found in the Packet.

• PacketOptionList is NULL.

EFI_OUT_OF_RESOURCE The packet is failed to parse because of resource shortage.
UEFI Forum, Inc. March 2019 1481

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.3.2 DHCP6 Protocol

EFI_DHCP6_PROTOCOL

Summary

The EFI DHCPv6 Protocol is used to get IPv6 addresses and other configuration parameters from DHCPv6
servers.

GUID

#define EFI_DHCP6_PROTOCOL_GUID \

 {0x87c8bad7,0x595,0x4053,\

 {0x82,0x97,0xde,0xde,0x39,0x5f,0x5d,0x5b}}

Protocol Interface Structure

typedef struct _EFI_DHCP6_PROTOCOL {

 EFI_DHCP6_GET_MODE_DATA GetModeData;

 EFI_DHCP6_CONFIGURE Configure;

 EFI_DHCP6_START Start;

 EFI_DHCP6_INFO_REQUEST InfoRequest;

 EFI_DHCP6_RENEW_REBIND RenewRebind;

 EFI_DHCP6_DECLINE Decline;

 EFI_DHCP6_RELEASE Release;

 EFI_DHCP6_STOP Stop;

 EFI_DHCP6_PARSE Parse;

} EFI_DHCP6_PROTOCOL;

Parameters

GetModeData

Get the current operating mode data and configuration data for the EFI DHCPv6
Protocol instance. See the GetModeData() function description.

Configure

Initialize or clean up the configuration data for the EFI DHCPv6 Protocol instance. See
the Configure() function description.

Start

Start the DHCPv6 S.A.R.R process. See the Start() function description.

InfoRequest

Request configuration parameters without the assignment of any IPv6 addresses to
the client. See the InfoRequest() function description.

RenewRebind

Tries to manually extend the valid and preferred lifetimes for the IPv6 addresses of
the configured IA by sending Renew or Rebind packet. See the RenewRebind()
function description.
UEFI Forum, Inc. March 2019 1482

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Decline

Inform that one or more addresses assigned by a DHCPv6 server are already in use by
another node. See the Decline() function description.

Release

Release one or more addresses associated with the configured IA. See the
Release() function description.

Stop

Stop the DHCPv6 S.A.R.R process. See the Stop() function description.

Parse

Parses the option data in the DHCPv6 packet. See the Parse() function description.

Description

The EFI DHCPv6 Protocol is used to get IPv6 addresses and other configuration parameters from DHCPv6
servers.

Note: Byte Order: All the IPv6 addresses that are described in EFI_DHCP6_PROTOCOL are stored in
network byte order. Both incoming and outgoing DHCPv6 packets are also in network byte order.
All other parameters that are defined in functions or data structures are stored in host byte order

EFI_DHCP6_PROTOCOL.GetModeData ()

Summary

Retrieve the current operating mode data and configuration data for the EFI DHCPv6 Protocol instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_GET_MODE_DATA)(

 IN EFI_DHCP6_PROTOCOL *This,

 OUT EFI_DHCP6_MODE_DATA *Dhcp6ModeData OPTIONAL,

 OUT EFI_DHCP6_CONFIG_DATA *Dhcp6ConfigData OPTIONAL

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Dhcp6ModeData

Pointer to the DHCPv6 mode data structure. The caller is responsible for freeing this
structure and each reference buffer. Type EFI_DHCP6_MODE_DATA is defined in
“Related Definitions” below.
UEFI Forum, Inc. March 2019 1483

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Dhcp6ConfigData

Pointer to the DHCPv6 configuration data structure. The caller is responsible for
freeing this structure and each reference buffer. Type EFI_DHCP6_CONFIG_DATA
is defined in EFI_DHCP6_PROTOCOL.Configure().

Description

Retrieve the current operating mode data and configuration data for the EFI DHCPv6 Protocol instance.

Related Definitions

//**

// EFI_DHCP6_MODE_DATA

//**

typedef struct {

 EFI_DHCP6_DUID *ClientId;

 EFI_DHCP6_IA *Ia;

} EFI_DHCP6_MODE_DATA;

ClientId

Pointer to the DHCPv6 unique identifier. The caller is responsible for freeing this
buffer. Type EFI_DHCP6_DUID is defined below.

Ia

Pointer to the configured IA of current instance. The caller can free this buffer after
using it. Type EFI_DHCP6_IA is defined below.

//**

// EFI_DHCP6_DUID

//**

typedef struct {

 UINT16 Length;

 UINT8 Duid[1];

} EFI_DHCP6_DUID;

Length

Length of DUID in octets.

Duid

Array of DUID octets.

The EFI_DHCP6_DUID structure is to specify DHCPv6 unique identifier for either DHCPv6 client or
DHCPv6 server. The DUID-UUID shall be used for all transactions.
UEFI Forum, Inc. March 2019 1484

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**

// EFI_DHCP6_IA

//**

typedef struct {

 EFI_DHCP6_IA_DESCRIPTOR Descriptor;

 EFI_DHCP6_STATE State;

 EFI_DHCP6_PACKACT *ReplyPacket;

 UINT32 IaAddressCount;

 EFI_DHCP6_IA_ADDRESS IaAddress[1];

} EFI_DHCP6_IA;

Descriptor

The descriptor for IA. Type EFI_DHCP6_IA_DESCRIPTOR is defined below.

State

The state of the configured IA. Type EFI_DHCP6_STATE is defined below.

ReplyPacket

Pointer to the cached latest Reply packet. May be NULL if no packet is cached.

IaAddressCount

Number of IPv6 addresses of the configured IA.

IaAddress

List of the IPv6 addresses of the configured IA. When the state of the configured IA is
in Dhcp6Bound, Dhcp6Renewing and Dhcp6Rebinding, the IPv6 addresses are
usable. Type EFI_DHCP6_IA_ADDRESS is defined below.

//**

// EFI_DHCP6_IA_DESCRIPTOR

//**

typedef struct {

 UINT16 Type;

 UINT32 IaId;

} EFI_DHCP6_IA_DESCRIPTOR;

Type

Type for an IA.

IaId

The identifier for an IA.
UEFI Forum, Inc. March 2019 1485

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
#define EFI_DHCP6_IA_TYPE_NA 3

#define EFI_DHCP6_IA_TYPE_TA 4

EFI_DHCP6_IA_TYPE_NA

An IA which carries assigned not temporary address.

EFI_DHCP6_IA_TYPE_TA

An IA which carries assigned temporary address.

//**

// EFI_DHCP6_STATE

//**

typedef enum {

 Dhcp6Init = 0x0,

 Dhcp6Selecting = 0x1,

 Dhcp6Requesting = 0x2,

 Dhcp6Declining = 0x3,

 Dhcp6Confirming = 0x4,

 Dhcp6Releasing = 0x5,

 Dhcp6Bound = 0x6,

 Dhcp6Renewing = 0x7,

 Dhcp6Rebinding = 0x8

} EFI_DHCP6_STATE;

Table 2 describes the fields in the above enumeration.

Table 2. Field Descriptions

Dhcp6Init
The EFI DHCPv6 Protocol instance is configured, and start() needs to be
called

Dhcp6Selecting
A Solicit packet is sent out to discover DHCPv6 server, and the EFI DHCPv6
Protocol instance is collecting Advertise packets.

Dhcp6Requesting
A Request is sent out to the DHCPv6 server, and the EFI DHCPv6 Protocol
instance is waiting for Reply packet.

Dhcp6Declining
A Decline packet is sent out to indicate one or more addresses of the
configured IA are in use by another node, and the EFI DHCPv6 Protocol
instance is waiting for Reply packet.

Dhcp6Confirming
A Confirm packet is sent out to confirm the IPv6 addresses of the configured
IA, and the EFI DHCPv6 Protocol instance is waiting for Reply packet

Dhcp6Releasing
A Release packet is sent out to release one or more IPv6 addresses of the
configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply
packet.

Dhcp6Bound The DHCPv6 S.A.R.R process is completed for the configured IA.
UEFI Forum, Inc. March 2019 1486

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 //**
// EFI_DHCP6_IA_ADDRESS

//**

typedef struct {

 EFI_IPv6_ADDRESS IpAddress;

 UINT32 PreferredLifetime;

 UINT32 ValidLifetime;

} EFI_DHCP6_IA_ADDRESS;

IpAddress

The IPv6 address.

PreferredLifetime

The preferred lifetime in unit of seconds for the IPv6 address.

ValidLifetime

The valid lifetime in unit of seconds for the IPv6 address.

The EFI_DHCP6_IA_ADDRESS structure is specify IPv6 address associated with an IA.

Dhcp6Renewing
A Renew packet is sent out to extend lifetime for the IPv6 addresses of the
configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply
packet.

Dhcp6Rebinding
A Rebind packet is sent out to extend lifetime for the IPv6 addresses of the
configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply
packet.
UEFI Forum, Inc. March 2019 1487

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// EFI_DHCP6_PACKET

//***

#pragma pack(1)

typedef struct {

 UINT32 Size;

 UINT32 Length;

 struct{

 EFI_DHCP6_HEADER Header;

 UINT8 Option[1];

 } Dhcp6;

} EFI_DHCP6_PACKET;

#pragma pack()

Size

Size of the EFI_DHCP6_PACKET buffer.

Length

Length of the EFI_DHCP6_PACKET from the first byte of the Header field to the last
byte of the Option[] field.

Header

The DHCPv6 packet header.

Option

Start of the DHCPv6 packed option data.

EFI_DHCP6_PACKET defines the format of the DHCPv6 packet. See RFC 3315 for more information.

//***

// EFI_DHCP6_HEADER

//***

#pragma pack(1)

typedef struct{

 UINT32 TransactionId:24;

 UINT32 MessageType:8;

} EFI_DHCP6_HEADER;

#pragma pack()

TransactionId

The DHCPv6 transaction ID.

MessageType

The DHCPv6 message type.

EFI_DHCP6_HEADER defines the format of the DHCPv6 header. See RFC 3315 for more information.
UEFI Forum, Inc. March 2019 1488

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DHCP6_PROTOCOL.Configure ()

Summary

Initialize or clean up the configuration data for the EFI DHCPv6 Protocol instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_CONFIGURE) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN EFI_DHCP6_CONFIG_DATA *Dhcp6CfgData OPTIONAL

);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Dhcp6CfgData

Pointer to the DHCPv6 configuration data structure. Type
EFI_DHCP6_CONFIG_DATA is defined in “Related Definitions” below.

Description

The Configure() function is used to initialize or clean up the configuration data of the EFI DHCPv6
Protocol instance.

• When Dhcp6CfgData is not NULL and Configure() is called successfully, the configuration
data will be initialized in the EFI DHCPv6 Protocol instance and the state of the configured IA
will be transferred into Dhcp6Init.

• When Dhcp6CfgData is NULL and Configure() is called successfully, the configuration data
will be cleaned up and no IA will be associated with the EFI DHCPv6 Protocol instance.

To update the configuration data for an EFI DCHPv6 Protocol instance, the original data must be cleaned
up before setting the new configuration data.

EFI_SUCCESS The mode data was returned.

EFI_ACCESS_DENIED
The EFI DHCPv6 Protocol instance has not been configured when

Dhcp6ConfigData is not NULL.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE:

• This is NULL.

• Both Dhcp6ConfigData and Dhcp6ModeData are NULL.
UEFI Forum, Inc. March 2019 1489

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definitions

//**

// EFI_DHCP6_CONFIG_DATA

//**

typedef struct {

 EFI_DHCP6_CALLBACK Dhcp6Callback;

 VOID *CallbackContext;

 UINT32 OptionCount;

 EFI_DHCP6_PACKET_OPTION **OptionList;

 EFI_DHCP6_IA_DESCRIPTOR IaDescriptor;

 EFI_EVENT IaInfoEvent;

 BOOLEAN ReconfigureAccept;

 BOOLEAN RapidCommit;

 EFI_DHCP6_RETRANSMISSION *SolicitRetransmission;

} EFI_DHCP6_CONFIG_DATA;

Dhcp6Callback

The callback function is to intercept various events that occur in the DHCPv6 S.A.R.R
process. Set to NULL to ignore all those events. Type EFI_DHCP6_CALLBACK is
defined below.

CallbackContext

Pointer to the context that will be passed to Dhcp6Callback.

OptionCount

Number of the DHCPv6 options in the OptionList.

OptionList

List of the DHCPv6 options to be included in Solicit and Request packet. The buffer
can be freed after EFI_DHCP6_PROTOCOL.Configure() returns. Ignored if
OptionCount is zero. OptionList should not contain Client Identifier option and any
IA option, which will be appended by EFI DHCPv6 Protocol instance automatically.
Type EFI_DHCP6_PACKET_OPTION is defined below.

IaDescriptor

The descriptor for the IA of the EFI DHCPv6 Protocol instance. Type
EFI_DHCP6_IA_DESCRIPTOR is defined below.

IaInfoEvent

If not NULL, the event will be signaled when any IPv6 address information of the
configured IA is updated, including IPv6 address, preferred lifetime and valid lifetime,
or the DHCPv6 S.A.R.R process fails. Otherwise, Start(), renewrebind(),
decline(), release() and stop() will be blocking operations, and they will wait
for the exchange process completion or failure.
UEFI Forum, Inc. March 2019 1490

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
ReconfigureAccept

If TRUE, the EFI DHCPv6 Protocol instance is willing to accept Reconfigure packet.
Otherwise, it will ignore it. Reconfigure Accept option can not be specified through
OptionList parameter.

RapidCommit

If TRUE, the EFI DHCPv6 Protocol instance will send Solicit packet with Rapid Commit
option. Otherwise, Rapid Commit option will not be included in Solicit packet. Rapid
Commit option can not be specified through OptionList parameter.

SolicitRetransmission

Parameter to control Solicit packet retransmission behavior. Type
EFI_DHCP6_RETRANSMISSION is defined in “Related Definition” below. The buffer
can be freed after EFI_DHCP6_PROTOCOL.Configure() returns.

//**

// EFI_DHCP6_CALLBACK

//**

typedef EFI_STATUS (EFIAPI *EFI_DHCP6_CALLBACK)(

 IN EFI_DHCP6_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_DHCP6_STATE CurrentState,

 IN EFI_DHCP6_EVENT Dhcp6Event,

 IN EFI_DHCP6_PACKET *Packet,

 OUT EFI_DHCP6_PACKET **NewPacket OPTIONAL

);

This

Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
callback function.

Context

Pointer to the context that is initialized by EFI_DHCP6_PROTOCOL.Configure().

CurrentState

The current state of the configured IA. Type EFI_DHCP6_STATE is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

Dhcp6Event

The event that occurs in the current state, which usually means a state transition.
Type EFI_DHCP6_EVENT is defined below.

Packet

Pointer to the DHCPv6 packet that is about to be sent or has been received. The EFI
DHCPv6 Protocol instance is responsible for freeing the buffer. Type
EFI_DHCP6_PACKET is defined in EFI_DHCP6_PROTOCOL.GetModeData().
UEFI Forum, Inc. March 2019 1491

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
NewPacket

Pointer to the new DHCPv6 packet to overwrite the Packet. NewPacket can not
share the buffer with Packet. If *NewPacket is not NULL, the EFI DHCPv6 Protocol
instance is responsible for freeing the buffer.

EFI_DHCP6_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol instance to intercept
events that occurs in the DHCPv6 S.A.R.R process. There are two possible returned values, which are
described in the following table.

Table 3. Callback Return Values

//***

// EFI_DHCP6_PACKET_OPTION

//***

#pragma pack(1)

typedef struct {

 UINT16 OpCode;

 UINT16 OpLen;

 UINT8 Data[1];

} EFI_DHCP6_PACKET_OPTION;

#pragma pack()

OpCode

The DHCPv6 option code, stored in network order.

OpLen

Length of the DHCPv6 option data, stored in network order. From the first byte to
the last byte of the Data field.

Data

The data for the DHCPv6 option.

EFI_DHCP6_PACKET_OPTION defines the format of the DHCPv6 option, stored in network order. See
RFC 3315 for more information. This data structure is used to reference option data that is packed in the
DHCPv6 packet.

EFI_SUCCESS
Tell the EFI DHCPv6 Protocol instance to continue the
DHCPv6 S.A.R.R process.

EFI_ABORTED

Tell the EFI DHCPv6 Protocol instance to abort the
DHCPv6 S.A.R.R process, and the state of the configured

IA will be transferred to Dhcp6Init.
UEFI Forum, Inc. March 2019 1492

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**

// EFI_DHCP6_EVENT

//**

typedef enum {

 Dhcp6SendSolicit = 0x0,

 Dhcp6RcvdAdvertise = 0x1,

 Dhcp6SelectAdvertise = 0x2,

 Dhcp6SendRequest = 0x3,

 Dhcp6RcvdReply = 0x4,

 Dhcp6RcvdReconfigure = 0x5,

 Dhcp6SendDecline = 0x6,

 Dhcp6SendConfirm = 0x7,

 Dhcp6SendRelease = 0x8,

 Dhcp6SendRenew = 0x9,

 Dhcp6SendRebind = 0xa

} EFI_DHCP6_EVENT;

Dhcp6SendSolicit

A Solicit packet is about to be sent. The packet is passed to Dhcp6Callback and can
be modified or replaced in Dhcp6Callback.

Dhcp6RcvdAdvertise

An Advertise packet is received and will be passed to Dhcp6Callback.

Dhcp6SelectAdvertise

It is time for Dhcp6Callback to determine whether select the default Advertise
packet by RFC 3315 policy, or overwrite it by specific user policy.

Dhcp6SendRequest

A Request packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6RcvdReply

A Reply packet is received and will be passed to Dhcp6Callback.

Dhcp6RcvdReconfigure

A Reconfigure packet is received and will be passed to Dhcp6Callback.

Dhcp6SendDecline

A Decline packet is about to be sent. The packet is passed to Dhcp6Callback and can
be modified or replaced in Dhcp6Callback.

Dhcp6SendConfirm

A Confirm packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6SendRelease

A Release packet is about to be sent. The packet is passed to Dhcp6Callback and can
be modified or replaced in Dhcp6Callback.
UEFI Forum, Inc. March 2019 1493

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Dhcp6SendRenew

A Renew packet is about to be sent. The packet is passed to Dhcp6Callback and can
be modified or replaced in Dhcp6Callback.

Dhcp6SendRebind

A Rebind packet is about to be sent. The packet is passed to Dhcp6Callback and can
be modified or replaced in Dhcp6Callback.

//**

// EFI_DHCP6_RETRANSMISSION

//**

typedef struct {

 UINT32 Irt;

 UINT32 Mrc;

 UINT32 Mrt;

 UINT32 Mrd;

} EFI_DHCP6_RETRANSMISSION;

Irt

Initial retransmission timeout.

Mrc

Maximum retransmission count for one packet. If Mrc is zero, there’s no upper limit
for retransmission count.

Mrt

Maximum retransmission timeout for each retry. It’s the upper bound of the number
of retransmission timeout. If Mrt is zero, there is no upper limit for retransmission
timeout.

Mrd

Maximum retransmission duration for one packet. It’s the upper bound of the
numbers the client may retransmit a message. If Mrd is zero, there’s no upper limit
for retransmission duration.
UEFI Forum, Inc. March 2019 1494

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DHCP6_PROTOCOL.Start ()

Summary

Start the DHCPv6 S.A.R.R process.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_START) (

 IN EFI_DHCP6_PROTOCOL *This

);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Description
The Start() function starts the DHCPv6 S.A.R.R process. This function can be called only when the

state of the configured IA is in the Dhcp6Init state. If the DHCPv6 S.A.R.R process completes successfully,
the state of the configured IA will be transferred through Dhcp6Selecting and Dhcp6Requesting to

EFI_SUCCESS The mode data was returned.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE
• This is NULL.

• OptionCount > 0 and OptionList is NULL.

• OptionList is not NULL, and Client Id option, Reconfigure
Accept option, Rapid Commit option or any IA option is specified in
the OptionList.

• IaDescriptor. Type is neither

EFI_DHCP6_IA_TYPE_NA nor

EFI_DHCP6_IA_TYPE_NA.

• IaDescriptor is not unique.

• Both IaInfoEvent and SolicitRetransmission are NULL.

• SolicitRetransmission is not NULL, and both

SolicitRetransmission->Mrc and
SolicitRetransmission->Mrd are zero.

EFI_ACCESS_DENIED

The EFI DHCPv6 Protocol instance has been already configured when

Dhcp6CfgData is not NULL.

The EFI DHCPv6 Protocol instance has already started the DHCPv6 S.A.R.R

when Dhcp6CfgData is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1495

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Dhcp6Bound state. The update of the IPv6 addresses will be notified through EFI_DHCP6_CONFIG_-
DATA.IaInfoEvent. At the time when each event occurs in this process, the callback function set by
EFI_DHCP6_PROTOCOL.Configure() will be called and the user can take this opportunity to control
the process. If EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL, the Start() function call is a block-
ing operation. It will return after the DHCPv6 S.A.R.R process completes or aborted by users. If the pro-
cess is aborted by system or network error, the state of the configured IA will be transferred to
Dhcp6Init. The Start() function can be called again to restart the process.

Status Codes Returned

EFI_DHCP6_PROTOCOL.InfoRequest ()

Summary

Request configuration information without the assignment of any IA addresses of the client.

EFI_SUCCESS

The DHCPv6 S.A.R.R process is completed and at least one IPv6 address
has been bound to the configured IA when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The DHCPv6 S.A.R.R process is started when
EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ALREADY_STARTED The DHCPv6 S.A.R.R process has already started.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE The DHCPv6 S.A.R.R process failed because of no response.

EFI_NO_MAPPING
No IPv6 address has been bound to the configured IA after the DHCPv6
S.A.R.R process.

EFI_ABORTED The DHCPv6 S.A.R.R process aborted by user.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1496

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

Typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_INFO_REQUEST) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN BOOLEAN SendClientId,

 IN EFI_DHCP6_PACKET_OPTION *OptionRequest,

 IN UINT32 OptionCount,

 IN EFI_DHCP6_PACKET_OPTION *OptionList[] OPTIONAL,

 IN EFI_DHCP6_RETRANSMISSION *Retransmission,

 IN EFI_EVENT TimeoutEvent OPTIONAL,

 IN EFI_DHCP6_INFO_CALLBACK ReplyCallback,

 IN VOID *CallbackContext OPTIONAL

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

SendClientId

If TRUE, the EFI DHCPv6 Protocol instance will build Client Identifier option and
include it into Information Request packet. If FALSE, Client Identifier option will not
be included. Client Identifier option can not be specified through OptionList
parameter.

OptionRequest

Pointer to the Option Request option in the Information Request packet. Option
Request option can not be specified through OptionList parameter.

OptionCount

Number of options in OptionList.

OptionList

List of other DHCPv6 options. These options will be appended to the Option Request
option. The caller is responsible for freeing this buffer. Type is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

Retransmission

Parameter to control Information Request packet retransmission behavior. Type
EFI_DHCP6_RETRANSMISSION is defined in “Related Definition” below. The buffer
can be freed after EFI_DHCP6_PROTOCOL.InfoRequest() returns.

TimeoutEvent

If not NULL, this event is signaled when the information request exchange aborted
because of no response. If NULL, the function call is a blocking operation; and it will
return after the information-request exchange process finish or aborted by users.
UEFI Forum, Inc. March 2019 1497

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
ReplyCallback

The callback function is to intercept various events that occur in the Information
Request exchange process. It should not be set to NULL. Type
EFI_DHCP6_INFO_CALLBACK is defined below.

CallbackContext

Pointer to the context that will be passed to ReplyCallback.

Description

The InfoRequest() function is used to request configuration information without the assignment of
any IPv6 address of the client. Client sends out Information Request packet to obtain the required
configuration information, and DHCPv6 server responds with Reply packet containing the information for
the client. The received Reply packet will be passed to the user by ReplyCallback function. If user
returns EFI_NOT_READY from ReplyCallback, the EFI DHCPv6 Protocol instance will continue to
receive other Reply packets unless timeout according to the Retransmission parameter. Otherwise, the
Information Request exchange process will be finished successfully if user returns EFI_SUCCESS from
ReplyCallback.

Related Definitions

//**

// EFI_DHCP6_CALLBACK

//**

typedef EFI_STATUS (EFIAPI *EFI_DHCP6_INFO_CALLBACK)(

 IN EFI_DHCP6_PROTOCOL *This,

 IN VOID *Context,

 IN EFI_DHCP6_PACKET *Packet,

);

This

Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
callback function.

Context

Pointer to the context that is initialized in the
EFI_DHCP6_PROTOCOL.InfoRequest().

Packet

Pointer to Reply packet that has been received. The EFI DHCPv6 Protocol instance is
responsible for freeing the buffer. Type EFI_DHCP6_PACKET is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

EFI_DHCP6_INFO_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol instance to
intercept events that occurs in the DHCPv6 Information Request exchange process. There are three
possible returned values, which are described in the following table.
UEFI Forum, Inc. March 2019 1498

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DHCP6_PROTOCOL.RenewRebind ()

Summary

Manually extend the valid and preferred lifetimes for the IPv6 addresses of the configured IA and update
other configuration parameters by sending Renew or Rebind packet.

EFI_SUCCESS
Tell the EFI DHCPv6 Protocol instance to finish
Information Request exchange process.

EFI_NOT_READY
Tell the EFI DHCPv6 Protocol instance to continue
Information Request exchange process.

EFI_ABORTED
Tell the EFI DHCPv6 Protocol instance to abort the
Information Request exchange process

EFI_SUCCESS

The DHCPv6 information request exchange process completed when

TimeoutEvent is NULL.

Information Request packet has been sent to DHCPv6 server when

TimeoutEvent is not NULL.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE:

• This is NULL.

• OptionRequest is NULL or OptionRequest->OpCode is
invalid.

• OptionCount > 0 and OptionList is NULL.

• OptionList is not NULL, and Client Identify option or Option

Request option is specified in the OptionList.

• Retransmission is NULL.

• Both Retransmission->Mrc and Retransmission->Mrd
are zero.

• ReplyCallback is NULL.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE
The DHCPv6 information request exchange process failed because of no
response, or not all requested-options are responded by DHCPv6 servers
when Timeout happened.

EFI_ABORTED The DHCPv6 information request exchange process aborted by user.
UEFI Forum, Inc. March 2019 1499

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_RENEW_REBIND) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN BOOLEAN RebindRequest

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

RebindRequest

If TRUE, it will send Rebind packet and enter the Dhcp6Rebinding state. Otherwise,
it will send Renew packet and enter the Dhcp6Renewing state.

Description

The RenewRebind() function is used to manually extend the valid and preferred lifetimes for the IPv6
addresses of the configured IA and update other configuration parameters by sending Renew or Rebind
packet.

• When RebindRequest is FALSE and the state of the configured IA is Dhcp6Bound, it will send
Renew packet to the previously DHCPv6 server and transfer the state of the configured IA to
Dhcp6Renewing. If valid Reply packet received, the state transfers to Dhcp6Bound and the valid
and preferred timer restarts. If fails, the state transfers to Dhcp6Bound but the timer
continues.

• When RebindRequest is TRUE and the state of the configured IA is Dhcp6Bound, it will send
Rebind packet. If valid Reply packet received, the state transfers to Dhcp6Bound and the valid
and preferred timer restarts. If fails, the state transfers to Dhcp6Init and the IA can’t be used.
UEFI Forum, Inc. March 2019 1500

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DHCP6_PROTOCOL.Decline ()

Summary

Inform that one or more IPv6 addresses assigned by a server are already in use by another node.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_DECLINE) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN UINT32 AddressCount,

 IN EFI_IPv6_ADDRESS *Addresses

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

AddressCount

Number of declining IPv6 addresses.

EFI_SUCCESS The DHCPv6 renew/rebind exchange process has completed and at

least one IPv6 address of the configured IA has been bound again when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Renew or Rebind packet

when EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured, or the state of

the configured IA is not in Dhcp6Bound.

EFI_ALREADY_STARTED The state of the configured IA has already entered Dhcp6Renewing

when RebindRequest is FALSE.

The state of the configured IA has already entered Dhcp6Rebinding

when RebindRequest is TRUE.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE The DHCPv6 renew/rebind exchange process failed because of no
response.

EFI_NO_MAPPING No IPv6 address has been bound to the configured IA after the DHCPv6
renew/rebind exchange process.

EFI_ABORTED The DHCPv6 renew/rebind exchange process aborted by user.
UEFI Forum, Inc. March 2019 1501

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Addresses

Pointer to the buffer stored all the declining IPv6 addresses.

Description

The Decline() function is used to manually decline the assignment of IPv6 addresses, which have
been already used by another node. If all IPv6 addresses of the configured IA are declined through
this function, the state of the IA will switch through Dhcp6Declining to Dhcp6Init, otherwise, the
state of the IA will restore to Dhcp6Bound after the declining process. The Decline() can only be
called when the IA is in Dhcp6Bound state. If the EFI_DHCP6_CONFIG_DATA.IaInfoEvent is
NULL, this function is a blocking operation. It will return after the declining process finishes, or
aborted by user.

Status Codes Returned

EFI_DHCP6_PROTOCOL.Release ()

Summary

Release one or more IPv6 addresses associated with the configured IA for current instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_RELEASE) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN UINT32 AddressCount,

 IN EFI_IPv6_ADDRESS *Addresses

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

EFI_SUCCESS

The DHCPv6 decline exchange process has completed when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Decline packet when
EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE
• This is NULL.

• AddressCount is zero or Addresses is NULL.

EFI_NOT_FOUND
Any specified IPv6 address is not correlated with the configured IA for
this instance.

EFI_ACCESS_DENIED
The EFI DHCPv6 Child instance hasn’t been configured, or the state of the

configured IA is not in Dhcp6Bound.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_ABORTED The DHCPv6 decline exchange process aborted by user.
UEFI Forum, Inc. March 2019 1502

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
AddressCount

Number of releasing IPv6 addresses.

Addresses

Pointer to the buffer stored all the releasing IPv6 addresses. Ignored if
AddressCount is zero.

Description

The Release() function is used to manually release the one or more IPv6 address. If AddressCount
is zero, it will release all IPv6 addresses of the configured IA. If all IPv6 addresses of the IA are
released through this function, the state of the IA will switch through Dhcp6Releasing to
Dhcp6Init, otherwise, the state of the IA will restore to Dhcp6Bound after the releasing process.
The Release() can only be called when the IA is in Dhcp6Bound state. If the EFI_DHCP6_CON-
FIG_DATA.IaInfoEvent is NULL, the function is a blocking operation. It will return after the

releasing process finishes, or aborted by user.

Status Codes Returned

EFI_DHCP6_PROTOCOL.Stop ()

Summary

Stop the DHCPv6 S.A.R.R process.

EFI_SUCCESS

The DHCPv6 release exchange process has completed when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Release packet when
EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE
• This is NULL.

• AddressCount is not zero and Addresses is NULL.

EFI_NOT_FOUND
Any specified IPv6 address is not correlated with the configured IA for
this instance.

EFI_ACCESS_DENIED
The EFI DHCPv6 Child instance hasn’t been configured, or the state of the

configured IA is not in Dhcp6Bound.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_ABORTED The DHCPv6 release exchange process aborted by user.
UEFI Forum, Inc. March 2019 1503

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_STOP) (

 IN EFI_DHCP6_PROTOCOL *This

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Description

The Stop() function is used to stop the DHCPv6 S.A.R.R process. If this function is called success-
fully, all the IPv6 addresses of the configured IA will be released and the state of the configured IA

will be transferred to Dhcp6Init.

Status Codes Returned

EFI_DHCP6_PROTOCOL.Parse ()

Summary

Parse the option data in the DHCPv6 packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DHCP6_PARSE) (

 IN EFI_DHCP6_PROTOCOL *This,

 IN EFI_DHCP6_PACKET *Packet,

 IN OUT UINT32 *OptionCount,

 IN EFI_DHCP6_PACKET_OPTION *PacketOptionList[] OPTIONAL

);

Parameters

This

Pointer to the EFI_DHCP6_PROTOCOL instance.

EFI_SUCCESS

The DHCPv6 S.A.R.R process has been stopped when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Release packet if need release
or has been stopped if needn’t, when
EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1504

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Packet

\Pointer to packet to be parsed. Type EFI_DHCP6_PACKET is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

OptionCount

On input, the number of entries in the PacketOptionList. On output, the number of
DHCPv6 options in the Packet.

PacketOptionList

List of pointers to the DHCPv6 options in the Packet. Type
EFI_DHCP6_PACKET_OPTION is defined in EFI_DHCP6_PROTOCOL.Configure().
The OpCode and OpLen in EFI_DHCP6_PACKET_OPTION are both stored in network
byte order.

Description

The Parse() function is used to retrieve the option list in the DHCPv6 packet.

Status Codes Returned

29.4 EFI DNSv4 Protocol

This section defines the EFI Domain Name Service Binding Protocol interface. It is split into the following
two main sections.

• DNSv4 Service Binding Protocol (DNSv4SB)

• DNSv4 Protocol (DNSv4)

EFI_DNS4_SERVICE_BINDING_PROTOCOL

Summary

The DNSv4SB is used to locate communication devices that are supported by a DNS driver and to create
and destroy instances of the DNS child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol functions.
This section discusses the details that are specific to the DNSv4.

EFI_SUCCESS The packet was successfully parsed.

EFI_INVALID_PARAMETER

One or more following conditions are TRUE
• This is NULL.

• Packet is NULL.

• Packet is not a well-formed DHCPv6 packet.

• OptionCount is NULL.

• *OptionCount is not zero and PacketOptionList is NULL.

EFI_BUFFER_TOO_SMALL
*OptionCount is smaller than the number of options that were found in

the Packet.
UEFI Forum, Inc. March 2019 1505

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GUID

#define EFI_DNS4_SERVICE_BINDING_PROTOCOL_GUID \

{ 0xb625b186, 0xe063, 0x44f7,\

 { 0x89, 0x5, 0x6a, 0x74, 0xdc, 0x6f, 0x52, 0xb4}}

Description

A network application (or driver) that requires network address resolution can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish a DNSV4SB
GUID. Each device with a published DNSV4SB GUID supports DNS and may be available for use.

After a successful call to the EFI_DNS4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the child DNS driver instance is in an unconfigured state; it is not ready to resolve addresses.

Before a network application terminates execution, every successful call to the
EFI_DNS4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to the
EFI_DNS4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Note: All the network addresses that are described in EFI_DNS4_PROTOCOL are stored in network byte
order. Both incoming and outgoing DNS packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_DNS4_PROTOCOL

Summary

This protocol provides the function to get the host name and address mapping, also
provides pass through interface to retrieve arbitrary information from DNS.

The EFI_DNS4_Protocol is primarily intended to retrieve host addresses using the
standard DNS protocol (RFC1035), and support for this protocol is required.
Implementations may optionally also support local network name resolution methods
such as LLMNR (RFC4795) however DNS queries shall always take precedence, and any
use of local network name protocols would be restricted to cases where resolution using
DNS protocol fails.

As stated above, all instances of EFI_DNS4_Protocol will utilize a common DNS cache
containing the successful results of previous queries on any interface. However, it should
be noted that every instance of EFI_DNS4_Protocol is associated with a specific network
device or interface, and that all network actions initiated using a specific instance of the
DNS protocol will occur only via use of the associated network interface. This means, in a
system with multiple network interfaces, that a specific DNS server will often only be
reachable using a specific network instance, and therefore the protocol user will need to
take steps to insure the DNS instance associated with the proper network interface is
used. Or alternatively, the caller may perform DNS functions against all interfaces until
successful result is achieved.
UEFI Forum, Inc. March 2019 1506

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GUID

#define EFI_DNS4_PROTOCOL_GUID \

{ 0xae3d28cc, 0xe05b, 0x4fa1,\

 {0xa0, 0x11, 0x7e, 0xb5, 0x5a, 0x3f, 0x14, 0x1 }}

Protocol Interface Structure

typedef struct _EFI_DNS4_PROTOCOL {

 EFI_DNS4_GET_MODE_DATA GetModeData;

 EFI_DNS4_CONFIGURE Configure;

 EFI_DNS4_HOST_NAME_TO_IP HostNameToIp;

 EFI_DNS4_IP_TO_HOST_NAME IpToHostName;

 EFI_DNS4_GENERAL_LOOKUP GeneralLookUp;

 EFI_DNS4_UPDATE_DNS_CACHE UpdateDnsCache;

 EFI_DNS4_POLL Poll;

 EFI_DNS4_CANCEL Cancel;

} EFI_DNS4_PROTOCOL;

EFI_DNS4_PROTOCOL.GetModeData()

Summary

Retrieve the current mode data of this DNS instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_GET_MODE_DATA)(

 IN EFI_DNS4_PROTOCOL *This,

 OUT EFI_DNS4_MODE_DATA *DnsModeData

);

Description

 This function is used to retrieve DNS mode data for this DNS instance.

Parameter

This Pointer to EFI_DNS4_PROTOCOL instance.

DnsModeData Pointer to the caller-allocated storage for the
EFI_DNS4_MODE_DATA structure.
UEFI Forum, Inc. March 2019 1507

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definitions

//**

// EFI_DNS4_MODE_DATA

//**

typedef struct {

 EFI_DNS4_CONFIG_DATA DnsConfigData;

 UINT32 DnsServerCount;

 EFI_IPv4_ADDRESS *DnsServerList;

 UINT32 DnsCacheCount;

 EFI_DNS4_CACHE_ENTRY *DnsCacheList;

} EFI_DNS4_MODE_DATA;

DnsConfigData The current configuration data of this instance. Type
EFI_DNS4_CONFIG_DATA is defined below.

DnsServerCount Number of configured DNS servers.

DnsServerList Pointer to common list of addresses of all configured DNS server
used by EFI_DNS4_PROTOCOL instances. List will include DNS
servers configured by this or any other EFI_DNS4_PROTOCOL
instance. The storage for this list is allocated by the driver publishing
this protocol, and must be freed by the caller.

DnsCacheCount Number of DNS Cache entries. The DNS Cache is shared among all
DNS instances.

DnsCacheList Pointer to a buffer containing DnsCacheCount DNS Cache entry
structures. The storage for this list is allocated by the driver
publishing this protocol and must be freed by caller.

//**

// EFI_DNS4_CONFIG_DATA

//**

typedef struct {

 UINTN DnsServerListCount;

 EFI_IPv4_ADDRESS *DnsServerList;

 BOOLEAN UseDefaultSetting;

 BOOLEAN EnableDnsCache;

 UINT8 Protocol;

 EFI_IPv4_ADDRESS StationIp;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT16 LocalPort;

 UINT32 RetryCount;

 UINT32 RetryInterval;

} EFI_DNS4_CONFIG_DATA;

DnsServerListCount Count of the DNS servers. When used with GetModeData(), this
field is the count of originally configured servers when
Configure() was called for this instance. When used with
Configure() this is the count of caller-supplied servers. If the
UEFI Forum, Inc. March 2019 1508

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
DnsServerListCount is zero, the DNS server configuration will be
retrieved from DHCP server automatically.

DnsServerList Pointer to DNS server list containing DnsServerListCount entries
or NULL if DnsServerListCount is 0. For Configure(), this will be
NULL when there are no caller-supplied server addresses, and, the
DNS instance will retrieve DNS server from DHCP Server. The
provided DNS server list is recommended to be filled up in the
sequence of preference. When used with GetModeData(), the
buffer containing the list will be allocated by the driver
implementing this protocol and must be freed by the caller. When
used with Configure(), the buffer containing the list will be
allocated and released by the caller.

UseDefaultSetting Set to TRUE to use the default IP address/subnet mask and default
routing table.

EnableDnsCache If TRUE, enable DNS cache function for this DNS instance. If FALSE,
all DNS query will not lookup local DNS cache.

Protocol Use the protocol number defined in “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “ IANA
Protocol Numbers”. Only TCP or UDP are supported, and other
protocol values are invalid. An implementation can choose to
support only UDP, or both TCP and UDP.

StationIp If UseDefaultSetting is FALSE indicates the station address to use.

SubnetMask If UseDefaultSetting is FALSE indicates the subnet mask to use.

LocalPort Local port number. Set to zero to use the automatically assigned port
number.

RetryCount Retry number if no response received after RetryInterval.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less than
2 second, then use the 2 second.

//**

// EFI_DNS4_CACHE_ENTRY //**

typedef struct {

 CHAR16 *HostName;

 EFI_IPv4_ADDRESS *IpAddress;

 UINT32 Timeout;

} EFI_DNS4_CACHE_ENTRY;

HostName Host name.

IpAddress IP address of this host.

Timeout Time in second unit that this entry will remain in DNS cache. A value
of zero means that this entry is permanent. A nonzero value will
override the existing one if this entry to be added is dynamic entry.
Implementations may set its default timeout value for the
dynamically created DNS cache entry after one DNS resolve
succeeds.
UEFI Forum, Inc. March 2019 1509

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS4_PROTOCOL.Configure()

Summary

Configures this DNS instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_CONFIGURE)(

 IN EFI_DNS4_PROTOCOL *This,

 IN EFI_DNS4_CONFIG_DATA *DnsConfigData

);

Descriptions

This function is used to configure DNS mode data for this DNS instance.

Parameters

This Pointer to EFI_DNS4_PROTOCOL instance.

DnsConfigData Pointer to caller-allocated buffer containing
EFI_DNS4_CONFIG_DATA structure containing the desired
Configuration data. If NULL, the driver will reinitialize the protocol
instance to the unconfigured state.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED
When DnsConfigData is queried, no configuration data is available

because this instance has not been configured.

EFI_INVALID_PARAMETER This is NULL or DnsModeData is NULL.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1510

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS4_PROTOCOL.HostNameToIp()

Summary

Host name to host address translation.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_HOST_NAME_TO_IP) (

 IN EFI_DNS4_PROTOCOL *This,

 IN CHAR16 *HostName,

 IN EFI_DNS4_COMPLETION_TOKEN *Token

);

Parameter

This Pointer to EFI_DNS4_PROTOCOL instance.

Hostname Pointer to buffer containing fully-qualified Domain Name including
Hostname. To resolve successfully, characters within the FQDN
string must be chosen according to the format and from within the
set of ASCII characters authorized by DNS specifications. Any
translation required for reference to domains or hostnames defined
as containing Unicode characters, for example use of Punycode,
must be performed by caller.

Token Pointer to the caller-allocated completion token to return at the
completion of the process to translate host name to host address.
Type EFI_DNS4_COMPLETION_TOKEN is defined in "Related
Definitions" below.

EFI_SUCCESS The operation completed successfully.

EFI_UNSUPPORTED The designated protocol is not supported.

EFI_INVALID_PARAMTER

This is NULL.

The StationIp address provided in DnsConfigData is not a valid

unicast.

DnsServerList is NULL while DnsServerListCount is not

ZERO.

DnsServerListCount is ZERO while DnsServerList is not

NULL.

EFI_OUT_OF_RESOURCES The DNS instance data or required space could not be allocated.

EFI_DEVICE_ERROR
An unexpected system or network error occurred. The EFI DNSv4
Protocol instance is not configured.

EFI_ALREADY_STARTED

Second call to Configure()with DnsConfigData. To reconfigure

the instance the caller must call Configure() with NULL first to

return driver to unconfigured state.
UEFI Forum, Inc. March 2019 1511

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definition

//**
// EFI_DNS4_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 UINT32 RetryCount;
 UINT32 RetryInterval;
 union {
 DNS_HOST_TO_ADDR_DATA *H2AData;
 DNS_ADDR_TO_HOST_DATA *A2HData;
 DNS_GENERAL_LOOKUP_DATA *GLookupData;
 } RspData;
} EFI_DNS4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI DNS protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values.

EFI_SUCCESS: The host name to address translation completed
successfully.

EFI_NOT_FOUND: No matching Resource Record (RR) is found.

EFI_TIMEOUT: No DNS server reachable, or RetryCount was
exhausted without response from all specified DNS servers.

EFI_DEVICE_ERROR: An unexpected system or network error
occurred.

EFI_NO_MEDIA: There was a media error.

RetryCount Retry number if no response received after RetryInterval. If zero,
use the parameter configured through Dns.Configure() interface.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less than
2 second, then use the 2 second. If zero, use the parameter
configured through Dns.Configure() interface.

H2AData When the Token is used for host name to address translation,
H2AData is a pointer to the DNS_HOST_TO_ADDR_DATA. Type
DNS_HOST_TO_ADDR_DATA is defined below.

A2HData When the Token is used for host address to host name translation,
A2HData is a pointer to the DNS_ADDR_TO_HOST_DATA. Type
DNS_ADDR_TO_HOST_DATA is defined below.

GLookupDATA When the Token is used for a general lookup function, GLookupDATA
is a pointer to the DNS_GENERAL_LOOKUP_DATA. Type
DNS_GENERAL_LOOKUP_DATA is defined below.

EFI_DNS4_COMPLETION_TOKEN structures are used for host name to address translation, host address
to name translation and general lookup operation, the Event, RetryCount and RetryInterval fields
UEFI Forum, Inc. March 2019 1512

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
filed must be filled by the EFI DNS4 Protocol Client. After the operation completes, the EFI DNS4 protocol
driver fill in the RspData and Status field and the Event is signaled.

//**
// DNS_HOST_TO_ADDR_DATA
//**
typedef struct {
 UINT32 IpCount;
 EFI_IPv4_Address *IpList;
} DNS_HOST_TO_ADDR_DATA;

IpCount Number of the returned IP addresses.

IpList Pointer to the all the returned IP addresses.

//**
// DNS_ADDR_TO_HOST_DATA
//**
typedef struct {
 CHAR16 *HostName;
} DNS_ADDR_TO_HOST_DATA;

HostName Pointer to the primary name for this host address. It’s the caller’s
responsibility to free the response memory.

//**
// DNS_GENERAL_LOOKUP_DATA
//**
typedef struct {

 UINTN RRCount;

 DNS_RESOURCE_RECORD *RRList;

} DNS_GENERAL_LOOKUP_DATA;

RRCount Number of returned matching RRs.

RRList Pointer to the all the returned matching RRs. It’s caller responsibility
to free the allocated memory to hold the returned RRs.
UEFI Forum, Inc. March 2019 1513

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// DNS_RESOURCE_RECORD

//***

typedef struct {

 CHAR8 *QName;

 UINT16 QType;

 UINT16 QClass;

 UINT32 TTL;

 UINT16 DataLength;

 CHAR8 *RData;

} DNS_RESOURCE_RECORD;

QName The Owner name.

QType The Type Code of this RR.

QClass The CLASS code of this RR.

TTL 32 bit integer which specify the time interval that the resource
record may be cached before the source of the information should
again be consulted. Zero means this RR cannot be cached.

DataLength 16 big integer which specify the length of RData.

RData A string of octets that describe the resource, the format of this
information varies according to QType and QClass difference.

Description

The HostNameToIp ()function is used to translate the host name to host IP address. A
type A query is used to get the one or more IP addresses for this host.

Status Codes Returned

EFI_DNS4_PROTOCOL.IpToHostName()

Summary

IPv4 address to host name translation also known as Reverse DNS lookup.

EFI_SUCCESS The operation was queued successfully.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
HostName is NULL. HostName string is unsupported format.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.
UEFI Forum, Inc. March 2019 1514

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_IP_TO_HOST_NAME) (

 IN EFI_DNS4_PROTOCOL *This,

 IN EFI_IPv4_ADDRESS IpAddress,

 IN EFI_DNS4_COMPLETION_TOKEN *Token

);

Parameter

This Pointer to EFI_DNS4_PROTOCOL instance.

IpAddress IP address.

Token Pointer to the caller-allocated completion used token to translate
host address to host name. Type EFI_DNS4_COMPLETION_TOKEN
is defined in "Related Definitions" of above HostNameToIp().

Description

The IpToHostName () function is used to translate the host address to host name. A type PTR query is
used to get the primary name of the host. Support of this function is optional.

Status Codes Returned

EFI_DNS4_PROTOCOL.GeneralLookUp()

Summary

Retrieve arbitrary information from the DNS server.

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
IpAddress is not valid IP address.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1515

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_GENERAL_LOOKUP) (

 IN EFI_DNS4_PROTOCOL *This,

 IN CHAR8 *QName,

 IN UINT16 QType,

 IN UINT16 QClass,

 IN EFI_DNS4_COMPLETION_TOKEN *Token

);

Description

This GeneralLookUp() function retrieves arbitrary information from the DNS. The caller supplies a
QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content (e.g., TTL) was
returned. The caller need parse the returned RR to get required information. This function is optional.

Parameters

This Pointer to EFI_DNS4_PROTOCOL instance.

QName Pointer to Query Name.

QType Query Type.

QClass Query Name.

Token Point to the caller-allocated completion token to retrieve arbitrary
information. Type EFI_DNS4_COMPLETION_TOKEN is defined in
"Related Definitions" of above HostNameToIp ().

Status Codes Returned

EFI_DNS4_PROTOCOL.UpdateDnsCache()

Summary

This function is used to update the DNS Cache.

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported. Or the requested QType is not supported

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
QName is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1516

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_UPDATE_DNS_CACHE) (

 IN EFI_DNS4_PROTOCOL *This,

 IN BOOLEAN DeleteFlag,

 IN BOOLEAN Override,

 IN EFI_DNS4_CACHE_ENTRY DnsCacheEntry

);

Parameters

This Pointer to EFI_DNS4_PROTOCOL instance.

DeleteFlag If FALSE, this function is to add one entry to the DNS Cache. If TRUE,
this function will delete matching DNS Cache entry.

Override If TRUE, the matching DNS cache entry will be overwritten with the
supplied parameter. If FALSE, EFI_ACCESS_DENIED will be
returned if the entry to be added is already exists.

DnsCacheEntry Pointer to DNS Cache entry.

Description

The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS cache can be
normally dynamically updated after the DNS resolve succeeds. This function provided capability to
manually add/delete/modify the DNS cache.

Status Codes Returned

EFI_DNS4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER

One or more of the following conditions is true:

This is NULL.

DnsCacheEntry.HostName is NULL.

DnsCacheEntry.IpAddress is NULL.
DnsCacheEntry.Timeout is zero.

EFI_ACCESS_DENIED The DNS cache entry already exists and Override is not TRUE.
UEFI Forum, Inc. March 2019 1517

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_POLL) (

 IN EFI_DNS4_PROTOCOL *This

);

Parameters

This Pointer to EFI_DNS4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

Status Codes Returned

EFI_DNS4_PROTOCOL.Cancel()

Summary

Abort an asynchronous DNS operation, including translation between IP and Host, and general look up
behavior.

Prototype

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_DNS4_CANCEL) (

 IN EFI_DNS4_PROTOCOL *This,

 IN EFI_DNS4_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to EFI_DNS4_PROTOCOL instance.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI DNS Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT
Data was dropped out of the transmit and/or receive queue. Consider
increasing the polling rate.
UEFI Forum, Inc. March 2019 1518

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Token Pointer to a token that has been issued by
EFI_DNS4_PROTOCOL.HostNameToIp (),
EFI_DNS4_PROTOCOL.IpToHostName() or
EFI_DNS4_PROTOCOL.GeneralLookUp(). If NULL, all pending
tokens are aborted.

Description

The Cancel() function is used to abort a pending resolution request. After calling this
function, Token.Status will be set to EFI_ABORTED and then Token.Event will be
signaled. If the token is not in one of the queues, which usually means that the
asynchronous operation has completed, this function will not signal the token and
EFI_NOT_FOUND is returned.

Status Codes Returned

29.5 EFI DNSv6 Protocol

This section defines the EFI DNSv6 (Domain Name Service version 6) Protocol. It is split into the following
two main sections.

• DNSv6 Service Binding Protocol (DNSv6SB)

• DNSv6 Protocol (DNSv6)

29.5.1 DNS6 Service Binding Protocol

EFI_DNS6_SERVICE_BINDING_PROTOCOL

Summary

The DNSv6SB is used to locate communication devices that are supported by a DNS
driver and to create and destroy instances of the DNS child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding
Protocol functions. This section discusses the details that are specific to the DNSv6.

GUID

EFI_SUCCESS
The asynchronous DNS operation was aborted and Token->Event is

signaled.

EFI_NOT_STARTED This EFI DNS4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND

When Token is not NULL, and the asynchronous DNS operation was not

found in the transmit queue. It was either completed or was not issued

by HostNameToIp(), IpToHostName() or

GeneralLookUp().
UEFI Forum, Inc. March 2019 1519

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
#define EFI_DNS6_SERVICE_BINDING_PROTOCOL_GUID \

{ 0x7f1647c8, 0xb76e, 0x44b2,\

 { 0xa5, 0x65, 0xf7, 0xf, 0xf1, 0x9c, 0xd1, 0x9e}}

Description
A network application (or driver) that requires network address resolution can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish a DNSv6SB
GUID. Each device with a published DNSv6SB GUID supports DNSv6 and may be available for use.

After a successful call to the EFI_DNS6_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the child DNS driver instance is in an un-configured state; it is not ready to resolve addresses.

Before a network application terminates execution, every successful call to the
EFI_DNS6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_DNS6_SERVICE_BINDING_PROTOCOL.DestroyChild()function.

Note: All the network addresses that are described in EFI_DNS6_PROTOCOL are stored in network byte
order. Both incoming and outgoing DNS packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

29.5.2 DNS6 Protocol

EFI_DNS6_PROTOCOL

Summary

This protocol provides the function to get the host name and address mapping, also provide pass through
interface to retrieve arbitrary information from DNSv6.

The EFI_DNS6_Protocol is primarily intended to retrieve host addresses using the standard DNS protocol
(RFC3596), and support for this protocol is required. Implementations may optionally also support local
network name resolution methods such as LLMNR (RFC4795) however DNS queries shall always take
precedence, and any use of local network name protocols would be restricted to cases where resolution
using DNS protocol fails.

As stated above, all instances of EFI_DNS6_Protocol will utilize a common DNS cache containing the
successful results of previous queries on any interface. However, it should be noted that every instance
of EFI_DNS6_Protocol is associated with a specific network device or interface, and that all network
actions initiated using a specific instance of the DNS protocol will occur only via use of the associated
network interface. This means, in a system with multiple network interfaces, that a specific DNS server
will often only be reachable using a specific network instance, and therefore the protocol user will need
to take steps to insure the DNS instance associated with the proper network interface is used. Or
alternatively, the caller may perform DNS functions against all interfaces until successful result is
achieved.
UEFI Forum, Inc. March 2019 1520

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GUID

#define EFI_DNS6_PROTOCOL_GUID \

{ 0xca37bc1f, 0xa327, 0x4ae9,\

 { 0x82, 0x8a, 0x8c, 0x40, 0xd8, 0x50, 0x6a, 0x17 }}

Protocol Interface Structure

typedef struct _EFI_DNS6_PROTOCOL {

 EFI_DNS6_GET_MODE_DATA GetModeData;

 EFI_DNS6_CONFIGURE Configure;

 EFI_DNS6_HOST_NAME_TO_IP HostNameToIp;

 EFI_DNS6_IP_TO_HOST_NAME IpToHostName;

 EFI_DNS6_GENERAL_LOOKUP GeneralLookUp;

 EFI_DNS6_UPDATE_DNS_CACHE UpdateDnsCache;

 EFI_DNS6_POLL Poll;

 EFI_DNS6_CANCEL Cancel;

} EFI_DNS6_PROTOCOL;

EFI_DNS6_PROTOCOL.GetModeData()

Summary

Retrieve mode data of this DNS instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_GET_MODE_DATA)(

 IN EFI_DNS6_PROTOCOL *This,

 OUT EFI_DNS6_MODE_DATA *DnsModeData

);

Description

 This function is used to retrieve DNS mode data for this DNS instance.

Parameter

This Pointer to EFI_DNS6_PROTOCOL instance.

DnsModeData Pointer to the caller-allocated storage for the
EFI_DNS6_MODE_DATA data.
UEFI Forum, Inc. March 2019 1521

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definitions

//**

// EFI_DNS6_MODE_DATA

//**

typedef struct {

 EFI_DNS6_CONFIG_DATA DnsConfigData;

 UINT32 DnsServerCount;

 EFI_IPv6_ADDRESS *DnsServerList;

 UINT32 DnsCacheCount;

 EFI_DNS6_CACHE_ENTRY *DnsCacheList;

} EFI_DNS6_MODE_DATA;

DnsConfigData The configuration data of this instance. Type EFI_DNS6_CONFIG_DATA is
defined below.

DnsServerCount Number of configured DNS6 servers.

DnsServerList Pointer to common list of addresses of all configured DNS server
used by EFI_DNS6_PROTOCOL instances. List will include DNS
servers configured by this or any other EFI_DNS6_PROTOCOL
instance. The storage for this list is allocated by the driver publishing
this protocol, and must be freed by the caller

DnsCacheCount Number of DNS Cache entries. The DNS Cache is shared among all
DNS6 instances.

DnsCacheList Pointer to a buffer containing DnsCacheCount DNS Cache entry
structures. The storage for this list is allocated by the driver
publishing this protocol and must be freed by caller.

//**

// EFI_DNS6_CONFIG_DATA

//**

typedef struct {

 BOOLEAN EnableDnsCache;

 UINT8 Protocol;

 EFI_IPv6_ADDRESS StationIp;

 UINT16 LocalPort;

 UINT32 DnsServerCount;

 EFI_IPv6_ADDRESS *DnsServerList;

 UINT32 RetryCount;

 UINT32 RetryInterval;

} EFI_DNS6_CONFIG_DATA;

IsDnsServerAuto If TRUE, the DNS server configuration will be retrieved from DHCP
server. If FALSE, the DNS server configuration will be manually
configured through call of DNSv6.Configure() interface.

EnableDnsCache If TRUE, enable DNS cache function for this DNS instance. If FALSE,
all DNS query will not lookup local DNS cache.

Protocol Use the protocol number defined in Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “IANA Protocol
UEFI Forum, Inc. March 2019 1522

http://www.iana.org/assignments/protocol-numbers

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Numbers”. Only TCP or UDP are supported, and other protocol
values are invalid. An implementation can choose to support only
UDP, or both TCP and UDP.

StationIp The local IP address to use. Set to zero to let the underlying IPv6
driver choose a source address. If not zero it must be one of the
configured IP addresses in the underlying IPv6 driver.

DnsServerCount Count of the DNS servers. When used with GetModeData(), this
field is the count of originally configured servers when
Configure() was called for this instance. When used with
Configure() this is the count of caller-supplied servers. If the
DnsServerListCount is zero, the DNS server configuration will be
retrieved from DHCP server automatically.

DnsServerList Pointer to DNS server list containing DnsServerListCount entries
or NULL if DnsServerListCount is 0. For Configure(), this will be
NULL when there are no caller-supplied server addresses and the
DNS instance will retrieve DNS server from DHCP Server. The
provided DNS server list is recommended to be filled up in the
sequence of preference. When used with GetModeData(), the
buffer containing the list will be allocated by the driver
implementing this protocol and must be freed by the caller. When
used with Configure(), the buffer containing the list will be
allocated and released by the caller.

LocalPort Local port number. Set to zero to use the automatically assigned port
number.

RetryCount Retry number if no response received after RetryInterval.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less than
2 second, then use the 2 second.

//**

// EFI_DNS6_CACHE_ENTRY

//**

typedef struct {

 CHAR16 *HostName;

 EFI_IPv6_ADDRESS *IpAddress;

 UINT32 Timeout;

} EFI_DNS6_CACHE_ENTRY;

HostName Host name. This should be interpreted as Unicode characters.

IpAddress IP address of this host.

Timeout Time in second unit that this entry will remain in DNS cache. A value
of zero means that this entry is permanent. A nonzero value will
override the existing one if this entry to be added is dynamic entry.
Implementations may set its default timeout value for the
dynamically created DNS cache entry after one DNS resolve
succeeds.
UEFI Forum, Inc. March 2019 1523

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.Configure()

Summary

Configure this DNS instance

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_DNS6_CONFIGURE)(

 IN EFI_DNS6_PROTOCOL *This,

 IN EFI_DNS6_CONFIG_DATA *DnsConfigData

);

Descriptions

The Configure() function is used to set and change the configuration data for this EFI DNSv6 Protocol
driver instance. Reset the DNS instance if DnsConfigData is NULL.

Parameters

This Pointer to EFI_DNS6_PROTOCOL instance.

DnsConfigData Pointer to the configuration data structure. Type
EFI_DNS6_CONFIG_DATA is defined in
EFI_DNS6_PROTOCOL.GetModeData(). All associated storage to
be allocated and released by caller.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED
When DnsConfigData is queried, no configuration data is available

because this instance has not been configured.

EFI_INVALID_PARAMETER This is NULL or DnsModeData is NULL.

EFI_OUT_OF_RESOURCE Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1524

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.HostNameToIp()

Summary

Host name to host address translation

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_HOST_NAME_TO_IP) (

 IN EFI_DNS6_PROTOCOL *This,

 IN CHAR16 *HostName,

 IN EFI_DNS6_COMPLETION_TOKEN *Token

);

Parameter

This Pointer to EFI_DNS6_PROTOCOL instance.

Hostname Pointer to buffer containing fully-qualified Domain Name including
Hostname. To resolve successfully, characters within the FQDN string
must be chosen according to the format and from within the set of
ASCII characters authorized by DNS specifications. Any translation
required for reference to domains or hostnames defined as
containing Unicode characters, for example use of Punycode, must
be performed by caller.

Token Point to the completion token to translate host name to host
address. Type EFI_DNS6_COMPLETION_TOKEN is defined in
"Related Definitions" below.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMTER

This is NULL.

The StationIp address provided in DnsConfigData is not zero and not

a valid unicast.

DnsServerList is NULL while DnsServerListCount is not
ZERO.
DnsServerListCount is ZERO while DnsServerList is not

NULL.

EFI_OUT_OF_RESOURCES The DNS instance data or required space could not be allocated.

EFI_DEVICE_ERROR
An unexpected system or network error occurred. The EFI DNSv6
Protocol instance is not configured.

EFI_UNSUPPORTED The designated protocol is not supported.

EFI_ALREADY_STARTED

Second call to Configure() with DnsConfigData. To

reconfigure the instance the caller must call Configure() with NULL

first to return driver to unconfigured state.
UEFI Forum, Inc. March 2019 1525

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definition

//**
// EFI_DNS6_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 UINT32 RetryCount;
 UINT32 RetryInterval;
 union {
DNS6_HOST_TO_ADDR_DATA *H2AData;
DNS6_ADDR_TO_HOST_DATA *A2HData;
DNS6_GENERAL_LOOKUP_DATA *GLookupData;
 } RspData;
} EFI_DNS6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI DNSv6 protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values.

EFI_SUCCESS: The host name to address translation completed
successfully.

EFI_NOT_FOUND: No matching Resource Record (RR) is found.

EFI_TIMEOUT: No DNS server reachable, or RetryCount was
exhausted without response from all specified DNS servers.

EFI_DEVICE_ERROR: An unexpected system or network error
occurred.

EFI_NO_MEDIA: There was a media error.

RetryCount The parameter configured through DNSv6.Configure() interface.
Retry number if no response received after RetryInterval.

RetryInterval The parameter configured through DNSv6.Configure() interface.
Minimum interval of retry is 2 second. If the retry interval is less than
2 second, then use the 2 second.

H2AData When the Token is used for host name to address translation,
H2AData is a pointer to the DNS6_HOST_TO_ADDR_DATA. Type
DNS6_HOST_TO_ADDR_DATA is defined below.

A2HData When the Token is used for host address to host name translation,
A2HData is a pointer to the DNS6_ADDR_TO_HOST_DATA. Type
DNS6_ADDR_TO_HOST_DATA is defined below.

GLookupDATA When the Token is used for a general lookup function, GLookupDATA
is a pointer to the DNS6_GENERAL_LOOKUP_DATA. Type
DNS6_GENERAL_LOOKUP_DATA is defined below.

EFI_DNS6_COMPLETION_TOKEN structures are used for host name to address translation, host address
to name translation and general lookup operation, the Event filed must be filled by the EFI DNSv6
Protocol Client. If the caller attempts to reuse Token before the completion event is triggered or
UEFI Forum, Inc. March 2019 1526

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
canceled, EFI_ALREADY_STARTED will be returned. After the operation completes, the EFI DNSv6
protocol driver fill in the RspData and Status field and the Event is signaled.

//**

// DNS6_HOST_TO_ADDR_DATA

//**

typedef struct {

 UINT32 IpCount;

 EFI_IPv6_ADDRESS *IpList;

} DNS6_HOST_TO_ADDR_DATA;

IpCount Number of the returned IP address

IpList Pointer to the all the returned IP address

//**

// DNS6_ADDR_TO_HOST_DATA

//**

typedef struct {

 CHAR16 *HostName;

} DNS6_ADDR_TO_HOST_DATA;

HostName Pointer to the primary name for this host address. It’s the caller’s
responsibility to free the response memory.

//**
// DNS6_GENERAL_LOOKUP_DATA
//**
typedef struct {

 UINTN RRCount;

 DNS6_RESOURCE_RECORD *RRList;

} DNS6_GENERAL_LOOKUP_DATA;

RRCount Number of returned matching RRs.

RRList Pointer to the all the returned matching RRs. It’s caller responsibility
to free the allocated memory to hold the returned RRs
UEFI Forum, Inc. March 2019 1527

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// DNS6_RESOURCE_RECORD

//***

typedef struct {

 CHAR8 *QName;

 UINT16 QType;

 UINT16 QClass;

 UINT32 TTL;

 UINT16 DataLength;

 CHAR8 *RData;

} DNS6_RESOURCE_RECORD;

QName The Owner name.

QType The Type Code of this RR

QClass The CLASS code of this RR.

TTL 32 bit integer which specify the time interval that the resource
record may be cached before the source of the information should
again be consulted. Zero means this RR cannot be cached.

DataLength 16 big integer which specify the length of RData.

RData A string of octets that describe the resource, the format of this
information varies according to QType and QClass difference.

Description

The HostNameToIp () function is used to translate the host name to host IP address. A type AAAA
record query is used to get the one or more IPv6 addresses for this host.
UEFI Forum, Inc. March 2019 1528

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.IpToHostName()

Summary

Host address to host name translation

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_IP_TO_HOST_NAME) (

 IN EFI_DNS6_PROTOCOL *This,

 IN EFI_IPv6_ADDRESS IpAddress,

 IN EFI_DNS6_COMPLETION_TOKEN *Token

);

Parameter

This Pointer to EFI_DNS6_PROTOCOL instance.

IpAddress IP address.

Token Point to the completion token to translate host address to host
name. Type EFI_DNS6_COMPLETION_TOKEN is defined in "Related
Definitions" of above HostNameToIp ().

Description

The IpToHostName () function is used to translate the host address to host name. A type PTR query is
used to get the primary name of the host. Implementation can choose to support this function or not.

EFI_SUCCESS The operation was queued successfully.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token. Event is NULL.
HostName is NULL or buffer contained unsupported characters.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1529

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.GeneralLookUp()

Summary

This function provides capability to retrieve arbitrary information from the DNS server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_GENERAL_LOOKUP) (

 IN EFI_DNS6_PROTOCOL *This,

 IN CHAR8 *QName,

 IN UINT16 QType,

 IN UINT16 QClass,

 IN EFI_DNS6_COMPLETION_TOKEN *Token

);

Description

 This GeneralLookUp() function retrieves arbitrary information from the DNS. The caller supplies a
QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content (e.g., TTL) was
returned. The caller need parse the returned RR to get required information. The function is optional.
Implementation can choose to support it or not.

Parameters

This Pointer to EFI_DNS6_PROTOCOL instance.

QName Pointer to Query Name.

QType Query Type.

QClass Query Name.

Token Point to the completion token to retrieve arbitrary information. Type
EFI_DNS6_COMPLETION_TOKEN is defined in "Related Definitions"
of above HostNameToIp ().

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL

IpAddress is not valid IP address .

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1530

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.UpdateDnsCache()

Summary

This function is to update the DNS Cache.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_UPDATE_DNS_CACHE) (

 IN EFI_DNS6_PROTOCOL *This,

 IN BOOLEAN DeleteFlag,

 IN BOOLEAN Override,

 IN EFI_DNS6_CACHE_ENTRY DnsCacheEntry

);

Parameters

This Pointer to EFI_DNS6_PROTOCOL instance.

DeleteFlag If FALSE, this function is to add one entry to the DNS Cache. If TRUE,
this function will delete matching DNS Cache entry.

Override If TRUE, the matching DNS cache entry will be overwritten with the
supplied parameter. If FALSE, EFI_ACCESS_DENIED will be
returned if the entry to be added is already existed.

DnsCacheEntry Pointer to DNS Cache entry.

Description

The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS
cache can be normally dynamically updated after the DNS resolve succeeds. This
function provided capability to manually add/delete/modify the DNS cache.

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported. Or the requested QType is not supported

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
QName is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1531

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.POLL()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_POLL) (

 IN EFI_DNS6_PROTOCOL *This

);

Parameters

This Pointer to EFI_DNS6_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll
the underlying communications device fast enough to transmit and/or receive all data
packets without missing incoming packets or dropping outgoing packets. Drivers and
applications that are experiencing packet loss should try calling the Poll() function
more often.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

This is NULL.

DnsCacheEntry.HostName is NULL.

DnsCacheEntry.IpAddress is NULL.

DnsCacheEntry.Timeout is ZERO.

EFI_ACCESS_DENIED The DNS cache entry already exists and Override is not TRUE.

EFI_OUT_OF_RESOURCE Failed to allocate needed resources.
UEFI Forum, Inc. March 2019 1532

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_DNS6_PROTOCOL.Cancel()

Abort an asynchronous DNS operation, including translation between IP and Host, and general look up
behavior.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_DNS6_CANCEL) (

 IN EFI_DNS6_PROTOCOL *This,

 IN EFI_DNS6_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to EFI_DNS6_PROTOCOL instance.

 Token Pointer to a token that has been issued by
EFI_DNS6_PROTOCOL.HostNameToIp (),
EFI_DNS6_PROTOCOL.IpToHostName() or
EFI_DNS6_PROTOCOL.GeneralLookUp(). If NULL, all pending
tokens are aborted.

Description

The Cancel() function is used to abort a pending resolution request. After calling this function,
Token.Status will be set to EFI_ABORTED and then Token.Event will be signaled. If the token is not in
one of the queues, which usually means that the asynchronous operation has completed, this function
will not signal the token and EFI_NOT_FOUND is returned.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI DNS Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT
Data was dropped out of the transmit and/or receive queue. Consider
increasing the polling rate.
UEFI Forum, Inc. March 2019 1533

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

29.6 EFI HTTP Protocols

This section defines the EFI HTTP Protocol interface. It is split into the following two main sections.

• HTTP Service Binding Protocol (HTTPSB)

• HTTP Protocol (HTTP)

29.6.1 HTTP Service Binding Protocol

EFI_HTTP_SERVICE_BINDING_PROTOCOL

Summary

The HTTPSB is used to locate communication devices that are supported by a HTTP driver and to create
and destroy instances of the HTTP child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol functions.
This section discusses the details that are specific to the HTTP.

GUID

#define EFI_HTTP_SERVICE_BINDING_PROTOCOL_GUID \

 {0xbdc8e6af, 0xd9bc, 0x4379,\

 {0xa7, 0x2a, 0xe0, 0xc4, 0xe7, 0x5d, 0xae, 0x1c}}

Description

A network application (or driver) that requires HTTP communication service can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish a HTTPSB
GUID. Each device with a published HTTP SB GUID supports HTTP Service Binding Protocol and may be
available for use.

After a successful call to the EFI_HTTP_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the child HTTP driver instance is in an uninitialized state; it is not ready to initiate HTTP data transfer.

Before a network application terminates execution, every successful call to the
EFI_HTTP_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_HTTP_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_SUCCESS
The asynchronous DNS operation was aborted and Token->Event is
signaled.

EFI_NOT_STARTED This EFI DNS6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_FOUND

When Token is not NULL and the asynchronous DNS operation was not
found in the transmit queue, It is either completed or was not issued by

HostNameToIp(), IpToHostName() or

GeneralLookUp().
UEFI Forum, Inc. March 2019 1534

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.6.2 EFI HTTP Protocol Specific Definitions

EFI_HTTP_PROTOCOL

Protocol GUID

#define EFI_HTTP_PROTOCOL_GUID \

 {0x7A59B29B, 0x910B, 0x4171,\

 {0x82, 0x42, 0xA8, 0x5A, 0x0D, 0xF2, 0x5B, 0x5B}}

Protocol Interface Structure

typedef struct _EFI_HTTP_PROTOCOL {

 EFI_HTTP_GET_MODE_DATA GetModeData;

 EFI_HTTP_CONFIGURE Configure;

 EFI_HTTP_REQUEST Request;

 EFI_HTTP_CANCEL Cancel;

 EFI_HTTP_RESPONSE Response;

 EFI_HTTP_POLL Poll;

} EFI_HTTP_PROTOCOL;

Parameters

GetModeData Gets the current operational status. See the GetModeData()
function description.

Configure Initialize, change, or reset operational settings in the EFI HTTP
protocol instance. See Configure() for function description.

Request Queue a request token into the transmit queue. This function is a
non-blocking operation. See Request() for function description.

Cancel Abort a pending request or response operation. See Cancel() for
function description.

Response Queue a response token into the receive queue. This function is a
non-blocking operation. See Response() for function description.

Poll Poll to receive incoming HTTP response and transmit outgoing HTTP
request. See Poll() for function description.

Description

The EFI HTTP protocol is designed to be used by EFI drivers and applications to create and transmit HTTP
Requests, as well as handle HTTP responses that are returned by a remote host. This EFI protocol uses
and relies on an underlying EFI TCP protocol.

EFI_HTTP_PROTOCOL.GetModeData()

Summary

Returns the operational parameters for the current HTTP child instance.
UEFI Forum, Inc. March 2019 1535

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI Protocol

typedef

EFI_STATUS

(EFIAPI * EFI_HTTP_GET_MODE_DATA)(

 IN EFI_HTTP_PROTOCOL *This,

 OUT EFI_HTTP_CONFIG_DATA *HttpConfigData

);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

HttpConfigData Pointer to the buffer for operational parameters of this HTTP
instance. Type EFI_HTTP_CONFIG_DATA is defined in “Related
Definitions” below. It is the responsibility of the caller to allocate the
memory for HttpConfigData and HttpConfigData-
>AccessPoint.IPv6Node/IPv4Node. In fact, it is recommended to
allocate sufficient memory to record IPv6Node since it is big enough
for all possibilities.

Description

The GetModeData() function is used to read the current mode data (operational parameters) for this
HTTP protocol instance.

Status Codes Returned

//**

// EFI_HTTP_CONFIG_DATA

//**

typedef struct {

 EFI_HTTP_VERSION HttpVersion;

 UINT32 TimeOutMillisec;

 BOOLEAN LocalAddressIsIPv6;

 union {

 EFI_HTTPv4_ACCESS_POINT *IPv4Node;

 EFI_HTTPv6_ACCESS_POINT *IPv6Node;

 } AccessPoint;

} EFI_HTTP_CONFIG_DATA;

HttpVersion HTTP version that this instance will support.

EFI_SUCCESS Operation succeeded

EFI_INVALID_PARAMETER

This is NULL.

HttpConfigData is NULL.

HttpConfigData->AccessPoint.IPv4Node or
HttpConfigData->AccessPoint.IPv6Node is NULL

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been started.
UEFI Forum, Inc. March 2019 1536

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
TimeOutMillsec Time out (in milliseconds) when blocking for requests.

LocalAddressIsIPv6 Defines behavior of EFI DNS and TCP protocols consumed by this
instance. If FALSE, this instance will use EFI_DNS4_PROTOCOL and
EFI_TCP4_PROTOCOL. If TRUE, this instance will use
EFI_DNS6_PROTOCOL and EFI_TCP6_PROTOCOL.

IPv4Node When LocalAddressIsIPv6 is FALSE, this points to the local
address, subnet, and port used by the underlying TCP protocol.

IPv6Node When LocalAddressIsIPv6 is TRUE, this points to the local IPv6
address and port used by the underlying TCP protocol.

//**
// EFI_HTTP_VERSION
//**

typedef enum {

 HttpVersion10,

 HttpVersion11,

 HttpVersionUnsupported

} EFI_HTTP_VERSION;

//**
// EFI_HTTPv4_ACCESS_POINT
//**

typedef struct {

 BOOLEAN UseDefaultAddress;

 EFI_IPv4_ADDRESS LocalAddress;

 EFI_IPv4_ADDRESS LocalSubnet;

 UINT16 LocalPort;

} EFI_HTTPv4_ACCESS_POINT;

UseDefaultAddress Set to TRUE to instruct the EFI HTTP instance to use the default
address information in every TCP connection made by this instance.
In addition, when set to TRUE, LocalAddress and LocalSubnet are
ignored.

LocalAddress If UseDefaultAddress is set to FALSE, this defines the local IP
address to be used in every TCP connection opened by this instance.

LocalSubnet If UseDefaultAddress is set to FALSE, this defines the local subnet
to be used in every TCP connection opened by this instance.

LocalPort This defines the local port to be used in every TCP connection
opened by this instance.
UEFI Forum, Inc. March 2019 1537

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**

// EFI_HTTPv6_ACCESS_POINT

//**

typedef struct {

 EFI_IPv6_ADDRESS LocalAddress;

 UINT16 LocalPort;

} EFI_HTTPv6_ACCESS_POINT;

LocalAddress Local IP address to be used in every TCP connection opened by this
instance.

LocalPort Local port to be used in every TCP connection opened by this
instance.

EFI_HTTP_PROTOCOL.Configure()

Summary

Initialize or brutally reset the operational parameters for this EFI HTTP instance.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_CONFIGURE)(

 IN EFI_HTTP_PROTOCOL *This,

 IN EFI_HTTP_CONFIG_DATA *HttpConfigData OPTIONAL

);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

HttpConfigData Pointer to the configure data to configure the instance.

Description

The Configure() function does the following:

• When HttpConfigData is not NULL Initialize this EFI HTTP instance by configuring timeout,
local address, port, etc.

• When HttpConfigData is NULL, reset this EFI HTTP instance by closing all active connections
with remote hosts, canceling all asynchronous tokens, and flush request and response buffers
without informing the appropriate hosts.

No other EFI HTTP function can be executed by this instance until the Configure() function is executed
and returns successfully.
UEFI Forum, Inc. March 2019 1538

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_HTTP_PROTOCOL.Request()

Summary

The Request() function queues an HTTP request to this HTTP instance, similar to Transmit() function in
the EFI TCP driver. When the HTTP request is sent successfully, or if there is an error, Status in token will
be updated and Event will be signaled.

EFI Protocol

Typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_REQUEST) (

 IN EFI_HTTP_PROTOCOL *This,

 IN EFI_HTTP_TOKEN *Token

);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

Token Pointer to storage containing HTTP request token. Type
EFI_HTTP_TOKEN is defined in "Related Definitions" below.

EFI_SUCCESS Operation succeeded.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE:

This is NULL.

HttpConfigData->LocalAddressIsIPv6 is FALSE and

HttpConfigData->AccessPoint.IPv4Node is NULL.

HttpConfigData->LocalAddressIsIPv6 is TRUE and

HttpConfigData->AccessPoint.IPv6Node is NULL.

EFI_ALREADY_STARTED
Reinitialize this HTTP instance without calling Configure() with NULL to

reset it.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when executing Configure().

EFI_UNSUPPORTED
One or more options in ConfigData are not supported in the

implementation.
UEFI Forum, Inc. March 2019 1539

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Definition

//**

// EFI_HTTP_TOKEN

//**

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_HTTP_MESSAGE *Message;

} EFI_HTTP_TOKEN;

Event This Event will be signaled after the Status field is updated by the
EFI HTTP Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event must
be lower than or equal to TPL_CALLBACK.

Status Status will be set to one of the following value if the HTTP request is
successfully sent or if an unexpected error occurs:

EFI_SUCCESS: The HTTP request was successfully sent to the
remote host.

EFI_HTTP_ERROR: The response message was successfully
received but contains a HTTP error. The response status code is
returned in Token.

EFI_ABORTED: The HTTP request was canceled by the caller and
removed from the transmit queue.

EFI_TIMEOUT: The HTTP request timed out before reaching the
remote host.

EFI_DEVICE_ERROR: An unexpected system or network error
occurred.

Message Pointer to storage containing HTTP message data.

//**

// EFI_HTTP_MESSAGE

//**

typedef struct {

 union {

 EFI_HTTP_REQUEST_DATA *Request;

 EFI_HTTP_RESPONSE_DATA *Response;

 } Data;

 UINTN HeaderCount;

 EFI_HTTP_HEADER *Headers;

 UINTN BodyLength;

 VOID *Body;

} EFI_HTTP_MESSAGE;

Request When the token is used to send a HTTP request, Request is a pointer
to storage that contains such data as URL and HTTP method.

Response When used to await a response, Response points to storage
containing HTTP response status code.
UEFI Forum, Inc. March 2019 1540

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
HeaderCount Number of HTTP header structures in Headers list. On request, this
count is provided by the caller. On response, this count is provided
by the HTTP driver.

Headers Array containing list of HTTP headers. On request, this array is
populated by the caller. On response, this array is allocated and
populated by the HTTP driver. It is the responsibility of the caller to
free this memory on both request and response.

BodyLength Length in bytes of the HTTP body. This can be zero depending on the
HttpMethod type.

Body Body associated with the HTTP request or response. This can be
NULL depending on the HttpMethod type.

The HTTP driver will prepare a request string from the information contained in and queue it to the
underlying TCP instance to be sent to the remote host. Typically, all fields in the structure will contain
content (except Body and BodyLength when HTTP method is not POST or PUT), but there is a special case
when using PUT or POST to send large amounts of data. Depending on the size of the data, it may not be
able to be stored in a contiguous block of memory, so the data will need to be provided in chunks. In this
case, if Body is not NULL and BodyLength is non-zero and all other fields are NULL or 0, the HTTP driver
will queue the data to be sent to the last remote host that a token was successfully sent. If no previous
token was sent successfully, this function will return EFI_INVALID_PARAMETER.

The HTTP driver is expected to close existing (if any) underlying TCP instance and create new TCP instance
if the host name in the request URL is different from previous calls to Request(). This is consistent with
RFC 2616 recommendation that HTTP clients should attempt to maintain an open TCP connection
between client and host.

//**
// EFI_HTTP_REQUEST_DATA
//**
typedef struct {
 EFI_HTTP_METHOD Method;
 CHAR16 *Url;
} EFI_HTTP_REQUEST_DATA;

Method The HTTP method (e.g. GET, POST) for this HTTP Request.

Url The URI of a remote host. From the information in this field, the
HTTP instance will be able to determine whether to use HTTP or
HTTPS and will also be able to determine the port number to use. If
no port number is specified, port 80 (HTTP) is assumed. See RFC
3986 for more details on URI syntax.
UEFI Forum, Inc. March 2019 1541

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//**
// EFI_HTTP_METHOD
//**

typedef enum {

 HttpMethodGet,

 HttpMethodPost,

 HttpMethodPatch,

 HttpMethodOptions,

 HttpMethodConnect,

 HttpMethodHead,

 HttpMethodPut,

 HttpMethodDelete,

 HttpMethodTrace,

 HttpMethodMax

} EFI_HTTP_METHOD;

//**
// EFI_HTTP_RESPONSE_DATA
//**
typedef struct {
 EFI_HTTP_STATUS_CODE StatusCode;
} EFI_HTTP_RESPONSE_DATA;

StatusCode Response status code returned by the remote host.

//**
// EFI_HTTP_HEADER
//**
typedef struct {
 CHAR8 *FieldName;
 CHAR8 *FieldValue;
} EFI_HTTP_HEADER;

FieldName Null terminated string which describes a field name. See RFC 2616
Section 14 for detailed information about field names.

FieldValue Null terminated string which describes the corresponding field value.
See RFC 2616 Section 14 for detailed information about field values.
UEFI Forum, Inc. March 2019 1542

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
typedef enum {

 HTTP_STATUS_UNSUPPORTED_STATUS = 0,

 HTTP_STATUS_100_CONTINUE,

 HTTP_STATUS_101_SWITCHING_PROTOCOLS,

 HTTP_STATUS_200_OK,

 HTTP_STATUS_201_CREATED,

 HTTP_STATUS_202_ACCEPTED,

 HTTP_STATUS_203_NON_AUTHORITATIVE_INFORMATION,

 HTTP_STATUS_204_NO_CONTENT,

 HTTP_STATUS_205_RESET_CONTENT,

 HTTP_STATUS_206_PARTIAL_CONTENT,

 HTTP_STATUS_300_MULTIPLE_CHOICES,

 HTTP_STATUS_301_MOVED_PERMANENTLY,

 HTTP_STATUS_302_FOUND,

 HTTP_STATUS_303_SEE_OTHER,

 HTTP_STATUS_304_NOT_MODIFIED,

 HTTP_STATUS_305_USE_PROXY,

 HTTP_STATUS_307_TEMPORARY_REDIRECT,

 HTTP_STATUS_400_BAD_REQUEST,

 HTTP_STATUS_401_UNAUTHORIZED,

 HTTP_STATUS_402_PAYMENT_REQUIRED,

 HTTP_STATUS_403_FORBIDDEN,

 HTTP_STATUS_404_NOT_FOUND,

 HTTP_STATUS_405_METHOD_NOT_ALLOWED,

 HTTP_STATUS_406_NOT_ACCEPTABLE,

 HTTP_STATUS_407_PROXY_AUTHENTICATION_REQUIRED,

 HTTP_STATUS_408_REQUEST_TIME_OUT,

 HTTP_STATUS_409_CONFLICT,

 HTTP_STATUS_410_GONE,

 HTTP_STATUS_411_LENGTH_REQUIRED,

 HTTP_STATUS_412_PRECONDITION_FAILED,

 HTTP_STATUS_413_REQUEST_ENTITY_TOO_LARGE,
UEFI Forum, Inc. March 2019 1543

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 HTTP_STATUS_414_REQUEST_URI_TOO_LARGE,

 HTTP_STATUS_415_UNSUPPORTED_MEDIA_TYPE,

 HTTP_STATUS_416_REQUESTED_RANGE_NOT_SATISFIED,

 HTTP_STATUS_417_EXPECTATION_FAILED,

 HTTP_STATUS_500_INTERNAL_SERVER_ERROR,

 HTTP_STATUS_501_NOT_IMPLEMENTED,

 HTTP_STATUS_502_BAD_GATEWAY,

 HTTP_STATUS_503_SERVICE_UNAVAILABLE,

 HTTP_STATUS_504_GATEWAY_TIME_OUT,

 HTTP_STATUS_505_HTTP_VERSION_NOT_SUPPORTED,

 HTTP_STATUS_308_PERMANENT_REDIRECT

} EFI_HTTP_STATUS_CODE;

Status Codes Returned

EFI_HTTP_PROTOCOL.Cancel()

Summary

Abort an asynchronous HTTP request or response token.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI * EFI_HTTP_CANCEL)(

 IN EFI_HTTP_PROTOCOL *This,

 IN EFI_HTTP_TOKEN *Token,

);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

Token Point to storage containing HTTP request or response token.

EFI_SUCCESS Outgoing data was processed.

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been started.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit or receive queue.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE
This is NULL.
Token is NULL.

Token->Message is NULL.

Token->Message->Body is not NULL, Token->Message-
>BodyLength is non-zero, and Token->Message->Data is NULL,

but a previous call to Request()has not been completed

successfully.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources.

EFI_UNSUPPORTED The HTTP method is not supported in current implementation.
UEFI Forum, Inc. March 2019 1544

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Description

The Cancel() function aborts a pending HTTP request or response transaction. If Token is not NULL and
the token is in transmit or receive queues when it is being cancelled, its Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of the queues, which
usually means that the asynchronous operation has completed, EFI_NOT_FOUND is returned. If Token is
NULL, all asynchronous tokens issued by Request() or Response() will be aborted.

Status Codes Returned

EFI_HTTP_PROTOCOL.Response()

Summary

The Response() function queues an HTTP response to this HTTP instance, similar to
Receive() function in the EFI TCP driver. When the HTTP response is received
successfully, or if there is an error, Status in token will be updated and Event will be
signaled.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_RESPONSE) (

 IN EFI_HTTP_PROTOCOL *This,

 IN EFI_HTTP_TOKEN *Token

);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

Token Pointer to storage containing HTTP response token. See Request()
function for the definition of EFI_HTTP_TOKEN.

Description

The HTTP driver will queue a receive token to the underlying TCP instance. When data is received in the
underlying TCP instance, the data will be parsed and Token will be populated with the response data. If
the data received from the remote host contains an incomplete or invalid HTTP header, the HTTP driver
will continue waiting (asynchronously) for more data to be sent from the remote host before signaling
Event in Token.

It is the responsibility of the caller to allocate a buffer for Body and specify the size in BodyLength. If the
remote host provides a response that contains a content body, up to BodyLength bytes will be copied

EFI_SUCCESS Request and Response queues are successfully flushed.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NOT_FOUND The asynchronous request or response token is not found.

EFI_UNSUPPORTED The implementation does not support this function.
UEFI Forum, Inc. March 2019 1545

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
from the receive buffer into Body and BodyLength will be updated with the amount of bytes received
and copied to Body. This allows the client to download a large file in chunks instead of into one
contiguous block of memory. Similar to HTTP request, if Body is not NULL and BodyLength is non-zero
and all other fields are NULL or 0, the HTTP driver will queue a receive token to underlying TCP instance.
If data arrives in the receive buffer, up to BodyLength bytes of data will be copied to Body. The HTTP
driver will then update BodyLength with the amount of bytes received and copied to Body.

If the HTTP driver does not have an open underlying TCP connection with the host specified in the
response URL, Response() will return EFI_ACCESS_DENIED. This is consistent with RFC 2616
recommendation that HTTP clients should attempt to maintain an open TCP connection between client
and host.

Status Codes Returned

EFI_HTTP_PROTOCOL.Poll()

Polls for incoming data packets and processes outgoing data packets.

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_POLL) (

 IN EFI_HTTP_PROTOCOL*This

);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

 Description

The Poll() function can be used by network drivers and applications to increase
the rate that data packets are moved between the communication devices and
the transmit and receive queues. In some systems, the periodic timer event in
the managed network driver may not poll the underlying communications
device fast enough to transmit and/or receive all data packets without missing

EFI_SUCCESS Allocation succeeded

EFI_NOT_STARTED
This EFI HTTP
 Protocol instance has not been initialized.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE
This is NULL.

Token is NULL.

Token->Message is NULL.
Token->Message->Body is not NULL, Token->Message-
>BodyLength is non-zero, and Token->Message->Data is NULL,

but a previous call to Response()has not been completed successfully

EFI_OUT_OF_RESOURCES Could not allocate enough system resources.

EFI_ACCESS_DENIED
An open TCP connection is not present with the host specified by
response URL.
UEFI Forum, Inc. March 2019 1546

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
incoming packets or dropping outgoing packets. Drivers and applications that
are experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

29.6.2.1 Usage Examples

Here is an example of a client making a HTTP Request to download a driver bundle from Intel Driver
Download Center. This example includes sample code for how to support a client that is behind a HTTP
proxy server.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER
This is NULL

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been started.
UEFI Forum, Inc. March 2019 1547

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
#include <Uefi.h>
#include <HttpProtocol.h>

#define BUFFER_SIZE 0x100000

BOOLEAN gRequestCallbackComplete = FALSE;
BOOLEAN gResponseCallbackComplete = FALSE;

VOID
EFIAPI
RequestCallback(
 IN EFI_EVENT Event,
 IN VOID *Context
)
{
 gRequestCallbackComplete = TRUE;
}

VOID
EFIAPI
ResponseCallback(
 IN EFI_EVENT Event,
 IN VOID *Context
)
{
 gResponseCallbackComplete = TRUE;
}

EFI_STATUS
EFIAPI
HttpClientMain(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;
 EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
 EFI_HANDLE *Handle;
 EFI_HTTP_PROTOCOL *HttpProtocol;
 EFI_HTTP_CONFIG_DATA ConfigData;
 EFI_HTTPv4_ACCESS_POINT IPv4Node;
 EFI_HTTP_REQUEST_DATA RequestData;
 EFI_HTTP_HEADER RequestHeader;
 EFI_HTTP_MESSAGE RequestMessage;
 EFI_HTTP_TOKEN RequestToken;
 EFI_HTTP_RESPONSE_DATA ResponseData;
 EFI_HTTP_MESSAGE ResponseMessage;
 EFI_HTTP_TOKEN ResponseToken;
 UINT8 *Buffer;
 EFI_TIME Baseline;
 EFI_TIME Current;
UEFI Forum, Inc. March 2019 1548

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 UINTN Timer;
 UINTN Index;
 UINTN ContentDownloaded;
 UINTN ContentLength;

 Status = gBS->AllocatePool (
 EfiBootServicesData,
 BUFFER_SIZE,
 (VOID **)&Buffer
);
 // TODO: Handle error...

 Status = gBS->LocateProtocol(
 &gEfiHttpServiceBindingProtocolGuid,
 NULL,
 &ServiceBinding
);
 // TODO: Handle error...

 Status = ServiceBinding->CreateChild(ServiceBinding, &Handle);
 // TODO: Handle error...

 Status = gBS->HandleProtocol(Handle, &gEfiHttpProtocolGuid, &HttpProtocol);
 // TODO: Handle error...

 ConfigData.HttpVersion = HttpVersion11;
 ConfigData.TimeOutMillisec = 0; // Indicates default timeout period
 ConfigData.LocalAddressIsIPv6 = FALSE;

 ZeroMem(&IPv4Node, sizeof(IPv4Node));
 IPv4Node.UseDefaultAddress = TRUE; // Obtain IP address from DHCP
 ConfigData.AccessPoint.IPv4Node = &IPv4Node;

 // The HTTP driver must first be configured before requests or responses can
 // be processed. This is the same for other network protocols such as TCP.
 Status = HttpProtocol->Configure(HttpProtocol, &ConfigData);

 // This request message is initialized to request a sample driver bundle
 // from Intel's driver download center. To download a file, we use HTTP GET.
 RequestData.Method = HttpMethodGet;
 // URI where the file is located that we want to download.
 RequestData.Url = L"\
http://downloadmirror.intel.com/23418/a08/FYKH-Win8.1-64bit-Driver-Bundle-
Sep2014.zip";
 // This header tells the HTTP driver to relay the HTTP request
 // via a proxy server. This header is just used to demonstrate
 // how to relay through a proxy with this driver. The method
 // for obtaining the proxy address is up to the client. The
 // HTTP driver does NOT resolve this on its own.
 RequestHeader.FieldName = "Host";
 RequestHeader.FieldValue = "my.proxyserver.com";
UEFI Forum, Inc. March 2019 1549

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 // Message format just contains a pointer to the request data
 // and body info, if applicable. In the case of HTTP GET, body
 // is not relevant.
 RequestMessage.Data.Request = &RequestData;
 // Just one header being provided in the HTTP message.
 RequestMessage.HeaderCount = 1;
 RequestMessage.Headers = &RequestHeader;
 RequestMessage.BodyLength = 0;
 RequestMessage.Body = NULL;
 // Token format is similar to the token format in EFI TCP protocol.
 RequestToken.Event = NULL;
 Status = gBS->CreateEvent(
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 RequestCallback,
 NULL,
 &RequestToken.Event
);
 // TODO: Handle error...
 RequestToken.Status = EFI_SUCCESS;
 RequestToken.Message = &RequestMessage;

 gRequestCallbackComplete = FALSE;
 // Finally, make HTTP request.
 Status = HttpProtocol->Request(HttpProtocol, &RequestToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling
 // the request. In this case, we'll allow the network stack 10
 // seconds to send the request successfully.
 for (Timer = 0; !gRequestCallbackComplete && Timer < 10;) {
 // Give the HTTP driver some motivation...
 HttpProtocol->Poll(HttpProtocol);
 // In practice, a call to GetTime() only fails when the total
 // elapsed time between the last call to to GetTime() is less
 // than the resolution of one tick (e.g. 1 second, depending
 // on capabilities of hardware). We only care to check the time
 // when the call succeeds.
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
 Baseline = Current;
 ++Timer;
 }
 }

UEFI Forum, Inc. March 2019 1550

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 // Cancel request if we did not get a notification from the HTTP
 // driver in a timely manner.
 if (!gRequestCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &RequestToken);
 // TODO: Handle error and exit condition...
 }
 // Assuming we succeed in our request...

 // This response message is different that request in that the
 // HTTP driver is responsible for allocating the headers during
 // a response instead of the caller.
 ResponseData.StatusCode = HTTP_STATUS_UNSUPPORTED_STATUS;
 ResponseMessage.Data.Response = &ResponseData;
 // HeaderCount will be updated by the HTTP driver on response.
 ResponseMessage.HeaderCount = 0;
 // Headers will be populated by the driver on response.
 ResponseMessage.Headers = NULL;
 // BodyLength maximum limit is defined by the caller. On response,
 // the HTTP driver will update BodyLength to the total number of
 // bytes copied to Body. This number will never exceed the initial
 // maximum provided by the caller.
 ResponseMessage.BodyLength = BUFFER_SIZE;
 ResponseMessage.Body = Buffer;
 // Token format is similar to the token format in EFI TCP protocol.
 ResponseToken.Event = NULL;
 Status = gBS->CreateEvent(
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 NULL,
 &ResponseToken,
 &ResponseToken.Event
);
 ResponseToken.Status = EFI_SUCCESS;
 ResponseToken.Message = &ResponseMessage;

 gResponseCallbackComplete = FALSE;
 // Finally, make HTTP request.
 Status = HttpProtocol->Response(HttpProtocol, &ResponseToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling.
 for (Timer = 0; !gResponseCallbackComplete && Timer < 10;) {
 HttpProtocol->Poll(HttpProtocol);
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
UEFI Forum, Inc. March 2019 1551

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 Baseline = Current;
 ++Timer;
 }
 }

 // Remove response token from queue if we did not get a notification
 // from the remote host in a timely manner.
 if (!gResponseCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &ResponseToken);
 // TODO: Handle error and exit condition...
 }

 // Assuming we successfully received a response...
 for (Index = 0; Index < ResponseMessage.HeaderCount; ++Index) {
 // We can parse the length of the file from the ContentLength header.
 if (!AsciiStriCmp(ResponseMessage.Headers[Index].FieldName, "Content-
Length")) {
 ContentLength =
 AsciiStrDecimalToUintn(ResponseMessage.Headers[Index].FieldValue);
 }
 }

 ContentDownloaded = ResponseMessage.BodyLength;
 // TODO:
 // Downloaded data exists in Buffer[0..ResponseMessage.BodyLength].
 // At this point, depending on business use case, the content can
 // be written to a file, stored on the heap, etc.

 while (ContentDownloaded < ContentLength) {
 // If we make it here, we haven't yet downloaded the whole file and
 // need to keep going.
 ResponseMessage.Data.Response = NULL;
 if (ResponseMessage.Headers != NULL) {
 // No sense hanging onto this anymore.
 FreePool(ResponseMessage.Headers);
 }
 ResponseMessage.HeaderCount = 0;
 ResponseMessage.BodyLength = BUFFER_SIZE;
 ZeroMem(Buffer, BUFFER_SIZE);
 // ResponseMessage.Body still points to Buffer.

 gResponseCallbackComplete = FALSE;
 // The HTTP driver accepts a token where Data, Headers, and
 // HeaderCount are all 0 or NULL. The driver will wait for a
 // response from the last remote host which a transaction occurred
 // and copy the response directly into Body, updating BodyLength
 // with the total amount copied (downloaded).
 Status = HttpProtocol->Response(HttpProtocol, &ResponseToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
UEFI Forum, Inc. March 2019 1552

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling.
 for (Timer = 0; !gResponseCallbackComplete && Timer < 10;) {
 HttpProtocol->Poll(HttpProtocol);
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
 Baseline = Current;
 ++Timer;
 }
 }

 // Remove response token from queue if we did not get a notification
 // from the remote host in a timely manner.
 if (!gResponseCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &ResponseToken);
 // TODO: Handle error and exit condition...
 }

 // Assuming we successfully received a response...
 ContentDownloaded += ResponseMessage.BodyLength;
 // TODO:
 // Downloaded data exists in Buffer[0..ResponseMessage.BodyLength].
 // Append data to a file, heap memory, etc.
 }

 // Perform any necessary cleanup and handling of downloaded file
 // assuming we succeeded at downloading the content. Depending on
 // where the data was stored as per business need, that data can
 // be consumed at this point. For example, if the data was stored
 // to a file system, the file can be opened and consumed.

 return EFI_SUCCESS;
}

29.6.3 HTTP Utilities Protocol

Summary

This section defines the EFI HTTP Utilities Protocol interface.
UEFI Forum, Inc. March 2019 1553

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_HTTP_UTILITIES_PROTOCOL

Protocol GUID

#define EFI_HTTP_UTILITIES_PROTOCOL_GUID \

{ 0x3E35C163, 0x4074, 0x45DD,\

 { 0x43, 0x1E, 0x23, 0x98, 0x9D, 0xD8, 0x6B, 0x32 }}

Protocol Interface Structure

typedef struct _EFI_HTTP_UTILITIES_PROTOCOL {

 EFI_HTTP_UTILS_BUILD Build;

 EFI_HTTP_UTILS_PARSE Parse;

} EFI_HTTP_UTILITIES_PROTOCOL;

Parameters

Build Create HTTP header based on a combination of seed header, fields
to delete, and fields to append.

Parse Parses HTTP header and produces an array of key/value pairs.

Description

The EFI HTTP utility protocol is designed to be used by EFI drivers and applications to parse HTTP headers
from a byte stream. This driver is neither dependent on network connectivity, nor the existence of an
underlying network infrastructure.

EFI_HTTP_UTILITIES_PROTOCOL.Build()

Summary

Provides ability to add, remove, or replace HTTP headers in a raw HTTP message.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_UTILS_BUILD) (

 IN EFI_HTTP_UTILITIES_PROTOCOL *This,

 IN UINTN SeedMessageSize

 IN VOID *SeedMessage, OPTIONAL

 IN UINTN DeleteCount

 IN CHAR8 *DeleteList[], OPTIONAL

 IN UINTN AppendCount

 IN EFI_HTTP_HEADER *AppendList[], OPTIONAL

 OUT UINTN *NewMessageSize,

 OUT VOID **NewMessage,

);

Parameters

This Pointer to EFI_HTTP_UTILITIES_PROTOCOL instance.

SeedMessageSize Size of the initial HTTP header. This can be zero.
UEFI Forum, Inc. March 2019 1554

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
SeedMessage Initial HTTP header to be used as a base for building a new HTTP
header. If NULL, SeedMessageSize is ignored.

DeleteCount Number of null-terminated HTTP header field names in DeleteList.

DeleteList List of null-terminated HTTP header field names to remove from
SeedMessage. Only the field names are in this list because the field
values are irrelevant to this operation.

AppendCount Number of header fields in AppendList.

AppendList List of HTTP headers to populate NewMessage with. If SeedMessage
is not NULL, AppendList will be appended to the existing list from
SeedMessage in NewMessage

NewMessageSize Pointer to number of header fields in NewMessage.

NewMessage Pointer to a new list of HTTP headers based on

Description

The Build() function is used to manage the headers portion of an HTTP message by providing the
ability to add, remove, or replace HTTP headers.

Status Codes Returned

EFI_HTTP_UTILITIES_PROTOCOL.Parse()

Summary

Parse HTTP header into array of key/value pairs.

EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_HTTP_UTILS_PARSE) (

 IN EFI_HTTP_PROTOCOL *This,

 IN CHAR8 *HttpMessage,

 IN UINTN HttpMessageSize,

 OUT EFI_HTTP_HEADER **HeaderFields,

 OUT UINTN *FieldCount

);

Parameters

This Pointer to EFI_HTTP_UTILITIES_PROTOCOL instance.

HttpMessage Contains raw unformatted HTTP header string.

HttpMessageSize Size of HTTP header.

HeaderFields Array of key/value header pairs.

EFI_SUCCESS Add, remove, and replace operations succeeded.

EFI_OUT_OF_RESOURCES Could not allocate memory for NewMessage.

EFI_INVALID_PARAMETER
One or more of the following conditions is TRUE
This is NULL
UEFI Forum, Inc. March 2019 1555

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
FieldCount Number of headers in HeaderFields.

Description

The Parse() function is used to transform data stored in HttpHeader into a list of fields paired with their
corresponding values.

Status Codes Returned

EFI_SUCCESS Allocation succeeded

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been initialized.

EFI_INVALID_PARAMETER

One or more of the following conditions is TRUE
• This is NULL

• HttpMessage is NULL

• HeaderFields is NULL

• FieldCount is NULL
UEFI Forum, Inc. March 2019 1556

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.7 EFI REST Support Overview

EFI REST(EX) protocols are designed to support REST communication between EFI REST client
applications/drivers and REST services. EFI REST client tool uses EFI REST(EX) protocols to send/receive
resources to/from REST service to manage systems, configure systems or manipulate resources on REST
service. Due to HTTP protocol is commonly used to communicate with REST service in practice, EFI
REST(EX) protocols adopt HTTP as the message format to send and receive REST service resource.

EFI REST(EX) driver instance abstracts EFI REST client functionality and provides underlying interface to
communicate with REST service. EFI REST(EX) driver instance knows how to communicate with REST
service through certain interface after the corresponding configuration is initialized. EFI REST support
provides two REST relevant protocols, one is EFI REST protocol which was introduced in UEFI spec 2.5 for
providing light-weight EFI REST capability. Another one is EFI REST EX protocol, which is introduced in
UEFI spec 2.8 for providing more interoperability between EFI REST client and REST service.

EFI REST and EFI REST EX protocols are not required to coexist on a platform, system integrator
determines which EFI REST relevant protocol to be supported on system according to the platform
demands. EFI REST support is to provide interoperability between EFI REST client and REST service. The
authentication of accessing to REST service is not handled by EFI REST relevant protocols. Different REST
service has its own authentication method. EFI REST client has to follow the specification defined by REST
service for the authentication process.

Figure 1. EFI REST Support, Single Protocol
UEFI Forum, Inc. March 2019 1557

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Multiple EFI REST(EX) driver instances can be installed on a platform to communicate with different types
of REST services or various underlying interfaces to REST services. REST service can be located on the
platform locally, or off platform in the remote server. The system integrator can implement In-band EFI
REST(EX) driver instance for the on-platform REST service communications or Out-of-band EFI REST(EX)
driver instance for the off-platform REST service communications.

Figure 2. EFI REST Support, Multiple Protocols
UEFI Forum, Inc. March 2019 1558

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI REST Support Scenario 1 (Platform Management)

The following figure represents a platform which has BMC on board, with the REST service deployed like
Redfish service. The In-band EFI REST(EX) protocol (right one) is used by EFI REST client to manage this
platform. This platform can also be managed in out of band like from the remote OS REST client. The left
one is Out of band EFI REST(EX) protocol which communicate with other REST services like Redfish service
in which the resource is belong to other platforms.

Figure 3. EFI REST Support, BMC on Board
UEFI Forum, Inc. March 2019 1559

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI REST Support Scenario 2 (Platform Management)

The following figure represents a platform which uses remote Redfish service for the platform
management. If treats the resource in remote Redfish service as a part of this platform, the In-band EFI
REST(EX) protocol could be implemented to communicate with remote Redfish service. This platform can
also be managed in out of band from the remote OS REST client.

Figure 4. EFI REST Support, Redfish Service
UEFI Forum, Inc. March 2019 1560

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
A variety of possible EFI REST(EX) protocol usages are delineated as below. The EFI REST(EX) driver
instance could communicate with REST service through underlying interface like EFI network stack,
platform specific interface to BMC or others. The working model of EFI REST support depends on the
implementation of EFI REST(EX) driver instance and the design of platform.

Figure 5. EFI REST Support, Protocol Usages
UEFI Forum, Inc. March 2019 1561

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.7.1 EFI REST Protocol

This section defines the EFI REST Protocol interface.

29.7.1.1 EFI REST Protocol Definitions

EFI_REST_PROTOCOL

Protocol GUID

#define EFI_REST_PROTOCOL_GUID \

 {0x0DB48A36, 0x4E54, 0xEA9C,\

 { 0x9B, 0x09, 0x1E, 0xA5, 0xBE, 0x3A, 0x66, 0x0B }}

Protocol Interface Structure

typedef struct _EFI_REST_PROTOCOL {

 EFI_REST_SEND_RECEIVE SendReceive;

 EFI_REST_GET_TIME GetServiceTime;

} EFI_REST_PROTOCOL;

Parameters

 RestSendReceive Provides an HTTP-like interface to send and receive resources
from a REST service.

 GetServiceTime Returns the current time of the REST service.

Description
The EFI REST protocol is designed to be used by EFI drivers and applications to send and receive resources
from a RESTful service. This protocol abstracts REST (Representational State Transfer) client functionality.
This EFI protocol could be implemented to use an underlying EFI HTTP protocol, or it could rely on other
interfaces that abstract HTTP access to the resources.

EFI_REST_PROTOCOL.SendReceive()

Summary
 Provides a simple HTTP-like interface to send and receive resources from a REST service.
UEFI Forum, Inc. March 2019 1562

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_REST_SEND_RECEIVE)(

 IN EFI_REST_PROTOCOL *This,

 IN EFI_HTTP_MESSAGE *RequestMessage,

 OUT EFI_HTTP_MESSAGE *ResponseMessage

);

Parameters

This Pointer to EFI_REST_PROTOCOL instance for a particular REST
service.

RequestMessage Pointer to the REST request data for this resource

ResponseMessage Pointer to the REST response data obtained for this requested.

Description

 The SendReceive() function sends a REST request to this REST service, and returns a REST response
when the data is retrieved from the service. Both of the REST request and response messages are
represented in format of EFI_HTTP_MESSAGE. RequestMessage contains the request to the REST
resource identified by UrlRequestMessage->Data.Request->Url. The ResponseMessage is the
returned response for that request, including the final HTTP status code, headers and teh REST resource
represented in the message body.

The memory buffers pointed by ResponseMessage->Data.Response, ResponseMessage->Headers
and ResponseMessage->Body are allocated by this function, and it is the caller's responsibility to free
the buffer when the caller no longer requires the buffer's contents.

It’s the REST protocol’s responsibility to handle HTTP layer details and return the REST resource to the
caller, when this function is implemented by using an underlying EFI HTTP protocol. For example, if an
HTTP interim response (Informational 1xx in HTTP 1.1) is received from server, the REST protocol should
deal with it and keep waiting for the final response, instead of return the interim response to the caller.
Same principle should be observed if the REST protocol relies on other interfaces.

Status Codes Returned
EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This, RequestMessage, or ResponseMessage are NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Receiving response message fail due to timeout.
UEFI Forum, Inc. March 2019 1563

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_REST_PROTOCOL.GetServiceTime()

typedef

EFI_STATUS

(EFIAPI *EFI_REST_GET_TIME)(

 IN EFI_REST_PROTOCOL *This,

 OUT EFI_TIME *Time

);

Parameters

This Pointer to EFI_REST_PROTOCOL instance.

Time A pointer to storage to receive a snapshot of the current time of the
REST service.

Description

 The GetServiceTime() function is an optional interface to obtain the current time from this REST
service instance. If this REST service does not support retrieving the time, this function returns
EFI_UNSUPPORTED.

Status Codes Returned

29.7.2 EFI REST EX Protocol

This section defines the EFI REST EX Protocol interfaces. It is split into the following two main sections:

• REST EX Service Binding Protocol (RESTEXSB)

• REST EX Protocol (REST EX)

29.7.2.1 REST EX Service Binding Protocol

EFI_REST_EX_SERVICE_BINDING_PROTOCOL

Summary

The RESTEXSB is used to locate the REST services those are supported by a REST EX driver instances and
to create and destroy instances of REST EX child protocol driver.

The EFI Service Binding Protocol in Section 11.6 defines the generic Service Binding Protocol functions.
This section discusses the details that are specific to the REST EX.

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This or Time are NULL.

EFI_UNSUPPORTED The RESTful service does not support returning the time

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1564

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GUID

#define EFI_REST_EX_SERVICE_BINDING_PROTOCOL_GUID \

{0x456bbe01, 0x99d0, 0x45ea, \

{0xbb, 0x5f, 0x16, 0xd8, 0x4b, 0xed, 0xc5, 0x59}}

Description

A REST service client application (or driver) that communicates to REST service can use one of protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish a RESTEXSB
GUID. Each device with a published RESTEXSB GUID supports REST EX Service Binding Protocol and may
be available for use.

After a successful call to the EFI_REST_EX_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child REST EX driver is in the unconfigured state. It is not ready to communicate with REST
service at this moment. The child instance is ready to use to communicate with REST service after the
successful Configure() is invoked. For EFI REST drivers which don’t require additional configuration
process, Configure() is unnecessary to be invoked before using its child instance. This depends on EFI
REST EX driver specific implementation.

Before a REST service client application terminates execution, every successful call to the
EFI_REST_EX_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a
call to the EFI_REST_EX_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

29.7.2.2 REST EX Protocol Specific Definitions

EFI_REST_EX_PROTOCOL

Protocol GUID

#define EFI_REST_EX_PROTOCOL_GUID \

 {0x55648b91, 0xe7d, 0x40a3, \

 {0xa9, 0xb3, 0xa8, 0x15, 0xd7, 0xea, 0xdf, 0x97}}

Protocol Interface Structure

typedef struct _EFI_REST_EX_PROTOCOL {

 EFI_REST_SEND_RECEIVE SendReceive;

 EFI_REST_GET_TIME GetServiceTime;

EFI_REST_EX_GET_SERVICE GetService;

EFI_REST_EX_GET_MODE_DATA GetModeData;

 EFI_REST_EX_CONFIGURE Configure;

 EFI_REST_EX_ASYNC_SEND_RECEIVE AyncSendReceive;

 EFI_REST_EX_EVENT_SERVICE EventService;

} EFI_REST_EX_PROTOCOL;

Parameters

SendReceive Provides an HTTP-like interface to send and receive resources
from a REST service. The functionality of this function is same as
EFI_REST_PROTOCOL.SendReceive(). Refer to section
Section 29.7.1.1 for more details.
UEFI Forum, Inc. March 2019 1565

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
GetServiceTime Returns the current time of the REST service. The functionality of this
function is same as EFI_REST_PROTOCOL.GetServiceTime(). Refer to
29.7.1.1 for the details.

GetService This function returns the type and location of REST service.

GetModeData This function returns operational configuration of current EFI REST
EX child instance.

Configure This function is used to configure EFI REST EX child instance.

AyncSendReceive Provides an HTTP-like interface to send and receive resources. The
resource returned from REST service is sent to client in
asynchronously.

EventService Provides an interface to subscribe event of specific resource changes
on REST service.

Description

The REST EX protocol is designed to use by REST service client applications or drivers to communicate
with REST service. REST EX protocol enhances the REST protocol and provides comprehensive interfaces
to REST service clients. Akin to REST protocol, REST EX driver instance uses HTTP message for the REST
request and response. However, the underlying mechanism of REST EX is not necessary to be HTTP-
aware. The underlying mechanism could be any protocols according to the REST service mechanism
respectively. REST EX protocol could be used to communicate with In-band or Out-of-band REST service
depends on the platform-specific implementation.

EFI_REST_EX_PROTOCOL.SendReceive()

Summary

Provides a simple HTTP-like interface to send and receive resources from a REST service.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REST_SEND_RECEIVE)(

 IN EFI_REST_EX_PROTOCOL *This,

 IN EFI_HTTP_MESSAGE *RequestMessage,

 OUT EFI_HTTP_MESSAGE *ResponseMessage

);

Parameters

Refer to Section 29.7.1.1 for the details.

Description

Refer to Section 29.7.1.1 for the details.
UEFI Forum, Inc. March 2019 1566

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_REST_EX_PROTOCOL.GetService()

Summary

This function returns the information of REST service provided by this EFI REST EX driver instance.

Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_EX_GET_SERVICE)(

 IN EFI_REST_EX_PROTOCOL *This,

 OUT EFI_REST_EX_SERVICE_INFO **RestExServiceInfo

);

Parameters

This This is the EFI_REST_EX_PROTOCOL instance.

RestExServiceInfo Pointer to receive a pointer to EFI_REST_EX_SERVICE_INFO
structure. The format of EFI_REST_EX_SERVICE_INFO is version
controlled for the future extension. The version of
EFI_REST_EX_SERVICE_INFO structure is returned in the header
within this structure. EFI REST client refers to the correct format of
structure according to the version number. The pointer to
EFI_REST_EX_SERVICE_INFO is a memory block allocated by EFI
REST EX driver instance. That is caller’s responsibility to free this
memory when this structure is no longer needed. Refer to Related
Definitions below for the definitions of
EFI_REST_EX_SERVICE_INFO structure.

Description

This function returns the information of REST service provided by this REST EX driver instance. The
information such as the type of REST service and the access mode of REST EX driver instance (In-band or
Out-of-band) are described in EFI_REST_EX_SERVICE_INFO structure. For the vendor-specific REST
service, vendor-specific REST service information is returned in VendorSpecifcData. Besides the REST
service information provided by REST EX driver instance, EFI_DEVICE_PATH_PROTOCOL of the REST
service is also provided on the handle of REST EX driver instance.

EFI REST client can get the information of REST service from REST service EFI device path node in
EFI_DEVICE_PATH_PROTOCOL. EFI_DEVICE_PATH_PROTOCOL which installed on REST EX driver

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This, RequestMessage, or ResponseMessage are NULL.

EFI_DEVICE_ERROT An unexpected system or network error occurred.

EFI_NOT_READY
The configuration of this instance is not set yet. Configure() must be executed and

returns successfully prior to invoke this function.

EFI_TIMEOUT Receiving response message fail due to timeout.
UEFI Forum, Inc. March 2019 1567

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
instance indicates where the REST service is located, such as BMC Device Path, IPV4, IPV6 or others. Refer
to Section 10.3.4.32 for details of the REST service device path node, which is the sub-type (Sub-type =
32) of Messaging Device Path (type 3).

REST EX driver designer is well know what REST service this REST EX driver instance intends to
communicate with. The designer also well know this driver instance is used to talk to BMC through
specific platform mechanism or talk to REST server through UEFI HTTP protocol. REST EX driver is
responsible to fill up the correct information in EFI_REST_EX_SERVICE_INFO.
EFI_REST_EX_SERVICE_INFO is referred by EFI REST clients to pickup the proper EFI REST EX driver
instance to get and set resource. GetService() is a basic and mandatory function which must be able to
use even Configure() is not invoked in previously.

Related Definitions

//***

//EFI_REST_EX_SERVICE_INFO_HEADER

//***

typedef struct {

 UINT32 Length;

 EFI_REST_EX_SERVICE_INFO_VER RestServiceInfoVer;

} EFI_REST_EX_SERVICE_INFO_HEADER;

Length The length of entire EFI_REST_EX_SERVICE_INFO structure. Header
size is included.

RestServiceInfoVer The version of this EFI_REST_SERVICE_INFO structure. See below
definitions of EFI_REST_EX_SERVICE_INFO_VER.

//***

//EFI_REST_EX_SERVICE_INFO_VER

//***

typedef struct {

 UINT8 Major;

 UINT8 Minor;

} EFI_REST_EX_SERVICE_INFO_VER;

Major The major version of EFI_REST_EX_SERVICE_INFO.

Minor The minor version of EFI_REST_EX_SERVICE_INFO.

//***

//EFI_REST_EX_SERVICE_INFO

//***

EFI_REST_EX_SERVICE_INFO is version controlled for the future extensions. Any new information
added to this structure requires version increased. EFI REST EX driver instance must provides the correct
version of structure in EFI_REST_EX_SERVICE_INFO_VER when it returns
EFI_REST_EX_SERVICE_INFO to caller.

//***
UEFI Forum, Inc. March 2019 1568

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//EFI_REST_EX_SERVICE_INFO
//***
typedef union {
 EFI_REST_EX_SERVICE_INFO_HEADER EfiRestExServiceInfoHeader;
 EFI_REST_EX_SERVICE_INFO_V_1_0 EfiRestExServiceInfoV10;
} EFI_REST_EX_SERVICE_INFO;

//***
//EFI_REST_EX_SERVICE_INFO v1.0
//***
typedef struct {
EFI_REST_EX_SERVICE_INFO_HEADER EfiRestExServiceInfoHeader;
EFI_REST_EX_SERVICE_TYPE RestExServiceType;
EFI_REST_EX_SERVICE_ACCESS_MODE RestServiceAccessMode;
EFI_GUID VendorRestServiceName;
UINT32 VendorSpecificDataLength;
UINT8 *VendorSpecifcData;
EFI_REST_EX_CONFIG_TYPE RestExConfigType;
UINT8 RestExConfigDataLength;

} EFI_REST_EX_SERVICE_INFO_V_1_0;

EfiRestExServiceInfoHeaderThe header of EFI_REST_EX_SERVICE_INFO.

RestExServiceType The REST service type. See below definition.

RestServiceAccessMode The access mode of REST service. See below definition.

VendorRestServiceName The name of vendor-specific REST service. This field is only valid if
RestExServiceType is EFI_REST_EX_SERVICE_VENDOR_SPECIFIC.

VendorSpecificDataLengthThe length of vendor-specific REST service information. This field is
only valid if RestExServiceType is
EFI_REST_EX_SERVICE_VENDOR_SPECIFIC.

VendorSpecifcData A pointer to vendor-specific REST service information. This field is
only valid if RestExServiceType is
EFI_REST_EX_SERVICE_VENDOR_SPECIFIC. The memory buffer
pointed by VendorSpecifcData is allocated by EFI REST EX driver
instance and must be freed by EFI REST client when it is no
longer need.

RestExConfigType The type of configuration of REST EX driver instance. See
GetModeData()and Configure() for the details.

RestExConfigDataLength The length of REST EX configuration data.
UEFI Forum, Inc. March 2019 1569

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// EFI_REST_EX_SERVICE_TYPE

//***

typedef enum {

EFI_REST_EX_SERVICE_UNSPECIFIC = 1,

 EFI_REST_EX_SERVICE_REDFISH,

 EFI_REST_EX_SERVICE_ODATA,

 EFI_REST_EX_SERVICE_VENDOR_SPECIFIC = 0xff,

 EFI_REST_EX_SERVICE_TYPE_MAX

} EFI_REST_EX_SERVICE_TYPE;

EFI_REST_EX_SERVICE_UNSPECIFIC indicates this EFI REST EX driver instance is not used to
communicate with any particular REST service. The EFI REST EX driver instance which reports this service
type is REST service independent and only provides SendReceive()function to EFI REST client. EFI REST
client uses this function to send and receive HTTP message to any target URI and handles the follow up
actions by itself. The EFI REST EX driver instance in this type must returns EFI_UNSUPPORTED in below
REST EX protocol interfaces, GetServiceTime(), AyncSendReceive() and EventService().

EFI_REST_EX_SERVICE_REDFISH indicates this EFI REST EX driver instance is used to communicate
with Redfish REST service.

EFI_REST_EX_SERVICE_ODATA indicates this EFI REST EX driver instance is used to communicate with
Odata REST service.

EFI_REST_EX_SERVICE_VENDOR_SPECIFIC indicates this EFI REST EX driver instance is used to
communicate with vendor-specific REST service.

//***

// EFI_REST_EX_SERVICE_ACCESS_MODE

//***

typedef enum {

 EFI_REST_EX_SERVICE_IN_BAND_ACCESS = 1,

 EFI_REST_EX_SERVICE_OUT_OF_BAND_ACCESS = 2,

 EFI_REST_EX_SERVICE_ACCESS_MODE_MAX

} EFI_REST_EX_SERVICE_ACCESS_MODE;

EFI_REST_EX_SERVICE_IN_BAND_ACCESS mode indicates the REST service is invoked in In-band
mechanism in the scope of platform. In most of cases, the In-band mechanism is used to communicate
with REST service on platform through some particular devices like BMC, Embedded Controller and other
infrastructures built on the platform.

EFI_REST_EX_SERVICE_OUT_OF_BAND_ACCESS mode indicates the REST service is invoked in Out-of-
band mechanism. The REST service is located out of platform scope. In most of cases, the Out-of-band
mechanism is used to communicate with REST service on other platforms through network or other
protocols.
UEFI Forum, Inc. March 2019 1570

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
//***

// EFI_REST_EX_CONFIG_TYPE

//***

typedef enum {

EFI_REST_EX_CONFIG_TYPE_HTTP,

EFI_REST_EX_CONFIG_TYPE_UNSPECIFIC,

EFI_REST_EX_CONFIG_TYPE_MAX

} EFI_REST_EX_CONFIG_TYPE;

EFI_REST_EX_CONFIG_TYPE_HTTP indicates the format of the REST EX configuration is
EFI_REST_EX_HTTP_CONFIG_DATA. RestExConfigDataLength of this type is the size of
EFI_REST_EX_HTTP_CONFIG_DATA. This configuration type is used for the HTTP-aware EFI REST EX
driver instance.

//***

// EFI_REST_EX_HTTP_CONFIG_DATA

//***

typedef struct {

 EFI_HTTP_CONFIG_DATA HttpConfigData;

 UINT32 SendReceiveTimeout;

} EFI_REST_EX_HTTP_CONFIG_DATA;

HttpConfigData Parameters to configure the HTTP child instance.

SendReceiveTimeout Time out (in milliseconds) when blocking for response after send out
request message in EFI_REST_EX_PROTOCOL.SendReceive().

EFI_REST_EX_CONFIG_TYPE_UNSPECIFIC indicates the format of REST EX configuration is unspecific.
RestExConfigDataLength of this type depends on the implementation of non HTTP-aware EFI REST EX
driver instance such as BMC EFI REST EX driver instance. The format of configuration for this type refers
to the system/platform spec which is out of UEFI scope.

Status Code Returned

EFI_REST_EX_PROTOCOL.GetModeData()

Summary

This function returns operational configuration of current EFI REST EX child instance.

EFI_SUCCESS EFI_REST_EX_SERVICE_INFO is returned in RestExServiceInfo.

EFI_UNSUPPORTED This function is not supported in this REST EX Protocol driver instance.
UEFI Forum, Inc. March 2019 1571

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_EX_GET_MODE_DATA)(

 IN EFI_REST_EX_PROTOCOL *This,

 OUT EFI_REST_EX_CONFIG_DATA *RestExConfigData

);

Parameters

This This is the EFI_REST_EX_PROTOCOL instance.

RestExConfigData Pointer to receive a pointer to EFI_REST_EX_CONFIG_DATA. The
memory allocated for configuration data should be freed by caller.
See Related Definitions for the details.

Description

This function returns the current configuration of EFI REST EX child instance. The format of operational
configuration depends on the implementation of EFI REST EX driver instance. For example, HTTP-aware
EFI REST EX driver instance uses EFI HTTP protocol as the underlying protocol to communicate with the
REST service. In this case, the type of configuration EFI_REST_EX_CONFIG_TYPE_HTTP is returned
from GetService(). EFI_REST_EX_HTTP_CONFIG_DATA is used as EFI REST EX configuration format and
returned to the EFI REST client. For those non HTTP-aware REST EX driver instances, the type of
configuration EFI_REST_EX_CONFIG_TYPE_UNSPECIFIC is returned from GetService(). In this case,
the format of returning data could be non-standard. Instead, the format of configuration data is a
system/platform specific definition such as a BMC mechanism used in EFI REST EX driver instance. EFI
REST client and EFI REST EX driver instance have to refer to the specific system /platform spec which is
out of UEFI scope.

Related Definitions

//***

//EFI_REST_EX_CONFIG_DATA

//***

typedef UINT8 *EFI_REST_EX_CONFIG_DATA;

Status Code Returned

EFI_REST_EX_PROTOCOL.Configure()

Summary

This function is used to configure EFI REST EX child instance.

EFI_SUCCESS EFI_REST_EX_SERVICE_INFO is returned in RestExServiceInfo.

EFI_UNSUPPORTED This function is not supported in this REST EX Protocol driver instance.

EFI_NOT_READY
The configuration of this instance is not set yet. Configure() must be executed and
return successfully prior to invoke this function
UEFI Forum, Inc. March 2019 1572

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_EX_CONFIGURE)(

 IN EFI_REST_EX_PROTOCOL *This,

 IN EFI_REST_EX_CONFIG_DATA RestExConfigData

);

Parameters

This This is the EFI_REST_EX_PROTOCOL instance.

RestExConfigData Pointer to EFI_REST_EX_CONFIG_DATA. See Related Definitions in
GetModeData() protocol interface.

Description

This function is used to configure the setting of underlying protocol of REST EX child instance. The type of
configuration is according to the implementation of EFI REST EX driver instance. For example, HTTP-
aware EFI REST EX driver instance uses EFI HTTP protocol as the undying protocol to communicate with
REST service. The type of configuration is EFI_REST_EX_CONFIG_TYPE_HTTP and RestExConfigData
is in the format of EFI_REST_EX_HTTP_CONFIF_DATA.

Akin to HTTP configuration, REST EX child instance can be configure to use different HTTP local access
point for the data transmission. Multiple REST clients may use different configuration of HTTP to
distinguish themselves, such as to use the different TCP port. For those non HTTP-aware REST EX driver
instance, the type of configuration is EFI_REST_EX_CONFIG_TYPE_UNSPECIFIC. RestExConfigData
refers to the non industrial standard. Instead, the format of configuration data is system/platform
specific definition such as BMC. In this case, EFI REST client and EFI REST EX driver instance have to refer
to the specific system/platform spec which is out of the UEFI scope. Besides GetService() function, no
other EFI REST EX functions can be executed by this instance until Configure() is executed and returns
successfully. All other functions must returns EFI_NOT_READY if this instance is not configured yet. Set
RestExConfigData to NULL means to put EFI REST EX child instance into the unconfigured state.
UEFI Forum, Inc. March 2019 1573

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Code Returned

Usage Example

Below illustrations show the usage cases of using different EFI REST EX child instances to communicate
with REST service.

In the above case, EFI REST Client A and B use HTTP-aware EFI REST EX driver instance to get and send
resource. These two EFI REST clients configure the child instance with specific TCP port. Therefore the
data transmission through HTTP can delivered to the proper EFI REST clients.

In the above case, EFI REST Client A creates two EFI REST EX child instances and configures those child
instances to connect to two BMCs respectively.

EFI_REST_EX_PROTOCOL.AsyncSendReceive()

Summary

This function sends REST request to REST service and signal caller’s event asynchronously when the final
response is received by REST EX Protocol driver instance. The essential design of this function is to handle
asynchronous send/receive implicitly according to REST service asynchronous request mechanism. Caller
will get the notification once the final response is returned from the REST service.

EFI_SUCCESS EFI_REST_EX_CONFIG_DATA is set in successfully.

EFI_DEVICE_ERROR
Configuration for this REST EX child instance is failed with the given
EFI_REST_EX_CONFIG_DATA.

EFI_UNSUPPORTED This function is not supported in this REST EX Protocol driver instance.
UEFI Forum, Inc. March 2019 1574

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_EX_ASYNC_SEND_RECEIVE)(

 IN EFI_REST_EX_PROTOCOL *This,

 IN EFI_HTTP_MESSAGE *RequestMessage OPTIONAL,

 IN EFI_REST_EX_TOKEN *RestExToken,

 IN UINTN *TimeOutInMilliSeconds OPTIONAL

);

Parameters

This This is the EFI_REST_EX_PROTOCOL instance.

RequestMessage This is the REST request message sent to the REST service. Set
RequestMessage to NULL to cancel the previous asynchronous
request associated with the corresponding RestExToken. See
descriptions for the details.

RestExToken REST EX token which REST EX Protocol instance uses to notify REST
client the status of response of asynchronous REST request. See
related definition of EFI_REST_EX_TOKEN.

TimeOutInMilliSeconds The pointer to the timeout in milliseconds which REST EX Protocol
driver instance refers as the duration to drop asynchronous REST
request. NULL pointer means no timeout for this REST request. REST
EX Protocol driver signals caller’s event with EFI_STATUS set to
EFI_TIMEOUT in RestExToken if REST EX Protocol can’t get the
response from REST service within TimeOutInMilliSeconds.

Description

This function is used to send REST request with asynchronous REST service response within certain
timeout declared. REST service sometime takes long time to create resource. Sometimes REST service
returns response to REST client late because of the shortage of bandwidth or bad network quality. To
prevent from unfriendly user experience due to system stuck while waiting for the response from REST
service, EFI_REST_EX_PROTOCOL.AsyncSendReceive() provides the capability to send
asynchronous REST request. Caller sends the REST request and still can execute some other processes on
background while waiting the event signaled by REST EX Protocol driver instance.

The implementation of underlying mechanism of asynchronous REST request depends on the mechanism
of REST service. HTTP protocol, In-Band management protocol and other protocols has its own way to
support asynchronous REST request. Similar to EFI_REST_EX_PROTOCOL.SendReceive(), It’s the
REST EX protocol’s responsibility to handle the implementation details and return only the REST resource
to the caller. REST EX Protocol driver instance which doesn’t support asynchronous REST request can just
return EFI_UNSUPPORTED to caller. Also, this function must returns EFI_UNSUPPORTED if
EFI_REST_EX_SERVICE_TYPE returned in EFI_REST_EX_SERVICE_INFO from GetService() is
EFI_REST_EX_SERVICE_UNSPECIFIC.

REST clients do not have to know the preprocessors of asynchronous REST request between REST EX
Protocol driver instance and REST service. The responsibility of REST EX Protocol driver instance is to
monitor the status of resource readiness and to signal caller’s RestExToken when the status of returning
UEFI Forum, Inc. March 2019 1575

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
resource is ready. REST EX Protocol driver instance sets Status field in RestExToken to EFI_SUCCESS
and sets ResponseMessage pointer to the final response from REST service. Then signal caller’s event to
notify REST client the desired REST resource is received. REST EX Protocol driver instance also has to
create an EFI timer to handle the timeout situation. REST EX Protocol driver must drops the asynchronous
REST request once the timeout is expired. In this case, REST EX Protocol driver instance sets Status field in
RestExToken to EFI_TIMEOUT and signal caller’s event token.

REST EX Protocol driver instance must has capability to cancel the in process asynchronous REST request
when caller asks to terminate specific asynchronous REST request. REST EX Protocol driver instance may
not have capability to force REST service to cancel the specific request, however, REST EX Protocol driver
instance at lease least can clean up its own internal resource of asynchronous REST request. Caller has to
set RequestMessage to NULL with RestExToken set to EFI_REST_EX_TOKEN which was successfully
sent to this function previously. REST EX Protocol driver instance finds the given EFI_REST_EX_TOKEN
from its private database and clean up the associated resource if EFI_REST_EX_TOKEN is an in-process
asynchronous REST request. REST EX Protocol driver instance then sets Status field in RestExToken to
EFI_ABORT and signal caller’s event to indicate the asynchronous REST request has been canceled.

REST EX Protocol driver instance maintains the internal property, state machine, status of transfer of
each asynchronous REST request. REST EX Protocol driver instance has to clean up the internal resource
associated with each asynchronous REST request no matter the transfer is ended with success or fail.

There are two phases of asynchronous REST request. One is the preprocessor of establishing
asynchronous REST request between REST EX Protocol driver instance and REST service. Another phase is
to retrieve the final response from REST service and send to REST client.

Related Definitions

//***

//EFI_REST_EX_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 EFI_HTTP_MESSAGE *ResponseMessage;

} EFI_REST_EX_TOKEN;

Event This event will be signaled after the Status field is updated by the EFI
REST EX Protocol driver instance. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event must
be lower than or equal to TPL_CALLBACK, which allows other
events to be notified.
UEFI Forum, Inc. March 2019 1576

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Status Status will be set to one of the following values if the REST EX
Protocol driver instance gets the response from the REST service
successfully, or if an unexpected error occurs:

EFI_SUCCESS: The resource gets a response from REST service
successfully. ResponseMessage points to the response in HTTP
message structure.

EFI_ABORTED: The asynchronous REST request was canceled by the
caller.

EFI_TIMEOUT: The asynchronous REST request timed out before
receiving a response from the REST service.

EFI_DEVICE_ERROR: An unexpected error occurred.

ResponseMessage The REST response message pointed to by this pointer is only valid
when Status is EFI_SUCCESS. The memory buffers pointed to by
ResponseMessage, ResponseMessage->Data.Response,
ResponseMessage->Headers and ResponseMessage->Body are
allocated by the EFI REST EX driver instance, and it is the caller's
responsibility to free the buffer when the caller no longer requires
the buffer's contents.

Status Code Returned

EFI_REST_EX_PROTOCOL.EventService()

Summary

This function sends REST request to a REST Event service and signals caller’s event token asynchronously
when the URI resource change event is received by REST EX Protocol driver instance. The essential design
of this function is to monitor event implicitly according to REST service event service mechanism. Caller
will get the notification if certain resource is changed.

EFI_SUCCESS Asynchronous REST request is established.

EFI_UNSUPPORTED This REST EX Protocol driver instance doesn’t support asynchronous request.

EFI_TIMEOUT Asynchronous REST request is not established and timeout is expired.

EFI_ABORT Previous asynchronous REST request has been canceled.

EFI_DEVICE_ERROR
Otherwise, returns EFI_DEVICE_ERROR for other errors according to HTTP Status

Code.

EFI_NOT_READY
The configuration of this instance is not set yet. Configure() must be executed and

returns successfully prior to invoke this function.
UEFI Forum, Inc. March 2019 1577

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI Protocol

typedef

EFI_STATUS

(EFIAPI *EFI_REST_EX_EVENT_SERVICE)(

 IN EFI_REST_EX_PROTOCOL *This,

 IN EFI_HTTP_MESSAGE *RequestMessage OPTIONAL,

 IN EFI_REST_EX_TOKEN *RestExToken

);

Parameters

This This is the EFI_REST_EX_PROTOCOL instance.

RequestMessage This is the HTTP request message sent to REST service. Set
RequestMessage to NULL to cancel the previous event service
associated with the corresponding RestExToken. See descriptions for
the details.

RestExToken REST EX token which REST EX Protocol driver instance uses to notify
REST client the URI resource which monitored by REST client has
been changed. See the related definition of EFI_REST_EX_TOKEN
in EFI_REST_EX_PROTOCOL.AsyncSendReceive().

Description

This function is used to subscribe an event through REST Event service if REST service supports event
service. This function listens on resource change of specific REST URI resource. The type of URI resource
change event is varied and REST service specific, such as URI resource updated, resource added, resource
removed, alert, etc. The way to subscribe REST Event service is also REST service specific, usually
described in HTTP body. With the implementation of EFI_REST_EX_PROTOCOL.EventService(),
REST client can register an REST EX token of particular URI resource change, usually of a time critical
nature, until subscription is deleted from REST Event service.

The implementation of underlying mechanism of REST Event service depends on the interface of REST EX
Protocol driver instance. HTTP protocol, In-Band management protocols or other protocols can have its
own implementation to support REST Event Service request. REST EX Protocol driver instance has
knowledge of how to handle the REST Event service. The REST client creates and submits an HTTP-like
header/body content in RequestMessage which required by REST Event services. How does REST EX
Protocol driver instance handle REST Event service and monitor event is REST service-specific. REST EX
driver instance can just returns EFI_UNSUPPORTED if REST service has no event capability. Also, this
function must returns EFI_UNSUPPORTED if EFI_REST_EX_SERVICE_TYPE returned in
EFI_REST_EX_SERVICE_INFO from GetService() is EFI_REST_EX_SERVICE_UNSPECIFIC.

The REST EX Protocol driver instance is responsible to monitor the resource change event pushed from
REST service. REST EX Protocol driver instance signals caller’s RestExToken when the event of resource
change is pushed to REST EX Protocol driver instance. The way how REST service pushes event to REST EX
Protocol driver instance is implementation-specific and transparent to REST client. REST EX Protocol
driver instance sets Status field in RestExToken to EFI_SUCCESS and sets ResponseMessage pointer to
the event resource returned from REST Event service. Then REST EX Protocol driver instance signals
caller’s event to notify REST client a new REST event is received. REST EX Protocol driver instance also
responsible to terminate event subscription and clear up the internal resource associated with REST
Event service if the status of subscription resource is returned error.
UEFI Forum, Inc. March 2019 1578

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
REST EX Protocol driver instance must has capability to remove event subscription created by REST client.
Caller has to set RequestMessage to NULL with RestExToken set to EFI_REST_EX_TOKEN which was
successfully sent to this function previously. REST EX Protocol driver instance finds the given
EFI_REST_EX_TOKEN from its private database and delete the associated event from REST service.

Status Code Returned

29.7.2.3 Usage Example (HTTP-aware REST EX Protocol Driver Instance)

The following code example shows how a consumer of REST EX driver would use EFI REST EX
ServiceBinding Protocol and EFI REST EX Protocol to send and receive the resources from a REST service.

EFI_HANDLE ImageHandle;

EFI_HANDLE *HandleBuffer;

UINTN HandleNum;

UINTN Index;

EFI_REST_EX_SERVICE_BINDING_PROTOCOL *RestExService;

EFI_HANDLE RestExChild;

EFI_REST_EX_PROTOCOL *RestEx;

EFI_REST_EX_SERVICE_INFO *RestExServiceInfo;

EFI_REST_EX_CONFIG_DATA RestExConfigData;

EFI_HTTP_MESSAGE RequestMessage;

EFI_HTTP_MESSAGE ResponseMessage;

//

// Locate all the handles with RESTEX ServiceBinding Protocol.

//

Status = gBS->LocateHandleBuffer (

 ByProtocol,

 &gEfiRestExServiceBindingProtocolGuid,

 NULL,

 &HandleNum,

 &HandleBuffer

);

if (EFI_ERROR (Status) || (HandleNum == 0)) {

 return EFI_ABORTED;

}

for (Index = 0; Index < HandleNum; Index++) {

EFI_SUCCESS Asynchronous REST request is established.

EFI_UNSUPPORTED This REST EX Protocol driver instance doesn’t support asynchronous request.

EFI_ABORT
Previous asynchronous REST request has been canceled or event subscription has
been delete from service

EFI_DEVICE_ERROR
Otherwise, returns EFI_DEVICE_ERROR for other errors according to HTTP Status
Code.

EFI_NOT_READY
The configuration of this instance is not set yet. Configure() must be
executed and returns successfully prior to invoke this function
UEFI Forum, Inc. March 2019 1579

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 //

 // Get the RESTEX ServiceBinding Protocol

 //

 Status = gBS->OpenProtocol (

 HandleBuffer[Index],

 &gEfiRestExServiceBindingProtocolGuid,

 (VOID **) &RestExService,

 ImageHandle,

 NULL,

 EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

 if (EFI_ERROR (Status)) {

 return Status;

 }

 //

 // Create the corresponding REST EX child

 //

 Status = RestExService->CreateChild (RestExService, &RestExChild);

 if (EFI_ERROR (Status)) {

 return Status;

 }

 //

 // Retrieve the REST EX Protocol from child handle

 //

 Status = gBS->OpenProtocol (

 RestExChild,

 &gEfiRestExProtocolGuid,

 (VOID **) &RestEx,

 ImageHandle,

 NULL,

 EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

 if (EFI_ERROR (Status)) {

 goto ON_EXIT;

 }

 //

 // Get the information of REST service provided by this EFI REST EX driver

 //

 Status = RestEx->GetService (

 RestEx,

 &RestExServiceInfo

);

 if (EFI_ERROR (Status)) {

 goto ON_EXIT;
UEFI Forum, Inc. March 2019 1580

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
 }

 //

 // Check whether this REST EX service is preferred by consumer:

 // 1. RestServiceAccessMode is EFI_REST_EX_SERVICE_OUT_OF_BAND_ACCESS.

 // 2. RestServiceType is EFI_REST_EX_SERVICE_REDFISH.

 // 3. RestExConfigType is EFI_REST_EX_CONFIG_TYPE_HTTP.

 //

 if (RestExServiceInfo-> REfiRestExServiceInfoV10.estServiceAccessMode ==

 EFI_REST_EX_SERVICE_OUT_OF_BAND_ACCESS &&

 RestExServiceInfo-> EfiRestExServiceInfoV10.RestServiceType ==
EFI_REST_EX_SERVICE_REDFISH &&

 RestExServiceInfo-> EfiRestExServiceInfoV10.RestExConfigType ==
EFI_REST_EX_CONFIG_TYPE_HTTP) {

 break;

 }

}

//

// Make sure we have found the preferred REST EX driver.

//

if (Index == HandleNum) {

 goto ON_EXIT;

}

//

// Configure the RESTEX instance.

//

Status = RestEx->Configure (

 RestEx,

 RestExConfigData

);

if (EFI_ERROR (Status)) {

 goto ON_EXIT;

}

//

// Send and receive the resources from a REST service.

//

Status = RestEx->SendReceive (

 RestEx,

 &RequestMessage,

 &ResponseMessage

);

if (EFI_ERROR (Status)) {

 goto ON_EXIT;
UEFI Forum, Inc. March 2019 1581

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
}

ON_EXIT:

 RestExService->DestroyChild (RestExService, RestExChild);

 return Status;

29.7.2.3.1 EFI_REST_EX_PROTOCOL.AsyncSendReceive()

To those HTTP-aware underlying mechanisms of the REST EX Protocol driver instance and “respond-
async” prefer header aware REST service, REST EX Protocol driver instance adds additional HTTP Prefer
header field (Refer to IEFT RFC7240) which is set to “respond-async” in the RequestMessage. HTTP 202
Accepted Status Code is returned from REST service which indicates the REST request is accepted by REST
service, however, the final result is left unknown. The way how REST service returns final response to
REST EX Protocol driver instance is REST service implementation-specific and transparent to the REST
client. Whether or not the REST service has a proper response to “respond-async” is REST service
implementation-specific. AsyncSendReceive() must returns EFI_UNSUPPORTED if the REST service that
the REST EX instance communicates with is incapable of asynchronous response.

REST EX Protocol driver instance must returns EFI_SUCCESS to caller once it gets HTTP 202 Accepted
Status Code from REST service. The HTTP Location header field can be returned in HTTP 202 Accepted
Status Code. REST EX Protocol driver instance may create an EFI timer to poll the status of URI returned in
HTTP Location header field. The content of URI which pointed by HTTP Location header is REST service
implementation-specific and not defined in REST EX Protocol specification. REST EX Protocol driver
instance provider should have knowledge about how to poll the status of returning resource from given
HTTP Location header.
UEFI Forum, Inc. March 2019 1582

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
The following flowchart describes the flow of establishing asynchronous REST request on HTTP-aware
infrastructure:

Once the asynchronous REST request is established, REST EX Protocol driver instance starts to poll the
status of final response on the URI returned in HTTP Location header in HTTP 202 Accepted Status code.
UEFI Forum, Inc. March 2019 1583

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.7.2.3.2 EFI_REST_EX_PROTOCOL.EventService()

The REST client creates and submits an HTTP-like header/body content in RequestMessage which are
required by REST Event services. The REST Event Service will return an HTTP 201 (CREATED) and the
Location header in the response shall contain a URI giving the location of newly created subscription
resource.

The following flowchart describes the flow of subscribing to a REST Event service on HTTP-aware
infrastructure:

Once the REST request is submitted successfully and REST EX Protocol driver instance gets the HTTP 201,
REST EX Protocol driver instance starts to monitor whether resource event change is pushed to REST EX
Protocol driver instance from REST service.
UEFI Forum, Inc. March 2019 1584

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_REST_EX_PROTOCOL.EventService()

The REST client creates and submits an HTTP-like header/body content in RequestMessage which are
required by REST Event services. The REST Event Service will return an HTTP 201 (CREATED) and the
Location header in the response shall contain a URI giving the location of newly created subscription
resource.

The following flowchart describes the flow of subscribing to a REST Event service on HTTP-aware
infrastructure:
UEFI Forum, Inc. March 2019 1585

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Once the REST request is submitted successfully and REST EX Protocol driver instance gets the HTTP 201,
REST EX Protocol driver instance starts to monitor whether resource event change is pushed to REST EX
Protocol driver instance from REST service.
UEFI Forum, Inc. March 2019 1586

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
29.7.3 EFI REST JSON Resource to C Structure Converter

29.7.3.1 Overview

EFI REST JSON Structure Protocol is designed as the centralized REST JSON Resource IN-Structure OUT
(JSON-IN Structure-OUT in short) and vice versa converter for EFI REST client drivers or EFI REST client
applications. This protocol provides the registration function which is invoked by upper layer EFI driver to
register converter as the plug-in converter for the well-known REST JSON resource. The EFI driver which
provide REST JSON resource to structure converter is EFI REST JSON structure converter producer. In the
other hand, EFI drivers or applications which utilize EFI REST JSON Structure protocol is the consumer of
EFI REST JSON structure converter. The convert producer is required to register its converter functions
with predefined REST JSON resource namespace and data type. EFI REST JSON Structure Protocol
maintains the database of all plug-in converter and dispatches the consumer request to proper REST
JSON resource structure converter. EFI REST JSON Structure Protocol doesn’t have knowledge about the
exact structure for the particular REST JSON resource. It just dispatches JSON resource to the correct
convert functions and returns the pointer of structure generated by convert producer. This protocol
reduces the burdens of JSON resource parsing effort. This also provides the easier way to refer to specific
REST JSON property using native C structure reference. Below figure delineates the software stack of EFI
REST JSON resource to structure converter architecture.

29.7.3.2 EFI REST JSON Structure Protocol

Summary

EFI REST JSON Structure Protocol provides function to converter producer for the registration of REST
JSON resource structure converter. This protocol also provides functions of JSON-IN Structure-OUT and
vice versa to converter consumer.
UEFI Forum, Inc. March 2019 1587

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Protocol GUID

#define EFI_REST_JSON_STRUCTURE_PROTOCOL_GUID \

 { 0xa9a048f6, 0x48a0, 0x4714, {0xb7, 0xda, 0xa9, 0xad,

 0x87, 0xd4, 0xda, 0xc9}}

Protocol Interface Structure

typedef struct _EFI_REST_JSON_STRUCTURE_PROTOCOL {

 EFI_REST_JSON_STRUCTURE_REGISTER Register;

 EFI_REST_JSON_STRUCTURE_TO_STRUCTURE ToStructure;

 EFI_REST_JSON_STRUCTURE_TO_JSON ToJson;

 EFI_REST_JSON_STRUCTURE_DESTORY_STRUCTURE DestoryStructure;

} EFI_REST_JSON_STRUCTURE_PROTOCOL;

Parameters

Register Register REST JSON structure converter producer.

ToStructure JSON-IN Structure-OUT function.

ToJson Structure-IN JSON-OUT function.

DestoryStructure Destroy JSON structure returned from ToStructure function.

Description

Each plug-in JSON resource to structure converter is required to register itself into
EFI_REST_JSON_STRUCTURE_PROTOCOL. The plug-in JSON resource to structure converter has to
provide corresponding functions for ToStructure(), ToJson() and DestoryStructure()for the
specific REST JSON resource. EFI_REST_JSON_STRUCTURE_PROTOCOL maintains converter producer
using the JSON resource type and version information when registration. The ToStructure(),
ToJson()and DestoryStructure()provided by EFI_REST_JSON_STRUCTURE_PROTOCOL is
published to converter consumer for JSON-IN Structure-OUT and vice versa conversion.
EFI_REST_JSON_STRUCTURE_PROTOCOL is responsible for dispatching consumer request to the
proper converter producer.

EFI_REST_JSON_STRUCTURE.Register ()

Summary

This function provides REST JSON resource to structure converter registration.

Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_JSON_STRUCTURE_REGISTER)(

 IN EFI_REST_JSON_STRUCTURE_PROTOCOL *This,

 IN EFI_REST_JSON_STRUCTURE_SUPPORTED *JsonStructureSupported,

 IN EFI_REST_JSON_STRUCTURE_TO_STRUCTURE ToStructure,

 IN EFI_REST_JSON_STRUCTURE_TO_JSON ToJson,

 IN EFI_REST_JSON_DESTORY_STRUCTURE DestroyStructure

);
UEFI Forum, Inc. March 2019 1588

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Parameters

This This is the EFI_REST_JSON_STRUCTURE_PROTOCOL instance.

JsonStructureSupported The type and version of REST JSON resource which this converter
supports.

ToStructure The function to convert REST JSON resource to structure.

ToJson The function to convert REST JSON structure to JSON in text format.

DestroyStructure Destroy REST JSON structure returned in ToStructure() function.

Description

This function is invoked by REST JSON resource to structure converter to register JSON-IN Structure-OUT,
Structure-IN JSON-OUT and destroy JSON structure functionalities. The converter producer has to
correctly specify REST resource supporting information in EFI_REST_JSON_STRUCTURE_SUPPORTED.
The information includes the type name, revision and data type of REST resource. Multiple REST JSON
resource to structure converters may supported in one drive, refer to below related definition.

Related Description

typedef CHAR8 *EFI_REST_JSON_RESOURCE_TYPE_DATATYPE;

//***

// EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE

//***

typedef struct _EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE {

 CHAR8 *ResourceTypeName;

 CHAR8 *MajorVersion;

 CHAR8 *MinorVersion;

 CHAR8 *ErrataVersion;

} EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE;

Parameters

ResourceTypeName CHAR8 pointer to the name of this REST JSON Resource.

MajorVersion CHAR8 pointer to the string of REST JSON Resource major version.

MinorVersion CHAR8 pointer to the string of REST JSON Resource minor version.

ErrataVersion CHAR8 pointer to the string of REST JSON Resource errata version.

//***

// EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER

//***

typedef struct _EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER {

 EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE Namespace;

 EFI_REST_JSON_RESOURCE_TYPE_DATATYPE Datatype;

} EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER;

Parameters

Namespace Name space of this REST JSON resource.
UEFI Forum, Inc. March 2019 1589

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Datatype CHAR8 pointer to the string of data type, could be NULL if there is
no data type for this REST JSON resource.

//***

// EFI_REST_JSON_STRUCTURE_SUPPORTED

//***

typedef struct _EFI_REST_JSON_STRUCTURE_SUPPORTED{

EFI_REST_JSON_STRUCTURE_SUPPORTED*Next;
EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIERJsonResourceType;
} EFI_REST_JSON_STRUCTURE_SUPPORTED;

Parameters

Next Pointer to next EFI_REST_JSON_STRUCTURE_SUPPORTED.

JsonResourceType Information of REST JSON resource this converter supports.

Status Codes Returned

EFI_REST_JSON_STRUCTURE.ToStructure ()

Summary

JSON-IN Structure-OUT function. Convert the given REST JSON resource into structure.

Protocol Interface

typedef

EFI_STATUS

 (EFIAPI *EFI_REST_JSON_STRUCTURE_TO_STRUCTURE)(

 IN EFI_REST_JSON_STRUCTURE_PROTOCOL *This,

 IN EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER *JsonRsrcIdentifier OPTIONAL,

 IN CHAR8 *ResourceJsonText,

 OUT EFI_REST_JSON_STRUCTURE_HEADER **JsonStructure

);

EFI_SUCCESS Converter is successfully registered

EFI_INVALID_PARAMETER

One or more of the following is TRUE:
This is NULL.
JsonStructureSupported is NULL.
ResourceTypeName in JsonStructureSupported structure is a

NULL string

ToStructure is NULL.
ToJason is NULL.
DestroyStructure is NULL.

EFI_ALREADY_STARTED
If the JSON resource to structure converter is already registered for this
type and revision of JSON resource.

EFI_OUT_OF_RESOURCE Not enough resource for the converter registration
UEFI Forum, Inc. March 2019 1590

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Parameters

This This is the EFI_REST_JSON_STRUCTURE_PROTOCOL instance.

JsonRsrcIdentifier This indicates the resource type and version is given in
ResourceJsonText. If JsonRsrcIdentifier is NULL, means the
JSON resource type and version information of given
ResourceJsonText is unsure. User would like to have
EFI_REST_JSON_STRUCTURE_PROTOCOL to look for the proper
JSON structure converter.

ResourceJsonText REST JSON resource in text format.

JsonStructure Pointer to receive the pointer to
EFI_REST_JSON_STRUCTURE_HEADER, refer to related definition
for the details.

Description

This function converts the given JSON resource in text format into predefined structure. The definition of
structure format is not the scope of EFI_REST_JSON_STRUCTURE_PROTOCOL.
EFI_REST_JSON_STRUCTURE_PROTOCOL is a centralized JSON-IN Structure-OUT converter which
maintain the registration of a variety of JSON resource to structure converters. The structure definition

and the corresponding C header file are written and released by 3rd party, OEM, organization or any open
source communities. The JSON resource to structure converter (convert producer) may be released in the
source format or binary format. The convert producer registers itself to
EFI_REST_JSON_STRUCTURE_PROTOCOL uses Register()and provides EFI JSON resource to structure
and vice versa conversion. Consumer has to destroy JsonStructure using
DestoryStructure()function. Resource allocated for JsonStructure will be released and cleaned up
by converter producer.

When JsonRsrcIdentifier is a non NULL pointer, ResourceTypeName in
EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE must be a non NULL string, however the revision in
EFI_REST_JSON_RESOURCE_TYPE_NAMESPACE and data type in EFI_REST_JSON_RESOURCE_TYPE
could be NULL string if REST JSON resource is non version controlled or no data type is defined. If
JsonRsrcIdentifier is a non NULL pointer, EFI_REST_JSON_STRUCTURE_PROTOCOL looks for the
proper converter from its database. Invokes the ToStructure()provided by the converter to convert
JSON resource to structure.

Another scenario is JsonRsrcIdentifier may passed in as NULL, this means the JSON resource type and
version information of given ResourceJsonText is unsure. In this case,
EFI_REST_JSON_STRUCTURE_PROTOCOL invokes and passes ResourceJsonText to ToStructure()of
each registered converter with JsonRsrcIdentifier set to NULL. Converter producer may or may not
automatically determine REST JSON resource type and version. Converter producer should return
EFI_UNSUPPORTED if it doesn’t support automatically recognition of REST JSON resource. Or converter
producer can recognize the given REST JSON resource by parsing the certain properties. This depends on
the implementation of JSON resource to structure converter. If one of the registered converter producers
can recognize the given ResourceJsonText, the JsonRsrcIdentifier in
EFI_REST_JSON_STRUCTURE_HEADER is filled up with the proper REST JSON resource type, version
and data type. With the information provided in EFI_REST_JSON_STRUCTURE_HEADER, consumer has
idea about what the exact type of REST JSON structure is.
UEFI Forum, Inc. March 2019 1591

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Related Description

//***

// EFI_REST_JSON_STRUCTURE_HEADER

//***

typedef struct _EFI_REST_JSON_STRUCTURE_HEADER {

 EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER JsonRsrcIdentifier;

 //

 // Follow by a pointer points to JSON structure, the content in the

 // JSON structure is implementation-specific according to converter producer.

 //

 VOID *JsonStructurePointer;

} EFI_REST_JSON_STRUCTURE_HEADER;

Parameters

JsonRsrcIdentifier Information of REST JSON structure returned from this converter.

JsonStructurePointer Pointers to JSON structure, the content in the JSON structure is
implementation-specific according to the converter producer.

Status Codes Returned

EFI_REST_JSON_STRUCTURE.ToJson ()

Summary

Structure-IN JSON-OUT function. Convert the given REST JSON structure into JSON text. The definition of
structure format is not the scope of EFI_REST_JSON_STRUCTURE_PROTOCOL. The structure definition

and the corresponding C header file are written and released by 3rd party, OEM, organization or any open
source communities. Consumer has to free the memory block allocated for ResourceJsonText if the
JSON resource is no longer needed.

EFI_SUCCESS Pointer to JSON structure is returned in JsonStructure

EFI_INVALID_PARAMETER

One or more of the following is TRUE:
This is NULL.
ResourceJsonText is NULL.
JsonRsrcIdentifier is not NULL, but the
ResourceTypeName in JsonRsrcIdentifier is NULL.
JsonStructure is NULL.

EFI_NOT_FOUND No proper JSON resource to structure convert found.
UEFI Forum, Inc. March 2019 1592

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_JSON_STRUCTURE_TO_JSON)(

 IN EFI_REST_JSON_STRUCTURE_PROTOCOL *This,

 IN EFI_REST_JSON_STRUCTURE_HEADER *JsonStructureHeader,

 OUT CHAR8 **ResourceJsonText

);

Parameters

This This is the EFI_REST_JSON_STRUCTURE_PROTOCOL instance.

JsonStructureHeader The point to EFI_REST_JSON_STRUCTURE_HEADER structure.
EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER in
EFI_REST_JSON_STRUCTURE_HEADER must exactly describes the
JSON resource type and revision referred by this JSON structure.
ResourceTypeName in JsonRsrcIdentifier must be non NULL
pointer pointes to string. Revision and data type in
JsonRsrcIdentifier could be NULL if REST JSON resource is not
version controlled and or data type definition.

ResourceJsonText Pointer to receive REST JSON resource in text format.

Description

This functions converts the given REST JSON structure into REST JSON text format resource.

Status Codes Returned

EFI_SUCCESS
Pointer to JSON resource in text format is returned in
ResourceJsonText

EFI_INVALID_PARAMETER

One or more of the following is TRUE:
This is NULL.
JsonStructureHeader is NULL
ResourceJsonText is NULL.

EFI_NOT_FOUND
No proper JSON structure convert found to convert JSON structure
to JSON text format.
UEFI Forum, Inc. March 2019 1593

UEFI Specification, Version 2.8 Network Protocols — ARP, DHCP, DNS, HTTP and REST
EFI_REST_JSON_STRUCTURE.DestroyStructure ()

Summary

This function destroys the REST JSON structure.

Protocol Interface

typedef

EFI_STATUS

(EFIAPI *EFI_REST_JSON_STRUCTURE_DESTORY_STRUCTURE)(

 IN EFI_REST_JSON_STRUCTURE_PROTOCOL *This,

 IN EFI_REST_JSON_STRUCTURE_HEADER *JsonStructureHeader

);

Description

This function destroys the JSON structure generated by ToStructure()function. REST JSON resource
structure converter is responsible for freeing and cleaning up all resource associated with the give JSON
structure.

Status Codes Returned

29.7.3.3 EFI Redfish JSON Structure Converter

Refer to Section 31.2 for writing and using an EFI Redfish JSON Structure Converter, using the
EFI_REST_JSON_STRUCTURE_PROTOCOL protocol.

EFI_SUCCESS JSON structure is successfully destroyed.

EFI_INVALID_PARAMET
ER

One or more of the following is TRUE:
· This is NULL.

· JsonStructureHeader is NULL.

EFI_NOT_FOUND
No proper JSON structure converter found to destroy JSON
structure.
UEFI Forum, Inc. March 2019 1594

UEFI Specification, Version 2.8
30 - Network Protocols — UDP and MTFTP

30.1 EFI UDP Protocol

This chapter defines the EFI UDP (User Datagram Protocol) Protocol that interfaces over the EFI IP
Protocol, and the EFI MTFTP Protocol interface that is built upon the EFI UDP Protocol. Protocols for
version 4 and version 6 of UDP and MTFTP are included.

30.1.1 UDP4 Service Binding Protocol

EFI_UDP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI UDPv4 Service Binding Protocol is used to locate communication devices that are supported by an
EFI UDPv4 Protocol driver and to create and destroy instances of the EFI UDPv4 Protocol child protocol
driver that can use the underlying communications device.

GUID

#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0x83f01464,0x99bd,0x45e5,\

 {0xb3,0x83,0xaf,0x63,0x05,0xd8,0xe9,0xe6}}

Description

A network application that requires basic UDPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish a EFI UDPv4 Service
Binding Protocol GUID. Each device with a published EFI UDPv4 Service Binding Protocol GUID supports
the EFI UDPv4 Protocol and may be available for use.

After a successful call to the EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI UDPv4 Protocol driver is in an unconfigured state; it is not ready to send and
receive data packets.

Before a network application terminates execution every successful call to the
EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_UDP4_SERVICE_BINDING_PROTOCOL.DestroyChild()function.

30.1.2 UDP4 Protocol

EFI_UDP4_PROTOCOL

Summary

The EFI UDPv4 Protocol provides simple packet-oriented services to transmit and receive UDP packets.
UEFI Forum, Inc. March 2019 1595

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
GUID

#define EFI_UDP4_PROTOCOL_GUID \

 {0x3ad9df29,0x4501,0x478d,\

 {0xb1,0xf8,0x7f,0x7f,0xe7,0x0e,0x50,0xf3}}

Protocol Interface Structure

typedef struct _EFI_UDP4_PROTOCOL {

 EFI_UDP4_GET_MODE_DATA GetModeData;

 EFI_UDP4_CONFIGURE Configure;

 EFI_UDP4_GROUPS Groups;

 EFI_UDP4_ROUTES Routes;

 EFI_UDP4_TRANSMIT Transmit;

 EFI_UDP4_RECEIVE Receive;

 EFI_UDP4_CANCEL Cancel;

 EFI_UDP4_POLL Poll;

} EFI_UDP4_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
UDPv4 Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Add and deletes routing table entries. See the Routes()
function description.

Transmit Queues outgoing data packets into the transmit queue. This
function is a nonblocked operation. See the Transmit()
function description.

Receive Places a receiving request token into the receiving queue. This
function is a nonblocked operation. See the Receive()
function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_UDP4_PROTOCOL defines an EFI UDPv4 Protocol session that can be used by any network
drivers, applications, or daemons to transmit or receive UDP packets. This protocol instance can either be
bound to a specified port as a service or connected to some remote peer as an active client. Each instance
has its own settings, such as the routing table and group table, which are independent from each other.
UEFI Forum, Inc. March 2019 1596

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Note: In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order.

EFI_UDP4_PROTOCOL.GetModeData()

Summary

Reads the current operational settings.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_GET_MODE_DATA) (

 IN EFI_UDP4_PROTOCOL *This,

 OUT EFI_UDP4_CONFIG_DATA *Udp4ConfigData OPTIONAL,

 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
Udp4ConfigData Pointer to the buffer to receive the current configuration data.

Type EFI_UDP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type
EFI_IP4_MODE_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function copies the current operational settings of this EFI UDPv4 Protocol
instance into user-supplied buffers. This function is used optionally to retrieve the operational mode data
of underlying networks or drivers.
UEFI Forum, Inc. March 2019 1597

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Related Definition

//***

// EFI_UDP4_CONFIG_DATA

//***

typedef struct {

 //Receiving Filters

 BOOLEAN AcceptBroadcast;

 BOOLEAN AcceptPromiscuous;

 BOOLEAN AcceptAnyPort;

 BOOLEAN AllowDuplicatePort;

 // I/O parameters

 UINT8 TypeOfService;

 UINT8 TimeToLive;

 BOOLEAN DoNotFragment;

 UINT32 ReceiveTimeout;

 UINT32 TransmitTimeout;

 // Access Point

 BOOLEAN UseDefaultAddress;

 EFI_IPv4_ADDRESS StationAddress;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT16 StationPort;

 EFI_IPv4_ADDRESS RemoteAddress;

 UINT16 RemotePort;

} EFI_UDP4_CONFIG_DATA;

AcceptBroadcast Set to TRUE to accept broadcast UDP packets.
AcceptPromiscuous Set to TRUE to accept UDP packets that are sent to any

address.
AcceptAnyPort Set to TRUE to accept UDP packets that are sent to any port.
AllowDuplicatePortSet to TRUE to allow this EFI UDPv4 Protocol child instance to

open a port number that is already being used by another EFI
UDPv4 Protocol child instance.

TypeOfService TypeOfService field in transmitted IPv4 packets.
TimeToLive TimeToLive field in transmitted IPv4 packets.
DoNotFragment Set to TRUE to disable IP transmit fragmentation.
ReceiveTimeout The receive timeout value (number of microseconds) to be

associated with each incoming packet. Zero means do not
drop incoming packets.

TransmitTimeout The transmit timeout value (number of microseconds) to be
associated with each outgoing packet. Zero means do not
drop outgoing packets.

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
underlying EFI IPv4 Protocol driver will use
UEFI Forum, Inc. March 2019 1598

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_IP4_CONFIG2_PROTOCOL to retrieve the IP address and
subnet information. Ignored for incoming filtering if
AcceptPromiscuous is set to TRUE.

StationAddress The station IP address that will be assigned to this EFI UDPv4
Protocol instance. The EFI UDPv4 and EFI IPv4 Protocol
drivers will only deliver incoming packets whose destination
matches this IP address exactly. Address 0.0.0.0 is also
accepted as a special case in which incoming packets destined
to any station IP address are always delivered. Not used when
UseDefaultAddress is TRUE. Ignored for incoming filtering if
AcceptPromiscuous is TRUE.

SubnetMask The subnet address mask that is associated with the station
address. Not used when UseDefaultAddress is TRUE.

StationPort The port number to which this EFI UDPv4 Protocol instance is
bound. If a client of the EFI UDPv4 Protocol does not care
about the port number, set StationPort to zero. The EFI
UDPv4 Protocol driver will assign a random port number to
transmitted UDP packets. Ignored if AcceptAnyPort is set to
TRUE.

RemoteAddress The IP address of remote host to which this EFI UDPv4
Protocol instance is connecting. If RemoteAddress is not
0.0.0.0, this EFI UDPv4 Protocol instance will be connected to
RemoteAddress; i.e., outgoing packets of this EFI UDPv4
Protocol instance will be sent to this address by default and
only incoming packets from this address will be delivered to
client. Ignored for incoming filtering if AcceptPromiscuous is
TRUE.

RemotePort The port number of the remote host to which this EFI UDPv4
Protocol instance is connecting. If it is not zero, outgoing
packets of this EFI UDPv4 Protocol instance will be sent to this
port number by default and only incoming packets from this
port will be delivered to client. Ignored if RemoteAddress is
0.0.0.0 and ignored for incoming filtering if
AcceptPromiscuous is TRUE.

Status Codes Returned

EFI_UDP4_PROTOCOL.Configure()

Summary

• Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv4
Protocol.

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED When Udp4ConfigData is queried, no configuration data is

available because this instance has not been started.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 1599

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_CONFIGURE) (

 IN EFI_UDP4_PROTOCOL *This,

 IN EFI_UDP4_CONFIG_DATA *UdpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
UdpConfigData Pointer to the buffer to receive the current mode data.

Description

The Configure() function is used to do the following:

• Initialize and start this instance of the EFI UDPv4 Protocol.

• Change the filtering rules and operational parameters.

• Reset this instance of the EFI UDPv4 Protocol.

Until these parameters are initialized, no network traffic can be sent or received by this instance. This
instance can be also reset by calling Configure() with UdpConfigData set to NULL. Once reset, the
receiving queue and transmitting queue are flushed and no traffic is allowed through this instance.

With different parameters in UdpConfigData, Configure() can be used to bind this instance to
specified port.
UEFI Forum, Inc. March 2019 1600

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_UDP4_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_GROUPS) (

 IN EFI_UDP4_PROTOCOL *This,

 IN BOOLEAN JoinFlag,

 IN EFI_IPv4_ADDRESS *MulticastAddress OPTIONAL

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave

one or all multicast groups.
MulticastAddress Pointer to multicast group address to join or leave.

EFI_SUCCESS The configuration settings were set, changed, or reset successfully.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• UdpConfigData.StationAddress is not a valid unicast
IPv4 address.

• UdpConfigData.SubnetMask is not a valid IPv4 address
mask. The subnet mask must be contiguous.

• UdpConfigData.RemoteAddress is not a valid unicast
IPv4 address if it is not zero.

EFI_ALREADY_STARTED The EFI UDPv4 Protocol instance is already started/configured and must

be stopped/reset before it can be reconfigured. Only
TypeOfService, TimeToLive, DoNotFragment,

ReceiveTimeout, and TransmitTimeout can be

reconfigured without stopping the current instance of the EFI UDPv4
Protocol.

EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE and

UdpConfigData.StationPort is already used by other

instance.

EFI_OUT_OF_RESOURCES The EFI UDPv4 Protocol driver cannot allocate memory for this EFI UDPv4
Protocol instance.

EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance was
not opened.
UEFI Forum, Inc. March 2019 1601

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Description

The Groups() function is used to enable and disable the multicast group filtering.

If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined groups are left.

Status Codes Returned

EFI_UDP4_PROTOCOL.Routes()

Summary

Adds and deletes routing table entries.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_ROUTES) (

 IN EFI_UDP4_PROTOCOL *This,

 IN BOOLEAN DeleteRoute,

 IN EFI_IPv4_ADDRESS *SubnetAddress,

 IN EFI_IPv4_ADDRESS *SubnetMask,

 IN EFI_IPv4_ADDRESS *GatewayAddress

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
DeleteRoute Set to TRUE to delete this route from the routing table. Set to

FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the key to
each route entry.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MulticastAddress is NULL.

• JoinFlag is TRUE and *MulticastAddress is not a
valid multicast address.

EFI_ALREADY_STARTED The group address is already in the group table (when JoinFlag is

TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1602

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
SubnetAddress The destination network address that needs to be routed.
SubnetMask The subnet mask of SubnetAddress.
GatewayAddress The gateway IP address for this route.

Description

The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IP address and
arithmetically AND-ing it with the SubnetMask. The gateway address must be on the same subnet as the
configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The default route
matches all destination IP addresses that do not match any other routes.

A zero GatewayAddress is a nonroute. Packets are sent to the destination IP address if it can be found
in the Address Resolution Protocol (ARP) cache or on the local subnet. One automatic nonroute entry will
be inserted into the routing table for outgoing packets that are addressed to a local subnet (gateway
address of 0.0.0.0).

Each instance of the EFI UDPv4 Protocol has its own independent routing table. Instances of the EFI
UDPv4 Protocol that use the default IP address will also have copies of the routing table provided by the
EFI_IP4_CONFIG2_PROTOCOL. These copies will be updated automatically whenever the IP driver
reconfigures its instances; as a result, the previous modification to these copies will be lost.
UEFI Forum, Inc. March 2019 1603

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Note: There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI UDP4 Variable.

Status Codes Returned

EFI_UDP4_PROTOCOL.Transmit()

Summary

Queues outgoing data packets into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_TRANSMIT) (

 IN EFI_UDP4_PROTOCOL *This,

 IN EFI_UDP4_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
Token Pointer to the completion token that will be placed into the

transmit queue. Type EFI_UDP4_COMPLETION_TOKEN is
defined in “Related Definitions” below.

Description

The Transmit() function places a sending request to this instance of the EFI UDPv4 Protocol, alongside
the transmit data that was filled by the user. Whenever the packet in the token is sent out or some errors
occur, the Token.Event will be signaled and Token.Status is updated. Providing a proper

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) is
not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.
UEFI Forum, Inc. March 2019 1604

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
notification function and context for the event will enable the user to receive the notification and
transmitting status.

Related Definitions

//***

// EFI_UDP4_COMPLETION_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;

 union {

 EFI_UDP4_RECEIVE_DATA *RxData;

 EFI_UDP4_TRANSMIT_DATA *TxData;

 } Packet;

} EFI_UDP4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI UDPv4 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event
must be lower than or equal to TPL_CALLBACK.

Status Will be set to one of the following values:
EFI_SUCCESS. The receive or transmit operation completed
successfully.
EFI_ABORTED. The receive or transmit was aborted.
EFI_TIMEOUT. The transmit timeout expired.
EFI_NETWORK_UNREACHABLE. The destination network is
unreachable. RxData is set to NULL in this situation.
EFI_HOST_UNREACHABLE. The destination host is
unreachable. RxData is set to NULL in this situation.
EFI_PROTOCOL_UNREACHABLE. The UDP protocol is
unsupported in the remote system. RxData is set to NULL in
this situation.
EFI_PORT_UNREACHABLE. No service is listening on the
remote port. RxData is set to NULL in this situation.
EFI_ICMP_ERROR. Some other Internet Control Message
Protocol (ICMP) error report was received. For example,
packets are being sent too fast for the destination to receive
them and the destination sent an ICMP source quench report.
RxData is set to NULL in this situation.
EFI_DEVICE_ERROR. An unexpected system or network error
occurred.
EFI_NO_MEDIA. There was a media error.
UEFI Forum, Inc. March 2019 1605

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
RxData When this token is used for receiving, RxData is a pointer to
EFI_UDP4_RECEIVE_DATA. Type EFI_UDP4_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer
to EFI_UDP4_TRANSMIT_DATA. Type
EFI_UDP4_TRANSMIT_DATA is defined below.

The EFI_UDP4_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv4 Protocol
client. After the transmit operation completes, the Status field is updated by the EFI UDPv4 Protocol
and the Event is signaled.

• When used for receiving, only the Event field must be filled in by the EFI UDPv4 Protocol
client. After a packet is received, RxData and Status are filled in by the EFI UDPv4 Protocol
and the Event is signaled.

• The ICMP related status codes filled in Status are defined as follows:
//***

// UDP4 Token Status definition

//***

#define EFI_NETWORK_UNREACHABLE EFIERR(100)

#define EFI_HOST_UNREACHABLE EFIERR(101)

#define EFI_PROTOCOL_UNREACHABLE EFIERR(102)

#define EFI_PORT_UNREACHABLE EFIERR(103)

//***

// EFI_UDP4_RECEIVE_DATA

//***

typedef struct {

 EFI_TIME TimeStamp;

 EFI_EVENT RecycleSignal;

 EFI_UDP4_SESSION_DATA UdpSession;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];

} EFI_UDP4_RECEIVE_DATA;

TimeStamp Time when the EFI UDPv4 Protocol accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported

RecycleSignal Indicates the event to signal when the received data has been
processed.

UdpSession The UDP session data including SourceAddress, SourcePort,
DestinationAddress, and DestinationPort. Type
EFI_UDP4_SESSION_DATA is defined below.

DataLength The sum of the fragment data length.
UEFI Forum, Inc. March 2019 1606

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
FragmentCount Number of fragments. May be zero.
FragmentTable Array of fragment descriptors. IP and UDP headers are

included in these buffers if ConfigData.RawData is TRUE.
Otherwise they are stripped. May be zero. Type
EFI_UDP4_FRAGMENT_DATA is defined below.

EFI_UDP4_RECEIVE_DATA is filled by the EFI UDPv4 Protocol driver when this EFI UDPv4 Protocol
instance receives an incoming packet. If there is a waiting token for incoming packets, the
CompletionToken.Packet.RxData field is updated to this incoming packet and the
CompletionToken.Event is signaled. The EFI UDPv4 Protocol client must signal the RecycleSignal
after processing the packet.

• FragmentTable could contain multiple buffers that are not in the continuous memory
locations. The EFI UDPv4 Protocol client might need to combine two or more buffers in
FragmentTable to form their own protocol header.

//***

// EFI_UDP4_SESSION_DATA

//***

typedef struct {

 EFI_IPv4_ADDRESS SourceAddress;

 UINT16 SourcePort;

 EFI_IPv4_ADDRESS DestinationAddress;

 UINT16 DestinationPort;

} EFI_UDP4_SESSION_DATA;

SourceAddress Address from which this packet is sent. If this field is set to
zero when sending packets, the address that is assigned in
EFI_UDP4_PROTOCOL.Configure() is used.

SourcePort Port from which this packet is sent. It is in host byte order. If
this field is set to zero when sending packets, the port that is
assigned in EFI_UDP4_PROTOCOL.Configure() is used. If this
field is set to zero and unbound, a call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

DestinationAddressAddress to which this packet is sent.
DestinationPort Port to which this packet is sent. It is in host byte order. If this

field is set to zero and unconnected, the call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

The EFI_UDP4_SESSION_DATA is used to retrieve the settings when receiving packets or to override
the existing settings of this EFI UDPv4 Protocol instance when sending packets.
UEFI Forum, Inc. March 2019 1607

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//***

// EFI_UDP4_FRAGMENT_DATA

//***

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;

} EFI_UDP4_FRAGMENT_DATA;

FragmentLength Length of the fragment data buffer.
FragmentBuffer Pointer to the fragment data buffer.

EFI_UDP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The purpose of
this structure is to avoid copying the same packet multiple times.

//**

// EFI_UDP4_TRANSMIT_DATA

//**

typedef struct {

 EFI_UDP4_SESSION_DATA *UdpSessionData;

 EFI_IPv4_ADDRESS *GatewayAddress;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];

} EFI_UDP4_TRANSMIT_DATA;

UdpSessionData If not NULL, the data that is used to override the transmitting
settings. Type EFI_UDP4_SESSION_DATA is defined above.

GatewayAddress The next-hop address to override the setting from the routing
table.

DataLength Sum of the fragment data length. Must not exceed the
maximum UDP packet size.

FragmentCount Number of fragments.
FragmentTable Array of fragment descriptors. Type

EFI_UDP4_FRAGMENT_DATA is defined above.

The EFI UDPv4 Protocol client must fill this data structure before sending a packet. The packet may
contain multiple buffers that may be not in a continuous memory location.
UEFI Forum, Inc. March 2019 1608

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_UDP4_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

• Token.Packet.TxData is NULL.

• Token.Packet.TxData.FragmentCount is zero.

• Token.Packet.TxData.DataLength is not equal to
the sum of fragment lengths.

• One or more of the

Token.Packet.TxData.FragmentTable[].Fra
gmentLength fields is zero.

• One or more of the

Token.Packet.TxData.FragmentTable[].Fra
gmentBuffer fields is NULL.

• Token.Packet.TxData. GatewayAddress is not

a unicast IPv4 address if it is not NULL.

• Token.Packet.TxData.UdpSessionData.Sourc
eAddress is not a valid unicast IPv4 address or

Token.Packet.TxData.UdpSessionData.Dest
inationAddress is zero if the UdpSessionData is not

NULL.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event was

already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_NOT_FOUND There is no route to the destination network or address.

EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet size. Or the
length of the IP header + UDP header + data length is greater than

MTU if DoNotFragment is TRUE.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1609

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_RECEIVE) (

 IN EFI_UDP4_PROTOCOL *This,

 IN EFI_UDP4_COMPLETION_TOKEN *Token

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
Token Pointer to a token that is associated with the receive data

descriptor. Type EFI_UDP4_COMPLETION_TOKEN is defined in
EFI_UDP4_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be NULL.
When the receive operation completes, the EFI UDPv4 Protocol driver updates the Token.Status and
Token.Packet.RxData fields and the Token.Event is signaled. Providing a proper notification
function and context for the event will enable the user to receive the notification and receiving status.
That notification function is guaranteed to not be re-entered.
UEFI Forum, Inc. March 2019 1610

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_UDP4_PROTOCOL.Cancel()

Summary

Aborts an asynchronous transmit or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_CANCEL)(

 IN EFI_UDP4_PROTOCOL *This,

 IN EFI_UDP4_COMPLETION_TOKEN *Token OPTIONAL

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_UDP4_PROTOCOL.Transmit() or
EFI_UDP4_PROTOCOL.Receive().If NULL, all pending tokens
are aborted. Type EFI_UDP4_COMPLETION_TOKEN is defined in
EFI_UDP4_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues, which

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) is
not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI UDPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already

in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is
full.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1611

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
usually means that the asynchronous operation has completed, this function will not signal the token and
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_UDP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP4_POLL) (

 IN EFI_UDP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event was

signaled. When Token is NULL, all pending requests are aborted and

their events are signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or was

not issued by Transmit() and Receive().
UEFI Forum, Inc. March 2019 1612

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

30.2 EFI UDPv6 Protocol

This section defines the EFI UDPv6 (User Datagram Protocol version 6) Protocol that interfaces over the
EFI IPv6 Protocol.

30.2.1 UDP6 Service Binding Protocol

EFI_UDP6_SERVICE_BINDING_PROTOCOL

Summary

The EFI UDPv6 Service Binding Protocol is used to locate communication devices that are supported by an
EFI UDPv6 Protocol driver and to create and destroy instances of the EFI UDPv6 Protocol child instance
that uses the underlying communications device.

GUID

#define EFI_UDP6_SERVICE_BINDING_PROTOCOL_GUID \

 {0x66ed4721, 0x3c98, 0x4d3e,\

 {0x81, 0xe3, 0xd0, 0x3d, 0xd3, 0x9a, 0x72, 0x54}}

Description
A network application that requires basic UDPv6 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish a EFI UDPv6 Service
Binding Protocol GUID. Each device with a published EFI UDPv6 Service Binding Protocol GUID supports
the EFI UDPv6 Protocol and may be available for use.

After a successful call to the EFI_UDP6_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI UDPv6 Protocol driver is in an un-configured state; it is not ready to send and
receive data packets.

Before a network application terminates execution, every successful call to the
EFI_UDP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_UDP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

30.2.2 EFI UDP6 Protocol

EFI_UDP6_PROTOCOL

Summary

The EFI UDPv6 Protocol provides simple packet-oriented services to transmit and receive UDP packets.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1613

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
GUID
#define EFI_UDP6_PROTOCOL_GUID \

 {0x4f948815, 0xb4b9, 0x43cb,\

 {0x8a, 0x33, 0x90, 0xe0, 0x60, 0xb3, 0x49, 0x55}}

Protocol Interface Structure

typedef struct _EFI_UDP6_PROTOCOL {

 EFI_UDP6_GET_MODE_DATA GetModeData;

 EFI_UDP6_CONFIGURE Configure;

 EFI_UDP6_GROUPS Groups;

 EFI_UDP6_TRANSMIT Transmit;

 EFI_UDP6_RECEIVE Receive;

 EFI_UDP6_CANCEL Cancel;

 EFI_UDP6_POLL Poll;
} EFI_UDP6_PROTOCOl;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
UDPv6 Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Transmit Queues outgoing data packets into the transmit queue. This
function is a non-blocked operation. See the Transmit()
function description.

Receive Places a receiving request token into the receiving queue. This
function is a non-blocked operation. See the Receive()
function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_UDP6_PROTOCOL defines an EFI UDPv6 Protocol session that can be used by any network
drivers, applications, or daemons to transmit or receive UDP packets. This protocol instance can either be
bound to a specified port as a service or connected to some remote peer as an active client. Each instance
has its own settings, such as group table, that are independent from each other.
UEFI Forum, Inc. March 2019 1614

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Note: Byte Order: In this document, all IPv6 addresses and incoming/outgoing packets are stored in

network byte order. All other parameters in the functions and data structures that are defined in
this document are stored in host byte order.

EFI_UDP6_PROTOCOL.GetModeData()

Summary

Read the current operational settings.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_GET_MODE_DATA) (

 IN EFI_UDP6_PROTOCOL *This,

 OUT EFI_UDP6_CONFIG_DATA *Udp6ConfigData OPTIONAL,

 OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,

 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,

 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
Udp6ConfigData The buffer in which the current UDP configuration data is

returned. Type EFI_UDP6_CONFIG_DATA is defined in "Related
Definitions" below.

Ip6ModeData The buffer in which the current EFI IPv6 Protocol mode data is
returned. Type EFI_IP6_MODE_DATA is defined in
EFI_IP6_PROTOCOL.GetModeData().

MnpConfigData The buffer in which the current managed network
configuration data is returned. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData The buffer in which the simple network mode data is returned.
Type EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK Protocol.

Description

The GetModeData() function copies the current operational settings of this EFI UDPv6 Protocol
instance into user-supplied buffers. This function is used optionally to retrieve the operational mode data
of underlying networks or drivers.
UEFI Forum, Inc. March 2019 1615

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Related Definition

// EFI_UDP6_CONFIG_DATA

//

typedef struct {

 //Receiving Filters

 BOOLEAN AcceptPromiscuous;

 BOOLEAN AcceptAnyPort;

 BOOLEAN AllowDuplicatePort;
 //I/O parameters

 ;

 UINT8 TrafficClass;

 UINT8 HopLimit;
 ;

 UINT32 ReceiveTimeout;

 UINT32 TransmitTimeout;
 //Access Point

 EFI_IPv6_ADDRESS StationAddress;

 UINT16 StationPort;

 EFI_IPv6_ADDRESS RemoteAddress;

 UINT16 RemotePort;
} EFI_UDP6_CONFIG_DATA;

AcceptPromiscuous Set to TRUE to accept UDP packets that are sent to any
address.

AcceptAnyPort Set to TRUE to accept UDP packets that are sent to any port.
AllowDuplicatePortSet to TRUE to allow this EFI UDPv6 Protocol child instance to

open a port number that is already being used by another EFI
UDPv6 Protocol child instance.

TrafficClass TrafficClass field in transmitted IPv6 packets.
HopLimit HopLimit field in transmitted IPv6 packets.
ReceiveTimeout The receive timeout value (number of microseconds) to be

associated with each incoming packet. Zero means do not
drop incoming packets.

TransmitTimeout The transmit timeout value (number of microseconds) to be
associated with each outgoing packet. Zero means do not
drop outgoing packets.

StationAddress The station IP address that will be assigned to this EFI UDPv6
Protocol instance. The EFI UDPv6 and EFI IPv6 Protocol
drivers will only deliver incoming packets whose destination
matches this IP address exactly. Address 0::/128 is also
UEFI Forum, Inc. March 2019 1616

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
accepted as a special case. Under this situation, underlying
IPv6 driver is responsible for binding a source address to this
EFI IPv6 protocol instance according to source address
selection algorithm. Only incoming packet from the selected
source address is delivered. This field can be set and changed
only when the EFI IPv6 driver is transitioning from the
stopped to the started states. If no address is available for
selecting, the EFI IPv6 Protocol driver will use
EFI_IP6_CONFIG_PROTOCOL to retrieve the IPv6 address.

StationPort The port number to which this EFI UDPv6 Protocol instance is
bound. If a client of the EFI UDPv6 Protocol does not care
about the port number, set StationPort to zero. The EFI
UDPv6 Protocol driver will assign a random port number to
transmitted UDP packets. Ignored it if AcceptAnyPort is TRUE.

RemoteAddress The IP address of remote host to which this EFI UDPv6
Protocol instance is connecting. If RemoteAddress is not 0::/
128, this EFI UDPv6 Protocol instance will be connected to
RemoteAddress; i.e., outgoing packets of this EFI UDPv6
Protocol instance will be sent to this address by default and
only incoming packets from this address will be delivered to
client. Ignored for incoming filtering if AcceptPromiscuous is
TRUE.

RemotePort The port number of the remote host to which this EFI UDPv6
Protocol instance is connecting. If it is not zero, outgoing
packets of this EFI UDPv6 Protocol instance will be sent to this
port number by default and only incoming packets from this
port will be delivered to client. Ignored if RemoteAddress is
0::/128 and ignored for incoming filtering if
AcceptPromiscuous is TRUE.

Status Codes Returned

EFI_UDP6_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv6 Protocol.

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED When Udp6ConfigData is queried, no configuration data is

available because this instance has not been started.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 1617

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_CONFIGURE) (

 IN EFI_UDP6_PROTOCOL *This,

 IN EFI_UDP6_CONFIG_DATA *UdpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
UdpConfigData Pointer to the buffer contained the configuration data.

Description

The Configure() function is used to do the following:

• Initialize and start this instance of the EFI UDPv6 Protocol.

• Change the filtering rules and operational parameters.

• Reset this instance of the EFI UDPv6 Protocol.

Until these parameters are initialized, no network traffic can be sent or received by this instance. This
instance can be also reset by calling Configure() with UdpConfigData set to NULL. Once reset, the
receiving queue and transmitting queue are flushed and no traffic is allowed through this instance.

With different parameters in UdpConfigData, Configure() can be used to bind this instance to
specified port.
UEFI Forum, Inc. March 2019 1618

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_UDP6_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_GROUPS) (

 IN EFI_UDP6_PROTOCOL *This,

 IN BOOLEAN JoinFlag,

 IN EFI_IPv6_ADDRESS *MulticastAddress OPTIONAL
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave

one or all multicast groups.
MulticastAddress Pointer to multicast group address to join or leave.

EFI_SUCCESS The configuration settings were set, changed, or reset successfully.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

This is NULL.

UdpConfigData.StationAddress neither zero nor one of

the configured IP addresses in the underlying IPv6 driver.

UdpConfigData.RemoteAddress is not a valid unicast IPv6

address if it is not zero.

EFI_ALREADY_STARTED The EFI UDPv6 Protocol instance is already started/configured and must

be stopped/reset before it can be reconfigured. Only
TrafficClass, HopLimit, ReceiveTimeout, and

TransmitTimeout can be reconfigured without stopping the

current instance of the EFI UDPv6 Protocol.

EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE and

UdpConfigData.StationPort is already used by other

instance.

EFI_OUT_OF_RESOURCES The EFI UDPv6 Protocol driver cannot allocate memory for this EFI UDPv6
Protocol instance.

EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance was
not opened.
UEFI Forum, Inc. March 2019 1619

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Description

The Groups() function is used to join or leave one or more multicast group.

If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined groups
are left.

Status Codes Returned

EFI_UDP6_PROTOCOL.Transmit()

Summary

Queues outgoing data packets into the transmit queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_TRANSMIT) (

 IN EFI_UDP6_PROTOCOL *This,

 IN EFI_UDP6_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
Token Pointer to the completion token that will be placed into the

transmit queue. Type EFI_UDP6_COMPLETION_TOKEN is
defined in "Related Definitions" below.

Description

The Transmit() function places a sending request to this instance of the EFI UDPv6 Protocol, alongside
the transmit data that was filled by the user. Whenever the packet in the token is sent out or some errors
occur, the Token.Event will be signaled and Token.Status is updated. Providing a proper notification
function and context for the event will enable the user to receive the notification and transmitting status.

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv6 Protocol instance has not been started.

EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

JoinFlag is TRUE and MulticastAddress is NULL.

JoinFlag is TRUE and *MulticastAddress is not a valid

multicast address.

EFI_ALREADY_STARTED The group address is already in the group table (when JoinFlag is

TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
UEFI Forum, Inc. March 2019 1620

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Related Definitions

//***

// EFI_UDP6_COMPLETION_TOKEN

//***

typedef struct {

 EFI_EVENT Event;

 EFI_STATUS Status;
 union {

 EFI_UDP6_RECEIVE_DATA *RxData;

 EFI_UDP6_TRANSMIT_DATA *TxData;

 } Packet;
} EFI_UDP6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI UDPv6 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL.

Status Will be set to one of the following values:
EFI_SUCCESS: The receive or transmit operation completed successfully.
EFI_ABORTED: The receive or transmit was aborted.
EFI_TIMEOUT: The transmit timeout expired.
EFI_NETWORK_UNREACHABLE: The destination network is unreachable. RxData is set
to NULL in this situation.
EFI_HOST_UNREACHABLE: The destination host is unreachable. RxData is set to NULL
in this situation.
EFI_PROTOCOL_UNREACHABLE: The UDP protocol is unsupported in the remote
system. RxData is set to NULL in this situation.
EFI_PORT_UNREACHABLE: No service is listening on the remote port. RxData is set to
NULL in this situation.
EFI_ICMP_ERROR: Some other Internet Control Message Protocol (ICMP) error
report was received. For example, packets are being sent too fast for the destination
to receive them and the destination sent an ICMP source quench report. RxData is
set to NULL in this situation.
EFI_DEVICE_ERROR: An unexpected system or network error occurred.
EFI_SECURITY_VIOLATION: The transmit or receive was failed because of IPsec
policy check.
RxData When this token is used for receiving, RxData is a pointer to

EFI_UDP6_RECEIVE_DATA. Type EFI_UDP6_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer
to EFI_UDP6_TRANSMIT_DATA. Type
EFI_UDP6_TRANSMIT_DATA is defined below.
UEFI Forum, Inc. March 2019 1621

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
The EFI_UDP6_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv6 Protocol
client. After the transmit operation completes, the Status field is updated by the EFI UDPv6 Protocol
and the Event is signaled.

When used for receiving, only the Event field must be filled in by the EFI UDPv6 Protocol client. After a
packet is received, RxData and Status are filled in by the EFI UDPv6 Protocol and the Event is signaled.

 //***

// EFI_UDP6_RECEIVE_DATA

//***

typedef struct {

 EFI_TIME TimeStamp;

 EFI_EVENT RecycleSignal;

 EFI_UDP6_SESSION_DATA UdpSession;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP6_RECEIVE_DATA;

TimeStamp Time when the EFI UDPv6 Protocol accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported.

RecycleSignal Indicates the event to signal when the received data has been
processed.

UdpSession The UDP session data including SourceAddress, SourcePort,
DestinationAddress, and DestinationPort. Type
EFI_UDP6_SESSION_DATA is defined below.

DataLength The sum of the fragment data length.
FragmentCount Number of fragments. Maybe zero.
FragmentTable Array of fragment descriptors. Maybe zero. Type

EFI_UDP6_FRAGMENT_DATA is defined below.

EFI_UDP6_RECEIVE_DATA is filled by the EFI UDPv6 Protocol driver when this EFI UDPv6 Protocol
instance receives an incoming packet. If there is a waiting token for incoming packets, the
CompletionToken.Packet.RxData field is updated to this incoming packet and the
CompletionToken.Event is signaled. The EFI UDPv6 Protocol client must signal the RecycleSignal
after processing the packet.

FragmentTable could contain multiple buffers that are not in the continuous memory locations. The
EFI UDPv6 Protocol client might need to combine two or more buffers in FragmentTable to form their
own protocol header.
UEFI Forum, Inc. March 2019 1622

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//***

// EFI_UDP6_SESSION_DATA

//***

typedef struct {

 EFI_IPv6_ADDRESS SourceAddress;

 UINT16 SourcePort;

 EFI_IPv6_ADDRESS DestinationAddress;

 UINT16 DestinationPort;

} EFI_UDP6_SESSION_DATA;

SourceAddress Address from which this packet is sent. This filed should not
be used when sending packets.

SourcePort Port from which this packet is sent. It is in host byte order.
This filed should not be used when sending packets.

DestinationAddressAddress to which this packet is sent. When sending packet,
it’ll be ignored if it is zero.

DestinationPort Port to which this packet is sent. When sending packet, it’ll be
ignored if it is zero .

The EFI_UDP6_SESSION_DATA is used to retrieve the settings when receiving packets or to override
the existing settings (only DestinationAddress and DestinationPort can be overridden) of this EFI UDPv6
Protocol instance when sending packets.

//***

// EFI_UDP6_FRAGMENT_DATA

//***

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;
} EFI_UDP6_FRAGMENT_DATA;

FragmentLength Length of the fragment data buffer.
FragmentBuffer Pointer to the fragment data buffer.

EFI_UDP6_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The purpose of
this structure is to avoid copying the same packet multiple times.
UEFI Forum, Inc. March 2019 1623

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//**

// EFI_UDP6_TRANSMIT_DATA

//**

typedef struct {

 EFI_UDP6_SESSION_DATA *UdpSessionData ;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP6_TRANSMIT_DATA;

UdpSessionDataIf not NULL, the data that is used to override the transmitting settings.Only the two
filed UdpSessionData.DestinationAddress and UdpSessionData.DestionPort can be used as
the transmitting setting filed. Type EFI_UDP6_SESSION_DATA is defined above.

DataLength Sum of the fragment data length. Must not exceed the
maximum UDP packet size.

FragmentCount Number of fragments.
FragmentTable Array of fragment descriptors. Type

EFI_UDP6_FRAGMENT_DATA is defined above.

The EFI UDPv6 Protocol client must fill this data structure before sending a packet. The packet may
contain multiple buffers that may be not in a continuous memory location.
UEFI Forum, Inc. March 2019 1624

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

Token.Packet.TxData is NULL.

Token.Packet.TxData.FragmentCount is zero.

Token.Packet.TxData.DataLength is not equal to

the sum of fragment lengths.
One or more of the

Token.Packet.TxData.FragmentTable[].Fragm
entLength fields is zero.

One or more of the

Token.Packet.TxData.FragmentTable[].Fragm
entBuffer fields is NULL.

Token.Packet.TxData.UdpSessionData. DestinationAddress is not
zero and is not valid unicast Ipv6 address if UdpSessionData is not
NULL.

Token.Packet.TxData.UdpSessionData is
NULL and this instance’s UdpConfigData.

RemoteAddress is unspecified.

 Token.Packet.TxData.UdpSession-
Data.DestinationAddress is non-zero when

DestinationAddress is configured as non-zero

when doing Configure() for this EFI Udp6 protocol
instance.

Token.Packet.TxData.UdpSesionData.Dest
inationAddress is zero when

DestinationAddress is unspecified when doing

Configure() for this EFI Udp6 protocol instance

EFI_ACCESS_DENIED The transmit completion token with the same

Token.Event was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the trans-
mit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_NOT_FOUND There is no route to the destination network or address.

EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet size.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1625

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_UDP6_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_RECEIVE) (

 IN EFI_UDP6_PROTOCOL *This,

 IN EFI_UDP6_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
Token Pointer to a token that is associated with the receive data

descriptor. Type EFI_UDP6_COMPLETION_TOKEN is defined in
EFI_UDP6_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be NULL.
When the receive operation completes, the EFI UDPv6 Protocol driver updates the Token.Status and
Token.Packet.RxData fields and the Token.Event is signaled. Providing a proper notification
function and context for the event will enable the user to receive the notification and receiving status.
That notification function is guaranteed to not be re-entered.
UEFI Forum, Inc. March 2019 1626

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_UDP6_PROTOCOL.Cancel()

Summary

Aborts an asynchronous transmit or receive request.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_CANCEL)(

 IN EFI_UDP6_PROTOCOL *This,

 IN EFI_UDP6_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_UDP6_PROTOCOL instance.
Token Pointer to a token that has been issued by

EFI_UDP6_PROTOCOL.Transmit() or
EFI_UDP6_PROTOCOL.Receive().If NULL, all pending tokens
are aborted. Type EFI_UDP6_COMPLETION_TOKEN is defined in
EFI_UDP6_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues, which

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address for this
instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI UDPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in the

receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1627

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
usually means that the asynchronous operation has completed, this function will not signal the token and
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_UDP6_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UDP6_POLL) (

 IN EFI_UDP6_PROTOCOL *This
);

Parameters

This

Pointer to the EFI_UDP6_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event was

signaled. When Token is NULL, all pending requests are aborted and

their events are signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or was

not issued by Transmit() and Receive().
UEFI Forum, Inc. March 2019 1628

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

30.3 EFI MTFTPv4 Protocol

The following sections defines the EFI MTFTPv4 Protocol interface that is built upon the EFI UDPv4
Protocol.

EFI_MTFTP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI MTFTPv4 Service Binding Protocol is used to locate communication devices that are supported by
an EFI MTFTPv4 Protocol driver and to create and destroy instances of the EFI MTFTPv4 Protocol child
protocol driver that can use the underlying communications device.

GUID

#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0x2e800be,0x8f01,0x4aa6,\

 {0x94,0x6b,0xd7,0x13,0x88,0xe1,0x83,0x3f}}

Description

A network application or driver that requires MTFTPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI MTFTPv4
Service Binding Protocol GUID. Each device with a published EFI MTFTPv4 Service Binding Protocol GUID
supports the EFI MTFTPv4 Protocol service and may be available for use.

After a successful call to the EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI MTFTPv4 Protocol driver instance is in an unconfigured state; it is not ready to
transfer data.

Before a network application terminates execution, every successful call to the
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call
to the EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Each instance of the EFI MTFTPv4 Protocol driver can support one file transfer operation at a time. To
download two files at the same time, two instances of the EFI MTFTPv4 Protocol driver will need to be
created.

EFI_MTFTP4_PROTOCOL

Summary

The EFI MTFTPv4 Protocol provides basic services for client-side unicast and/or multicast TFTP
operations.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1629

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
GUID

#define EFI_MTFTP4_PROTOCOL_GUID \

 {0x78247c57,0x63db,0x4708,\

 {0x99,0xc2,0xa8,0xb4,0xa9,0xa6,0x1f,0x6b}}

Protocol Interface Structure

typedef struct _EFI_MTFTP4_PROTOCOL {

 EFI_MTFTP4_GET_MODE_DATA GetModeData;

 EFI_MTFTP4_CONFIGURE Configure;

 EFI_MTFTP4_GET_INFO GetInfo;

 EFI_MTFTP4_PARSE_OPTIONS ParseOptions;
 EFI_MTFTP4_READ_FILE ReadFile;

 EFI_MTFTP4_WRITE_FILE WriteFile;

 EFI_MTFTP4_READ_DIRECTORY ReadDirectory;

 EFI_MTFTP4_POLL Poll;

} EFI_MTFTP4_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets the operational settings for this
instance of the EFI MTFTPv4 Protocol driver. See the
Configure() function description.

GetInfo Retrieves information about a file from an MTFTPv4 server.
See the GetInfo() function description.

ParseOptions Parses the options in an MTFTPv4 OACK (options
acknowledgement) packet. See the ParseOptions() function
description.

ReadFile Downloads a file from an MTFTPv4 server. See the
ReadFile() function description.

WriteFile Uploads a file to an MTFTPv4 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

ReadDirectory Downloads a related file “directory” from an MTFTPv4 server.
This function may be unsupported in some EFI
implementations. See the ReadDirectory() function
description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_MTFTP4_PROTOCOL is designed to be used by UEFI drivers and applications to transmit and
receive data files. The EFI MTFTPv4 Protocol driver uses the underlying EFI UDPv4 Protocol driver and EFI
IPv4 Protocol driver.
UEFI Forum, Inc. March 2019 1630

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP4_PROTOCOL.GetModeData()

Summary

Reads the current operational settings.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_GET_MODE_DATA)(

 IN EFI_MTFTP4_PROTOCOL *This,

 OUT EFI_MTFTP4_MODE_DATA *ModeData

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
ModeData Pointer to storage for the EFI MTFTPv4 Protocol driver mode

data. Type EFI_MTFTP4_MODE_DATA is defined in “Related
Definitions” below.

Description

The GetModeData()function reads the current operational settings of this EFI MTFTPv4 Protocol driver
instance.

Related Definitions

//***

// EFI_MTFTP4_MODE_DATA

//***

typedef struct {

 EFI_MTFTP4_CONFIG_DATA ConfigData;

 UINT8 SupportedOptionCount;

 UINT8 **SupportedOptions;

 UINT8 UnsupportedOptionCount;

 UINT8 **UnsupportedOptions;

} EFI_MTFTP4_MODE_DATA;

ConfigData The configuration data of this instance. Type
EFI_MTFTP4_CONFIG_DATA is defined below.

SupportedOptionCount 
The number of option strings in the following
SupportedOptions array.

SupportedOptions An array of pointers to null-terminated ASCII option strings
that are recognized and supported by this EFI MTFTPv4
Protocol driver implementation.

UnsupportedOptionCount
An array of pointers to null-terminated ASCII option strings
that are recognized but not supported by this EFI MTFTPv4
Protocol driver implementation.
UEFI Forum, Inc. March 2019 1631

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
UnsupportedOptions
An array of option strings that are recognized but are not
supported by this EFI MTFTPv4 Protocol driver
implementation.

The EFI_MTFTP4_MODE_DATA structure describes the operational state of this instance.

//***

// EFI_MTFTP4_CONFIG_DATA

//***

typedef struct {

 BOOLEAN UseDefaultSetting;

 EFI_IPv4_ADDRESS StationIp;

 EFI_IPv4_ADDRESS SubnetMask;

 UINT16 LocalPort;

 EFI_IPv4_ADDRESS GatewayIp;

 EFI_IPv4_ADDRESS ServerIp;

 UINT16 InitialServerPort;

 UINT16 TryCount;

 UINT16 TimeoutValue;

} EFI_MTFTP4_CONFIG_DATA;

UseDefaultSetting Set to TRUE to use the default station address/subnet mask
and the default route table information.

StationIp If UseDefaultSetting is FALSE, indicates the station address
to use.

SubnetMask If UseDefaultSetting is FALSE, indicates the subnet mask to
use.

LocalPort Local port number. Set to zero to use the automatically
assigned port number.

GatewayIp if UseDefaultSetting is FALSE, indicates the gateway IP
address to use.

ServerIp The IP address of the MTFTPv4 server.
InitialServerPort The initial MTFTPv4 server port number. Request packets are

sent to this port. This number is almost always 69 and using
zero defaults to 69.

TryCount The number of times to transmit MTFTPv4 request packets
and wait for a response.

TimeoutValue The number of seconds to wait for a response after sending
the MTFTPv4 request packet.

The EFI_MTFTP4_CONFIG_DATA structure is used to report and change MTFTPv4 session parameters.
UEFI Forum, Inc. March 2019 1632

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP4_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the default operational setting for this EFI MTFTPv4 Protocol driver
instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_CONFIGURE)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_CONFIG_DATA *MtftpConfigData OPTIONAL

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
MtftpConfigData Pointer to the configuration data structure. Type

EFI_MTFTP4_CONFIG_DATA is defined in
EFI_MTFTP4_PROTOCOL.GetModeData().

Description

The Configure() function is used to set and change the configuration data for this EFI MTFTPv4
Protocol driver instance. The configuration data can be reset to startup defaults by calling Configure()
with MtftpConfigData set to NULL. Whenever the instance is reset, any pending operation is aborted.
By changing the EFI MTFTPv4 Protocol driver instance configuration data, the client can connect to
different MTFTPv4 servers. The configuration parameters in MtftpConfigData are used as the default
parameters in later MTFTPv4 operations and can be overridden in later operations.

EFI_SUCCESS The configuration data was successfully returned.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.

EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
UEFI Forum, Inc. March 2019 1633

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP4_PROTOCOL.GetInfo()

Summary

Gets information about a file from an MTFTPv4 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_GET_INFO)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL,

 IN UINT8 *Filename,

 IN UINT8 *ModeStr OPTIONAL,

 IN UINT8 OptionCount,

 IN EFI_MTFTP4_OPTION *OptionList OPTIONAL,

 OUT UINT32 *PacketLength,

 OUT EFI_MTFTP4_PACKET **Packet OPTIONAL

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

EFI_SUCCESS The EFI MTFTPv4 Protocol driver was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• MtftpConfigData.UseDefaultSetting is FALSE and

MtftpConfigData.StationIp is not a valid IPv4 unicast
address.

• MtftpCofigData.UseDefaultSetting is FALSE and

MtftpConfigData.SubnetMask is invalid.

• MtftpCofigData.ServerIp is not a valid IPv4 unicast
address.

• MtftpConfigData.UseDefaultSetting is FALSE and

MtftpConfigData.GatewayIp is not a valid IPv4 unicast
address or is not in the same subnet with station address.

EFI_ACCESS_DENIED The EFI configuration could not be changed at this time because there is
one MTFTP background operation in progress.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
has not finished yet.

EFI_UNSUPPORTED A configuration protocol (DHCP, BOOTP, RARP, etc.) could not be located
when clients choose to use the default address settings.

EFI_OUT_OF_RESOURCES The EFI MTFTPv4 Protocol driver instance data could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI MTFTPv4
Protocol driver instance is not configured.
UEFI Forum, Inc. March 2019 1634

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
OverrideData Data that is used to override the existing parameters. If NULL,
the default parameters that were set in the
EFI_MTFTP4_PROTOCOL.Configure() function are used. Type
EFI_MTFTP4_OVERRIDE_DATA is defined in “Related
Definitions” below.

Filename Pointer to a null-terminated ASCII file name string.
ModeStr Pointer to a null-terminated ASCII mode string. If NULL, “octet”

will be used.
OptionCount Number of option/value string pairs in OptionList.
OptionList Pointer to array of option/value string pairs. Ignored if

OptionCount is zero. Type EFI_MTFTP4_OPTION is defined in
“Related Definitions” below.

PacketLength The number of bytes in the returned packet.
Packet The pointer to the received packet. This buffer must be freed

by the caller. Type EFI_MTFTP4_PACKET is defined in “Related
Definitions” below.

Description

The GetInfo() function assembles an MTFTPv4 request packet with options; sends it to the MTFTPv4
server; and may return an MTFTPv4 OACK, MTFTPv4 ERROR, or ICMP ERROR packet. Retries occur only if
no response packets are received from the MTFTPv4 server before the timeout expires.

Related Definitions

//***

// EFI_MTFTP_OVERRIDE_DATA

//***

typedef struct {

 EFI_IPv4_ADDRESS GatewayIp;

 EFI_IPv4_ADDRESS ServerIp;

 UINT16 ServerPort;

 UINT16 TryCount;

 UINT16 TimeoutValue;

} EFI_MTFTP4_OVERRIDE_DATA;

GatewayIp IP address of the gateway. If set to 0.0.0.0, the default gateway
address that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function will not be
overridden.

ServerIp IP address of the MTFTPv4 server. If set to 0.0.0.0, it will use
the value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

ServerPort MTFTPv4 server port number. If set to zero, it will use the
value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.
UEFI Forum, Inc. March 2019 1635

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
TryCount Number of times to transmit MTFTPv4 request packets and
wait for a response. If set to zero, it will use the value that was
set by the EFI_MTFTP4_PROTOCOL.Configure() function.

TimeoutValue Number of seconds to wait for a response after sending the
MTFTPv4 request packet. If set to zero, it will use the value
that was set by the EFI_MTFTP4_PROTOCOL.Configure()
function.

The EFI_MTFTP4_OVERRIDE_DATA structure is used to override the existing parameters that were set
by the EFI_MTFTP4_PROTOCOL.Configure() function.

//***

// EFI_MTFTP4_OPTION

//***

typedef struct {

 UINT8 *OptionStr;

 UINT8 *ValueStr;

} EFI_MTFTP4_OPTION;

OptionStr Pointer to the null-terminated ASCII MTFTPv4 option string.
ValueStr Pointer to the null-terminated ASCII MTFTPv4 value string.
UEFI Forum, Inc. March 2019 1636

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
#pragma pack(1)

//***

// EFI_MTFTP4_PACKET

//***

typedef union {

 UINT16 OpCode;

 EFI_MTFTP4_REQ_HEADER Rrq, Wrq;

 EFI_MTFTP4_OACK_HEADER Oack;

 EFI_MTFTP4_DATA_HEADER Data;

 EFI_MTFTP4_ACK_HEADER Ack;

// This field should be ignored and treated as reserved

 EFI_MTFTP4_DATA8_HEADER Data8;

// This field should be ignored and treated as reserved

 EFI_MTFTP4_ACK8_HEADER Ack8;

 EFI_MTFTP4_ERROR_HEADER Error;

} EFI_MTFTP4_PACKET;

//***

// EFI_MTFTP4_REQ_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT8 Filename[1];

} EFI_MTFTP4_REQ_HEADER;

//***

// EFI_MTFTP4_OACK_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT8 Data[1];

} EFI_MTFTP4_OACK_HEADER;

//***

// EFI_MTFTP4_DATA_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT16 Block;

 UINT8 Data[1];

} EFI_MTFTP4_DATA_HEADER;

//***

// EFI_MTFTP4_ACK_HEADER

//***

typedef struct {
UEFI Forum, Inc. March 2019 1637

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
 UINT16 OpCode;

 UINT16 Block[1];

} EFI_MTFTP4_ACK_HEADER;

//***

// EFI_MTFTP4_DATA8_HEADER

// This field should be ignored and treated as reserved

//***

typedef struct {

 UINT16 OpCode;

 UINT64 Block;

 UINT8 Data[1];

} EFI_MTFTP4_DATA8_HEADER;

//***

// EFI_MTFTP4_ACK8_HEADER

// This field should be ignored and treated as reserved

//***

typedef struct {

 UINT16 OpCode;

 UINT64 Block[1];

} EFI_MTFTP4_ACK8_HEADER;

//***

// EFI_MTFTP4_ERROR_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT16 ErrorCode;

 UINT8 ErrorMessage[1];

} EFI_MTFTP4_ERROR_HEADER;

#pragma pack()

Table 4 below describes the parameters that are listed in the MTFTPv4 packet structure definitions
above. All the above structures are byte packed. The pragmas may vary from compiler to compiler. The
MTFTPv4 packet structures are also used by the following functions:

• EFI_MTFTP4_PROTOCOL.ReadFile()

• EFI_MTFTP4_PROTOCOL.WriteFile()

• EFI_MTFTP4_PROTOCOL.ReadDirectory()

• The EFI MTFTPv4 Protocol packet check callback functions

Note: Both incoming and outgoing MTFTPv4 packets are in network byte order. All other parameters
defined in functions or data structures are stored in host byte order.
UEFI Forum, Inc. March 2019 1638

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Table 4. Descriptions of Parameters in MTFTPv4 Packet Structures

Data Structure Parameter Description

EFI_MTFTP4_PACKET OpCode Type of packets as defined by the MTFTPv4 packet
opcodes. Opcode values are defined below.

Rrq, Wrq Read request or write request packet header. See the

description for EFI_MTFTP4_REQ_HEADER

below in this table.

Oack Option acknowledge packet header. See the

description for EFI_MTFTP4_OACK_HEADER

below in this table.

Data Data packet header. See the description for

EFI_MTFTP4_DATA_HEADER below in this

table.

Ack Acknowledgement packet header. See the description

for EFI_MTFTP4_ACK_HEADER below in this

table.

Data8 This field should be ignored and treated as reserved.

Data packet header with big block number. See the

description for EFI_MTFTP4_DATA8_HEADER

below in this table.

Ack8 This field should be ignored and treated as reserved.

Acknowledgement header with big block number. See
the description for

EFI_MTFTP4_ACK8_HEADER below in this

table.

Error Error packet header. See the description for

EFI_MTFTP4_ERROR_HEADER below in this

table.

EFI_MTFTP4_REQ_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_RRQ for a read request

or OpCode = EFI_MTFTP4_OPCODE_WRQ

for a write request.

Filename The file name to be downloaded or uploaded.

EFI_MTFTP4_OACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_OACK.

Data The option strings in the option acknowledgement
packet.

EFI_MTFTP4_DATA_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA.

Block Block number of this data packet.

Data The content of this data packet.
UEFI Forum, Inc. March 2019 1639

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP4_ACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ACK.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP4_DATA8_HEADER OpCode This field should be ignored and treated as reserved.

For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA8.

Block This field should be ignored and treated as reserved.

The block number of data packet.

Data This field should be ignored and treated as reserved.

The content of this data packet.

EFI_MTFTP4_ACK8_HEADER OpCode This field should be ignored and treated as reserved.

For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ACK8.

Block This field should be ignored and treated as reserved.

The block number of the data packet that is being
acknowledged.

EFI_MTFTP4_ERROR_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ERROR.

ErrorCode The error number as defined by the MTFTPv4 packet

error codes. Values for ErrorCode are defined

below.

ErrorMessage Error message string.

Data Structure Parameter Description
UEFI Forum, Inc. March 2019 1640

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//

// MTFTP Packet OpCodes

//

#define EFI_MTFTP4_OPCODE_RRQ 1

#define EFI_MTFTP4_OPCODE_WRQ 2

#define EFI_MTFTP4_OPCODE_DATA 3

#define EFI_MTFTP4_OPCODE_ACK 4

#define EFI_MTFTP4_OPCODE_ERROR 5

#define EFI_MTFTP4_OPCODE_OACK 6

#define EFI_MTFTP4_OPCODE_DIR 7

//This field should be ignored and treated as reserved.

#define EFI_MTFTP4_OPCODE_DATA8 8

//This field should be ignored and treated as reserved.

#define EFI_MTFTP4_OPCODE_ACK8 9

Following is a description of the fields in the above definition.

EFI_MTFTP4_OPCODE_RRQ The MTFTPv4 packet is a read request.

EFI_MTFTP4_OPCODE_WRQ The MTFTPv4 packet is a write request.

EFI_MTFTP4_OPCODE_DATA The MTFTPv4 packet is a data packet.

EFI_MTFTP4_OPCODE_ACK The MTFTPv4 packet is an acknowledgement packet.

EFI_MTFTP4_OPCODE_ERROR The MTFTPv4 packet is an error packet.

EFI_MTFTP4_OPCODE_OACK The MTFTPv4 packet is an option acknowledgement packet.

EFI_MTFTP4_OPCODE_DIR The MTFTPv4 packet is a directory query packet.

EFI_MTFTP4_OPCODE_DATA8 This field should be ignored and treated as reserved.

The MTFTPv4 packet is a data packet with a big block number.

EFI_MTFTP4_OPCODE_ACK8 This field should be ignored and treated as reserved.

The MTFTPv4 packet is an acknowledgement packet with a big
block number.
UEFI Forum, Inc. March 2019 1641

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//

// MTFTP ERROR Packet ErrorCodes

//

#define EFI_MTFTP4_ERRORCODE_NOT_DEFINED 0

#define EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND 1

#define EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION 2

#define EFI_MTFTP4_ERRORCODE_DISK_FULL 3

#define EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION 4

#define EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID 5

#define EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS 6

#define EFI_MTFTP4_ERRORCODE_NO_SUCH_USER 7

#define EFI_MTFTP4_ERRORCODE_REQUEST_DENIED 8

Status Codes Returned

EFI_MTFTP4_ERRORCODE_NOT_DEFINED The error code is not defined. See the
error message in the packet (if any) for
details.

EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND The file was not found.

EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION There was an access violation.

EFI_MTFTP4_ERRORCODE_DISK_FULL The disk was full or its allocation was
exceeded.

EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION The MTFTPv4 operation was illegal.

EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID The transfer ID is unknown.

EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS The file already exists.

EFI_MTFTP4_ERRORCODE_NO_SUCH_USER There is no such user.

EFI_MTFTP4_ERRORCODE_REQUEST_DENIED The request has been denied due to
option negotiation.

EFI_SUCCESS An MTFTPv4 OACK packet was received and is in the Packet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Filename is NULL.

• OptionCount is not zero and OptionList is NULL.

• One or more options in OptionList have wrong format.

• PacketLength is NULL.

• One or more IPv4 addresses in OverrideData are not valid

unicast IPv4 addresses if OverrideData is not NULL and the
addresses are not set to all zero.

EFI_UNSUPPORTED • One or more options in the OptionList are in the unsupported

list of structure EFI_MTFTP4_MODE_DATA.
UEFI Forum, Inc. March 2019 1642

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP4_PROTOCOL.ParseOptions()

Summary

Parses the options in an MTFTPv4 OACK packet.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_PARSE_OPTIONS)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN UINT32 PacketLen,

 IN EFI_MTFTP4_PACKET *Packet,

 OUT UINT32 *OptionCount,

 OUT EFI_MTFT4P_OPTION **OptionList OPTIONAL

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
PacketLen Length of the OACK packet to be parsed.
Packet Pointer to the OACK packet to be parsed. Type

EFI_MTFTP4_PACKET is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
has not finished yet.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received and is in the Packet.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the

Packet is set to NULL.

EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the Packet

is set to NULL.

EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the

Packet is set to NULL.

EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the Packet

is set to NULL.

EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet is set to

NULL.

EFI_PROTOCOL_ERROR An unexpected MTFTPv4 packet was received and is in the Packet.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1643

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
OptionCount Pointer to the number of options in following OptionList.
OptionList Pointer to EFI_MTFTP4_OPTION storage. Call the EFI Boot

Service FreePool() to release theOptionList if the options
in this OptionList are not needed any more. Type
EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

Description

The ParseOptions() function parses the option fields in an MTFTPv4 OACK packet and returns the
number of options that were found and optionally a list of pointers to the options in the packet.

If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned and
*OptionCount and *OptionList stop at the last valid option.

Status Codes Returned

EFI_MTFTP4_PROTOCOL.ReadFile()

Summary

Downloads a file from an MTFTPv4 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_READ_FILE)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this operation. Type EFI_MTFTP4_TOKEN is defined
in “Related Definitions” below.

EFI_SUCCESS The OACK packet was valid and the OptionCount and

OptionList parameters have been updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• PacketLen is 0.

• Packet is NULL or Packet is not a valid MTFTPv4 packet.

• OptionCount is NULL.

EFI_NOT_FOUND No options were found in the OACK packet.

EFI_OUT_OF_RESOURCES Storage for the OptionList array cannot be allocated.

EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
UEFI Forum, Inc. March 2019 1644

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Description

The ReadFile() function is used to initialize and start an MTFTPv4 download process and optionally
wait for completion. When the download operation completes, whether successfully or not, the
Token.Status field is updated by the EFI MTFTPv4 Protocol driver and then Token.Event is signaled
(if it is not NULL).

Data can be downloaded from the MTFTPv4 server into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will be called
first. If the call is successful, the packet will be stored in Token.Buffer.

Related Definitions

//***

// EFI_MTFTP4_TOKEN

//***

typedef struct {

 EFI_STATUS Status;

 EFI_EVENT Event;

 EFI_MTFTP4_OVERRIDE_DATA *OverrideData;

 UINT8 *Filename;

 UINT8 *ModeStr;

 UINT32 OptionCount;

 EFI_MTFTP4_OPTION *OptionList;

 UINT64 BufferSize;

 VOID *Buffer;

 VOID *Context;

 EFI_MTFTP4_CHECK_PACKET CheckPacket;

 EFI_MTFTP4_TIMEOUT_CALLBACK TimeoutCallback;

 EFI_MTFTP4_PACKET_NEEDED PacketNeeded;

} EFI_MTFTP4_TOKEN;

Status The status that is returned to the caller at the end of the
operation to indicate whether this operation completed
successfully. Defined Status values are listed below.

Event The event that will be signaled when the operation completes.
If set to NULL, the corresponding function will wait until the
read or write operation finishes. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event
must be lower than or equal to TPL_CALLBACK.

OverrideData If not NULL, the data that will be used to override the existing
configure data. Type EFI_MTFTP4_OVERRIDE_DATA is defined
in EFI_MTFTP4_PROTOCOL.GetInfo().

Filename Pointer to the null-terminated ASCII file name string.
UEFI Forum, Inc. March 2019 1645

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
ModeStr Pointer to the null-terminated ASCII mode string. If NULL,
“octet” is used.

OptionCount Number of option/value string pairs.
OptionList Pointer to an array of option/value string pairs. Ignored if

OptionCount is zero. Both a remote server and this driver
implementation should support these options. If one or more
options are unrecognized by this implementation, it is sent to
the remote server without being changed. Type
EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

BufferSize On input, the size, in bytes, of Buffer. On output, the number
of bytes transferred

Buffer Pointer to the data buffer. Data that is downloaded from the
MTFTPv4 server is stored here. Data that is uploaded to the
MTFTPv4 server is read from here. Ignored if BufferSize is
zero.

Context Pointer to the context that will be used by CheckPacket,
TimeoutCallback and PacketNeeded.

CheckPacket Pointer to the callback function to check the contents of the
received packet. Type EFI_MTFTP4_CHECK_PACKET is defined
below.

TimeoutCallback Pointer to the function to be called when a timeout occurs.
Type EFI_MTFTP4_TIMEOUT_CALLBACK is defined below.

PacketNeeded Pointer to the function to provide the needed packet
contents. Only used in WriteFile() operation. Type
EFI_MTFTP4_PACKET_NEEDED is defined below.

The EFI_MTFTP4_TOKEN structure is used for both the MTFTPv4 reading and writing operations. The
caller uses this structure to pass parameters and indicate the operation context. After the reading or
writing operation completes, the EFI MTFTPv4 Protocol driver updates the Status parameter and the
Event is signaled if it is not NULL. The following table lists the status codes that are returned in the
Status parameter.
UEFI Forum, Inc. March 2019 1646

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned in the Status Parameter

//***

// EFI_MTFTP4_CHECK_PACKET

//***

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_CHECK_PACKET)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token,

 IN UINT16 PacketLen,

 IN EFI_MTFTP4_PACKET *Packet

);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
Token The token that the caller provided in the

EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or
ReadDirectory() function. Type EFI_MTFTP4_TOKEN is
defined in EFI_MTFTP4_PROTOCOL.ReadFile().

PacketLen Indicates the length of the packet.
Packet Pointer to an MTFTPv4 packet. Type EFI_MTFTP4_PACKET is

defined in EFI_MTFTP4_PROTOCOL.GetInfo().

EFI_MTFTP4_CHECK_PACKET is a callback function that is provided by the caller to intercept the
EFI_MTFTP4_OPCODE_DATA or EFI_MTFTP4_OPCODE_DATA8 packets processed in the
EFI_MTFTP4_PROTOCOL.ReadFile() function, and alternatively to intercept
EFI_MTFTP4_OPCODE_OACK or EFI_MTFTP4_OPCODE_ERROR packets during a call to
EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). Whenever an MTFTPv4
packet with the type described above is received from a server, the EFI MTFTPv4 Protocol driver will call

EFI_SUCCESS The data file has been transferred successfully.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_BUFFER_TOO_SMALL BufferSize is not large enough to hold the downloaded data in

downloading process.

EFI_ABORTED Current operation is aborted by user.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.

EFI_NETWORK_UNREACHABLE AnICMP host unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received .

EFI_ICMP_ERROR Some other ICMP ERROR packet was received.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1647

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP4_CHECK_PACKET function to let the caller have an opportunity to process this packet. Any
status code other than EFI_SUCCESS that is returned from this function will abort the transfer process.

//**

// EFI_MTFTP4_TIMEOUT_CALLBACK

//**

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_TIMEOUT_CALLBACK)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token

);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
Token The token that is provided in the

EFI_MTFTP4_PROTOCOL.ReadFile() or
EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions by the
caller. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

EFI_MTFTP4_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the timeout
event in the EFI_MTFTP4_PROTOCOL.ReadFile(), EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions. Whenever a timeout occurs, the EFI MTFTPv4
Protocol driver will call the EFI_MTFTP4_TIMEOUT_CALLBACK function to notify the caller of the
timeout event. Any status code other than EFI_SUCCESS that is returned from this function will abort
the current download process.

//**

// EFI_MTFTP4_PACKET_NEEDED

//**

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_PACKET_NEEDED)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token,

 IN OUT UINT16 *Length,

 OUT VOID **Buffer

);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
Token The token provided in the

EFI_MTFTP4_PROTOCOL.WriteFile() by the caller.
Length Indicates the length of the raw data wanted on input, and the

length the data available on output.
Buffer Pointer to the buffer where the data is stored.
UEFI Forum, Inc. March 2019 1648

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP4_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP4_PROTOCOL.WriteFile() function. EFI_MTFTP4_PACKET_NEEDED provides another
mechanism for the caller to provide data to upload other than a static buffer. The EFI MTFTP4 Protocol
driver always calls EFI_MTFTP4_PACKET_NEEDED to get packet data from the caller if no static buffer
was given in the initial call to EFI_MTFTP4_PROTOCOL.WriteFile() function. Setting *Length to
zero signals the end of the session. Returning a status code other than EFI_SUCCESS aborts the session.

Status Codes Returned

EFI_MTFTP4_PROTOCOL.WriteFile()

Summary

Sends a data file to an MTFTPv4 server. May be unsupported in some EFI implementations.

EFI_SUCCESS The data file is being downloaded.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and

Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both NULL.

• One or more IPv4 addresses in Token.OverrideData are not

valid unicast IPv4 addresses if Token.OverrideData is not

NULL and the addresses are not set to all zero.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in the

unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_ALREADY_STARTED This Token is being used in another MTFTPv4 session.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1649

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_WRITE_FILE)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this function. Type EFI_MTFTP4_TOKEN is defined
in EFI_MTFTP4_PROTOCOL.ReadFile().

Description

The WriteFile() function is used to initialize an uploading operation with the given option list and
optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload process
completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv4 Protocol driver
updates Token.Status.

The caller can supply the data to be uploaded in the following two modes:

• Through the user-provided buffer

• Through a callback function

With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer, and the
driver will upload the data in the buffer. With an EFI_MTFTP4_PACKET_NEEDED callback function, the
driver will call this callback function to get more data from the user to upload. See the definition of
EFI_MTFTP4_PACKET_NEEDED for more information. These two modes cannot be used at the same
time. The callback function will be ignored if the user provides the buffer.
UEFI Forum, Inc. March 2019 1650

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP4_PROTOCOL.ReadDirectory()

Summary

Downloads a data file “directory” from an MTFTPv4 server. May be unsupported in some EFI
implementations.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_READ_DIRECTORY)(

 IN EFI_MTFTP4_PROTOCOL *This,

 IN EFI_MTFTP4_TOKEN *Token

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

EFI_SUCCESS The upload session has started.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and Token.OptionList is

NULL.

• One or more options in Token.OptionList have wrong format.

• Token.Buffer and Token.PacketNeeded are both NULL.

• One or more IPv4 addresses in Token.OverrideData are not

valid unicast IPv4 addresses if Token.OverrideData is not

NULL and the addresses are not set to all zero.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in the

unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) is
not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1651

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Token Pointer to the token structure to provide the parameters that
are used in this function. Type EFI_MTFTP4_TOKEN is defined
in EFI_MTFTP4_PROTOCOL.ReadFile().

Description

The ReadDirectory() function is used to return a list of files on the MTFTPv4 server that are logically
(or operationally) related to Token.Filename. The directory request packet that is sent to the server is
built with the option list that was provided by caller, if present.

The file information that the server returns is put into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will be called
first. If the call is successful, the packet will be stored in Token.Buffer.

The returned directory listing in the Token.Buffer or EFI_MTFTP4_PACKET consists of a list of two or
three variable-length ASCII strings, each terminated by a null character, for each file in the directory. If
the multicast option is involved, the first field of each directory entry is the static multicast IP address and
UDP port number that is associated with the file name. The format of the field is ip:ip:ip:ip:port. If
the multicast option is not involved, this field and its terminating null character are not present.

The next field of each directory entry is the file name and the last field is the file information string. The
information string contains the file size and the create/modify timestamp. The format of the information
string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is Coordinated Universal Time
(UTC; also known as Greenwich Mean Time [GMT]).
UEFI Forum, Inc. March 2019 1652

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP4_PROTOCOL.POLL()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP4_POLL) (

 IN EFI_MTFTP4_PROTOCOL *This

);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

EFI_SUCCESS The MTFTPv4 related file "directory" has been downloaded.

EFI_UNSUPPORTED The EFI MTFTPv4 Protocol driver does not support this function.

EFI_INVALID_PARAMETER One or more of these conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and

Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

Token.Buffer and Token.CheckPacket are both NULL.

• One or more IPv4 addresses in Token.OverrideData are not

valid unicast IPv4 addresses if Token.OverrideData is not

NULL and the addresses are not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are in the

unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1653

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

Status Codes Returned

30.4 EFI MTFTPv6 Protocol

This section defines the EFI MTFTPv6 Protocol interface that is built upon the EFI UDPv6 Protocol.

30.4.1 MTFTP6 Service Binding Protocol

EFI_MTFTP6_SERVICE_BINDING_PROTOCOL

Summary

The EFI MTFTPv6 Service Binding Protocol is used to locate communication devices that are supported by
an EFI MTFTPv6 Protocol driver and to create and destroy instances of the EFI MTFTPv6 Protocol child
instance that can use the underlying communications device.

GUID

#define EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID \

 {0xd9760ff3,0x3cca,0x4267,\

 {0x80,0xf9,0x75,0x27,0xfa,0xfa,0x42,0x23}}

Description

A network application or driver that requires MTFTPv6 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI MTFTPv6
Service Binding Protocol GUID. Each device with a published EFI MTFTPv6 Service Binding Protocol GUID
supports the EFI MTFTPv6 Protocol service and may be available for use.

After a successful call to the EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the newly created child EFI MTFTPv6 Protocol driver instance is in the un-configured state; it is not ready
to transfer data.

Before a network application terminates execution, every successful call to the
EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call
to the EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI MTFTPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1654

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Each instance of the EFI MTFTPv6 Protocol driver can support one file transfer operation at a time. To
download two files at the same time, two instances of the EFI MTFTPv6 Protocol driver need to be
created.

30.4.2 MTFTP6 Protocol

EFI_MTFTP6_PROTOCOL

Summary

The EFI MTFTPv6 Protocol provides basic services for client-side unicast and/or multicast TFTP
operations.

GUID
#define EFI_MTFTP6_PROTOCOL_GUID \

 {0xbf0a78ba,0xec29,0x49cf,\

 {0xa1,0xc9,0x7a,0xe5,0x4e,0xab,0x6a,0x51}}

Protocol Interface Structure

typedef struct _EFI_MTFTP6_PROTOCOL {

 EFI_MTFTP6_GET_MODE_DATA GetModeData;

 EFI_MTFTP6_CONFIGURE Configure;

 EFI_MTFTP6_GET_INFO GetInfo;
 EFI_MTFTP6_PARSE_OPTIONS ;

 EFI_MTFTP6_READ_FILE ReadFile;

 EFI_MTFTP6_WRITE_FILE WriteFile;

 EFI_MTFTP6_READ_DIRECTORY ReadDirectory;

 EFI_MTFTP6_POLL Poll;
} EFI_MTFTP6_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets the operational settings for this
instance of the EFI MTFTPv6 Protocol driver. See the
Configure() function description.

GetInfo Retrieves information about a file from an MTFTPv6 server.
See the GetInfo() function description.
Parses the options in an MTFTPv6 OACK (options
acknowledgement) packet. See the () function description.

ReadFile Downloads a file from an MTFTPv6 server. See the
ReadFile() function description.

WriteFile Uploads a file to an MTFTPv6 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.
UEFI Forum, Inc. March 2019 1655

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
ReadDirectory Downloads a related file directory from an MTFTPv6 server.
This function may be unsupported in some EFI
implementations. See the ReadDirectory() function
description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_MTFTP6_PROTOCOL is designed to be used by UEFI drivers and applications to transmit and
receive data files. The EFI MTFTPv6 Protocol driver uses the underlying EFI UDPv6 Protocol driver and EFI
IPv6 Protocol driver.

EFI_MTFTP6_PROTOCOL.GetModeData()

Summary

Read the current operational settings.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_GET_MODE_DATA)(

 IN EFI_MTFTP6_PROTOCOL *This,

 OUT EFI_MTFTP6_MODE_DATA *ModeData
);

Parameters

This

Pointer to the EFI_MTFTP6_PROTOCOL instance.

ModeData

The buffer in which the EFI MTFTPv6 Protocol driver mode data is returned. Type
EFI_MTFTP6_MODE_DATA is defined in "Related Definitions" below.

Description

The GetModeData() function reads the current operational settings of this EFI MTFTPv6 Protocol driver
instance.
UEFI Forum, Inc. March 2019 1656

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Related Definitions

//***

// EFI_MTFTP6_MODE_DATA

//***

typedef struct {

 EFI_MTFTP6_CONFIG_DATA ConfigData;

 UINT8 SupportedOptionCount;
 UINT8 **SupportedOptions;

} EFI_MTFTP6_MODE_DATA;

ConfigData The configuration data of this instance. Type
EFI_MTFTP6_CONFIG_DATA is defined below.

SupportedOptionCountThe number of option strings in the following
SupportedOptions array.

SupportedOptions An array of null-terminated ASCII option strings that are
recognized and supported by this EFI MTFTPv6 Protocol
driver implementation. The buffer is read only to the caller
and the caller should NOT free the buffer.

The EFI_MTFTP6_MODE_DATA structure describes the operational state of this instance.

//***

// EFI_MTFTP6_CONFIG_DATA

//***

typedef struct {

 EFI_IPv6_ADDRESS StationIp;

 UINT16 LocalPort;

 EFI_IPv6_ADDRESS ServerIp;

 UINT16 InitialServerPort;

 UINT16 TryCount;

 UINT16 TimeoutValue;
} EFI_MTFTP6_CONFIG_DATA;

StationIp The local IP address to use. Set to zero to let the underlying
IPv6 driver choose a source address. If not zero it must be one
of the configured IP addresses in the underlying IPv6 driver.

LocalPort Local port number. Set to zero to use the automatically
assigned port number.

ServerIp The IP address of the MTFTPv6 server.
InitialServerPort The initial MTFTPv6 server port number. Request packets are

sent to this port. This number is almost always 69 and using
zero defaults to 69.

TryCount The number of times to transmit MTFTPv6 request packets
and wait for a response.
UEFI Forum, Inc. March 2019 1657

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
TimeoutValue The number of seconds to wait for a response after sending
the MTFTPv6 request packet.

The EFI_MTFTP6_CONFIG_DATA structure is used to retrieve and change MTFTPv6 session parameters.

Status Codes Returned

EFI_MTFTP6_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the default operational setting for this EFI MTFTPv6 Protocol driver
instance.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_CONFIGURE)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_CONFIG_DATA *MtftpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
MtftpConfigData Pointer to the configuration data structure. Type

EFI_MTFTP6_CONFIG_DATA is defined in
EFI_MTFTP6_PROTOCOL.GetModeData().

Description
The Configure() function is used to set and change the configuration data for this EFI MTFTPv6 Protocol
driver instance. The configuration data can be reset to startup defaults by calling Configure() with
MtftpConfigData set to NULL. Whenever the instance is reset, any pending operation is aborted. By
changing the EFI MTFTPv6 Protocol driver instance configuration data, the client can connect to different
MTFTPv6 servers. The configuration parameters in MtftpConfigData are used as the default
parameters in later MTFTPv6 operations and can be overridden in later operations.

EFI_SUCCESS The configuration data was successfully returned.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.

EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
UEFI Forum, Inc. March 2019 1658

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP6_PROTOCOL.GetInfo()

Summary

Get information about a file from an MTFTPv6 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_GET_INFO)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_OVERRIDE_DATA *OverrideData OPTIONAL,

 IN UINT8 *Filename,

 IN UINT8 *ModeStr OPTIONAL,

 IN UINT8 OptionCount,

 IN EFI_MTFTP6_OPTION *OptionList OPTIONAL,

 OUT UINT32 *PacketLength,

 OUT EFI_MTFTP6_PACKET **Packet OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
OverrideData Data that is used to override the existing parameters. If NULL,

the default parameters that were set in the
EFI_MTFTP6_PROTOCOL.Configure() function are used. Type
EFI_MTFTP6_OVERRIDE_DATA is defined in "Related
Definitions" below.

Filename Pointer to an null-terminated ASCII file name string.

EFI_SUCCESS The EFI MTFTPv6 Protocol instance was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

This is NULL.
 MtftpConfigData.StationIp is neither zero nor one of

the configured IP addresses in the underlying IPv6 driver.

MtftpCofigData.ServerIp is not a valid IPv6 unicast

address.

EFI_ACCESS_DENIED  The configuration could not be changed at this time because there is

some MTFTP background operation in progress.

 MtftpCofigData.LocalPort is already in use.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_OUT_OF_RESOURCES The EFI MTFTPv6 Protocol driver instance data could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI MTFTPv6
Protocol driver instance is not configured.
UEFI Forum, Inc. March 2019 1659

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
ModeStr Pointer to an null-terminated ASCII mode string. If NULL, octet
will be used.

OptionCount Number of option/value string pairs in OptionList.
OptionList Pointer to array of option/value string pairs. Ignored if

OptionCount is zero. Type EFI_MTFTP6_OPTION is defined in
"Related Definitions" below.

PacketLength The number of bytes in the returned packet.
Packet The pointer to the received packet. This buffer must be freed

by the caller. Type EFI_MTFTP6_PACKET is defined in "Related
Definitions" below.

Description

The GetInfo() function assembles an MTFTPv6 request packet with options, sends it to the MTFTPv6
server, and may return an MTFTPv6 OACK, MTFTPv6 ERROR, or ICMP ERROR packet. Retries occur only if
no response packets are received from the MTFTPv6 server before the timeout expires.

Related Definitions

//**

// EFI_MTFTP_OVERRIDE_DATA

//**

typedef struct {

 EFI_IPv6_ADDRESS ServerIp;

 UINT16 ServerPort;

 UINT16 TryCount;

 UINT16 TimeoutValue;
} EFI_MTFTP6_OVERRIDE_DATA;

ServerIp IP address of the MTFTPv6 server. If set to all zero, the value
that was set by the EFI_MTFTP6_PROTOCOL.Configure()
function will be used.

ServerPort MTFTPv6 server port number. If set to zero, it will use the
value that was set by the
EFI_MTFTP6_PROTOCOL.Configure() function.

TryCount Number of times to transmit MTFTPv6 request packets and
wait for a response. If set to zero, the value that was set by
theEFI_MTFTP6_PROTOCOL.Configure() function will be
used.

TimeoutValue Number of seconds to wait for a response after sending the
MTFTPv6 request packet. If set to zero, the value that was set
by the EFI_MTFTP6_PROTOCOL.Configure() function will be
used.

The EFI_MTFTP6_OVERRIDE_DATA structure is used to override the existing parameters that were set
by the EFI_MTFTP6_PROTOCOL.Configure() function.
UEFI Forum, Inc. March 2019 1660

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//**

// EFI_MTFTP6_OPTION

//**

typedef struct {

 UINT8 *OptionStr;

 UINT8 *ValueStr;
} EFI_MTFTP6_OPTION;

OptionStr

Pointer to the null-terminated ASCII MTFTPv6 option string.

ValueStr

Pointer to the null-terminated ASCII MTFTPv6 value string.
UEFI Forum, Inc. March 2019 1661

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
#pragma pack(1)

//***

// EFI_MTFTP6_PACKET

//***

typedef union {

 UINT16 OpCode;

 EFI_MTFTP6_REQ_HEADER Rrq;

 EFI_MTFTP6_REQ_HEADER Wrq;

 EFI_MTFTP6_OACK_HEADER Oack;

 EFI_MTFTP6_DATA_HEADER Data;

 EFI_MTFTP6_ACK_HEADER Ack;
// This field should be ignored and treated as reserved.

 EFI_MTFTP6_DATA8_HEADER Data8;
// This field should be ignored and treated as reserved.

 EFI_MTFTP6_ACK8_HEADER Ack8;

EFI_MTFTP6_ERROR_HEADER Error;
} EFI_MTFTP6_PACKET;

//***

// EFI_MTFTP6_REQ_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT8 Filename[1];
} EFI_MTFTP6_REQ_HEADER;

//***

// EFI_MTFTP6_OACK_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT8 Data[1];
} EFI_MTFTP6_OACK_HEADER;

//***

// EFI_MTFTP6_DATA_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT16 Block;

 UINT8 Data[1];
} EFI_MTFTP6_DATA_HEADER;

//***
UEFI Forum, Inc. March 2019 1662

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
// EFI_MTFTP6_ACK_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT16 Block[1];
} EFI_MTFTP6_ACK_HEADER;

//***

// EFI_MTFTP6_DATA8_HEADER

// This field should be ignored and treated as reserved.

//***

typedef struct {

 UINT16 OpCode;

 UINT64 Block;

 UINT8 Data[1];
} EFI_MTFTP6_DATA8_HEADER;

//***

// EFI_MTFTP6_ACK8_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT64 Block[1];
} EFI_MTFTP6_ACK8_HEADER;

//***

// EFI_MTFTP6_ERROR_HEADER

//***

typedef struct {

 UINT16 OpCode;

 UINT16 ErrorCode;

 UINT8 ErrorMessage[1];
} EFI_MTFTP6_ERROR_HEADER;

#pragma pack()

Table 1 below describes the parameters that are listed in the MTFTPv6 packet structure definitions
above. All the above structures are byte packed. The pragmas may vary from compiler to compiler.
The MTFTPv6 packet structures are also used by the following functions:
• EFI_MTFTP6_PROTOCOL.ReadFile()

• EFI_MTFTP6_PROTOCOL.WriteFile()

• EFI_MTFTP6_PROTOCOL.ReadDirectory()

• The EFI MTFTPv6 Protocol packet check callback functions
UEFI Forum, Inc. March 2019 1663

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Note: BYTE ORDER: Both incoming and outgoing MTFTPv6 packets are in network byte order. All other
parameters defined in functions or data structures are stored in host byte order.

Table 5. Descriptions of Parameters in MTFTPv6 Packet Structures

Data Structure Parameter Description

EFI_MTFTP6_PACKET OpCode Type of packets as defined by the MTFTPv6 packet
opcodes. Opcode values are defined below.

Rrq, Wrq Read request or write request packet header. See the

description for EFI_MTFTP6_REQ_HEADER

below in this table.

Oack Option acknowledge packet header. See the description

for EFI_MTFTP6_OACK_HEADER below in this

table.

Data Data packet header. See the description for

EFI_MTFTP6_DATA_HEADER below in this table.

Ack Acknowledgement packet header. See the description

for EFI_MTFTP6_ACK_HEADER below in this

table.

Data8 This field should be ignored and treated as reserved.

Data packet header with big block number. See the

description for EFI_MTFTP6_DATA8_HEADER

below in this table.

Ack8 This field should be ignored and treated as reserved.

Acknowledgement header with big block number. See

the description for EFI_MTFTP6_ACK8_HEADER

below in this table.

Error Error packet header. See the description for

EFI_MTFTP6_ERROR_HEADER below in this

table.

EFI_MTFTP6_REQ_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_RRQ for a read request or

OpCode = EFI_MTFTP6_OPCODE_WRQ for a

write request.

Filename The file name to be downloaded or uploaded.

EFI_MTFTP6_OACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_OACK.

Data The option strings in the option acknowledgement
packet.

EFI_MTFTP6_DATA_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_DATA.

Block Block number of this data packet.

Data The content of this data packet.
UEFI Forum, Inc. March 2019 1664

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//

// MTFTP Packet OpCodes

//

#define EFI_MTFTP6_OPCODE_RRQ 1

#define EFI_MTFTP6_OPCODE_WRQ 2

#define EFI_MTFTP6_OPCODE_DATA 3

#define EFI_MTFTP6_OPCODE_ACK 6

#define EFI_MTFTP6_OPCODE_ERROR 5

#define EFI_MTFTP6_OPCODE_OACK 6

#define EFI_MTFTP6_OPCODE_DIR 7

//This field should be ignored and treated as reserved.

#define EFI_MTFTP4_OPCODE_DATA8 8

//This field should be ignored and treated as reserved.

#define EFI_MTFTP4_OPCODE_ACK8 9

Following is a description of the fields in the above definition.

Table 6. MTFTP Packet OpCode Descriptions

EFI_MTFTP6_ACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ACK.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP6_DATA8_HEADER OpCode This field should be ignored and treated as reserved.

For this packet type, OpCode =
EFI_MTFTP6_OPCODE_DATA8.

Block This field should be ignored and treated as reserved.

The block number of data packet.

Data This field should be ignored and treated as reserved.

The content of this data packet.

EFI_MTFTP6_ACK8_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ACK8.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP6_ERROR_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ERROR.

ErrorCode The error number as defined by the MTFTPv6 packet

error codes. Values for ErrorCode are defined

below.

ErrorMessage Error message string.

MTFTP Packet OpCode Description
UEFI Forum, Inc. March 2019 1665

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
//

// MTFTP ERROR Packet ErrorCodes

//

#define EFI_MTFTP6_ERRORCODE_NOT_DEFINED0

#define EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND1

#define EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION2

#define EFI_MTFTP6_ERRORCODE_DISK_FULL3

#define EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION4

#define EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID5

#define EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS6

#define EFI_MTFTP6_ERRORCODE_NO_SUCH_USER7

#define EFI_MTFTP6_ERRORCODE_REQUEST_DENIED8

Table 7. MTFTP ERROR Packet ErrorCode Descriptions

EFI_MTFTP6_OPCODE_RRQ The MTFTPv6 packet is a read request.

EFI_MTFTP6_OPCODE_WRQ The MTFTPv6 packet is a write request.

EFI_MTFTP6_OPCODE_DATA The MTFTPv6 packet is a data packet.

EFI_MTFTP6_OPCODE_ACK The MTFTPv6 packet is an acknowledgement packet.

EFI_MTFTP6_OPCODE_ERROR The MTFTPv6 packet is an error packet.

EFI_MTFTP6_OPCODE_OACK The MTFTPv6 packet is an option acknowledgement packet.

EFI_MTFTP6_OPCODE_DIR The MTFTPv6 packet is a directory query packet.

EFI_MTFTP6_OPCODE_DATA8 This field should be ignored and treated as reserved.

The MTFTPv6 packet is a data packet with a big block number.

EFI_MTFTP6_OPCODE_ACK8 This field should be ignored and treated as reserved.

The MTFTPv6 packet is an acknowledgement packet with a big
block number.

MTFTP ERROR Packet ErrorCodes Description

EFI_MTFTP6_ERRORCODE_NOT_DEFINED The error code is not defined. See the
error message in the packet (if any) for
details.

EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND The file was not found.

EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION There was an access violation.

EFI_MTFTP6_ERRORCODE_DISK_FULL The disk was full or its allocation was
exceeded.

EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION The MTFTPv6 operation was illegal.

EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID The transfer ID is unknown.

EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS The file already exists.
UEFI Forum, Inc. March 2019 1666

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP6_PROTOCOL.ParseOptions()

Summary

Parse the options in an MTFTPv6 OACK packet.

EFI_MTFTP6_ERRORCODE_NO_SUCH_USER There is no such user.

EFI_MTFTP6_ERRORCODE_REQUEST_DENIED The request has been denied due to
option negotiation.

EFI_SUCCESS An MTFTPv6 OACK packet was received and is in the Packet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Filename is NULL.

• OptionCount is not zero and OptionList is NULL.

• One or more options in OptionList have wrong format.

• PacketLength is NULL.

• OverrideData.ServerIp is not a valid unicast IPv6 address
and not set to all zero.

EFI_UNSUPPORTED One or more options in the OptionList are unsupported by this

implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received and is in the Packet.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the

Packet is set to NULL..

EFI_NETWORK_UNREACHABLE An ICMP host unreachable error packet was received and the Packet

is set to NULL...

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received and the

Packet is set to NULL..

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received and the Packet

is set to NULL...

EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet is set to

NULL.

EFI_PROTOCOL_ERROR An unexpected MTFTPv6 packet was received and is in the Packet.

EFI_TIMEOUT No responses were received from the MTFTPv6 server.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1667

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_PARSE_OPTIONS)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN UINT32 PacketLen,

 IN EFI_MTFTP6_PACKET *Packet,

 OUT UINT32 *OptionCount,

 OUT EFI_MTFTP6_OPTION **OptionList OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
PacketLen Length of the OACK packet to be parsed.
Packet Pointer to the OACK packet to be parsed. Type

EFI_MTFTP6_PACKET is defined in
EFI_MTFTP6_PROTOCOl.GetInfo().

OptionCount Pointer to the number of options in the following OptionList.
OptionList Pointer to EFI_MTFTP6_OPTION storage. Each pointer in the

OptionList points to the corresponding MTFTP option buffer
in the Packet. Call the EFI Boot Service FreePool() to release
the OptionList if the options in this OptionList are not
needed any more. Type EFI_MTFTP6_OPTION is defined in
EFI_MTFTP6_PROTOCOL.GetInfo().

Description

The ParseOptions() function parses the option fields in an MTFTPv6 OACK packet and returns the
number of options that were found and optionally a list of pointers to the options in the packet.

If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned and
*OptionCount and *OptionList stop at the last valid option.

Status Codes Returned

EFI_SUCCESS The OACK packet was valid and the OptionCount and

OptionList parameters have been updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

PacketLen is 0.

Packet is NULL or Packet is not a valid MTFTPv6 packet.

OptionCount is NULL.

EFI_NOT_FOUND No options were found in the OACK packet.

EFI_OUT_OF_RESOURCES Storage for the OptionList array can not be allocated.

EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
UEFI Forum, Inc. March 2019 1668

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP6_PROTOCOL.ReadFile()

Summary

Download a file from an MTFTPv6 server.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_READ_FILE)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this operation. Type EFI_MTFTP6_TOKEN is defined
in "Related Definitions" below.

Description

The ReadFile() function is used to initialize and start an MTFTPv6 download process and optionally
wait for completion. When the download operation completes, whether successfully or not, the
Token.Status field is updated by the EFI MTFTPv6 Protocol driver and then Token.Event is signaled if
it is not NULL.

Data can be downloaded from the MTFTPv6 server into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will be called
first. If the call is successful, the packet will be stored in Token.Buffer.
UEFI Forum, Inc. March 2019 1669

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Related Definitions

//***

// EFI_MTFTP6_TOKEN

//***

typedef struct {

 EFI_STATUS Status;

 EFI_EVENT Event;

 EFI_MTFTP6_OVERRIDE_DATA OverrideData;

 UINT8 *Filename;

 UINT8 *ModeStr;

 UINT32 OptionCount;

 EFI_MTFTP6_OPTION* OptionList;

 UINT64 BufferSize;

 VOID *Buffer;

 VOID *Context;

 EFI_MTFTP6_CHECK_PACKET CheckPacket;

 EFI_MTFTP6_TIMEOUT_CALLBACK TimeoutCallback;

 EFI_MTFTP6_PACKET_NEEDED PacketNeeded;
} EFI_MTFTP6_TOKEN;

Status The status that is returned to the caller at the end of the
operation to indicate whether this operation completed
successfully. Defined Status values are listed below.

Event The event that will be signaled when the operation completes.
If set to NULL, the corresponding function will wait until the
read or write operation finishes. The type of Event must be
EVT_NOTIFY_SIGNAL.

OverrideData If not NULL, the data that will be used to override the existing
configure data. Type EFI_MTFTP6_OVERRIDE_DATA is defined
in EFI_MTFTP6_PROTOCOL.GetInfo().

Filename Pointer to the null-terminated ASCII file name string.
ModeStr Pointer to the null-terminated ASCII mode string. If NULL,

octet is used.
OptionCount Number of option/value string pairs.
OptionList Pointer to an array of option/value string pairs. Ignored if

OptionCount is zero. Both a remote server and this driver
implementation should support these options. If one or more
options are unrecognized by this implementation, it is sent to
the remote server without being changed. Type
EFI_MTFTP6_OPTION is defined in
EFI_MTFTP6_PROTOCOL.GetInfo().

BufferSize On input, the size, in bytes, of Buffer. On output, the number
of bytes transferred.
UEFI Forum, Inc. March 2019 1670

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Buffer Pointer to the data buffer. Data that is downloaded from the
MTFTPv6 server is stored here. Data that is uploaded to the
MTFTPv6 server is read from here. Ignored if BufferSize is
zero.

Context Pointer to the context that will be used by CheckPacket,
TimeoutCallback and PacketNeeded.

CheckPacket Pointer to the callback function to check the contents of the
received packet. Type EFI_MTFTP6_CHECK_PACKET is defined
below.

TimeoutCallback Pointer to the function to be called when a timeout occurs.
Type EFI_MTFTP6_TIMEOUT_CALLBACK is defined below.

PacketNeeded Pointer to the function to provide the needed packet
contents. Only used in WriteFile() operation. Type
EFI_MTFTP6_PACKET_NEEDED is defined below.

The EFI_MTFTP6_TOKEN structure is used for both the MTFTPv6 reading and writing operations.
The caller uses this structure to pass parameters and indicate the operation context. After the read-
ing or writing operation completes, the EFI MTFTPv6 Protocol driver updates the Status parameter
and the Event is signaled if it is not NULL. The following table lists the status codes that are returned
in the Status parameter.
UEFI Forum, Inc. March 2019 1671

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned in the Status Parameter

//**

// EFI_MTFTP6_CHECK_PACKET

//**

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_CHECK_PACKET)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN *Token,

 IN UINT16 PacketLen,

 IN EFI_MTFTP6_PACKET *Packet
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
Token The token that the caller provided in the

EFI_MTFTP6_PROTOCOl.ReadFile(), WriteFile() or
ReadDirectory() function. Type EFI_MTFTP6_TOKEN is
defined in EFI_MTFTP6_PROTOCOL.ReadFile().

PacketLen Indicates the length of the packet.
Packet Pointer to an MTFTPv6 packet. Type EFI_MTFTP6_PACKET is

defined in EFI_MTFTP6_PROTOCOL.GetInfo().

EFI_MTFTP6_CHECK_PACKET is a callback function that is provided by the caller to intercept the
EFI_MTFTP6_OPCODE_DATA or EFI_MTFTP6_OPCODE_DATA8 packets processed in the
EFI_MTFTP6_PROTOCOL.ReadFile() function, and alternatively to intercept
EFI_MTFTP6_OPCODE_OACK or EFI_MTFTP6_OPCODE_ERROR packets during a call to
EFI_MTFTP6_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). Whenever an MTFTPv6
packet with the type described above is received from a server, the EFI MTFTPv6 Protocol driver will call

EFI_SUCCESS The data file has been transferred successfully.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the

downloaded data in downloading process.

EFI_ABORTED Current operation is aborted by user.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP host unreachable error packet was received..

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received.

EFI_ICMP_ERROR Some other ICMP ERROR packet was received.

EFI_TIMEOUT No responses were received from the MTFTPv6 server.

EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1672

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
EFI_MTFTP6_CHECK_PACKET function to let the caller have an opportunity to process this packet. Any
status code other than EFI_SUCCESS that is returned from this function will abort the transfer process.

//**

// EFI_MTFTP6_TIMEOUT_CALLBACK

//**

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_TIMEOUT_CALLBACK)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN *Token
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
Token The token that is provided in the

EFI_MTFTP6_PROTOCOL.ReadFile() or
EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions by the
caller. Type EFI_MTFTP6_TOKEN is defined in
EFI_MTFTP6_PROTOCOL.ReadFile().

EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the timeout
event in the EFI_MTFTP6_PROTOCOL.ReadFile(), EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions. Whenever a timeout occurs, the EFI MTFTPv6
Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK function to notify the caller of the
timeout event. Any status code other than EFI_SUCCESS that is returned from this function will abort
the current download process.

//**

// EFI_MTFTP6_PACKET_NEEDED

//**

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_PACKET_NEEDED)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN Token,

 IN OUT UINT16 *Length,

 OUT VOID **Buffer
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
Token The token provided in the EFI_MTFTP6_PROTOCOL

.WriteFile() by the caller.
Length Indicates the length of the raw data wanted on input, and the

length the data available on output.
UEFI Forum, Inc. March 2019 1673

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Buffer Pointer to the buffer where the data is stored.

EFI_MTFTP6_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP6_PROTOCOL.WriteFile() function. EFI_MTFTP6_PACKET_NEEDED provides another
mechanism for the caller to provide data to upload other than a static buffer. The EFI MTFTP6 Protocol
driver always calls EFI_MTFTP6_PACKET_NEEDED to get packet data from the caller if no static buffer
was given in the initial call to EFI_MTFTP6_PROTOCOL.WriteFile() function. Setting *Length to
zero signals the end of the session. Returning a status code other than EFI_SUCCESS aborts the session.

Status Codes Returned

EFI_MTFTP6_PROTOCOL.WriteFile()

Summary

Send a file to an MTFTPv6 server. May be unsupported in some implementations.

EFI_SUCCESS The data file is being downloaded.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and

Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both NULL.

• Token.OverrideData.ServerIp is not a valid unicast
IPv6 address and not set to all zero..

EFI_UNSUPPORTED One or more options in the Token.OptionList are not supported

by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_ALREADY_STARTED This Token is being used in another MTFTPv6 session.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1674

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_WRITE_FILE)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.
Token Pointer to the token structure to provide the parameters that

are used in this function. Type EFI_MTFTP6_TOKEN is defined
in EFI_MTFTP6_PROTOCOL.ReadFile().

Description

The WriteFile() function is used to initialize an uploading operation with the given option list and
optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload process
completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv6 Protocol driver
updates Token.Status.

The caller can supply the data to be uploaded in the following two modes:

• Through the user-provided buffer

• Through a callback function

With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer, and the
driver will upload the data in the buffer. With an EFI_MTFTP6_PACKET_NEEDED callback function, the
driver will call this callback function to get more data from the user to upload. See the definition of
EFI_MTFTP6_PACKET_NEEDED for more information. These two modes cannot be used at the same
time. The callback function will be ignored if the user provides the buffer.
UEFI Forum, Inc. March 2019 1675

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP6_PROTOCOL.ReadDirectory()

Summary

Download a data file directory from an MTFTPv6 server. May be unsupported in some implementations.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_READ_DIRECTORY)(

 IN EFI_MTFTP6_PROTOCOL *This,

 IN EFI_MTFTP6_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP6_PROTOCOL instance.

EFI_SUCCESS The upload session has started.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and

Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.PacketNeeded are both

NULL.

• Token.OverrideData.ServerIp is not a valid unicast
IPv6 address and not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are not

supported by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
UEFI Forum, Inc. March 2019 1676

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Token Pointer to the token structure to provide the parameters that
are used in this function. Type EFI_MTFTP6_TOKEN is defined
in EFI_MTFTP6_PROTOCOL.ReadFile().

Description

The ReadDirectory() function is used to return a list of files on the MTFTPv6 server that are logically
(or operationally) related to Token.Filename. The directory request packet that is sent to the server is
built with the option list that was provided by caller, if present.

The file information that the server returns is put into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will be called
first. If the call is successful, the packet will be stored in Token.Buffer.

The returned directory listing in the Token.Buffer or EFI_MTFTP6_PACKET consists of a list of two or
three variable-length ASCII strings, each terminated by a null character, for each file in the directory. If
the multicast option is involved, the first field of each directory entry is the static multicast IP address and
UDP port number that is associated with the file name. The format of the field is ip:ip:ip:ip:port. If
the multicast option is not involved, this field and its terminating null character are not present.

The next field of each directory entry is the file name and the last field is the file information string. The
information string contains the file size and the create/modify timestamp. The format of the information
string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is Coordinated Universal Time
(UTC; also known as Greenwich Mean Time [GMT]).
UEFI Forum, Inc. March 2019 1677

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_MTFTP6_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MTFTP6_POLL) (

 IN EFI_MTFTP6_PROTOCOL *This
);

Parameters

This

Pointer to the EFI_MTFTP6_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

EFI_SUCCESS The MTFTPv6 related file "directory" has been downloaded.

EFI_UNSUPPORTED The EFI MTFTPv6 Protocol driver does not support this function.

EFI_INVALID_PARAMETER One or more of these conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and

Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both NULL.

• Token.OverrideData.ServerIp is not a valid unicast
IPv6 address and not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are not

supported by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address
for this instance, but no source address was available for use.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
UEFI Forum, Inc. March 2019 1678

UEFI Specification, Version 2.8 Network Protocols — UDP and MTFTP
In some systems, the periodic timer event in the managed network driver may not poll the underlying
communications device fast enough to transmit and/or receive all data packets without missing incoming
packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
try calling the Poll() function more often.

Status Codes Returned

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI MTFTPv6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
UEFI Forum, Inc. March 2019 1679

UEFI Specification, Version 2.8
31 - EFI Redfish Service Support

31.1 EFI Redfish Discover Protocol

31.1.1 Overview

The purpose of the EFI Redfish Discover is to provide a mechanism for EFI Redfish clients to acquire the
Redfish services provided on the platform or network.

Redfish services can be discovered according to Redfish Host Interface (SMBIOS type 42) reported on
platform, or optionally using Simple Service Discovery Protocol (SSDP) message over UDP port 1900 to
search Redfish services which were joined well-known multicast group addresses. EFI Redfish Discover
driver discovers Redfish services and creates EFI REST EX protocol instance for each Redfish service it
found. It also configures EFI REST EX protocol instance according to the Redfish service information
described in Redfish Host Interface or the response of UPnP M-SEARCH request (defined in UPnP Device
Architecture, which can be obtained at “Links to UEFI-Related Documents” http://uefi.org/uefi) .

EFI Redfish Discover Protocol behaves as a middle protocol which abstracts the creation and
configuration of EFI REST EX instance from EFI Redfish clients.

• EFI Redfish Discover Protocol uses EFI UDP protocol to send SSDP message to verify or discover
Redfish services. For the Redfish service reported by SMBIOS type 42h, EFI Redfish Discover
Protocol can optionally unicast M-SEARCH request to Redfish service in order to verify the
existence of service.

• EFI Redfish Discover Protocol can optionally provide the functionality of discovering Redfish
services through each network interface installed on platform. Prior to acquiring the list of
ready-to-use EFI REST EX protocol instances, the consumer of this protocol can get the network
interface list and decide which interface is used for the multicast transmission. EFI Redfish
Discover Protocol multicasts M-SEARCH request to multicast group addresses then collects M-
SEARCH responses from Redfish services in asynchronous or synchronous manner.

• EFI Redfish Discover Protocol provides the information of each network interface installed on
platform through GetNetworkInterfaceList()function. The information such as MAC address,
subnet ID, subset mask and VLAN ID of network interface could be utilized by upper-layer EFI
application or driver to identify network interface used for Redfish service discovery. EFI
Redfish Discover Protocol abstracts EFI network stack to user which means this protocol should
not require user to configure UDP before utilizing services. Network configuration of network
interface such as station IP address, subnet ID, subnet mask and other operational parameters
should be configured through system firmware specific implementation (for example system
utility). This protocol should simply use UDP default station properties.

Multicast across internetworks is handled by multicast router and is not in the scope of EFI Redfish
Discover Protocol. The implementation of upper-layer user interface is system firmware design-specific.

• EFI Redfish Discovery Protocol is the helper driver to discover Redfish services on platform or
network. The upper level EFI Redfish client could provide its own implementation of how to
utilize information returned from this protocol. Such as network interface selection UI, create
Redfish host interface (SMBIOS type 42h) according to Redfish services information, configure
system BIOS setting using Redfish service or etc.
UEFI Forum, Inc. March 2019 1680

UEFI Specification, Version 2.8 EFI Redfish Service Support
31.1.2 EFI Redfish Discover Driver

A Redfish Discover Driver installs the Redfish Discover Protocol and EFI Driver Binding Protocol in its
driver entry point.

The Driver Binding Protocol contains three services. These are Supported(), Start(), and Stop().
Supported() tests to see if the Redfish Discover Driver can manage a device handle. A Redfish Discover
Driver can manage device handle that contain the EFI REST EX Service Binding Protocol, EFI UDP4 Service
Binding Protocol or EFI UDP6 Service Binding Protocol, so a Redfish Discover Driver must look for these
three protocols on the device handle that is being tested, and return success if any of them is presented.

The Start() function tells the Redfish Discover Driver to start managing a device driver. The device
handle should support at least one of the service binding protocols checked in Supported().The Redfish
Discover Driver should create a child handle for each service binding protocol, and open these children
with BY_DRIVER attribute.

The Stop() function tells the Redfish Discover Driver to stop managing a device driver. The Stop()
function can destroy one or more of the device handles (or its child handles) that being managed by
Redfish Discover Driver. A Redfish Discover Driver should stop the in-process discovery and destroy
corresponding child handle which was created in a previous call to Start(), or in
AcquireRedfishService().
UEFI Forum, Inc. March 2019 1681

UEFI Specification, Version 2.8 EFI Redfish Service Support
31.1.3 EFI Redfish Discover Client

An EFI Redfish client invokes EFI Redfish Discover Protocol to acquire the ready-to-use EFI REST EX
protocol instance.

Below is the conceptual figure of mechanism of EFI Redfish Discover Protocol. The first scenario is unicast
M-SEARCH to verify Redfish service reported in SMBIOS type 42h.

1. 1.EFI Redfish client invokes EFI Redfish Discover Protocol to acquire ready-to-use EFI REST EX
for communicating with Redfish services reported in Redfish Host Interface (SMBIOS type 42h)

2. 2.EFI Redfish Discover Protocol optionally verifies the existence of Redfish service by unicasting
M-SEARCH to Redfish service according to the Redfish service information provided in Redfish
Host Interface.

3. 3.EFI Redfish Discover Protocol creates and configures REST EX instance for Redfish service
according to the Redfish service information provided in Redfish Host Interface.

4. 4.EFI Redfish clients communicate with Redfish service using EFI REST EX instance returned
from EFI Redfish Discover protocol.

EFI Redfish client passes EFI_REDFISH_DISCOVERED_TOKEN and the discovery options to EFI Redfish
Discover Protocol. EFI_EVENT is created by EFI Redfish client for retrieving
EFI_REDFISH_DISCOVERED_LIST once EFI Redfish Discover Protocol optionally verifies Redfish
service reported by Redfish Host Interface. EFI Redfish client can listen to the notification of verified
UEFI Forum, Inc. March 2019 1682

UEFI Specification, Version 2.8 EFI Redfish Service Support
Redfish service in asynchronous or synchronous according to the setting of options indicated in
EFI_REDFISH_DISCOVER_FLAG.

The second scenario is optionally provided by EFI Redfish Discover Protocol, which is multicast M-SEARCH
to discover Redfish services.

1. EFI Redfish client gets the list of network interfaces if it would like to discover Redfish services
on the certain network.

2. EFI Redfish client invokes EFI Redfish Discover Protocol to acquire ready-to-use EFI REST EX for
communicating with Redfish services.

3. EFI Redfish Discover Protocol discovers Redfish services through SSDP over UDP.

4. EFI Redfish clients communicate with Redfish service using EFI REST EX instance returned from
EFI Redfish Discover protocol.

EFI Redfish client passes EFI_REDFISH_DISCOVERED_TOKEN and the discovery options to EFI Redfish
Discover Protocol. EFI_EVENT is created by EFI Redfish client for retrieving
EFI_REDFISH_DISCOVERED_LIST when any time EFI Redfish Discover Protocol discovers new Redfish
service. EFI Redfish client can listen to the notification of new found Redfish service in asynchronous or
synchronous according to the setting of options indicated in EFI_REDFISH_DISCOVER_FLAG. Setting
Timeout to zero in EFI_REDFISH_DISCOVERED_TOKEN to waiting for the new discovered Redfish
service in synchronously, otherwise asynchronous notification happens when new Redfish service is
discovered by EFI Redfish Discover Protocol.
UEFI Forum, Inc. March 2019 1683

UEFI Specification, Version 2.8 EFI Redfish Service Support
31.1.4 EFI Redfish Discover Protocol

Summary

This protocol is utilized by EFI Redfish clients to acquire the list of Redfish services provided on platform
or network.

Protocol GUID

#define EFI_REDFISH_DISCOVER_PROTOCOL_GUID \

 {0x5db12509, 0x4550, 0x4347,

 {0x96, 0xb3, 0x73, 0xc0, 0xff, 0x6e, 0x86, 0x9f}}

Protocol Interface Structure

typedef struct _EFI_REDFISH_DISCOVER_PROTOCOL {

 EFI_REDFISH_DISCOVER_NETWORK_LIST GetNetworkInterfaceList;

 EFI_REDFISH_DISCOVER_ACQUIRE_SERVICE AcquireRedfishService;

 EFI_REDFISH_DISCOVER_ABORT_ACQUIRE AbortAcquireRedfishService;

 EFI_REDFISH_DISCOVER_RELEASE_SERVICE ReleaseRedfishService;

} EFI_REDFISH_DISCOVER_PROTOCOL;

Parameters

GetNetworkInterfaceListGet the list of network interfaces on which Redfish services could be
discovered.

AcquireRedfishService Acquire the list of Redfish services.

AbortAcquireRedfishService Abort Redfish services acquire process.

ReleaseRedfishService Release Redfish services acquired from AcquireRedfishService().

Description

EFI Redfish Discover Protocol provides a mechanism for EFI Redfish clients to acquire the Redfish services
provided on the platform or network as described before.

EFI_REDFISH_DISCOVER_PROTOCOL.GetNetworkInterfaceList ()

Summary

Get the currently available list of network interfaces on which Redfish services could be discovered.
UEFI Forum, Inc. March 2019 1684

UEFI Specification, Version 2.8 EFI Redfish Service Support
Protocol Interface

typedef

EFI_STATUS

 (EFIAPI *EFI_REDFISH_DISCOVER_GET_NETWORK_INTERFACE_LIST)(

 IN EFI_REDFISH_DISCOVER_PROTOCOL *This,

 IN EFI_HANDLE ImageHandle,

 OUT UINTN *NumOfInterfaces,

 OUT EFI_REDFISH_DISCOVER_NETWORK_INTERFACE **NetworkInterfaces

);

Parameters

This This is the EFI_REDFISH_DISCOVER_PROTOCOL instance.

ImageHandle EFI image to get network list. The image handle is caller’s image
handle.

NumOfInterfaces Number of network interfaces in NetworkInterfaces.

NetworkInterfaces It's an array of instances. The number of entries in
NetworkInterfaces is indicated by NumOfInterfaces. Caller has to
release the memory allocated by Redfish discover protocol with
a call to EFI_BOOT_SERVICES.FreePool().

Description

This function is used to get the list of network interfaces which can be used to send SSDP message over
UDP protocol for the Redfish services discovery. The entry in NetworkInterfaces could be used as the
parameter to EFI_REDFISH_DISCOVER_PROTOCOL.AcquireRedfishService function for discovering
Redfish service on specific network interface.

Related Description

//***

// EFI_REDFISH_DISCOVER_NETWORK_INTERFACE

//***

typedef struct {

 EFI_MAC_ADDRESS MacAddress;

 BOOLEAN IsIpv6;

 EFI_IP_ADDRESS SubnetId;

 UINT8 SubnetPrefixLength;

 UINT16 VlanId;

} EFI_REDFISH_DISCOVER_NETWORK_INTERFACE;

Parameters

MacAddress MAC address of this network interface.

IsIpv6 If TRUE, indicates the network interface is running IPv6.
Otherwise the network interface is running IPv4.

SubnetId Subnet of this network.

SubnetPrefixLength Subnet prefix-length for IPv4 and IPv6.

VlanId VLAN ID of this network interface.
UEFI Forum, Inc. March 2019 1685

UEFI Specification, Version 2.8 EFI Redfish Service Support
Status Codes Returned

EFI_REDFISH_DISCOVER_PROTOCOL.AcquireRedfishService ()

Summary

This function acquires the list of discovered Redfish services.

Protocol Interface

typedef

EFI_STATUS

 (EFIAPI *EFI_REDFISH_DISCOVER_ACQUIRE_SERVICE)(

 IN EFI_REDFISH_DISCOVER_PROTOCOL *This,

 IN EFI_HANDLE ImageHandle,

 IN EFI_REDFISH_DISCOVER_TARGET_NIC_INTERFACE *TargetNetworkIntf OPTIONAL,

 IN EFI_REDFISH_DISCOVER_FLAG Flags,

 IN EFI_REDFISH_DISCOVERED_TOKEN *Token

);

Parameters

This This is the EFI_REDFISH_DISCOVER_PROTOCOL instance.

ImageHandle EFI image acquires Redfish service discovery. The image handle is caller’s
image handle.

TargetNetworkIntf The target Network Interface which is used to discover Redfish services.
Set to NULL to discover Redfish services on all network interfaces.

Flags Options of Redfish service discovery.

TokenEFI_REDFISH_DISCOVERED_TOKEN instance. The memory of
EFI_REDFISH_DISCOVERED_LIST and the strings in
EFI_REDFISH_DISCOVERED_INFORMATION are all allocated by
AcquireRedfishService() and must be freed when caller invokes
ReleaseRedfishService().

Description

This function is used to acquire the list of Redfish services which are discovered according to Redfish Host
Interface or through SSDP over UDP. Redfish services discovery through SSDP over UDP could be
achieved via network interface specified in TargetNetworkInterface or via all network interfaces if

EFI_SUCCESS
Network interface is returned in NetworkInterfaces and the number of
network interfaces is returned in NumOfInterfaces successfully.

EFI_INVALID_PARAMETER
One of below parameters is NULL. ImageHandle, NumOfInterfaces, and
NetworkInterfaces

EFI_UNSUPPORTED Unable to return network interface list.

EFI_NOT_FOUND No network interfaces are found.

EFI_OUT_OF_RESOURCE Not enough resources to return network interfaces to caller.
UEFI Forum, Inc. March 2019 1686

UEFI Specification, Version 2.8 EFI Redfish Service Support
TargetNetworkInterface is specified as NULL. EFI_REDFISH_DISCOVERED_LIST is returned to EFI
Redfish client by signaling the EFI event created by client. Each of EFI handle in
EFI_REDFISH_DISCOVERED_LIST has the corresponding EFI REST EX instance installed on it. Each
REST EX instance is a child instance which is created through EFI REST EX service binding protocol and
used by EFI Redfish client for communicating with specific Redfish service. In AcquireRedfishService(),
UDP child is created and opened to do SSDP discovery. This UDP child will be destroyed right away after
the discovery is done. AcquireRedfishService()also creates and opens REST EX child to configures REST EX
instance according to Redfish service information retuned in M-SEARCH response or Redfish Host
Interface. REST EX child must be closed after REST EX child is configured. EFI Redfish client must open
REST EX instance from RedfishRestExHandle returned in EFI_REDFISH_DISCOVERED_INFORMATION
and close REST EX instance once EFI Redfish client is no longer communicating with Redfish service.

Related Description

//***

// EFI_REDFISH_DISCOVER_FLAG

//***

#define EFI_REDFISH_DISCOVER_HOST_INTERFACE 0x00000001

#define EFI_REDFISH_DISCOVER_SSDP 0x00000002

#define EFI_REDFISH_DISCOVER_SSDP_UDP6 0x00000004

#define EFI_REDFISH_DISCOVER_KEEP_ALIVE 0x00000008

#define EFI_REDFISH_DISCOVER_RENEW 0x00000010

#define EFI_REDFISH_DISCOVER_VALIDATION 0x80000000

#define EFI_REDFISH_DISCOVER_DURATION_MASK 0x0f000000

EFI_REDFISH_DISCOVER_FLAG is used to indicate the options when EFI Redfish clients acquire Redfish
discover list through this protocol. Redfish Discover Protocol discovers Redfish service according to
Redfish Host Interface when EFI_REDFISH_DISCOVER_HOST_INTERFACE is set to TRUE. Redfish
Discover Protocol also optionally discovers Redfish services using SSDP UPnP M-SEARCH request through
UDP Port 1900. Redfish Discover Protocol returns EFI_INVALID_PARAMETER if none of
EFI_REDFISH_DISCOVER_HOST_INTERFACE and EFI_REDFISH_DISCOVER_SSDP is set to TRUE. Set
EFI_REDFISH_DISCOVER_SSDP_UDP6 to indicate using IPv6 as internet protocol. For the Redfish
service discovery according to Redfish Host Interface, Redfish service information like IP address is
descripted in Redfish Host Interface. EFI Redfish client can set EFI_REDFISH_DISCOVER_VALIDATION
to TRUE to ask Redfish Discover Protocol to validate this Redfish service using IP address described in
Redfish Host Interface. Redfish Discover Protocol unicasts UPnP M-SEARCH request to the target Redfish
service and verify the response message to determine if the target Redfish service is existing or not.
EFI_REDFISH_DISCOVER_VALIDATION doesn’t affect the SSDP discovery. For Redfish SSDP discovery,
the responses of the multicast UPnP M-SEARCH request imply the valid Redfish services are existing.

According to UPnP device architecture, the maximum waiting time of the response to UPnP M-SEARCH
request is indicated in MX message header. The value is greater or equal to 1 to less than 5 inclusive in
second. In order to give the chance to those Redfish services which do not respond to M-SEARCH in time,
set EFI_REDFISH_DISCOVER_KEEP_ALIVE to TRUE to tell Redfish Discover Protocol keeps to sending
multicast M-SEARCH request. The duration of periodical multicast request is declared in
EFI_REDFISH_DISCOVER_DURATION_MASK. The value indicated in
EFI_REDFISH_DISCOVER_DURATION_MASK means 2 to the power of duration. The valid value of
UEFI Forum, Inc. March 2019 1687

UEFI Specification, Version 2.8 EFI Redfish Service Support
duration is greater or equal to 3 and less or equal to 15. The corresponding duration is 8 to 2^15 seconds.
Minimum duration is set to 8 seconds in order to keep the duration out of scope of MX value defined in
UPnP device architecture. Duration is only valid when EFI_REDFISH_DISCOVER_KEEP_ALIVE is set to
TRUE and EFI_REDFISH_DISCOVER_SSDP is set to TRUE.

Redfish Discover Protocol maintains an internal database of Redfish services it found. It also maintains
the EFI image which owns the EFI REST EX instance of discovered Redfish services. Redfish Discover
Protocol only signals EFI Redfish client with new found of Redfish services instead of notifying EFI Redfish
client the duplicate Redfish services found earlier, unless EFI_REDFISH_DISCOVER_RENEW is set to
TRUE. Set EFI_REDFISH_DISCOVER_RENEW to TRUE forces Redfish Discover Protocol to notify EFI
Redfish clients all found Redfish services, even the Redfish service which was already discovered and
notified previously.

//***

// EFI_REDFISH_DISCOVERED_TOKEN

//***

typedef struct {

 EFI_REDFISH_DISCOVERED_LIST DiscoveredList;

 EFI_EVENT Event;

 UINTN Timeout;

} EFI_REDFISH_DISCOVERED_TOKEN;

Description

EFI_REDFISH_DISCOVERED_TOKEN is created by EFI Redfish client and passed to
AcquireRedfishService().

Parameters

DiscoveredList Structure of EFI_REDFISH_DISCOVERED_LIST to retrieve the
discovered Redfish services.

Event EFI event at the TPL_CALLBACK level created by EFI Redfish client,
which is used to be notified when Redfish services are discovered or any
errors occurred during discovery.

Timeout The timeout value declared in EFI_REDFISH_DISCOVERED_TOKEN
determines the seconds to drop discovery process. Basically, the nearby
Redfish services must give the response in >=1 and <= 5 seconds. The
valid timeout value used for the asynchronous discovery is >= 1 and <= 5
seconds. Set the timeout to zero means to discover Redfish service
synchronously.
UEFI Forum, Inc. March 2019 1688

UEFI Specification, Version 2.8 EFI Redfish Service Support
//***

// EFI_REDFISH_DISCOVERED_LIST

//***

typedef struct {

 UINTN NumberOfServiceFound;

 EFI_REDFISH_DISCOVERED_INSTANCE *RedfishInstance;

} EFI_REDFISH_DISCOVERED_LIST;

Description

The content of EFI_REDFISH_DISCOVERED_LIST is filled by AcquireRedfishService()before
signaling Event. NumberOfServiceFound must be set to 0 and RedfishInstance must be NULL when client
invokes AcquireRedfishService(). The memory block for RedfishInstance is allocated by the EFI
Redfish Discover Protocol ,and will be freed by the EFI Redfish Discover Protocol as well in
ReleaseRedfishService().

Parameters

NumberOfServiceFound Number of Redfish services are discovered.

RedfishInstance Pointer to EFI_REDFISH_DISCOVERED_INSTANCE, number of
Redfish services are discovered is indicated in
NumberOfServiceFound.

//***

// EFI_REDFISH_DISCOVERED_INSTANCE

//***

typedef struct {

 EFI_HTTP_STATUS_CODE HttpStatus;

 EFI_REDFISH_DISCOVERED_INFORMATION Information;

} EFI_REDFISH_DISCOVERED_INSTANCE;

Description

This structure describes the status and the information of discovered Redfish service.

Parameters

HttpStatus EFI HTTP Status returned by Redfish service host. See definition of
EFI_HTTP_STATUS_CODE.

Information The information of Redfish service discovered. The information is only
valid when Status is EFI_SUCCESS. Refer to below description of
EFI_REDFISH_DISCOVERED_INSTANCE.
UEFI Forum, Inc. March 2019 1689

UEFI Specification, Version 2.8 EFI Redfish Service Support
//***

// EFI_REDFISH_DISCOVERED_INFORMATION

//***

typedef struct {

 EFI_HANDLERedfishRestExHandle;

 EFI_IP_ADDRESS RedfishHostIpAddress;

 EFI_REST_EX_SERVICE_INFO RedfishRestExServiceInfo;

 UINT16 RedfishVersion;

 CHAR16 *Location;

 CHAR16 *UniqueId;

 CHAR16 *Os;

 CHAR16 *OsVersion;

 CHAR16 *Product;

 CHAR16 *ProductVersion;

} EFI_REDFISH_DISCOVERED_INFORMATION;

Description

This structure describes each Redfish service information. The corresponding EFI REST EX protocol
instance is also created and configured by EFI Redfish Discover Protocol for EFI Redfish client. The
memory allocated for the information in this structure will be freed by EFI Redfish Discover Protocol in
ReleaseRedfishService().

Parameters

RedfishRestExHandle EFI handle which has EFI REST EX protocol instance installed on
it. The EFI REST EX protocol instance is already configured by EFI
Redfish Discover Protocol through
EFI_REST_EX_PROTOCOL.Configure() according to the
Redfish host information discovered through Redfish Host
Interface or SSDP.

RedfishHostIpAddress Redfish service host IP address.

RedfishRestExServiceInfo Redfish REST EX service information. Refer to EFI REST EX
Protocol.

RedfishVersion Redfish service version. The high byte of RedfishVersion is the
major Redfish service version, low byte is the minor Redfish
version. For example 0x100 is Redfish service. Redfish service
version is acquired from “ST” header in the response of M-
SEARCH request.

Location Redfish service host location, this information is acquired from
“Server” header returned in the response of M-SEARCH request.

UniqueId Redfish service unique ID of Redfish service, this information is
acquired from “USN” header defined in UPnP Device
Architecture specification.

Os The OS provides Redfish service, this information is acquired
from “Server” header returned in the response of M-SEARCH
request. Below is the response in “Server” header defined in
UPnP Device Architecture specification. 
SERVER:OS/version UPnP/1.1 product/version
UEFI Forum, Inc. March 2019 1690

UEFI Specification, Version 2.8 EFI Redfish Service Support
OsVersion Redfish service OS version, this information is acquired from
“Server” header returned in the response of M-SEARCH request.
Below is the response in “Server” header defined in UPnP Device
Architecture specification.
SERVER:OS/version UPnP/1.1 product/version

Product Product name, this information is extracted from “Server”
header returned in the response of M-SEARCH request. Below is
the response in “Server” header defined in UPnP Architecture
Device specification. 
SERVER:OS/version UPnP/1.1 product/version

ProductVersion Product version, this information is acquired from “Server”
header returned in the response of M-SEARCH request. Below is
the response in “Server” header defined in UPnP Device
Architecture specification.
SERVER:OS/version UPnP/1.1 product/version

Status Codes Returned

EFI_REDFISH_DISCOVER_PROTOCOL.AbortAcquireRedfishService ()

Summary

This function aborts Redfish service discovery on the given network interface.

Protocol Interface

typedef
EFI_STATUS
(EFIAPI *EFI_REDFISH_DISCOVER_ABORT_ACQUIRE)(
 IN EFI_REDFISH_DISCOVER_PROTOCOL *This,
 IN EFI_REDFISH_DISCOVER_TARGET_NIC_INTERFACE *TargetNetworkIntf OPTIONAL
);

Parameters

This This is the EFI_REDFISH_DISCOVER_PROTOCOL instance.

EFI_SUCCESS Acquire for Redfish service list is successful.

EFI_INVALID_PARAMATER

One or more of the following is TRUE:

This is NULL.

ImageHandle is NULL.

Flags is 0 or the improper bit combination of option is set in Flag.
Token is NULL.

Token->Timeout is greater than 5 seconds.

Token->Event is NULL.

On input,

 Token->DiscoveredList.NumberOfServiceFound is not 0, 
 or Token->DiscoveredList->RedfishInstance is not NULL.

Others Fail to acquire the list of Redfish service.
UEFI Forum, Inc. March 2019 1691

UEFI Specification, Version 2.8 EFI Redfish Service Support
TargetNetworkIntf The target Network Interface on which Redfish services discovery is in
process. NULL to abort Redfish service discovery on all network
interfaces.

Description

In AbortAcquireRedfishService(), to abort the in-process Redfish service, discovery is required for
preventing unexpected behaviors from happening. This function has to cancel in-process SSDP, the
unicast over Udp4/Udp6, close Udp4/Udp6 protocol and destroy the Udp4/Udp6 child. Also closes REST
EX opened for configuring REST EX child instance.

Status Codes Returned

EFI_REDFISH_DISCOVER_PROTOCOL.ReleaseRedfishService ()

Summary

This function releases the list of Redfish services discovered previously.

Protocol Interface

typedef

EFI_STATUS

 (EFIAPI *EFI_REDFISH_DISCOVER_RELEASE_SERVICE)(

 IN EFI_REDFISH_DISCOVER_PROTOCOL *This,

 IN EFI_REDFISH_DISCOVERED_LIST *List

);

Parameters

This This is the EFI_REDFISH_DISCOVER_PROTOCOL instance.

List The pointer to EFI_REDFISH_DISCOVERED_LIST which lists the
Redfish services to release.

Description

The Redfish services which listed in List will be released in ReleaseRedfishService(). All memory
blocks which were allocated for Redfish service information will be freed in this function. EFI REST EX
protocol instance which was created in AcquireRedfishService() will be also destroyed in
ReleaseRedfishService(). The Redfish service listed in *List is not required to be identical or in the
same order with EFI_REDFISH_DISCOVERED_LIST retuned from AcquireRedfishService(). List is
flexible to list any Redfish services which were discovered by AcquireRedfishService() earlier. In
ReleaseRedfishService(), free the resource allocated for the discovered Redfish service indicated in
EFI_REDFISH_DISCOVERED_LIST.

EFI_SUCCESS Redfish service discovery is aborted.

EFI_INVALID_PARAMETER
One or more of the following is TRUE:

- This is NULL.
UEFI Forum, Inc. March 2019 1692

UEFI Specification, Version 2.8 EFI Redfish Service Support
Status Codes Returned

31.1.5 Implementation Examples

31.1.5.1 Processes to Discover Redfish Services

The following flowchart delineates the EFI Redfish client processes of utilizing EFI Discover Protocol to
discover Redfish service, abort discovery and release discovered Redfish service instance.

31.1.5.2 Network Interface Configuration

EFI Redfish Discover Protocol provides Redfish service discover function to discover Redfish service
through SMBIOS type 42 or optionally discover Redfish service on specific network interface. EFI Redfish
Clients (EFI driver or EFI Application) can utilize discover function to acquire Redfish service and
manipulate Redfish properties to mange system. For example, applying BIOS settings on the systems
managed by Redfish Service. The system could be the one runs EFI Redfish Client or other systems on the
network. If Redfish service is discovered according to SMBIOS type 42, then platform developer has to
create SMBIOS type 42 entry with host (station) and Redfish Service information (Refer to DSP0270,
Redfish Host Interface Specification). Besides to discover Redfish service using SMBIOS type 42, Redfish
services can be also discovered by using SSDP over UDP. However, the network interface must be
configured using either DHCP or static configuration prior to discovery of Redfish services. If network
interface is configured in statically, then at least the IP address and Subnet mask must be configured for
the station. The VLAN ID and new route entry may need to be configured depends on the networking
environment if necessary.

EFI_SUCCESS The Redfish services listed in *List are released successfully.

EFI_INVALID_PARAMETER

One or more of the following is TRUE:

- This is NULL.

- List is NULL.

- Invalid settings in *List.
UEFI Forum, Inc. March 2019 1693

UEFI Specification, Version 2.8 EFI Redfish Service Support
Below is the implementation example for configuring network interface. Network interface could be
configured in platform-implementation method. For example, platform developer can provide HII
network options in BIOS setup utility. Network interface could be configured in statically or dynamically
(DHCP) manner and the configuration could be stored in EFI variables or any platform non-volatile
storage which may consumed by network stacks when each time system boot. This makes sure certain
network interface is configured properly before EFI Redfish Clients utilizing EFI Redfish Discover Protocol.

The alternative of configuring network stack is system boots to EFI Shell and execute ifconfig shell
command. This configures the settings of certain network interfaces. After this, network interface is
ready to process Redfish service discovery by EFI Redfish Clients. However, this method requires user to
configure network interface when each time system boot to EFI shell, unless other implementations of
ifconfig EFI shell command is provided.

Once EFI Redfish Client is launched, it gets network interface information using EFI Redfish Discover
protocol. EFI Redfish Client may provide selection UI of network interfaces for Redfish service discovery.
EFI Redfish Client could manipulate Redfish properties such as BIOS Attributes on the discovered Redfish
services for system management or deployment. EFI Redfish Client can also optionally maintain the
information, location and other properties of discovered Redfish services in non-volatile storage for next
system boots afterward.
UEFI Forum, Inc. March 2019 1694

UEFI Specification, Version 2.8 EFI Redfish Service Support
31.2 EFI Redfish JSON Structure Converter

31.2.1 The Guidance of Writing EFI Redfish JSON Structure Converter

To provide interoperability between the Redfish service and the EFI environment, EFI Redfish JSON
structure converters for each Redfish schema namespace should be implemented for EFI Redfish clients.
This recommendation of writing EFI Redfish JSON structure converters is necessary to unify the
implementation and capability of the converters.

• One converter supports one Redfish schema resource type; write the converter based on
Redfish resource type. Using Redfish schema as an example:

— AccountService.v1_0_0.json: RedfishAccountService_V1_0_0_Dxe driver

— AttributeRegistry.v1_2_0.json: RedfishAttributeRegistry_V1_2_0_Dxe driver

— EthernetInterface.v1_4_0.json: EthernetInterface_V1_4_0_Dxe driver

• Redfish JSON structure converter can be delivered in source code package or binary (library or
EFI driver) format.

• A C header file must be released with the Redfish JSON structure converter package. The
package could be provisioned to conform to any EFI implementation, such as EFI EDKII open
source.

• Provide documents which can describe the usage of structure members defined in REST JSON
structure.

• The documentation can be published with a source code package, binary package, web site,
online help, etc.

• Write the converter as an EFI DXE driver, and utilize
EFI_REST_JSON_STRUCTURE_PROTOCOL to register the converter to provide the
corresponding EFI_REST_JSON_STRUCTURE_PROTOCOL functions:
— ToStructure()
— ToJson()
— DestoryStructure()

• EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER

Namespace

ResourceTypeName: String to Redfish schema resource type.

MajorVersion: String to Redfish schema major version, NULL string for non
version controlled schema.

MinorVersion: String to Redfish schema minor version, NULL string for non
version controlled schema.

ErrataVersion: String to Redfish schema errata version, NULL string for non
version controlled schema.

Datatype

String to data type defined in Redfish schema

Examples

AccountService.v1_0_0.json
UEFI Forum, Inc. March 2019 1695

UEFI Specification, Version 2.8 EFI Redfish Service Support
Namespace

ResourceTypeName: ”AccountService”

MajorVersion: “1”

MinorVersion: ”0”

ErrataVErsion: ”0”

Datatype: ”AccountService”

Namespace

ResourceTypeName: ”ComputerSystemCollection”

MajorVersion: NULL

MinorVersion: NULL

ErrataVErsion: NULL

Datatype:” ComputerSystemCollection”

• Determine Redfish resource type according to the given JsonRsrcIdentifier. If the given
JsonRsrcIdentifier is non-NULL, the Redfish resource structure converter must convert the
JSON resource to the Redfish JSON structure according to the resource type and revision
specified in JsonRsrcIdentifier. The converter should not refer to the resource type and
revision according to Redfish namespace and datatype indicated in “odata.type” in JSON text
resource. This prevents from the returned structure format is different with what consumer
expects.

• Automatically determine the Redfish resource type. If the given JsonRsrcIdentifier is NULL,
the EFI Redfish JSON structure converter should check the namespace and datatype indicated
in “odata.type” in the JSON text resource. Parse this identifier property to retrieve the
corresponding Redfish schema name space and data type, then decode the JSON text resource
into the corresponding structure. EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER in
JsonStructure returned to consumer should be filled with the correct Redfish schema
resource type information following the guidance mentioned above.

• All structure members for Redfish schema must be declared as C pointers. With this, the
converter consumer can get the partial Redfish JSON properties from the converter. The
consumer just initializes certain structure members, and the converter producer only converts
non-NULL pointers in the given structure into corresponding Redfish JSON properties in text
format.

31.2.2 The Guidance of Using EFI Redfish JSON Structure Converter

The consumer of EFI Redfish JSON structure converter utilizes
EFI_REST_JSON_STRUCTURE_PROTOCOL for converting Redfish JSON resource to Redfish JSON
structure and vice versa.

Refer to the converter document to include the C header file of the Redfish JSON structure converter into
the build process. For example, include the converter’s EDKII package into an EFI module INF file for the C
header file reference, or follow the build rule of other EFI implementations.
UEFI Forum, Inc. March 2019 1696

UEFI Specification, Version 2.8 EFI Redfish Service Support
There are two ways for a consumer to convert JSON resources using the
EFI_REST_JSON_STRUCTURE_PROTOCOL:

• Setup the crorect Redfish namespace and datatype in
EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER. This makes sure the EFI REST JSON
Structure Protocol uses the exact converter that the consumer prefers for the conversion. In
this case, the Redfish namespace and datatype indicated in “odata.type” in the
EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER is set to NULL. This means the converter
may recognize the Redfish namespace and datatype indicated in “odata.type” in the JSON text
resource, and converts it to the C structure it supports. In this case, the consumer has to be
careful when using a C structure pointer to refer to the Redfish JSON structure.

• EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER set to NULL means the returned structure
format may not be in the same form as the consumer’s expectation. The consumer then has to
check the EFI_REST_JSON_RESOURCE_TYPE_IDENTIFIER for the Redfish namespace and
datatype, and use the correct prototype for structure reference.
UEFI Forum, Inc. March 2019 1697

UEFI Specification, Version 2.8
32 - Secure Boot and Driver Signing

32.1 Secure Boot

This protocol is intended to provide access for generic authentication information associated with
specific device paths. The authentication information is configurable using the defined interfaces.
Successive configuration of the authentication information will overwrite the previously configured
information. Once overwritten, the previous authentication information will not be retrievable.

EFI_AUTHENTICATION_INFO_PROTOCOL

Summary

This protocol is used on any device handle to obtain authentication information associated with the
physical or logical device.

GUID

#define EFI_AUTHENTICATION_INFO_PROTOCOL_GUID \

 {0x7671d9d0,0x53db,0x4173,\

 {0xaa,0x69,0x23,0x27,0xf2,0x1f,0x0b,0xc7}}

Protocol Interface Structure

typedef struct _EFI_AUTHENTICATION_INFO_PROTOCOL {

 EFI_AUTHENTICATION_INFO_PROTOCOL_GET Get;

 EFI_AUTHENTICATION_INFO_PROTOCOL_SET Set;
} EFI_AUTHENTICATION_INFO_PROTOCOL;

Parameters

Get() Used to retrieve the Authentication Information associated
with the controller handle

Set() Used to set the Authentication information associated with
the controller handle

Description

The EFI_AUTHENTICATION_INFO_PROTOCOL provides the ability to get and set the authentication
information associated with the controller handle.

EFI_AUTHENTICATION_INFO_PROTOCOL.Get()

Summary

Retrieves the Authentication information associated with a particular controller handle.
UEFI Forum, Inc. March 2019 1698

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_GET) (

 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle,

 OUT VOID **Buffer
);

Parameters

This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL
ControllerHandle Handle to the Controller
Buffer Pointer to the authentication information. This function is

responsible for allocating the buffer and it is the caller’s
responsibility to free buffer when the caller is finished with
buffer.

Description

This function retrieves the Authentication Node for a given controller handle.

Status Codes Returned

EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

Summary

Set the Authentication information for a given controller handle.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_SET) (

 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,

 IN EFI_HANDLE ControllerHandle

 IN VOID *Buffer
);

Parameters

This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL
ControllerHandle Handle to the controller.

EFI_SUCCESS Successfully retrieved Authentication information for the given

ControllerHandle

EFI_INVALID_PARAMETER No matching Authentication information found for the given

ControllerHandle

EFI_DEVICE_ERROR The authentication information could not be retrieved due to a hardware
error.
UEFI Forum, Inc. March 2019 1699

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Buffer Pointer to the authentication information.

Description

This function sets the authentication information for a given controller handle. If the authentication node
exists corresponding to the given controller handle this function overwrites the previously present
authentication information.

Status Codes Returned

Authentication Nodes

The authentication node is associated with specific controller paths. There can be various types of
authentication nodes, each describing a particular authentication method and associated properties.

Generic Authentication Node Structures

An authentication node is a variable length binary structure that is made up of variable length
authentication information. Table 8 defines the generic structure. The Authentication type GUID defines
the corresponding authentication node.

Table 8. Generic Authentication Node Structure

All Authentication Nodes are byte-packed data structures that may appear on any byte boundary. All
code references to Authentication Nodes must assume all fields are UNALIGNED. Since every
Authentication Node contains a length field in a known place, it is possible to traverse Authentication
Node of unknown type.

CHAP (using RADIUS) Authentication Node

This Authentication Node type defines the CHAP authentication using RADIUS information.

EFI_SUCCESS Successfully set the Authentication node information for the given

ControllerHandle.

EFI_UNSUPPORTED If the platform policies do not allow setting of the Authentication
information.

EFI_DEVICE_ERROR The authentication node information could not be configured due to a
hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data.


Mnemonic

Byte
Offset

Byte
Length


Description

Type GUID 0 16 Authentication Type GUID

Length 16 2 Length of this structure in bytes.

Specific Authentication
Data

18 n Specific Authentication Data. Type defines the
authentication method and associated type of data. Size
of the data is included in the length.
UEFI Forum, Inc. March 2019 1700

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
GUID

#define EFI_AUTHENTICATION_CHAP_RADIUS_GUID \

 {0xd6062b50,0x15ca,0x11da,\

 {0x92,0x19,0x00,0x10,0x83,0xff,0xca,0x4d}}

Node Definition

Table 9. CHAP Authentication Node Structure using RADIUS

Summary

RADIUS IP Address RADIUS Server IPv4 or IPv6 Address
NAS IP Address Network Access Server IPv4 or IPv6 Address (OPTIONAL)
NAS Secret Length Network Access Server Secret Length in bytes (OPTIONAL)
NAS Secret Network Access Server secret (OPTIONAL)
CHAP Secret Length CHAP Initiator Secret length in bytes
CHAP Secret CHAP Initiator Secret
CHAP Name Length CHAP Initiator Name Length in bytes
CHAP Name CHAP Initiator Name
Reverse CHAP name lengthReverse CHAP name length
Reverse CHAP Name Reverse CHAP name
Reverse CHAP Secret LengthReverse CHAP secret length


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 16 EFI_AUTHENTICATION_CHAP_RADIUS_GUID

Length 16 2 Length of this structure in bytes. Total length is
58+P+Q+R+S+T

RADIUS IP Address 18 16 Radius IPv4 or IPv6 Address

Reserved 34 2 Reserved

NAS IP Address 36 16 NAS IPv4 or IPv6 Address

NAS Secret Length 52 2 NAS Secret LengthP

NAS Secret 54 p NAS Secret

CHAP Secret Length 54+P 2 CHAP Secret Length Q

CHAP Secret 56+P q CHAP Secret

CHAP Name Length 56 +Q 2 CHAP Name Length R

CHAP Name 58+P+Q r CHAP Name String

Reverse CHAP Name
Length

58+P+Q+R 2 Reverse CHAP Name length

Reverse CHAP Name 60+P+Q+R S Reverse CHAP Name

Reverse CHAP Secret
Length

60+P+Q+R+
S

2 Reverse CHAP Length

Reverse CHAP Secret 62+P+Q+R+
S

T Reverse CHAP Secret
UEFI Forum, Inc. March 2019 1701

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Reverse CHAP Secret Reverse CHAP secret

CHAP (using local database)Authentication Node

This Authentication Node type defines CHAP using local database information.

GUID

#define EFI_AUTHENTICATION_CHAP_LOCAL_GUID \

 {0xc280c73e,0x15ca,0x11da,\

 {0xb0,0xca,0x00,0x10,0x83,0xff,0xca,0x4d}}

Node Definition

Table 10. CHAP Authentication Node Structure using Local Database

Summary

User Secret Length User Secret Length in bytes
User Secret User Secret
User Name Length User Name Length in bytes
User Name User Name
CHAP Secret Length CHAP Initiator Secret length in bytes
CHAP Secret CHAP Initiator Secret
CHAP Name Length CHAP Initiator Name Length in bytes


Mnemonic

Byte
Offset

Byte
Length


Description

Type 0 16 EFI_AUTHENTICATION_CHAP_LOCAL_GUID

Length 16 2 Length of this structure in bytes. Total length is
58+P+Q+R+S+T

Reserved 18 2 Reserved for future use

User Secret Length 20 2 User Secret Length

User Secret 22 p User Secret

User Name Length 22+p 2 User Name Length

User Name 24+p q User Name

CHAP Secret Length 24+p+q 2 CHAP Secret Length

CHAP Secret 26+p+q r CHAP Secret

CHAP Name Length 26+p+q+r 2 CHAP Name Length

CHAP Name 28+p+q+r s CHAP Name String

Reverse CHAP Name
Length

58+P+Q+R 2 Reverse CHAP Name length

Reverse CHAP Name 60+P+Q+R S Reverse CHAP Name

Reverse CHAP Secret
Length

60+P+Q+R+S 2 Reverse CHAP Length

Reverse CHAP Secret 62+P+Q+R+S T Reverse CHAP Secret
UEFI Forum, Inc. March 2019 1702

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
CHAP Name CHAP Initiator Name
Reverse CHAP name lengthReverse CHAP name length
Reverse CHAP Name Reverse CHAP name
Reverse CHAP Secret LengthReverse CHAP secret length
Reverse CHAP Secret Reverse CHAP secret

32.2 UEFI Driver Signing Overview

This section describes a means of generating a digital signature for a UEFI executable, embedding that
digital signature within the UEFI executable and verifying that the digital signature is from an authorized
source.

The UEFI specification provides a standard format for executables. These executables may be located on
un-secured media (such as a hard drive or unprotected flash device) or may be delivered via a un-secured
transport layer (such as a network) or originate from a un-secured port (such as ExpressCard device or
USB device). In each of these cases, the system provider may decide to authenticate either the origin of
the executable or its integrity (i.e., it has not been tampered with). This section describes a means of
doing so.

32.2.1 Digital Signatures

As a rule, digital signatures require two pieces: the data (often referred to as the message) and a public/
private key pair. In order to create a digital signature, the message is processed by a hashing algorithm to
create a hash value. This hash value is, in turn, encrypted using a signature algorithm and the private key
to create the digital signature.
UEFI Forum, Inc. March 2019 1703

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 6. Creating A Digital Signature

In order to verify a signature, two pieces of data are required: the original message and the public key.
First, the hash must be calculated exactly as it was calculated when the signature was created. Then the
digital signature is decoded using the public key and the result is compared against the computed hash. If
the two are identical, then you can be sure that message data is the one originally signed and it has not
been tampered with.

Private Key

Message

Hashing Algorithm

Message

Signature Algorithm

Hash Value

Digital
Signature

D
Signed

Message

D

UEFI Forum, Inc. March 2019 1704

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 7. Verifying a Digital Signature

32.2.2 Embedded Signatures

The signatures used for digital signing of UEFI executables are embedded directly within the executable
itself. Within the header is an array of directory entries. Each of these entries points to interesting places
within the executable image. The fifth data directory entry contains a pointer to a list of certificates along
with the length of the certificate areas. Each certificate may contain a digital signature used for validating
the driver.

The following diagram illustrates how certificates are embedded in the PE/COFF file:

Public Key

Hashing Algorithm

Message

Signature Algorithm

Hash Value

D

Signed
Message

D

Digital
Signature

Validation Signature
UEFI Forum, Inc. March 2019 1705

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 8. Embedded Digital Certificates

Within the PE/COFF optional header is a data directory. The 5th entry, if filled, points to a list of
certificates. Normally, these certificates are appended to the end of the file.

32.2.3 Creating Image Digests from Images

One of the pieces required for creating a digital signature is the image digest. For a detailed description
on how to create image digests from PE/COFF images, refer to the "Creating the PE Image Hash" section
of the Microsoft Authenticode Format specification (see References).

32.2.4 Code Definitions

This section describes data structures used for signing UEFI executables.

MS-DOS Header

PE Header Offset

PE Header

Sections Directory

Section #1

Section #n

Section #2

Debug Information

Certificate #1

PE Signature

Standard Header

Optional Header

Optional Data Directory

Image Data Directory Entry
#1

Image Data Directory Entry
#2

Image Data Directory Entry
#3

Image Data Directory Entry
#4

Image Data Directory Entry
#5 (Certificate Table)

Certificate #2

Certificate #n
UEFI Forum, Inc. March 2019 1706

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
WIN_CERTIFICATE

Summary

The WIN_CERTIFICATE structure is part of the PE/COFF specification.

Prototype

typedef struct _WIN_CERTIFICATE {

 UINT32 dwLength;

 UINT16 wRevision;

 UINT16 wCertificateType;

 //UINT8 bCertificate[ANYSIZE_ARRAY];
} WIN_CERTIFICATE;

dwLength The length of the entire certificate, including the length of the
header, in bytes.

wRevision The revision level of the WIN_CERTIFICATE structure. The
current revision level is 0x0200.

wCertificateType The certificate type. See WIN_CERT_TYPE_xxx for the UEFI
certificate types. The UEFI specification reserves the range of
certificate type values from 0x0EF0 to 0x0EFF.

bCertificate The actual certificate. The format of the certificate depends
on wCertificateType. The format of the UEFI certificates is
defined below.

Related Definitions

#define WIN_CERT_TYPE_PKCS_SIGNED_DATA 0x0002

#define WIN_CERT_TYPE_EFI_PKCS115 0x0EF0

#define WIN_CERT_TYPE_EFI_GUID 0x0EF1

Description

This structure is the certificate header. There may be zero or more certificates. I

• f the wCertificateType field is set to WIN_CERT_TYPE_EFI_PKCS115, then the certificate
follows the format described in WIN_CERTIFICATE_EFI_PKCS1_15.

• If the wCertificateType field is set to WIN_CERT_TYPE_EFI_GUID, then the certificate
follows the format described in WIN_CERTIFICATE_UEFI_GUID.

• If the wCertificateType field is set to WIN_CERT_TYPE_PKCS_SIGNED_DATA then the
certificate is formatted as described in the Authenticode specification.

These certificates can be validated using the contents of the signature database described in
Section 32.4.1. The following table illustrates the relationship between the certificates and the signature
types in the database.

Note: In the case of a WIN_CERT_TYPE_PKCS_SIGNED_DATA (or WIN_CERT_TYPE_EFI_GUID where
CertType = EFI_CERT_TYPE_PKCS7_GUID) certificate, a match can occur against an entry in
the authorized signature database (or the forbidden signature database; see Section 32.6.1) at
UEFI Forum, Inc. March 2019 1707

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
any level of the chain of X.509 certificates present in the certificate, and matches can occur
against any of the applicable signature types defined in Section 32.4):

Table 11. PE/COFF Certificates Types and UEFI Signature Database Certificate Types

WIN_CERTIFICATE_EFI_PKCS1_15

Summary

Certificate which encapsulates the RSASSA_PKCS1-v1_5 digital signature.

Image Certificate Type Verified Using Signature Database Type

WIN_CERT_TYPE_EFI_PKCS115

(Signature Size = 256 bytes)

EFI_CERT_RSA2048_GUID (public key)

WIN_CERT_TYPE_EFI_GUID

(CertType =
EFI_CERT_TYPE_RSA2048_SHA256_G
UID)

EFI_CERT_RSA2048_GUID (public key).

WIN_CERT_TYPE_EFI_GUID
(CertType =
EFI_CERT_TYPE_PKCS7_GUID)

EFI_CERT_X509_GUID
EFI_CERT_RSA2048_GUID (when applicable)

EFI_CERT_X509_SHA256_GUID

(when applicable)

EFI_CERT_X509_SHA384_GUID

(when applicable)

EFI_CERT_X509_SHA512_GUID

(when applicable)

WIN_CERT_TYPE_PKCS_SIGNED_DATA EFI_CERT_X509_GUID
EFI_CERT_RSA2048_GUID (when applicable)

EFI_CERT_X509_SHA256_GUID

(when applicable)

EFI_CERT_X509_SHA384_GUID

(when applicable)

EFI_CERT_X509_SHA512_GUID

(when applicable)

(Always applicable regardless of whether a
certificate is present or not)

EFI_CERT_SHA1_GUID,
EFI_CERT_SHA224_GUID,
EFI_CERT_SHA256_GUID,
EFI_CERT_SHA384_GUID,
EFI_CERT_SHA512_GUID
In this case, the database contains the hash of the image.
UEFI Forum, Inc. March 2019 1708

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Prototype

typedef struct _WIN_CERTIFICATE_EFI_PKCS1_15 {

WIN_CERTIFICATE Hdr;

EFI_GUID HashAlgorithm;

// UINT8 Signature[ANYSIZE_ARRAY];

} WIN_CERTIFICATE_EFI_PKCS1_15;

Hdr This is the standard WIN_CERTIFICATE header, where
wCertificateType is set to WIN_CERT_TYPE_EFI_PKCS1_15.

HashAlgorithm This is the hashing algorithm which was performed on the
UEFI executable when creating the digital signature. It is one
of the enumerated values pre-defined in Section 37.1.2.1. See
EFI_HASH_ALGORITHM_x.

Signature This is the actual digital signature. The size of the signature is
the same size as the key (2048-bit key is 256 bytes) and can
be determined by subtracting the length of the other parts of
this header from the total length of the certificate as found in
Hdr.dwLength.

Description

The WIN_CERTIFICATE_UEFI_PKCS1_15 structure is derived from WIN_CERTIFICATE and
encapsulates the information needed to implement the RSASSA-PKCS1-v1_5 digital signature algorithm
as specified in RFC2437, sections 8-9.

WIN_CERTIFICATE_UEFI_GUID

Summary

Certificate which encapsulates a GUID-specific digital signature.

Prototype

typedef struct _WIN_CERTIFICATE_UEFI_GUID {

 WIN_CERTIFICATE Hdr;

 EFI_GUID CertType;

 UINT8 CertData[ANYSIZE_ARRAY];

} WIN_CERTIFICATE_UEFI_GUID;

Hdr This is the standard WIN_CERTIFICATE header, where
wCertificateType is set to WIN_CERT_TYPE_EFI_GUID.

CertType This is the unique id which determines the format of the
CertData.

CertData This is the certificate data. The format of the data is
determined by the CertType.
UEFI Forum, Inc. March 2019 1709

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Related Definitions

#define EFI_CERT_TYPE_RSA2048_SHA256_GUID

 {0xa7717414, 0xc616, 0x4977, \

 {0x94, 0x20, 0x84, 0x47, 0x12, 0xa7, 0x35, 0xbf}}

#define EFI_CERT_TYPE_PKCS7_GUID

 {0x4aafd29d, 0x68df, 0x49ee, \

 {0x8a, 0xa9, 0x34, 0x7d, 0x37, 0x56, 0x65, 0xa7}}

typedef struct _EFI_CERT_BLOCK_RSA_2048_SHA256 {

 EFI_GUID HashType;

 UINT8 PublicKey[256];

 UINT8 Signature[256];
} EFI_CERT_BLOCK_RSA_2048_SHA256;

PublicKey The RSA exponent e for this structure is 0x10001.
Signature This signature block is PKCS 1 version 1.5 formatted.

Description

The WIN_CERTIFICATE_UEFI_GUID certificate type allows new types of certificates to be developed
for driver authentication without requiring a new certificate type. The CertType defines the format of
the CertData, which length is defined by the size of the certificate less the fixed size of the
WIN_CERTIFICATE_UEFI_GUID structure.

• If CertType is EFI_CERT_TYPE_RSA2048_SHA256_GUID then the structure which follows
has the format specified by EFI_CERT_BLOCK_RSA_2048_SHA256.

• If CertType is EFI_CERT_TYPE_PKCS7_GUID then the CertData component shall contain
a DER-encoded PKCS #7 version 1.5 [RFC2315] SignedData value.

32.3 Firmware/OS Key Exchange: creating trust relationships

This section describes a means of creating a trust relationship between the platform owner, the platform
firmware, and an operating system. This trust relationship enables the platform firmware and one or
more operating systems to exchange information in a secure manner.

The trust relationship uses two types of asymmetric key pairs:

Platform Key (PK)
The platform key establishes a trust relationship between the platform owner and
the platform firmware. The platform owner enrolls the public half of the key (PKpub)

into the platform firmware. The platform owner can later use the private half of the
key (PKpriv) to change platform ownership or to enroll a Key Exchange Key. For UEFI ,

the recommended Platform Key format is RSA-2048. See “Enrolling The Platform
Key” and “Clearing The Platform Key” for more information.

Key Exchange Key (KEK)
Key exchange keys establish a trust relationship between the operating system and

the platform firmware. Each operating system (and potentially, each 3rd party
application which need to communicate with platform firmware) enrolls a public key
UEFI Forum, Inc. March 2019 1710

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
(KEKpub) into the platform firmware. See “Enrolling Key Exchange Keys” for more

information.

While no Platform Key is enrolled, the SetupMode variable shall be equal to 1. While SetupMode == 1,
the platform firmware shall not require authentication in order to modify the Platform Key, Key
Enrollment Key, OsRecoveryOrder, OsRecovery####, and image security databases.

After the Platform Key is enrolled, the SetupMode variable shall be equal to 0. While SetupMode == 0,
the platform firmware shall require authentication in order to modify the Platform Key, Key Enrollment
Key, OsRecoveryOrder, OsRecovery####, and image security databases.

While no Platform Key is enrolled, and while the variable AuditMode == 0, the platform is said to be
operating in setup mode.

After the Platform Key is enrolled, and while the variable AuditMode == 0, the platform is operating in
user mode. The platform will continue to operate in user mode until the Platform Key is cleared, or the
system is transitioned to either Audit or Deployed Modes. See "Clearing The Platform Key,"
"Transitioning to Audit Mode," and "Transitioning to Deployed Mode" for more information.

Audit Mode enables programmatic discovery of signature list combinations that successfully authenticate
installed EFI images without the risk of rendering a system unbootable. Chosen signature lists
configurations can be tested to ensure the system will continue to boot after the system is transitioned
out of Audit Mode. Details on how to transition to Audit Mode are detailed below in the section
"Transitioning to Audit Mode." After transitioning to Audit Mode, signature enforcement is disabled such
that all images are initialized and enhanced Image Execution Information Table (IEIT) logging is
performed including recursive validation for multi-signed images.

Deployed Mode is the most secure mode. For details on transitioning to Deployed Mode see the section
"Transitioning to Deployed Mode" below. By design, both User Mode and Audit Mode support
unauthenticated transitions to Deployed Mode. However, to move from Deployed Mode to any other
mode requires a secure platform-specific method, or deleting the PK, which is authenticated.

Secure Boot Mode transitions to User Mode or Deployed Mode shall take effect immediately. Mode
transitions to Setup Mode or Audit Mode may either take effect immediately (recommended) or after a
reset. For implementations that require a reset, the mode transition shall be processed prior to the
initialization of the SecureBoot variable, and the SetVariable() workflow shall be as follows:

1. If the variable has an authenticated attribute, it shall be authenticated as specified, and failure
will result in immediate termination of this workflow by returning the appropriate error.

2. Check secure storage to determine if a Secure Boot Mode transition is already queued. If a
transition is already queued, terminate this workflow by returning EFI_ALREADY_STARTED

3. Queue the request to secure storage

4. The Secure Boot Mode and Policy variables SHALL remain unchanged

5. Return EFI_WARN_RESET_REQUIRED.

6. After reboot, if the transition is successful, Secure Boot Mode and Policy variables will change
accordingly. If the transition to lower security modes is rejected or fail , the workflow is
terminated and the Secure Boot Mode and Policy variables remain unchanged
UEFI Forum, Inc. March 2019 1711

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 9. Secure Boot Modes

32.3.1 Enrolling The Platform Key

The platform owner enrolls the public half of the Platform Key (PKpub) by calling the UEFI Boot Service

SetVariable() as specified in Section 8.2.1. If the platform is in setup mode, then the new PKpub may

be signed with its PKpriv counterpart. If the platform is in user mode, then the new PKpub must be signed

with the current PKpriv. When the platform is in setup mode, a successful enrollment of a Platform Key

shall cause the platform to immediately transition to user mode.

The authenticated PK variable can always be read but can only be written if the platform is in setup
mode, or if the platform is in user mode and the provided PKpub is signed with the current PKpriv.

The name and GUID of the Platform Key variable are specified in Section 3.3 “Globally Defined Variables”
The variable has the format of a signature database as described in “Signature Database” below, with
exactly one entry.

The platform vendor may provide a default PKpub in the PKDefault variable described in Section 3.3. This
variable is formatted identically to the Platform Key variable. If present, this key may optionally be used
as the public half of the Platform Key when transitioning from setup mode to user mode. If so, it may be

Audit Mode
PKpub == NULL

AuditMode == 1 (RO)
DeployedMode == 0 (RO)

SetupMode == 1 (RO)
SecureBoot == 0

User Mode
PKpub != NULL

AuditMode == 0 (RW)
DeployedMode == 0 (RW)

SetupMode == 0 (RO)

Setup Mode
PKpub == NULL

AuditMode == 0 (RW)
DeployedMode == 0 (RO)

SetupMode == 1 (RO)
SecureBoot == 0

AuditMode := 1
Side Effects

AuditMode (RO)

AuditMode := 1
Side Effects
Delete PKpub

SetupMode := 1
SecureBoot := 0

Deployed Mode
PKpub != NULL

AuditMode == 0 (RO)
DeployedMode == 1 (RO)

SetupMode == 0 (RO)

Platform Specific
DeployedMode Clear

Enroll Pkpub
Side Effects
SetupMode := 0
DeployedMode (RW)

Enroll PKpub

Side Effects
AuditMode := 0

DeployedMode := 1
SetupMode := 0

DeployedMode := 1
Mode variables (RO)

Platform Specific PKpub Clear
OR
Delete Pkpub
Side Effects
AuditMode (RW)
DeployedMode := 0
SetupMode := 1
SecureBoot := 0
UEFI Forum, Inc. March 2019 1712

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
read, placed within an EFI_VARIABLE_AUTHENTICATION2 structure and copied to the Platform Key
variable using the SetVariable() call.

32.3.2 Clearing The Platform Key

The platform owner clears the public half of the Platform Key (PKpub) by deleting the Platform Key

variable using UEFI Runtime Service SetVariable(). The data buffer submitted to the SetVari-
able() must be signed with the current PKpriv; see Section 8.1.1 for details. The name and GUID of

the Platform Key variable are specified in Section 3.3, “Globally Defined Variables”

The platform key may also be cleared using a secure platform-specific method. When platform key
is cleared, the global variable SetupMode must also be updated to 1.

32.3.3 Transitioning to Audit Mode

To enter Audit Mode, a new UEFI variable AuditMode is set to 1. Entering Audit Mode has the side
effect of changing SetupMode == 1, PK is cleared, and the new DeployedMode == 0.

Note: The AuditMode variable is only writable before ExitBootServices() is called when the system
is not in Deployed Mode. See Figure 9 for more details.

32.3.4 Transitioning to Deployed Mode

To enter Deployed Mode from Audit Mode, set the variable PK. To enter Deployed Mode from User
Mode, set the variable DeployedMode to 1. This transition takes effect immediately with no reset
required. Entering Deployed Mode has the side effect of changing SetupMode == 0, AuditMode ==
0 and is made read-only, and DeployedMode == 1 and is made read-only. See Figure 9 for more
details.

32.3.5 Enrolling Key Exchange Keys

Key exchange keys are stored in a signature database as described in "Signature Database" below. The
signature database is stored as an authenticated UEFI variable.

The platform owner enrolls the key exchange keys by either calling SetVariable() as specified in
Section 8.2.1 with the EFI_VARIABLE_APPEND_WRITE attribute set and the Data parameter
containing the new key(s), or by reading the database using GetVariable(), appending the new key
exchange key to the existing keys and then writing the database using SetVariable()as specified in
Section 8.2.1 without the EFI_VARIABLE_APPEND_WRITE attribute set.

The authenticated UEFI variable that stores the key exchange keys (KEKs) can always be read but only be
written if:

• The platform is in user mode and the provided variable data is signed with the current PKpriv;

or if

• The platform is in setup mode (in this case the variable can be written without a signature
validation, but the SetVariable() call needs to be formatted in accordance with the
procedure for authenticated variables in Section 8.2.1)

The name and GUID of the Key Exchange Key variable are specified in Section 3.3, “Globally Defined
Variables.”
UEFI Forum, Inc. March 2019 1713

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
The platform vendor may provide a default set of Key Exchange Keys in the KEKDefault variable described
in Section 3.3. If present, these keys (or a subset) may optionally be used when performing the initial
enrollment of Key Exchange Keys. If any are to be used, they may be parsed from the variable and
enrolled as described above.

32.3.6 Platform Firmware Key Storage Requirements

This section describes the platform firmware storage requirements of the different types of keys.

Platform Keys:
The public key must be stored in non-volatile storage which is tamper and delete
resistant.

Key Exchange Keys:
The public key must be stored in non-volatile storage which is tamper resistant.

Careful consideration should be given to the security and configuration of any out-of-band management
agent (e.g. hypervisor or service processor) such that the platform cannot exploit the management agent
in order to circumvent Secure Boot.

32.4 Firmware/OS Key Exchange: passing public keys

This section describes a means of passing public keys from the OS to the platform firmware so that these
keys can be used to securely pass information between the OS and the platform firmware.

Typically, the OS has been unable to communicate sensitive information or enforce any sort of policy
because of the possibility of spoofing by a malicious software agent. That is, the platform firmware has
been unable to trust the OS. By enrolling these public keys, authorized by the platform owner, the
platform firmware can now check the signature of data passed by the operating system.

Of course if the malicious software agent is running as part of the OS, such as a rootkit, then any
communication between the firmware and operating system still remains the subject of spoofing as the
malicious code has access to the key exchange key.

32.4.1 Signature Database

EFI_SIGNATURE_DATA

Summary

The format of a signature database.

Prototype

#pragma pack(1)

typedef struct _EFI_SIGNATURE_DATA {

 EFI_GUID SignatureOwner;

 UINT8 SignatureData[…];
} EFI_SIGNATURE_DATA;
UEFI Forum, Inc. March 2019 1714

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
typedef struct _EFI_SIGNATURE_LIST {

 EFI_GUID SignatureType;

 UINT32 SignatureListSize;

 UINT32 SignatureHeaderSize;

 UINT32 SignatureSize;

// UINT8 SignatureHeader[SignatureHeaderSize];

// EFI_SIGNATURE_DATA Signatures[…][SignatureSize];
} EFI_SIGNATURE_LIST;

#pragma pack()

Members

SignatureListSize

Total size of the signature list, including this header.

SignatureType

Type of the signature. GUID signature types are defined in "Related Definitions"
below.

SignatureHeaderSize

Size of the signature header which precedes the array of signatures.

SignatureSize

Size of each signature. Must be at least the size of EFI_SIGNATURE_DATA.

SignatureHeader

Header before the array of signatures. The format of this header is specified by the
SignatureType.

Signatures

An array of signatures. Each signature is SignatureSize bytes in length. The
format of the signature is defined by the SignatureType.

SignatureOwner

An identifier which identifies the agent which added the signature to the list.

Description

The signature database consists of zero or more signature lists. The size of the signature database can be
determined by examining the size of the UEFI variable.

Each signature list is a list of signatures of one type, identified by SignatureType. The signature list
contains a header and then an array of zero or more signatures in the format specified by the header. The
size of each signature in the signature list is specified by SignatureSize.

Each signature has an owner SignatureOwner, which is a GUID identifying the agent which inserted the
signature in the database. Agents might include the operating system or an OEM-supplied driver or
application. Agents may examine this field to understand whether they should manage the signature or
not.
UEFI Forum, Inc. March 2019 1715

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 10. Signature lists

Related Definitions

#define EFI_CERT_SHA256_GUID \

 { 0xc1c41626, 0x504c, 0x4092, \

 { 0xac, 0xa9, 0x41, 0xf9, 0x36, 0x93, 0x43, 0x28 } };

This identifies a signature containing a SHA-256 hash. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of SignatureOwner component) + 32 bytes.

#define EFI_CERT_RSA2048_GUID \

 { 0x3c5766e8, 0x269c, 0x4e34, \

 { 0xaa, 0x14, 0xed, 0x77, 0x6e, 0x85, 0xb3, 0xb6 } };

This identifies a signature containing an RSA-2048 key. The key (only the modulus since the public key
exponent is known to be 0x10001) shall be stored in big-endian order.

The SignatureHeader size shall always be 0. The SignatureSize shall always be 16 (size of
SignatureOwner component) + 256 bytes.

#define EFI_CERT_RSA2048_SHA256_GUID \

 { 0xe2b36190, 0x879b, 0x4a3d, \

 { 0xad, 0x8d, 0xf2, 0xe7, 0xbb, 0xa3, 0x27, 0x84 } };

This identifies a signature containing a RSA-2048 signature of a SHA-256 hash. The SignatureHeader
size shall always be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) +
256 bytes.

SIGNATURE LIST HEADER

SIGNATURE #0

SIGNATURE #1

SIGNATURE #2

SIGNATURE #n

SIGNATURE
LIST #0

SIGNATURE
LIST #1

SIGNATURE
LIST #2

SIGNAT URE HEADER
UEFI Forum, Inc. March 2019 1716

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
#define EFI_CERT_SHA1_GUID \

 { 0x826ca512, 0xcf10, 0x4ac9, \

 { 0xb1, 0x87, 0xbe, 0x01, 0x49, 0x66, 0x31, 0xbd } };

This identifies a signature containing a SHA-1 hash. The SignatureSize shall always be 16 (size of
SignatureOwner component) + 20 bytes.

#define EFI_CERT_RSA2048_SHA1_GUID \

 { 0x67f8444f, 0x8743, 0x48f1, \

 { 0xa3, 0x28, 0x1e, 0xaa, 0xb8, 0x73, 0x60, 0x80 } };

This identifies a signature containing a RSA-2048 signature of a SHA-1 hash. The SignatureHeader size
shall always be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) + 256
bytes.

#define EFI_CERT_X509_GUID \
 { 0xa5c059a1, 0x94e4, 0x4aa7, \

 { 0x87, 0xb5, 0xab, 0x15, 0x5c, 0x2b, 0xf0, 0x72 } };

This identifies a signature based on a DER-encoded X.509 certificate. If the signature is an X.509
certificate then verification of the signature of an image should validate the public key certificate in the
image using certificate path verification, up to this X.509 certificate as a trusted root. The
SignatureHeader size shall always be 0. The SignatureSize may vary but shall always be 16 (size of
the SignatureOwner component) + the size of the certificate itself.

Note: This means that each certificate will normally be in a separate EFI_SIGNATURE_LIST.

#define EFI_CERT_SHA224_GUID \

 { 0xb6e5233, 0xa65c, 0x44c9, \

 {0x94, 0x07, 0xd9, 0xab, 0x83, 0xbf, 0xc8, 0xbd} };

This identifies a signature containing a SHA-224 hash. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of SignatureOwner component) + 28 bytes.

#define EFI_CERT_SHA384_GUID \

 { 0xff3e5307, 0x9fd0, 0x48c9, \

 {0x85, 0xf1, 0x8a, 0xd5, 0x6c, 0x70, 0x1e, 0x01}};

This identifies a signature containing a SHA-384 hash. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of SignatureOwner component) + 48 bytes.

UEFI Forum, Inc. March 2019 1717

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
#define EFI_CERT_SHA512_GUID \

 { 0x93e0fae, 0xa6c4, 0x4f50, \

 {0x9f, 0x1b, 0xd4, 0x1e, 0x2b, 0x89, 0xc1, 0x9a}}

This identifies a signature containing a SHA-512 hash. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of SignatureOwner component) + 64 bytes.

#define EFI_CERT_X509_SHA256_GUID \

 { 0x3bd2a492, 0x96c0, 0x4079, \

 { 0xb4, 0x20, 0xfc, 0xf9, 0x8e, 0xf1, 0x03, 0xed } };

Prototype

#pragma pack(1)

typedef struct _EFI_CERT_X509_SHA256 {

 EFI_SHA256_HASH ToBeSignedHash;

 EFI_TIME TimeOfRevocation;
 } EFI_CERT_X509_SHA256;

#pragma pack()

Members

ToBeSignedHash

The SHA256 hash of an X.509 certificate’s To-Be-Signed contents.

TimeOfRevocation
The time that the certificate shall be considered to be revoked.

This identifies a signature containing the SHA256 hash of an X.509 certificate’s To-Be-
Signed contents, and a time of revocation. The SignatureHeader size shall always
be 0. The SignatureSize shall always be 16 (size of the SignatureOwner
component) + 48 bytes for an EFI_CERT_X509_SHA256 structure. If the
TimeOfRevocation is non-zero, the certificate should be considered to be revoked
from that time and onwards, and otherwise the certificate shall be considered to
always be revoked.
UEFI Forum, Inc. March 2019 1718

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
#define EFI_CERT_X509_SHA384_GUID \

 { 0x7076876e, 0x80c2, 0x4ee6, \

 { 0xaa, 0xd2, 0x28, 0xb3, 0x49, 0xa6, 0x86, 0x5b } };

Prototype

#pragma pack(1)

typedef struct _EFI_CERT_X509_SHA384 {

 EFI_SHA384_HASH ToBeSignedHash;

 EFI_TIME TimeOfRevocation;
} EFI_CERT_X509_SHA384;

#pragma pack()

Members

ToBeSignedHash The SHA384 hash of an X.509 certificate’s To-Be-Signed
contents.

TimeOfRevocation The time that the certificate shall be considered to be
revoked.

This identifies a signature containing the SHA384 hash of an X.509 certificate’s To-Be-Signed contents,
and a time of revocation. The SignatureHeader size shall always be 0. The SignatureSize shall
always be 16 (size of the SignatureOwner component) + 64 bytes for an EFI_CERT_X509_SHA384
structure. If the TimeOfRevocation is non-zero, the certificate should be considered to be revoked
from that time and onwards, and otherwise the certificate shall be considered to always be revoked.

#define EFI_CERT_X509_SHA512_GUID \

 { 0x446dbf63, 0x2502, 0x4cda, \

 { 0xbc, 0xfa, 0x24, 0x65, 0xd2, 0xb0, 0xfe, 0x9d } };

Prototype

#pragma pack(1)

typedef struct _EFI_CERT_X509_SHA512 {

 EFI_SHA512_HASH ToBeSignedHash;

 EFI_TIME TimeOfRevocation;
} EFI_CERT_X509_SHA512;

#pragma pack()

Members

ToBeSignedHash

The SHA512 hash of an X.509 certificate’s To-Be-Signed contents.

TimeOfRevocation
The time that the certificate shall be considered to be revoked.

This identifies a signature containing the SHA512 hash of an X.509 certificate’s To-Be-Signed contents,
and a time of revocation. The SignatureHeader size shall always be 0. The SignatureSize shall
always be 16 (size of the SignatureOwner component) + 80 bytes for an EFI_CERT_X509_SHA512
UEFI Forum, Inc. March 2019 1719

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
structure. If the TimeOfRevocation is non-zero, the certificate should be considered to be revoked
from that time and onwards, and otherwise the certificate shall be considered to always be revoked.

#define EFI_CERT_EXTERNAL_MANAGEMENT_GUID \

 { 0x452e8ced, 0xdfff, 0x4b8c, \

 { 0xae, 0x01, 0x51, 0x18, 0x86, 0x2e, 0x68, 0x2c } };

This SignatureType describes a pseudo-signature which will not facilitate authentication. It is only
meaningful within a signature list used for authenticating writes through SetVariable(), and is only
effective if it is the only signature present in that signature list. It allows a signature list to be populated
without providing any means for SetVariable() to succeed. This signature type is intended for use on
a platform with an external out-of-band management agent (e.g. hypervisor or service processor). When
a platform is configured such that only signatures of this SignatureType are available for
authenticating writes to a variable, that variable may only be modified by the external management
agent using a platform-specific interface.

When a write may be authenticated using any signature from multiple signature lists, the presence of this
signature in one of those signature lists does not inhibit the use of signatures present in the other
signature lists. For example, if this signature is placed in PK, an attempt to write to db using
SetVariable() will still succeed if it is signed by a valid KEKpriv, but a write to PK or KEK through
SetVariable() cannot succeed because no PKpriv exists.

The SignatureHeader size shall always be 0. The SignatureSize shall always be 16 (size of
SignatureOwner component) + 1 byte. The one byte of SignatureData exists only for compatibility
reasons; It should be written as zero, and any value read should be ignored.

32.4.2 Image Execution Information Table

Summary

When AuditMode==0, if the image’s signature is not found in the authorized database, or is found

in the forbidden database, the image will not be started and instead, information about it will be

placed in this table.

When AuditMode==1, an EFI_IMAGE_EXECUTION_INFO element is created in the
EFI_IMAGE_EXECUTION_INFO_TABLE for every certificate found in the certificate table of every image
that is validated.

Additionally for every image, an element will be created in the table for every EFI_CERT_SHAXXX that is
supported by the platform. The contents of Action for each element are determined by comparing that
specific element’s Signature (which will contain exactly 1 EFI_SIGNATURE_DATA) to the currently-
configured image security databases and policies, and shall be either
EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED, EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED, or
EFI_IMAGE_EXECUTION_POLICY_FAILED.

Finally, because the system is in Audit Mode, all modules are initialized even if they fail to authenticate,
and the EFI_IMAGE_EXECUTION_INITIALIZED bit shall be set in Action for all elements.
UEFI Forum, Inc. March 2019 1720

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Prototype

typedef struct {

 EFI_IMAGE_EXECUTION_ACTION Action;

 UINT32 InfoSize;

// CHAR16 Name[…];

// EFI_DEVICE_PATH_PROTOCOL DevicePath;

// EFI_SIGNATURE_LIST Signature;
} EFI_IMAGE_EXECUTION_INFO;

Parameters

Action

Describes the action taken by the firmware regarding this image. Type
EFI_IMAGE_EXECUTION_ACTION is described in “Related Definitions”
below.

InfoSize

Size of all of the entire structure.

Name

If this image was a UEFI device driver (for option ROM, for example) this is the null-
terminated, user-friendly name for the device. If the image was for an application,
then this is the name of the application. If this cannot be determined, then a simple
NULL character should be put in this position.

DevicePath

Image device path. The image device path typically comes from the Loaded Image
Device Path Protocol installed on the image handle. If image device path cannot be
determined, a simple end-of-path device node should be put in this position.

Signature

Zero or more image signatures. If the image contained no signatures, then this field is
empty.The type WIN_CERTIFICATE is defined in chapter 26.

Prototype

typedef struct {

 UINTN NumberOfImages;

 EFI_IMAGE_EXECUTION_INFO InformationInfo[…]
} EFI_IMAGE_EXECUTION_INFO_TABLE;

NumberOfImages Number of EFI_IMAGE_EXECUTION_INFO structures.
InformationInfo NumberOfImages instances of EFI_IMAGE_EXECUTION_INFO

structures.
UEFI Forum, Inc. March 2019 1721

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Related Definitions

typedef UINT32 EFI_IMAGE_EXECUTION_ACTION;

#define EFI_IMAGE_EXECUTION_AUTHENTICATION 0x00000007

#define EFI_IMAGE_EXECUTION_AUTH_UNTESTED 0x00000000

#define EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED 0x00000001

#define EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED 0x00000002

#define EFI_IMAGE_EXECUTION_AUTH_SIG_NOT_FOUND 0x00000003

#define EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND 0x00000004

#define EFI_IMAGE_EXECUTION_POLICY_FAILED 0x00000005

#define EFI_IMAGE_EXECUTION_INITIALIZED 0x00000008

Description

This structure describes an image in the EFI System Configuration Table. It is only required in the case
where image signatures are being checked and the image was not initialized because its signature failed,
when AuditMode==1, or was not found in the signature database and an authorized user or the owner
would not authorize its execution. It may be used in other cases as well.

In these cases, the information about the image is copied into the EFI System Configuration Table.
Information about other images which were successfully initialized may also be included as well, but this
is not required.

The Action field describes what action the firmware took with regard to the image and what other
information it has about the image, including the device which it is related to.

First, this field describes the results of the firmware’s attempt to authenticate the image.

1. If EFI_IMAGE_EXECUTION_AUTH_UNTESTED is set, then no authentication attempt was
made.

2. If EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED is set, then the image had at least one digital
signature and the check of the digital signatures failed.

3. If EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED is set, then the image had at least one valid
digital signature and a check of that digital signature passed.

4. If EFI_IMAGE_EXECUTION_AUTH_SIG_NOT_FOUND is set, then the image’s signature could
not be found in the signature database.

5. If EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND is set, then the image’s signature was found in
the signature database.

6. If EFI_IMAGE_EXECUTION_POLICY_FAILED is set, then authentication failed because of
(unspecified) firmware security policy.

Second, this field describes whether the image was initialized or not.

This table can be used by an agent which executes later to audit which images were not loaded and
perhaps query other sources to discover whether the image should be authorized. If so, the agent can use
the method described in “Signature Database Update” to update the Signature Database with the
image’s signature. Switching the system into Audit Mode generates a more verbose table which provides
additional insights to this agent.
UEFI Forum, Inc. March 2019 1722

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
If an attempt to boot a legacy non-UEFI OS takes place when the system is in User Mode, the OS load
shall fail and a corresponding EFI_IMAGE_EXECUTION_INFO entry shall be created with Action set to
EFI_IMAGE_EXECUTION_AUTH_UNTESTED, Name set to the NULL-terminated “Description String”
from the BIOS Boot Specification Device Path and DevicePath set to the BIOS Boot Specification Device
Path (see Section 10.3.6).

32.5 UEFI Image Validation

32.5.1 Overview

This section describes a way to use the platform ownership model described in the previous section and
the key exchange mechanism to allow the firmware to authenticate a UEFI image, such as an OS loader or
an option ROM, using the digital signing mechanisms described here.

The hand-off between the platform firmware and the operating system is a critical part of ensuring
secure boot. Since there are large numbers of operating systems and a large number of minor variations
in the loaders for those operating systems, it is difficult to carry all possible keys or signatures within the
firmware as it ships. This requires some sort of update mechanism, to identify the proper loader. But, as
with any update mechanism, there is the risk of allowing malicious software to “authenticate” itself,
posing as the real operating system.

Likewise, there are a large number of potential 3rd-party UEFI applications, drivers and option ROMs and
it is difficult to carry all possible keys or signatures within the firmware as it ships.

The mechanism described here requires that the platform firmware maintain a signature database, with
entries for each authorized UEFI image (the authorized UEFI signature database). The signature database
is a single UEFI Variable.

It also requires that the platform firmware maintain a signature database with entries for each forbidden
UEFI image. This signature database is also a single UEFI variable.

The signature database is checked when the UEFI Boot Manager is about to start a UEFI image. If the UEFI
image’s signature is not found in the authorized database, or is found in the forbidden database, the UEFI
image will be deferred and information placed in the Image Execution Information Table. In the case of
OS Loaders, the next boot option will be selected. The signature databases may be updated by the
firmware, by a pre-OS application or by an OS application or driver.

If a firmware supports the EFI_CERT_X509_SHA*_GUID signature types, it should support the RFC3161
timestamp specification. Images whose signature matches one of these types in the forbidden signature
database shall only be considered forbidden if the firmware either does not support timestamp
verification, or the signature type has a time of revocation equal to zero, or the timestamp does not pass
verification against the authorized timestamp and forbidden signature databases, or finally the signature
type's time of revocation is less than or equal to the time recorded in the image signature's timestamp. If
the timestamp's signature is authorized by the authorized timestamp database and the time recorded in
the timestamp is less than the time of revocation, the image shall not be considered forbidden provided
it is not forbidden by any other entry in the forbidden signature database. Finally, this requires that
firmware supporting timestamp verification must support the authorized timestamp database and have a
suitable time stamping authority certificate in that database.
UEFI Forum, Inc. March 2019 1723

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
32.5.2 Authorized User

An authorized user (for the purposes of UEFI image security) is one who possesses a key exchange key
(KEKpriv). This key is used to sign updates to the signature databases.

32.5.3 Signature Database Update

The Authorized, Forbidden, Timestamp, and Recovery signature databases are stored as UEFI
authenticated variables (see Variable Services in Section 8.1.1) with the GUID
EFI_IMAGE_SECURITY_DATABASE_GUID and the names EFI_IMAGE_SECURITY_DATABASE ,
EFI_IMAGE_SECURITY_DATABASE1, EFI_IMAGE_SECURITY_DATABASE2, and
EFI_IMAGE_SECURITY_DATABASE3, respectively.

These authenticated UEFI variables that store the signature databases (db, dbx, dbr, or
dbt) can always be read but can only be written if:
• The platform is in user mode and the provided variable data is signed with the private half of a

previously enrolled key exchange key (KEKpriv), or the platform private key (PKpriv);

or if

• The platform is in setup mode (in this case the variables can be written without a signature
validation, but the SetVariable() call needs to be formatted in accordance with the
procedure for authenticated variables in Section 8.2.1)

The signature databases are in the form of Signature Databases, as described in “Signature Database”
above.

The platform vendor may provide a default set of entries for the Signature Database in the dbDefault,
dbxDefault, dbtDefault, and dbrDefault variables described in Section 3.3. If present, these keys (or a
subset) may optionally be used when performing the initial enrollment of signature database entries. If
any are to be used, they may be parsed from the variable and enrolled as described below.

If, when adding a signature to the signature database, SetVariable() returns
EFI_OUT_OF_RESOURCES, indicating there is no more room, the updater may discard the new signature
or it may decide to discard one of the database entries. These authenticated UEFI variables that store the
signature databases (db, or dbx, dbt, or dbr) can always be read but can only be written if:

The following diagram illustrates the process for adding a new signature by the OS or an application that
has access to a previously enrolled key exchange key using SetVariable(). In the diagram, the
EFI_VARIABLE_APPEND_WRITE attribute is not used. If EFI_VARIABLE_APPEND_WRITE had been
used, then steps 2 and 3 could have been omitted and step 7 would have included setting the
EFI_VARIABLE_APPEND_WRITE attribute.

1. The procedure begins by generating a new signature, in the format described by the Signature
Database.

2. Call GetVariable() using EFI_IMAGE_SECURITY_DATABASE_GUID for the VendorGuid
parameter and EFI_IMAGE_SECURITY_DATABASE for the VariableName parameter.

3. If the variable exists, go to step 5.

4. Create an empty authorized signature database.
UEFI Forum, Inc. March 2019 1724

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
5. Create a new buffer which contains the authorized signature database, along with the new
signature appended to the end.

6. Sign the new signature database using the private half of the Key Exchange Key as described in
SetVariable().

7. Update the authorized signature database using the UEFI Runtime Service SetVariable().

8. If there was no error, go to step 11.

9. If there was an error because of no more resources, determine whether the database can be
shrunk any more. The algorithm by which an agent decides which signatures may be safely
removed is agent-specific. In most cases, agents should not remove signatures where the
SignatureOwner field is not the agent’s. If not, then go to step 11, discarding the new
signature.

10. If the signature database could be shrunk further, then remove the entries and go to step 6.

11. Exit.
UEFI Forum, Inc. March 2019 1725

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Figure 11. Process for adding a new signature by the OS

32.5.3.1 Using The EFI System Configuration Table

During the process of loading UEFI images, the firmware must gather information about which UEFI
images were not started. The firmware may additionally gather information about UEFI images which

1 . A d d N e w
S i g n a t u r e

2 .
G e t V a r i a b l e ()

R e t r i e v e s
S i g n a t u r e
D a t a b a s e

5 . A d d N e w
S i g n a t u r e T o E n d

O f S i g n a t u r e
D a t a b a s e

7 .
S e t V a r i a b l e ()

U p d a t e s
S i g n a t u r e
D a t a b a s e

8 . O u t O f
R e s o u r c e s ?

9 . A n y M o r e
E n t r i e s C a n B e

R e m o v e d ?
Y e s

Y e s

1 0 . R e m o v e O l d
O r U n u s e d E n t r i e s

F r o m D a t a b a s e

1 1 . D o n e

N o

6 . S i g n B u f f e r

3 . D o e s T h e
V a r i a b l e E x i s t ?

4 . C r e a t e A n
E m p t y S i g n a t u r e

D a t a b a s e
N o

Y e s
UEFI Forum, Inc. March 2019 1726

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
were started. The information is used to create the Image Execution Information Table, which is added to
the EFI System Configuration Table and assigned the GUID EFI_IMAGE_SECURITY_DATABASE_GUID.

For each UEFI image, the following information is collected:

• The image hash.

• The user-friendly name of the UEFI image (if known)

• The device path

• The action taken on the device (was it initialized or why was it rejected)

For more information, see the ‘Image Execution Information Table’ above.

32.5.3.2 Firmware Policy

The firmware may approve UEFI images for other reasons than those specified here. For example:
whether the image is in the system flash, whether the device providing the UEFI image is secured
(in a case, etc.) or whether the image contains another type of platform-supported digital signature.

32.5.3.3 Authorization Process

This section describes the process by which an unknown UEFI image might be authorized to run.
Implementations are not required to support all portions of this. For example, an implementation
might defer all UEFI image or none.
UEFI Forum, Inc. March 2019 1727

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
Table 12. Authorization process flow

1. Reset. This is when the platform begins initialization during boot.

1 .
R e s e t

2 . K EY
S T O R E

I N IT IA L I Z ED

3. U E F I
A P P L IC AT I O N
V A LI D A T E D ?

4 . S T A R T U E F I
A P PL I C A T IO N

Y e s

5. U E F I
A P P L IC AT I O N
A P P R O V E D ?

6 . U E F I A P P
S I G N A T U R E
A D D E D T O
D A T AB A S E

Y e s

N o

8. U E F I
A P P L IC AT I O N

H A S H P A SS E D IN
S Y S T E M

C O N F I G U R A T IO N
T A B LE

D e f er

9 . O S A P P
V A L I D A T E S

U E F I
A P PL I C A T IO N

1 0 . U EF I A P P
S I G N A T U R E
D A T AB A S E
U P D A T E D

Y e s

1 1. E n d

N o

N o

7 . G O T O N E XT
B O O T O P T I O N

N o
UEFI Forum, Inc. March 2019 1728

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
2. Key Store Initialization. During the firmware initialization and before any signed UEFI images
are initialized, the platform firmware must validate the signature database.

3. UEFI Image Validation Succeeded? During initialization of an UEFI image, the UEFI Boot
Manager decides whether or not the UEFI image should be initialized. By comparing the
calculated UEFI image signature against that in one of the signature databases, the firmware
can determine if there is a match.

The security database db must either contain an entry with a hash value of the image (with a
supported hash type), or it must contain an entry with a certificate against which an entry in
the image’s certificate table can be verified. In either case verification must not succeed if the
security database dbx contains any record with:

A. Any entry with SignatureListType of EFI_CERT_SHA256_GUID with any
SignatureData containing the SHA-256 hash of the binary.

B. Any entry with SignatureListType of EFI_CERT_X509_SHA256,
EFI_CERT_X509_SHA384, or EFI_CERT_X509_SHA512, with any SignatureData
which reflects the To-Be-Signed hash included in any certificate in the signing chain of
the signature being verified.

C. Any entry with SignatureListType of EFI_CERT_X509_GUID, with SignatureData
which contains a certificate with the same Issuer, Serial Number, and To-Be-Signed hash
included in anyy certificate in the signing chain of the signature being verified.

Multiple signatures are allowed to exist in the binary’s certificate table (as per PE/COFF Section
“Attribute Certificate Table”). Only one hash or signature is required to be present in db
in order to pass validation, so long as neither the SHA-256 hash of the binary nor any
present signature is reflected in dbx.

Then, based on this match or its own policy, the firmware can decide whether or not to launch
the UEFI image.

4. Start UEFI Image. If the UEFI Image is approved, then it is launched normally.

5. UEFI Image Not Approved. If the UEFI image was not approved the platform firmware may use
other methods to discover if the UEFI image is authorized, such as consult a disk-based catalog
or ask an authorized user. The result can be one of three responses: Yes, No or Defer.

6. UEFI Image Signature Added To Signature Database. If the user approves of the UEFI image,
then the UEFI image’s signature is saved in the firmware’s signature database. If user approval
is supported, then the firmware be able to update of the Signature Database. For more
information, see Signature Database Update.

7. Go To Next Boot Option. If an UEFI image is rejected, then the next boot option is selected
normally and go to step 3. This is in the case where the image is listed as a boot option.

8. UEFI Image Signature Passed In System Configuration Table. If user defers, then the UEFI image
signature is copied into the Image Execution Information Table in the EFI System Configuration
Table which is available to the operating system.

9. OS Application Validates UEFI Image. An OS application determines whether the image is valid.

10. UEFI Image Signature Added To Signature Database. For more information, see Signature
Database Update.

11. End.
UEFI Forum, Inc. March 2019 1729

UEFI Specification, Version 2.8 Secure Boot and Driver Signing
32.6 Code Definitions

32.6.1 UEFI Image Variable GUID & Variable Name

Summary

Constants used for UEFI signature database variable access.

Prototype

#define EFI_IMAGE_SECURITY_DATABASE_GUID \

 { 0xd719b2cb, 0x3d3a, 0x4596, \

 { 0xa3, 0xbc, 0xda, 0xd0, 0x0e, 0x67, 0x65, 0x6f }}

#define EFI_IMAGE_SECURITY_DATABASE L”db”

#define EFI_IMAGE_SECURITY_DATABASE1 L”dbx”

#define EFI_IMAGE_SECURITY_DATABASE2 L"dbt"

#define EFI_IMAGE_SECURITY_DATABASE3 L"dbr"

Description

• This GUID and name are used when calling the EFI Runtime Services GetVariable() and
SetVariable().

• The EFI_IMAGE_SECURITY_DATABASE_GUID and EFI_IMAGE_SECURITY_DATABASE are
used to retrieve and change the authorized signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and EFI_IMAGE_SECURITY_DATABASE1 are
used to retrieve and change the forbidden signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and EFI_IMAGE_SECURITY_DATABASE2 are
used to retrieve and change the authorized timestamp signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and EFI_IMAGE_SECURITY_DATABASE3 are
used to retrieve and change the authorized recovery signature database.

• Firmware shall support the EFI_VARIABLE_APPEND_WRITE flag (see Section 8.1.1) for the
UEFI signature database variables.

• The signature database variables db, dbt, dbx, and dbr must be stored in tamper-resistant non-
volatile storage.
UEFI Forum, Inc. March 2019 1730

UEFI Specification, Version 2.8
33 - Human Interface Infrastructure Overview

This section defines the core code and services that are required for an implementation of the Human
Interface Infrastructure (HII). This specification does the following:

• Describes the basic mechanisms to manage user input

• Provides code definitions for the HII-related protocols, functions, and type definitions that are
architecturally required by the UEFI Specification

33.1 Goals

This chapter describes the mechanisms by which UEFI-compliant systems manage user input. The major
areas described include the following:

• String and font management.

• User input abstractions (for keyboards and mice)

• Internal representations of the forms (in the HTML sense) that are used for running a preboot
setup.

• External representations (and derivations) of the forms that are used to pass configuration
information to runtime applications, and the mechanisms to allow the results of those
applications to be driven back into the firmware.

General goals include:

• Simplified localization, the process by which the interface is adapted to a particular language.

• A "forms" representation mechanism that is rich enough to support the complex configuration
issues encountered by platform developers, including stock keeping unit (SKU) management
and interrelationships between questions in the forms.

• Definition of a mechanism to allow most or all the configuration of the system to be performed
during boot, at runtime, and remotely. Where possible, the forms describing the configuration
should be expressed using existing standards such as XML.

• Ability for the different drivers (including those from add-in cards) and applications to
contribute forms, strings, and fonts in a uniform manner while still allowing innovation in the
look and feel for Setup.

Support user-interface on a wide range of display devices:

• Local text display

• Local graphics display

• Remote text display

• Remote graphics display

• Web browser

• OS-present GUI

Support automated configuration without a display.
UEFI Forum, Inc. March 2019 1731

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2 Design Discussion

This section describes the basic concepts behind the Human Interface Infrastructure. This is a set of
protocols that allow a UEFI driver to provide the ability to register user interface and configuration
content with the platform firmware. Unlike legacy option ROMs, the configuration of drivers and
controllers is delayed until a platform management utility chooses to use the services of these protocols.
UEFI drivers are not allowed to perform setup-like operations outside the context of these protocols. This
means that a driver is not allowed to interact with the user outside the context of this protocol.

The following example shows a basic platform configuration or “setup” model. The drivers and
applications install elements (such as fonts, strings, images and forms) into the HII Database, which acts
as a central repository for the entire platform. The Forms Browser uses these elements to render the user
interface on the display devices and receive information from the user via HID devices. When complete,
the changes made by the user in the Forms Browser are saved, either to the UEFI global variable
storage—(GetVariable() and SetVariable()— or to variable storage provided by the individual
drivers.

Figure 12. Platform Configuration Overview

33.2.1 Drivers And Applications

The user interface elements in the form of package lists are carried by the drivers and applications.
Drivers and applications can create the package lists dynamically, or they can be pre-built and carried as
resources in the driver/application image.

If they are stored as resources, then an editor can be used to modify the user interface elements without
recompiling. For example, display elements can be modified or deleted, new languages added, and
default values modified.

EFI Global
Variable

Store

Driver
Driver

HII
Database

Forms
Browser

HID
Devices

Display
Devices

Driver-Specific
Variable Store
UEFI Forum, Inc. March 2019 1732

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 13. HII Resources In Drivers & Applications

The means by which the string, font, image and form resources are created is beyond the scope of this
specification. The following diagram shows a few possible implementations. In both cases, the GUI design
is an optional element and the user-interface elements are stored within a text-based resource file.
Eventually, this source file is converted into a RES file (PE/COFF Resource Section) which can be linked
with the main application.

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

RESOURCE

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

SOURCE FILES

FORMS
EDITOR

DRIVER/
APPLICATION

IMAGE

RESOURCES

CODE

COMPILE
/LINKER
UEFI Forum, Inc. March 2019 1733

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview

Figure 14. Creating UI Resources With Resource Files

GUI Designer

Text Resource File
(.RC)

Resource File (.RES)

Resource
Compiler

Driver/Application
Image

LINK
UEFI Forum, Inc. March 2019 1734

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 15. Creating UI Resources With Intermediate Source Representation

33.2.1.1 Platform and Driver Configuration

The intent is for this specification to enable the configuration of various target components in the
system. The normally arduous task of managing user interface and configuration can be greatly simplified
for the consumers of such functionality by enabling the platform to comprehend some standard user
interactions.

GUI Designer

UI Element
Text Representation

(XML, VFR, etc.)

Resource File (.RES)

UI Compiler

Driver/Application
Image

LINK
UEFI Forum, Inc. March 2019 1735

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 16. The Platform and Standard User Interactions

33.2.1.2 Pre-O/S applications

There are various scenarios where a platform component must interact in some fashion with the user.
Examples of this are when presenting a user with several choices of information (e.g. boot menu) and
sending information to the display (e.g. system status, logo, etc.).

Figure 17. User and Platform Component Interaction

33.2.1.3 Description of User Interface Components

Various components listed in this specification are described in greater detail in their own sections. The
user interface is composed of several distinct components illustrated below.
UEFI Forum, Inc. March 2019 1736

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 18. User Interface Components

33.2.1.4 Forms

This component describes what type of content needs to be displayed to the user by means of a binary
encoding (i.e., Internal Forms Representation) and also has added context information such as how to
validate certain input and further describes where to store such input if it is intended to be non-volatile.
Applications such as a browser or script engine may use the information with the forms to validate
configuration setting values with or without a user interface.

33.2.1.5 Strings

The strings are the text-based (UCS-2 encoded) representations of the information typically being
referenced by the forms. The intent of this infrastructure is also to seamlessly enable multiple language
support. To that end the strings have the appropriate language designators to differentiate one language
from another.

33.2.1.6 Images/Fonts

Since most content is typically intended to have the ability to be rendered on the local system, the human
interface infrastructure also supports the ability for images and fonts to be accepted and used by the
underlying user interface components.

33.2.1.7 Consumers of the user interface data

The ultimate consumer of the user interface information will be some type of forms browser or forms
processor. There are several usage scenarios which should be supported by this specification. These are
illustrated below:

33.2.1.8 Connected forms browser/processor

The ability to have the forms processing engine render content when directly connected to the target
platform should be apparent. From the forms processing engine perspective, this could be the local
machine or a machine that is network attached. In either case, there is a constructed agent which feeds
the material to the forms processor for purposes of rendering the user interface and interacting with the
UEFI Forum, Inc. March 2019 1737

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
user. Note that a forms processor could simply act on the forms data without ever having to render the
user interface and interact with the user. This situation is much more akin to script processing and should
be a very supportable situation.

Figure 19. Connected Forms Browser/Processor

33.2.1.9 Disconnected Forms Browser/Processor

By enabling the ability to import and export a platform’s settings, this infrastructure can also enable the
ability for offline configuration. In this instance, a forms processor can interpret a given platform’s form
data and enable (either through user interaction or through automated scripting) the changing of
configuration settings. These settings can then be applied to the target platform when a connection is
established.

Figure 20. Disconnected Forms Browser/Processor

33.2.1.10 O/S-Present Forms Browser/Processor

When it is desired that the forms data be used in the presence of an O/S, this specification describes a
means by which to support this capability. By being able to encapsulate the data and export it through
UEFI Forum, Inc. March 2019 1738

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
standard means such that an O/S agent (e.g. forms browser/processor) can retrieve it, O/S-present usage
models can be made available for further value-add implementations.

Figure 21. O/S-Present Forms Browser/Processor

33.2.1.11 Where are the Results Stored

The forms data encodes how to store the changes per configuration question. The ability to save data to
the platform as well as to a proprietary on-board store is provided. The premise is that each of the target
non-volatile store components (e.g. motherboard, add-in device, etc.) would advertise an interface as
described in this specification so that the forms browser/processor can route changes to the appropriate
target.

Figure 22. Platform Data Storage
UEFI Forum, Inc. March 2019 1739

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.2 Localization

Localization is the process by which the interface is adapted to a particular language. The table below
discusses issues with localization and provides possible solutions.

Table 13. Localization Issues

33.2.3 User Input

To limit the number of required glyphs, we must also limit the amount and type of user input.

User input generally comes from the following main types of devices:

• Keyboards

• Mouse-like pointing devices

Input from other devices, such as limited keys on a front panel, can be handled two ways:

Issue Example Solution Comment

Directional
display

Right to left printing for
Hebrew.

Printing direction is a
function of the
language.

The display engine
may or may not
support all display
techniques. If a
language supports a
display mechanism
that the display
engine does not, the
language that uses
the font must be
selected.

Punctuation Punctuation is directional. A
comma in a right-to-left
language is different from a
comma in a left-to-right
language.

Character choice is
the choice of the
author or translator.

Line breakage Rules vary from language to
language.

The UEFI preboot GUI
performs little or no
formatting.

The runtime display
depends on the
runtime browser and
is not defined here.

Date and time Most Europeans would
write July 4, 1776, as 4/7/
1776 while the United
States would write it 7/4/
1776 and others would
write 1776/7/4. The
separator characters
between the parts of both
date and time vary as well.

Generally left to the
creator of the user
interface.

Numbers 12,345.67 in one language
is presented as 12.345,67 in
another.

Print only integers
and do not insert
separator characters.

This solution is gaining
acceptance around
the world as more
people use
computers.
UEFI Forum, Inc. March 2019 1740

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
• Treat the limited keys as special-purpose devices with completely unique interfaces.

• Programmatically make the limited keys mimic a keyboard or mouse-like pointing device.

Pointing devices require no localization. They are universally understood by the subset of the world
population addressed in this specification. For example, if a person does not know how to use a mouse or
other pointing device, it is probably not a good idea to allow that person to change a system’s
configuration.

On the other hand, keyboards are localized at the keycaps but not in the electronics. In other words, a
French keyboard and a German keyboard might have very different keys but the software inside the
keyboard—let alone the software in the system at the other end of the wire—cannot know which set of
keycaps are installed.

This specification proposes to solve this issue by using the keys that are common between keyboards and
ignoring language-specific keys. Keys that are available on USB keyboards in preboot mode include the
following:

• Function keys (F1 – F12)

• Number keys (0-9)

• "Upside down T" cursor keys (the arrows, home, end, page up, page down)

• Numeric keypad keys

• The Enter, Space, Tab, and Esc keys

• Modifier keys (shifts, alts, controls, Windows*)

• Number lock

The scan codes for these keys do not vary from language to language. These keys are the standard keys
used for browser navigation although most end-users are unaware of this fact. Help for form-entry-
specific keys must be provided to enable a useful keys-only interface. The one case where other,
language-specific keys may be used is to enter passwords. Because passwords are never displayed, there
is no requirement to translate scan code to Unicode character codes (keyboard localization) or scan
codes to font glyphs.

Additional data can be provided to enable a richer set of input characters. This input is necessary to
support features such as arbitrary text input and passwords.

33.2.4 Keyboard Layout

33.2.4.1 Keyboard Mapping

 UEFI’s keyboard mapping loosely based definitions on ISO 9995. It bases the naming mechanism on the
figure below. The keys highlighted in brown are the keys that nearly all keyboard layouts use for
customizations. However, customization does not necessarily mean that all the keys are different. In fact,
most of the keys are likely to be the same. When modifying the mapping, one can normally reference the
keys in brown as the likely candidates (for whom to create modifications).
UEFI Forum, Inc. March 2019 1741

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 23. Keyboard Layout

Instead of referencing keys in hardware-specific ways such as scan codes, the HII specification defines an
EFI_KEY enumeration that allows for a simple method of referencing this hardware abstraction. Type
EFI_KEY is defined in EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout(). It also provides a
way to update the keyboard layout with a great deal of flexibility. Any of the keys can be mapped to any
16-bit Unicode character code or control code value.

When defining the values for a particular key, there are six elements that are pertinent to the key:

Key name
The EFI_KEY enumeration defines the names of the above keys.

Unicode Character Code
Defines the Unicode Character Code (if any) of the named key.

Shifted UnicodeCharacter Code
Defines the Unicode Character Code (if any) of the named key while the shift
modifier key is being pressed

Alt-GR Unicode Character Code
Defines the Unicode Character Code (if any) of the named key while the Alt-GR
modifier key (if any) is being pressed.

Shifted Alt-GR UnicodeCharacter Code
Defines the Unicode Character Code (if any) of the named key while the Shift and Alt-
GR modifier key (if any) is being pressed.

Modifier key value
Defines the nonprintable special function that this key has assigned to it.

• Under normal circumstances, a key that has any Unicode character code
definitions generally has a modifier key value of EFI_NULL_MODIFIER.
This value means the key has no special function other than the printing
of a character. An exception to the rule is if any of the Unicode character
codes have a value of 0xFFFF. Although rarely used, this value is the one
case in which a key might have both a printable character and an active
control key value.

An example of this exception would be the numeric keypad’s insert key. The definition for this key on a
standard US keyboard is as follows:
UEFI Forum, Inc. March 2019 1742

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Key = EfiKeyZero

Unicode = 0x0030 (basically a ‘0’)

ShiftedUnicode = 0xFFFF (the exception to the rule)

AltGrUnicode = 0x0000

ShiftedAltGrUnicode = 0x0000

Modifier = EFI_INSERT_MODIFIER

This key is one of the few keys that, under normal circumstances, prints something out but also has a
special function. These special functions are generally limited to the numeric keypad; however, this
general limitation does not prevent someone from having the flexibility of defining these types of
variations.

33.2.4.2 Modifier Keys

The definitions of the modifier keys allow for special functionality that is not necessarily accomplished by
a printable character. Many of these modifier keys are flags to toggle certain state bits on and off inside
of a keyboard driver. An example is EFI_CAPS_LOCK_MODIFIER. This state being active could alter
what the typing of a particular key produces. Other control keys, such as EFI_LEFT_ARROW_MODIFIER
and EFI_END_MODIFIER, affect the position of the cursor. One modifier key is likely unfamiliar to most
people who exclusively use US keyboards, and that key is the EFI_ALT_GR_MODIFIER key. This key’s
primary purpose is to activate a secondary type of shift modifier that exposes additional printable
characters on certain keys. In some keyboard layouts, this key does not exist and is normally the
EFI_RIGHT_ALT_MODIFIER key. None of the other modifier key functions should be a mystery to
someone familiar with the usage of a standard computer keyboard.

An example of a few descriptor entries would be as follows:

Layout = {

 EfiKeyLCtrl,0,0,0,0,EFI_LEFT_CONTROL_MODIFIER, //Left control
 // key

 EfiKeyA0,0,0,0,0,EFI_NULL_MODIFIER, //Not defined

 // windows key

 EfiKeySpaceBar,0x0020,0x0020,0x0020,0x0020,EFI_NULL_MODIFIER

 //(Space Bar)

}

See "Related Definitions" in EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout() for the defined
modifier values.

33.2.4.3 Non-spacing Keys

Non-spacing keys are a concept that provides the ability to OR together an accent key and another
printable character. Non-spacing keys are defined as special types of modifier characters. They are
typically accent keys that do not advance the cursor and in essence are a type of modifier key in that they
maintain some level of state.

The way a person uses a non-spacing key is that the non-spacing key that maybe has the function of
overlaying an umlaut (two dots) onto whatever the next character might be. The user presses the umlaut
non-spacing key and follows it with a capital A, which yields an "Ä."
UEFI Forum, Inc. March 2019 1743

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
An example of a few descriptor entries would be as follows:

//

// If it’s a dead key, we need to pass a list of physical key

// names, each with a unicode, shifted, altgr, shiftedaltgr

// character code. Each key name will have a Modifier value of

// EFI_NS_KEY_MODIFIER for the first entry, and then the list of

// EFI_NS_KEY_DEPENDENCY_MODIFIER physical key descriptions.

// This eventually will lead to the next normal non-modifier key

// definition.

//

// This requires defining an additional Modifier value of

// EFI_NS_KEY_DEPENDENCY_MODIFIER to signify

// EFI_NS_KEY_MODIFIER children definitions.

//

// The keyboard driver (consumer of the layouts) will know that

// any key definitions with the EFI_NS_KEY_DEPENDENCY_MODIFIER

// modifier do not redefine the value of the specified EFI_KEY.

// They are simply used as a special case augmentation to the

// original EFI_NS_KEY_MODIFIER.

//

// It is an error condition to define a 
// EFI_NS_KEY_MODIFIER without having all the 
// EFI_NS_KEY_DEPENDENCY_MODIFIER keys defined serially.

//

Layout = {

EfiKeyE0, 0, 0, 0, 0, EFI_NS_KEY_MODIFIER,

EfiKeyC1, 0x00E2, 0x00C2, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,

EfiKeyD3, 0x00EA, 0x00CA, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,

EfiKeyD8, 0x00EC, 0x00CC, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,

EfiKeyD9, 0x00F4, 0x00D4, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,

EfiKeyD7, 0x00FB, 0x00CB, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER

}

In the above example, a key located at E0 is designated as a dead key. Using a common German keyboard
layout as the example, a circumflex accent "^" is defined as a dead key at the E0 location. The A, E, I, O,
and U characters are valid keys that can be pressed after the dead key and will produce a valid printable
character. These characters are located at C1, D3, D8, D9, and D7 respectively.

The results of the Layout definition provided above would allow for the production of the following
characters: âÂêÊîÎôÔûÛ.

33.2.5 Forms

This specification describes how a UEFI driver or application may present a forms (or dialogs) based
interface. The forms-based interface assumes that each window or screen consists of some window
dressing (title & buttons) and a list of questions. These questions represent individual configuration
settings for the application or driver, although several GUI controls may be used for one question.
UEFI Forum, Inc. March 2019 1744

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 24. Forms-based Interface Example

The forms are stored in the HII database, along with the strings, fonts and images. The various attributes
of the forms and questions are encoded in IFR (Internal Forms Representation)—with each object and
attribute a byte stream.

Other applications (so-called “Forms Processors”) may use the information within the forms to validate
configuration setting values without a user interface at all.

The Forms Browser provides a forms-based user interface which understands how to read the contents
of the forms, interact with the user, and save the resulting values. The Forms Browser uses forms data
installed by an application or driver during initialization in the HII database. The Forms Browser organizes
the forms so that a user may navigate between the forms, select the individual questions and change the
values using the HID and display devices. When the user has finished making modifications, the Forms
Browser saves the values, either to the global EFI variable store or else to a private variable store
provided by the driver or application.
UEFI Forum, Inc. March 2019 1745

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 25. Platform Configuration Overview

33.2.5.1 Form Sets

Form sets are logically-related groups of forms.

Attributes

Each forms set has the following attributes:

Form Set Identifier
Uniquely identifies the form set within a package list using a GUID. The Form Set
Identifier, along with a device path, uniquely identifies a form set in a system.

Form Set Class Identifier
Optional array of up to three GUIDs which identify how the form set should be used
or classified. The list of standard form set classes is found in the "Related
Definitions" section of EFI_FORM_BROWSER2_PROTOCOL.SendForm().

Title
Title text for the form set.

Help
Help text for the form set.

Image
Optional title image for the form set.

EFI Global
Variable

Store

Driver
Driver

HII
Database

IFR
Browser

HID
Devices

Display
Devices

Driver-Specific
Variable Store
UEFI Forum, Inc. March 2019 1746

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Animation
Optional title animation for the form set

Description

Within a form set, there is one parent form and zero or more child forms. The parent form is the first
enabled, visible form in the form set. The child forms are the second or later enabled, visible forms in the
form set. In general, the Forms Browser will provide a means to navigate to the parent form. A cross-
reference (see Section 33.2.5.4.10) is used to navigate between forms within a form set or between
forms in different form sets.

Variable stores are declared within a form set. Variable stores describe the means for retrieval and
storage of configuration settings, and location information within that variable store. For more
information, see Section 33.2.5.6.

Default stores are declared within a form set. Default stores group together different types of default
settings (normal, manufacturing, etc.) and give them a name. See Section 33.2.5.8 for more information.

The form set can control whether or not to process an individual form by nesting it inside of an
EFI_IFR_DISABLE_IF expression. See Section 33.2.5.2.1 for more information. The form set can
control whether or not to display an individual form by nesting it inside of an EFI_IFR_SUPPRESS_IF
expression.

Syntax

The form set consists of an EFI_IFR_FORM_SET object, where the body consists of

form-set :=EFI_IFR_FORM_SET form-set-list

form-set-list :=form form-set-list |

EFI_IFR_IMAGE form-set-list |

EFI_IFR_ANIMATION form-set-list |

EFI_IFR_VARSTORE form-set-list |

EFI_IFR_VARSTORE_EFI form-set-list |

EFI_IFR_VARSTORE_NAME_VALUE form-set-list |

EFI_IFR_DEFAULTSTORE form-set-list |

EFI_IFR_DISABLE_IF expression form-set-list |

<empty>

EFI_IFR_SUPPRESS_IF expression form-set-list | <empty>

33.2.5.2 Forms

Forms are logically-related groups of statements (including questions) designed to be displayed together.

Attributes

Each form has the following attributes:
UEFI Forum, Inc. March 2019 1747

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Form Identifier
A 16-bit unsigned integer, which uniquely identifies the form within the form set.
The Form Identifier, along with the device path and Form Set Identifier, uniquely
identifies a form within a system.

Title
Title text for the form. The Forms Browser may use this text to describe the nature
and purpose of the form in a window title.

Image
 Optional title image for the form. The Forms Browser may use this image to display
the nature and purpose of the form in a window title.

Animation
Optional title animation for the form set.

Modal
If a form is modal, then the on-form interaction must be completed prior to
navigating to another form. See "User Interaction", Section 33.2.10.1.

The form can control whether or not to process a statement by nesting it inside of an
EFI_IFR_DISABLE_IF expression. See Section 33.2.5.3.2 for more information.

The form can control whether a particular statement is selectable by nesting it inside of an
EFI_IFR_GRAY_OUT_IF expression. Statements that cannot be selected are displayed by Form
Browsers, but cannot be selected by a user. EFI_IFR_GRAY_OUT_IF causes statements to be displayed
with some visual indication. See Section 33.2.5.3.4 for more information.

The form can control whether to display a statement by nesting it inside of an EFI_IFR_SUPPRESS_IF
expression. See Section 33.3.8.3.75 for more information.

Syntax

The form consists of an EFI_IFR_FORM object, where the body consists of:

form:=EFI_IFR_FORM form-tag-list |

EFI_IFR_FORM_MAP form-tag-list

form-tag-list:=form-tag form-tag-list |

<empty>

form-tag:= EFI_IFR_IMAGE |

EFI_IFR_ANIMATION |

EFI_IFR_LOCKED |

EFI_IFR_RULE |

EFI_IFR_MODAL_TAG |

statement |
UEFI Forum, Inc. March 2019 1748

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
question |

 cond-statement-list |

<empty>

statement-list:= statement statement-list |

 question statement-list |

 cond-statement-list |

 <empty>

cond-statement-list:= EFI_IFR_DISABLE_IF expression statement-list |

EFI_IFR_SUPPRESS_IF expression statement-list |

EFI_IFR_GRAY_OUT_IF expression statement-list |

question-list := question question-list |

<empty>

Other unknown opcodes are permitted, but will be ignored.

33.2.5.2.1 Enable/Disable

Disabled forms will not be processed at all by a Forms Processor. Forms are enabled unless:

• The form nests inside an EFI_IFR_DISABLE_IF expression which evaluated to false.

• The disabling of forms is evaluated during Forms Processor initialization and is not re-
evaluated.

33.2.5.2.2 Modifiability

Forms can be locked so that a Forms Editor will not change it. Forms are unlocked unless:

• The form has an EFI_IFR_LOCKED in its scope.

The locking of statement is evaluated only during Forms Editor initialization.

33.2.5.2.3 Visibility

Suppressed forms will not be displayed. Forms are visible unless:

• The form is disabled (see Section 33.2.5.4)

• The form is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluates to false.
UEFI Forum, Inc. March 2019 1749

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.5.3 Statements

All displayable items within the body of a form are statements. Statements provide information or
capabilities to the user. Questions (see Section 33.2.5.4) are a specialized form of statement with a value.
Statements are used only by Forms Browsers and are ignored by other Forms Processors.

Attributes

Statements have the following attributes:

Prompt
The text that will be displayed with the statement.

Help
The extended descriptive text that can be displayed with the statement.

Image
The optional image that will be displayed with the statement.

Animation
The optional animation that will be displayed with the statement.

Other than Questions, there are three types of statements:

• Static Text/Image

• Subtitle

• Cross-Reference

Syntax

statement := subtitle | static-text | reset button

statement-tag-list :=statement-tag statement-tag-list |

<empty>

statement-tag :=EFI_IFR_IMAGE |

EFI_IFR_LOCKED

EFI_IFR_ANIMATION

33.2.5.3.1 Display

Statement display depends on the Forms Browser. Statements do not describe how the statement must
be displayed but rather provide resources (such as text and images) for use by the Forms Browser. The
Forms Browser uses this information to create the necessary user interface.

The Forms Browser may use the visibility (see Section 33.2.5.3.3) or selectability (see Section 33.2.5.3.4)
of the statements to change the way the item is displayed. The EFI_IFR_GRAY_OUT_IF expression
explicitly requires that nested statements have visual differentiation from normal statements.
UEFI Forum, Inc. March 2019 1750

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.5.3.2 Enable/Disable

Statements which have been disabled will not be processed at all by a Forms Processor. Statements are
enabled unless:

• The parent statement or question is disabled.

• The statement is nested inside an EFI_IFR_DISABLE_IF expression which evaluated to false.

• The disabling of statements is evaluated during Forms Browser initialization and is not re-
evaluated.

33.2.5.3.3 Visibility

Suppressed statements will not be displayed. Statements are displayed unless:

• The parent statement or question is suppressed.

• The statement is disabled (see Section 33.2.5.3.2)

• The statement is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluates to
false.

The suppression of the statements is evaluated during Forms Browser initialization. Subsequently, the
suppression of statements is reevaluated each time a value in any question on the selected form has
changed.

33.2.5.3.4 Evaluation of Selectable Statements

A user in a Forms Browser can choose statements which are selectable. Statements are selectable unless:

• The parent statement or question is not selectable.

• The statement is suppressed (see Section 33.2.5.3.2).

• The statement is nested inside an EFI_IFR_GRAY_OUT_IF expression which evaluated to
false.

The evaluation of selectable statements takes place during Forms Browser initialization. Subsequently,
selectable statements are reevaluated each time a value in any question on the selected form has
changed.

33.2.5.3.5 Modifiability

A statement can be locked so that a Forms Editor will not change it. Statements are unlocked unless:

• The parent form or parent statement/question is locked.

• The statement has an EFI_IFR_LOCKED in its scope.

The locking of a statement is evaluated only during Forms Editor initialization.

33.2.5.3.6 Static Text/Image

The Forms Browser displays the specified prompt, the specified text and (optionally) the image, but has
no user interaction.

Syntax

static-text:= EFI_IFR_TEXT statement-tag-list
UEFI Forum, Inc. March 2019 1751

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.5.3.7 Subtitle

The subtitle is a means of visually grouping questions by providing a separator, some optional separating
text, and an optional image.

Syntax

subtitle:= EFI_IFR_SUBTITLE statement-tag-list

33.2.5.3.8 Reset Button

Attributes

Reset Buttons have the following attributes:

Default Id
Specifies the default set to use when restoring defaults to the current form.

Syntax

reset button:= EFI_IFR_RESET_BUTTON statement-tag-list

33.2.5.4 Questions

Questions are statements which have a value. The value corresponds to a configuration setting for the
platform or for a device. The question uniquely identifies the configuration setting, describes the possible
values, the way the value is stored, and how the question should be displayed.

Attributes

Questions have the following attributes (in addition to those of statements):

Question Identifier
A 16-bit unsigned integer which uniquely identifies the question within the form set
in which it appears. The Question Identifier, along with the device path and Form Set
Identifier, uniquely identifies a question within a system.

Default Value
The value used when the user requests that defaults be loaded.

Manufacturing Value
The value used when the user requests that manufacturing defaults are loaded.

Value
Each question has a current value. See Section 33.2.5.4.1 for more information.

Value Format
The format used to store a question’s value.

Value Storage
The means by which values are stored. See Section 33.2.5.4.2 for more information.
UEFI Forum, Inc. March 2019 1752

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Refresh Identifiers
Zero or more GUIDs associated with an event group initialized by the Forms Browser
when the form set containing the question is opened. If the event group associated
with the GUID is signaled (see SignalEvent()), then the question value will be
updated from storage.

Refresh Interval
The minimum number of seconds that must pass before the Forms Browser will
automatically update the current question value from storage. The default value is
zero, indicating there will be no automatic refresh.

Validation
New values assigned to questions can be validated, using validation expressions, or,
if connected, using a callback. See Section 33.2.5.9 for more information.

Callback
If set, the callback will be called when the question’s value is changed. In some
cases, the presence of these callbacks prevents the question’s value from being
edited while disconnected.

The question can control whether a particular option can be displayed by nesting it inside of an
EFI_IFR_SUPPRESS_IF expression. Form Browsers do not display Suppressed Options, but Suppressed
Options may still be examined by Form Processors.

Syntax

question := action-button | boolean | date | number | ordered-list | string | time |

 cross-reference

question-tag-list := question-tag question-tag-list |

 <empty>

question-tag := statement-tag |

 EFI_IFR_INCONSISTENT_IF expression |

 EFI_IFR_NO_SUBMIT_IF expression |

 EFI_IFR_WARNING_IF expression |

 EFI_IFR_DISABLE_IF expression question-list |

 EFI_IFR_REFRESH_ID RefreshEventGroupId |

 EFI_IFR_REFRESH |

 EFI_IFR_VARSTORE_DEVICE

question-option-tag:=EFI_IFR_SUPPRESS_IF expression |

 EFI_IFR_VALUE optional-expression |
UEFI Forum, Inc. March 2019 1753

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
 EFI_IFR_READ expression |
 EFI_IFR_WRITE expression | 
 default |
 option

question-option-list:= question-tag question-option-list |

 question-option-tag question-option-list |

 <empty>

Other unknown opcodes are permitted but are ignored.

33.2.5.4.1 Values

Question values are a data type listed in Section 33.2.5.7.4. During initialization of the Forms Processor or
Forms Browser, the values of all enabled questions are retrieved. If the value cannot be retrieved, then
the question’s value is Undefined.

A question with the value of type Undefined will be suppressed. This suppression will be reevaluated
based on Value Refresh or when any question value on the selected form is changed.

When the form is submitted, the modified values are written to Value Storage. When the form is reset,
the question value is set to the default question value. If there is no default question value, the question
value is unchanged.

When a question value is retrieved, the following process is used:

1. Set the this internal constant to have the same value as the one read from the question’s
storage.

2. If present, change the current question value to the value returned by a question’s nested
EFI_IFR_READ operator.
UEFI Forum, Inc. March 2019 1754

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 26. Question Value Retrieval Process

When a question value is changed, the following process is used:

1. Set the this internal constant to have the same value as the current question value.

2. If present, evaluate the question’s nested EFI_IFR_WRITE (Section 33.3.8.3.94) operator.

3. Write the value to the question’s storage

this = Question’s
value f rom storage

READ QUESTION
VALUE

Quest ion Value =
READ(this)

Question Value =
this

RETURN Quest ion
Value

Question Has
Storage?

Yes

Question Has
Nested

VALUE?
this = VALUE()

this = Undefined

Question Has
Nested READ? Yes

No

Yes

No

No
UEFI Forum, Inc. March 2019 1755

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 27. Question Value Change Process

33.2.5.4.2 Storage Requirements

Question storage requirements describe the type and size of storage for the value. These storage
requirements describe whether the question’s value will be stored as an EFI global variable or using
driver local storage. It also describes whether the value is packed together with other values in a buffer,
or passed as a name-value pair. See Section 33.2.5.6 for more information.

33.2.5.4.3 Display

Question display depends on the Forms Browser. Questions do not describe how the question must be
displayed. Instead, questions provide resources (such as text and images) and information about visibility
and the ability to edit the question. The Forms Browser uses these to create the necessary user interface.

Questions can have prompt text, help text and (optionally) an image. The prompt text usually describes
the nature of the question. Help text is displayed either in a special display area or only at the request of
the user. Questions can also have hints which describe how to visually organize the information

33.2.5.4.4 Action Button

Action buttons are buttons which cause a pre-defined configuration string to process immediately. There
is no storage directly associated with the button.

WRITE
QUESTION

VALUE

WRITE(this)

Write Question
Value to Storage

EXIT

Question Has
Nested
WRITE?

this = Question
Value

Yes

No

No
UEFI Forum, Inc. March 2019 1756

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Attributes

Action buttons have no additional attributes other than the common question attributes).

Storage
There is no storage associated with the action button.

Results
There are no results associated with the action button.If used in an expression, the
question value will always be Undefined.

Syntax

action-button:= EFI_IFR_ACTION question-tag-list

33.2.5.4.5 Boolean

Boolean questions are those that allow a choice between true and false. The question’s value is Boolean.
In general, construct questions so that the prompt text asks questions resulting in ‘yes/enabled/on’ is
‘true’ and ‘no/disabled/off’ is ‘false’.

Boolean questions may be displayed as a check box, two radio buttons, a selection list, a list box, or a
drop list box.

Attributes

Boolean questions have no additional attributes other than the common question attributes:

Storage
If the boolean question uses Buffer storage or EFI Variable (see Section 33.2.5.6),
then the size is exactly one byte, with the FALSE condition is zero and the TRUE
value is 1.

Results
The results are represented as either 0 (FALSE) or 1 (TRUE).

Syntax

boolean:= EFI_IFR_CHECKBOX question-option-list

33.2.5.4.6 Date

Date questions allow modification of part or all of a standard calendar date. The format of the date
display depends on the Forms Browser and any localization.

Attributes

Date questions have the following attributes:

Year Suppressed
The year will not be displayed or updated.

Month Suppressed
The month will not be displayed or updated.
UEFI Forum, Inc. March 2019 1757

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Day Suppressed
The day will not be displayed or updated.

UEFI Storage
In addition to normal question Value Storage, Date questions can optionally be
instructed to save the date to either the system time or system wake-up time using
the UEFI runtime services SetTime() or SetWakeupTime(). In this case, the date
and time will be read first, the modifications made and changes will be written back.

Conversion to and from strings to a date depends on the system localization.

The date value is stored an EFI_HII_TIME structure. The TimeZone field is always set to
EFI_UNSPECIFIED_TIMEZONE. The Daylight field is always set to zero. The contents of the other fields
are undetermined.

Storage
If the date question uses Buffer storage or EFI Variable storage (see Section 33.2.5.6),
then the stored result will occupy exactly the size of EFI_HII_DATE.

Results
Results for date questions are represented as a hex dump of the EFI_HII_DATE
structure. If used in a question, the value will be a buffer containing the contents of
the EFI_HII_DATE structure.

Syntax

date := EFI_IFR_DATE question-option-list

33.2.5.4.7 Number

Number questions allow modification of an integer value up to 64-bits. Number questions can also
specify pre-defined options.

Attributes

Number questions have the following attributes:

Radix
Hint describes the output radix of numbers. The possible values are unsigned
decimal, signed decimal or hexadecimal. Numbers displayed in hexadecimal will be
prefixed by ‘0x’

Minimum Value
The minimum unsigned value which can be accepted for this question.

Maximum Value:
The maximum unsigned value which can be accepted for this question.

Skip Value:
Defines the minimum increment between values.
UEFI Forum, Inc. March 2019 1758

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Storage
If the number question uses Buffer storage or EFI Variable storage (see
Section 33.2.5.6), then the buffer size specified by must be 1, 2, 4 or 8. Also, the
Forms Processor will do implicit error checking to make sure that the signed or
unsigned value can be stored in the Buffer without lost of significant bits. For
example, if the buffer size is 1 byte, then the largest unsigned integer value would be
255. Likewise, the largest signed integer value would be 127 and the smallest signed
integer value would be -128. The Forms Processor will automatically detect this as an
error and generate an appropriate error.

Results
The results are represented as string versions of unsigned hexadecimal values.

Syntax

number := EFI_IFR_NUMERIC question-option-list |

EFI_IFR_ONE_OF question-option-list

33.2.5.4.8 Set

Sets are questions where n containers can be filled with any of m pre-defined choices. This supports both
lists where a given value can only appear in one of the slots or where the same choice can appear many
times.

Each of the containers takes the form of an option which a name, a value and (optionally) an image.

Attributes

Set questions have the following attributes:

Container Count
 Specifies the number of available selectable options.

Unique
If set, then each choice may be used at most, once.

NoEmpty
All slots must be filled with a non-zero value.

Storage
The set questions are stored as a Buffer with one byte for each Container.

Results

Each Container value is represented as two characters, one for each nibble. All
hexadecimal characters (a-f) are in lower-case.

The results are represented as a series of Container values, starting with the lowest
Container.

Syntax

ordered-list:=EFI_IFR_ORDERED_LIST question-option-list
UEFI Forum, Inc. March 2019 1759

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Options

Set questions treat the values specified by nested EFI_IFR_ONE_OF_OPTION values as the value for a
single Container, not the entire question storage. This is different from other question types.

Defaults

Set questions treat the default values specified by nested EFI_IFR_DEFAULT or
EFI_IFR_ONE_OF_OPTION opcodes as the default value for all Containers. The default values must be
of type EFI_IFR_TYPE_BUFFER, with each byte in the buffer corresponding to a single Container value,
starting with the first container. If the buffer contains fewer bytes than MaxContainers, then the
remaining Containers will be set to a value of 0.

Default values returned from the ALTCFG section when ExtractConfig() is called fill the storage
starting with the first container.

33.2.5.4.9 String

String questions allow modification of a string.

Attributes

String questions have the following attributes:

Minimum Length
Hint describes the minimum length of the string, in characters.

Maximum Length
Hint describes the maximum length of the string, in characters.

Multi-Line
Hint describes that the string might contain multiple lines.

Output Mask
If set, the text entered will not be displayed.

Storage
The string questions are stored as a NULL-terminated string. If the time question
uses Buffer or EFI Variable storage (see Section 33.2.5.6), then the buffer size must
exceed the size of the NULL-terminated string. If the string is shorter than the length
of the buffer, the remainder of the buffer is filled with NULL characters.

Results
Results for string questions are represented as hex dump of the string, including the
terminating NULL character.

Syntax

string := EFI_IFR_STRING question-option-list |

EFI_IFR_PASSWORD question-option-list
UEFI Forum, Inc. March 2019 1760

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.5.4.10 Cross-Reference

Cross-reference questions provide a selectable means by which users navigate to other forms and/or
other questions. The form and question can be in the current form set, another form set or even in a
form associated with a different device. If the specified form or question does not exist, the button is not
selectable, is grayed-out, or is suppressed.

Attributes

Cross references can have the following attributes:

Form Identifier
The identifier of the target form.

Form Set Identifier
 Optionally specifies an alternate form-set which contains the target form. If
specified, then the focus will be on form within the form set specified by Form
Identifier. If the Form Identifier is not specified, then the first form in the Form Set is
used.

Question Identifier
 Optionally specifies the question identifier of the target question on the target
form. If specified then focus will be placed on the question specified by this
question identifier. Otherwise, the focus will be on the first question within the
specified form.

Device Path
 Optionally, the device path which contains the Form Identifier. Otherwise, the
device path associated with the form set containing this cross-reference will be
used.

Storage
Storage is optional for a cross-reference question. It is only present when the cross-
reference question does not supply any target (i.e., REF5). If the question uses Buffer
or EFI Variable storage (see Section 33.2.5.6), then the buffer size must be exactly
the size of the EFI_HII_REF structure.

Results
Results for cross-reference questions are represented as a hex dump of the question
identifier, form identifier, form set GUID and null-terminated device path text. If
used in a question, the question value will be a buffer containing the EFI_HII_REF
structure..

Syntax

cross-reference := EFI_IFR_REF statement-tag-list

33.2.5.4.11 Time

Time questions allow modification of part or all of a time. The format of the time display depends on the
Forms Browser and any localization.
UEFI Forum, Inc. March 2019 1761

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Attributes

Time questions have the following attributes:

Hour Suppressed
 The hour will not be displayed or updated.

Minute Suppressed
 The minute will not be displayed or updated.

Second Suppressed
 The second will not be displayed or updated.

UEFI Storage
 In addition to normal question Value Storage, time questions can be instructed to
save the time to either the system time or system wake-up time using the UEFI
runtime services SetTime or SetWakeupTime. In these instances, the date and time
is read first, the modifications made and changes are then written back.

Conversion to and from strings to a time depends on the system localization.

The time value is stored as part of an EFI_HII_TIME structure. The contents of the other fields are
undetermined.

Storage
If the time question uses Buffer or EFI Variable storage (see Section 33.2.5.6), then
the buffer size must be exactly the size of the EFI_HII_TIME structure..

Results
Results for time questions are represented as a hex dump of the EFI_HII_TIME
structure. If used in a question, the value will be a buffer containing the contents of
the EFI_HII_TIME structure.

Syntax

time:= EFI_IFR_TIME question-option-list

33.2.5.5 Options

Use Options within questions to give text or graphic description of a particular question value. They may
also describe the choices in the set data type.

Attributes

Options have the following attributes:

Text
The text for the option.

Image
The optional image for the option.
UEFI Forum, Inc. March 2019 1762

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Animation
The optional animation for the option.

Value
The value for the option.

Default
If set, this is the option selected when the user asks for the defaults. Only one visible
option can have this bit set within a question’s scope.

Manufacturing Default
If set, this is the option selected when manufacturing defaults are set. Only one
visible option can have this bit set within a question’s scope.

Syntax

option:= EFI_IFR_ONE_OF_OPTION option-tag-list

option-tag-list:= option-tag option-tag-list |

<empty>

option-tag :=EFI_IFR_IMAGE

EFI_IFR_ANIMATION

33.2.5.5.1 Visibility

Options which have been suppressed will not be displayed. Options are displayed unless:

• The parent question is suppressed.

• The option is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluated to false.

The suppression of the options is evaluated each time the option is displayed.

33.2.5.6 Storage

Question values are stored in Variable Stores, which are application, platform or device repositories for
configuration settings. In many cases, this is non-volatile storage. In other cases, it holds only the current
behavior of a driver or application.

Question values are retrieved from the variable store when the form is initialized. They are updated
periodically based on question settings and stored back in the variable store when the form is submitted.

It is possible for a question to have no associated Variable Store. This happens when the VarStoreId
associated with the question is set to zero and, for Date/Time questions, the UEFI Storage is disabled. For
questions with no associated Variable Store, the question must either support the RETRIEVE and
CHANGED callback actions (see EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()) or contain an
embedded READ or WRITE opcode: EFI_IFR_READ_OP and EFI_IFR_WRITE_OP (see
Section 33.3.8.3.58 and Section 33.3.8.3.94).

Because the value associated with a question contained in a Variable Store can be shared by multiple
questions, the questions must all treat the shared information as compatible data types.There are four
types of variable stores:
UEFI Forum, Inc. March 2019 1763

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Buffer Storage
With buffer storage, the application, platform or driver provides the definition of a
buffer which contains the values for one or more questions. The size of the entire
buffer is defined in the EFI_IFR_VARSTORE definition. Each question defines a field
in the buffer by providing an offset within the buffer and the size of the required
storage. These variable stores are exposed by the app/driver using the
EFI_HII_CONFIG_ACCESS_PROTOCOL, which is installed on the same handle as the
package list. Question values are retrieved via
EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() and updated via
EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig(). Rather than access the
buffer as a whole, Buffer Storage Variable Stores access each field independently,
via a list of one or more (field offset, value) pairs encoded as variable length text
strings as defined for the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Name/Value Storage
With name/value storage, the application provides a string which contains the
encoded values for a single question. These variable stores are exposed by the app/
driver using the EFI_HII_CONFIG_ACCESS_PROTOCOL, which is installed on the same
handle as the package list.

EFI Variable Storage
This is a specialized form of Buffer Storage, which uses the EFI runtime services
GetVariable() and SetVariable()to access the entire buffer defined for the
Variable Store as a single binary object..

EFI Date/Time Storage
For date and time-related questions, the question values can be retrieved using the
EFI runtime services GetTime() and GetWakeupTime() and stored using the EFI
runtime services SetTime() and SetWakeupTime().

The following table summarizes the types of information needed for each type of storage and where it is
retrieved from.

Table 14. Information for Types of Storage

Storage Type Information
Type

Where It Comes From

None Driver Handle Handle specified with NewPackageList() or derived

from

EFI_IFR_VARSTORE_DEVICE.DevicePath
UEFI Forum, Inc. March 2019 1764

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.5.7 Expressions

This section describes the expressions used in various expressions in IFR. The expressions are encoded
using normal IFR opcodes, but in RPN (Reverse Polish Notation) where the operands occur before the
operator.

Buffer Storage Driver Handle Handle specified with NewPackageList() or derived

from

EFI_IFR_VARSTORE_DEVICE.DevicePath

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId.

Variable Name Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId

Variable Store
Offset

Variable store offset specified by

EFI_IFR_QUESTION_HEADER.VarOffset.

Name/Value
Storage

Driver Handle Handle specified with NewPackageList() or derived

from

EFI_IFR_VARSTORE_DEVICE.DevicePath

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId.

Variable Name Variable name specified by

EFI_IFR_QUESTION_HEADER.VarStoreInfo.
VarName.

EFI Variable
Storage

Driver Handle None

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId.

EFI_Variable
GUID (for
Variable
Services)

EFI variable GUID specified by

EFI_IFR_VARSTORE_EFI.Guid.

EFI_Variable
Name (for
Variable
Services)

EFI variable name specified by

EFI_IFR_VARSTORE_EFI.Name.

Variable Name Variable name specified by

EFI_IFR_QUESTION_HEADER.VarStoreId.

Variable Store
Offset

Variable store offset specified by

EFI_IFR_QUESTION_HEADER.VarStoreInfo.
VarOffset.

EFI Date/Time
Storage

Driver Handle None

Variable ID None

Variable Name None

Storage Type Information
Type

Where It Comes From
UEFI Forum, Inc. March 2019 1765

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
The opcodes fall into these categories:

Unary operators
Functions taking a single sub-expression.

Binary operators.
Functions taking two sub-expressions.

Ternary operators.
Functions taking three sub-expressions.

Built-in functions.
Operators taking zero or more sub-expressions.

Constants.
Numeric and string constants.

Question Values.
Specified by their question identifier.

All integer operations are performed at 64-bit precision.

33.2.5.7.1 Expression Encoding

Expressions are usually encoded within the scope of another binary object. If the expression consists of
more than a single opcode, the first opcode should open a scope (Header.Scope = 1) and use an
EFI_IFR_END opcode to close the scope in order to make sure they can be skipped,

33.2.5.7.2 Expression Stack

When evaluating expressions, the Forms Processor uses a stack to hold intermediate values. Each
operator either pushes a value on the stack, pops a value from the stack, or both. For example, the
EFI_IFR_ONE operator pushes the integer value 1 on the expression stack. The EFI_IFR_ADD operator
pops two integer values from the expression stack, adds them together, and pushes the result back on
the stack.

After evaluating an expression, there should be only one value left on the expression stack.

33.2.5.7.3 Rules

Rules are pre-defined expressions attached to the form. These rules may be used in any expression within
the form’s scope. Each rule is given a unique identifier (0-255) when it is created by EFI_IFR_RULE. This
same identifier is used when the rule is referred to in an expression with EFI_IFR_RULE_REF.

To save space, rules are intended to allow manual or automatic extraction of common sub-expressions
from form expressions.

33.2.5.7.4 Data Types

The expressions use five basic data types:

Boolean
True or false.
UEFI Forum, Inc. March 2019 1766

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Unsigned Integer
64-bit unsigned integer.

String
Null-terminated string.

Buffer

Fixed size array of unsigned 8-bit integers.

Undefined

Undetermined value. Used when the value cannot be calculated or for run-time
errors.

Data conversion is not implicit. Explicit data conversion can be performed using the
EFI_IFR_TO_STRING, EFI_IFR_TO_UINT, and EFI_IFR_TO_BOOLEAN operators.

The Date and Time question values are converted to the Buffer data type filled with the
EFI_HII_DATE and EFI_HII_TIME structure contents (respectively).

The Ref question values are converted to the Buffer data type and filled with the EFI_HII_REF and
structure contents.

Syntax

The expressions have the following syntax:

expression := built-in-function |

constant |

expression unary-op |

expression expression binary-op |

expression expression expression ternary-op

expression-pair-list

 EFI_IFR_MAP

expression-pair-list := expression-pair-list expression expression |
 <empty>

optional-expression:=expression |

 <empty>

built-in-function := EFI_IFR_DUP |

EFI_IFR_EQ_ID_VAL |

EFI_IFR_EQ_ID_ID |

EFI_IFR_EQ_ID_VAL_LIST |
UEFI Forum, Inc. March 2019 1767

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
EFI_IFR_GET |

EFI_IFR_QUESTION_REF1 |

EFI_IFR_QUESTION_REF3 |

EFI_IFR_RULE_REF |

EFI_IFR_STRING_REF1 |

EFI_IFR_THIS |

EFI_IFR_SECURITY

constant := EFI_IFR_FALSE |

EFI_IFR_ONE |

EFI_IFR_ONES |

EFI_IFR_TRUE |

EFI_IFR_UINT8 |

EFI_IFR_UINT16 |

EFI_IFR_UINT32 |

EFI_IFR_UINT64 |

EFI_IFR_UNDEFINED |

EFI_IFR_VERSION |

EFI_IFR_ZERO

binary-op := EFI_IFR_ADD |

EFI_IFR_AND |

EFI_IFR_BITWISE_AND |

EFI_IFR_BITWISE_OR |

EFI_IFR_CATENATE |

EFI_IFR_DIVIDE |

EFI_IFR_EQUAL |

EFI_IFR_GREATER_EQUAL |

EFI_IFR_GREATER_THAN |

EFI_IFR_LESS_EQUAL |

EFI_IFR_LESS_THAN |

EFI_IFR_MATCH |

EFI_IFR_MATCH2 |
UEFI Forum, Inc. March 2019 1768

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
EFI_IFR_MODULO |

EFI_IFR_MULTIPLY |

EFI_IFR_NOT_EQUAL |

EFI_IFR_OR |

EFI_IFR_SHIFT_LEFT |

EFI_IFR_SHIFT_RIGHT |

EFI_IFR_SUBTRACT |

unary-op :=EFI_IFR_LENGTH |

EFI_IFR_NOT |

EFI_IFR_BITWISE_NOT |

EFI_IFR_QUESTION_REF2 |

EFI_IFR_SET |

EFI_IFR_STRING_REF2 |

EFI_IFR_TO_BOOLEAN |

EFI_IFR_TO_STRING |

EFI_IFR_TO_UINT |

EFI_IFR_TO_UPPER |

EFI_IFR_TO_LOWER

ternary-op :=EFI_IFR_CONDITIONAL |

EFI_IFR_FIND |

EFI_IFR_MID |

EFI_IFR_TOKEN |

EFI_IFR_SPAN

33.2.5.8 Defaults

To ensure consistent behavior when a platform attempts to restore settings to defaults, each question
op-code must have an active default setting. Defaults are pre-defined question values. The question
values may be changed to their defaults either through a Forms Processor-defined means or when the
user selects an EFI_IFR_RESET_BUTTON statement (see Section 33.2.5.3.8).

Each question may have zero or more default values, with each default value used for different purposes.
For example, there might be a "standard" default value, a default value used for manufacturing and a
"safe" default value. A group of default values used to configure a platform or device for a specific
purpose is called default store.

Default Stores

There are three standard default stores:
UEFI Forum, Inc. March 2019 1769

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Standard Defaults

These are the defaults used to prepare the system/device for normal operation.

Manufacturing Defaults

These are the defaults used to prepare the system/device for manufacturing.

Safe Defaults

These are the defaults used to boot the system in a “safe” or low-risk mode.

Attributes

Default stores have the following attributes:

Name
 Each default store has a user-readable name

Identifier
 A 16-bit unsigned integer. The values between 0x0000 and 0x3fff are reserved for
use by the UEFI specification. The values between 0x4000 and 0x7fff are reserved
for platform providers. The values between 0x8000 and 0xbfff are reserved for
hardware vendors. The values between 0xc000 and 0xffff are reserved for firmware
vendors.

#define EFI_HII_DEFAULT_CLASS_STANDARD 0x0000

#define EFI_HII_DEFAULT_CLASS_MANUFACTURING 0x0001
#define EFI_HII_DEFAULT_CLASS_SAFE 0x0002
#define EFI_HII_DEFAULT_CLASS_PLATFORM_BEGIN 0x4000
#define EFI_HII_DEFAULT_CLASS_PLATFORM_END 0x7fff
#define EFI_HII_DEFAULT_CLASS_HARDWARE_BEGIN 0x8000
#define EFI_HII_DEFAULT_CLASS_HARDWARE_END 0xbfff
#define EFI_HII_DEFAULT_CLASS_FIRMWARE_BEGIN 0xc000
#define EFI_HII_DEFAULT_CLASS_FIRMWARE_END 0xffff

Users of these ranges are encouraged to use the specification defined ranges for maximum
interoperability. Questions or platforms may support defaults for only a sub-set of the possible default
stores. Support for default store 0 ("standard") is recommended.

Defaulting

When retrieving the default values for a question, the Forms Processor uses one of the following (listed
from highest priority to lowest priority):

1. The value returned from the Callback() member function of the Config Access protocol
associated with the question when called with the Action set to one of the
EFI_BROWSER_ACTION_DEFAULT_x values (see Section 35.5). It is recommended that this
form only be used for questions where the default value alters dynamically at runtime.

2. The value returned in the Response parameter of the ConfigAccess() member function
(using the ALTCFG form). See Section 35.2.1.

3. The value specified by an EFI_IFR_DEFAULT opcodes appear within the scope of a question.
(see Section 33.3.8.3.12)
UEFI Forum, Inc. March 2019 1770

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
4. One of the Options (see Section 33.2.5.5) has its Standard Default or Manufacturing Default
attribute set.

5. For Boolean questions, the Standard Default or Manufacturing Default values in the Flags field.
(see Section 33.2.5.4.5).

Syntax

Default := EFI_IFR_DEFAULT

default-tag := EFI_IFR_VALUE |

 <empty>

33.2.5.9 Validation

Validation is the process of determining whether a value can be applied to a configuration setting.
Validation takes place at three different points in the editing process: edit-level, question-level and form-
level.

33.2.5.9.1 Edit-Level Validation

First, it takes place while the value is being edited with a Forms Browser. The Forms Browser may
optionally reject values selected by the user which would fail Question-Level validation. For example, the
Forms Browser may limit the length of strings entered so that they meet the Minimum and Maximum
Length.

33.2.5.9.2 Question-Level Validation

Second, it takes place when the value has changed, normally when the user attempts to leave the
control, navigate between the portions of the control or selects one of the option values. At this point, an
error occurs if:

• For a String (see Section 33.2.5.4.9), if the string length is less than the Minimum Length, then
the Forms Processor generates an error.

• For a String (see Section 33.2.5.4.9), if the string length is greater than the Maximum Length,
then the Forms Processor generates an error.

• For a Number (see Section 33.2.5.4.7), if the number cannot fit in the specified variable storage
without loss of significant bits, then the Forms Processor generates an error.

• For all questions, if an EFI_IFR_INCONSISTENT_IF evaluates to TRUE, then the Forms
Processor will display the specified error text.

• For all questions, if an EFI_IFR_WARNING_IF evaluates to TRUE, then the Forms Processor
will display the specified warning text.

33.2.5.9.3 Form-Level Validation

Third, it takes place when exiting the form or when the values are submitted. The error occurs under two
conditions:

• For all questions, if an EFI_IFR_NO_SUBMIT_IF evaluates to TRUE, then the Forms Processor
will display the specified error text.
UEFI Forum, Inc. March 2019 1771

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
• If a Forms Processor such as a script processor performs Form-Level validation, where the
concept of a form is not maintained, then the Form-Level validation must occur before
processing question values from other forms or before completion of the configuration
session.

33.2.5.10 Forms Processing

Forms Processors interpret the IFR in order to extract information about configuration settings. This
section describes how the IFR should be interpreted and how errors should be handled.

33.2.5.10.1 Error Handling

The Forms Processor may encounter problems in interpreting the IFR. This section describes the standard
ways of handling these issues:

Unknown Opcodes.
Unknown opcodes have a type which is not recognized by the Forms Processor. In
general, the Forms Processor ignores the opcode, along with any nested opcodes.

Malformed Opcodes.
Malformed objects have a length which is less than the minimum length for that
object type. In this case, the entire form is disabled.

Extended Opcodes.
Extended objects have a length longer than that expected by the Forms Processor.
In this case, the Forms Processor interprets the object normally and ignores the
extra data.

Malformed Forms Sets
Malformed forms sets occur when an object’s length would cause it extend beyond
the end of the forms set, or when the end of the forms set occurs while a scope is
still open. In this case, the entire forms set is ignored.

Reserved Bits Set.
The Forms Processor should ignore all set reserved bits.

33.2.5.11 Forms Editing

This section describes considerations for Forms Editors, which are a specialized Forms Processor which
can create and manipulate form lists, forms and questions in their binary form.

33.2.5.11.1 Locking

Locking indicates that a question or statement,--along with its related options, prompts, help text or
images--should not be moved or edited. A statement or question is locked when the IFR_LOCKED
opcode is found within its scope.

UEFI-compliant Forms Editors must allow statements or questions within an image to be locked, but
should not allow them to be unlocked. UEFI-compliant Forms Editors must not allow modification of
locked statements or questions or any of their associated data (including options, text or images).
UEFI Forum, Inc. March 2019 1772

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Note: This mechanism cannot prevent unauthorized modification. However, it does clearly state the
intent of the driver creator that they should not be modified.

33.2.5.11.2 Moving Forms

When forms are moved between form sets, the related data (such as forms, variable stores and default
stores) need to have their references renumbered to avoid conflicts with identifiers in the new form set.
For forms, these include:

• EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all references in EFI_IFR_REF)

• EFI_IFR_DEFAULTSTORE (and all references in EFI_IFR_DEFAULT)

• EFI_IFR_VARSTORE_x (and all references within question headers)

33.2.5.11.3 Moving Questions

When questions are moved between form sets, the related data (such as images and strings) need to be
moved and references to results-processing and storage may need to be revised. For example:

String and Images.
 If the question is being moved to another form set, then all strings and images
associated with the question must be moved to the package list containing the form
set and removed from the current one.

Form Set.
If the question is moved to a package list installed by a different driver, then the
EFI_IFR_VAR_STORAGE_DEVICE (see Section 33.3.8.3.92) should be nested in the
scope of the question, describing the driver installation device path.

Question References.
 If a question value in another form set is referred to in any expressions (such as
EFI_IFR_INCONSISTENT_IF or EFI_IFR_NO_SUBMIT_IF or
EFI_IFR_WARNING_IF) using either EFI_IFR_QUESTION_REF2 (see
Section 33.3.8.3.56) or EFI_IFR_QUESTION_REF1 (see Section) then these must
be converted to a form of EFI_IFR_QUESTION_REF3 (see Section 33.3.8.3.57),
specifying the EFI_GUID of the form set and/or the device path of the package list
containing the form set wherein the question referred to is defined.

When questions are moved between forms, whether in the same form list or another form list, question
behavior reliant on the current form may need revision. One example is the use of EFI_IFR_RULE_REF
in expressions. Here, rules are shortcuts for common expressions used in a form. If a question is moved to
another form, the references to any rules in expressions must be replaced by the expression itself.

33.2.5.12 Forms Processing & Security Privileges

The IFR provides a way for a Forms Processor to identify which forms, statements, questions and even
question values are available only to users with specific privilege levels and enforce those privilege levels.

Setup access security privileges are described in terms of GUIDs. The current user profile either has the
specified privilege or it does not. The EFI_IFR_SECURITY opcode returns whether or not the current
user profile has the specified setup access privilege. Combined with the expressions such as
EFI_IFR_DISABLE_IF, EFI_IFR_SUPPRESS_IF, EFI_IFR_GRAY_OUT_IF, EFI_IFR_WARNING_IF,
UEFI Forum, Inc. March 2019 1773

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
EFI_IFR_INCONSISTENT_IF and EFI_IFR_NOSUBMIT_IF, the author of a form can control access
to specific forms, statements and questions, or even control whether specific values are valid.

Forms Processors on systems with multiple setup-related user privilege levels must support report these
correctly when processing the EFI_IFR_SECURITY opcode.

Forms Processors on systems which support the UEFI User Authentication proposal must correctly
inquire from the current user profile whether or not it has security privileges (see Section 36.4.1.6 on
EFI_USER_INFO_ACCESS_SETUP and Section 36.3.1 on
EFI_USER_MANAGER_PROTOCOL.GetInfo()).

Forms Processors on systems which support re-identification during the platform configuration process
must support reevaluation of the EFI_IFR_SUPPRESS_IF and EFI_IFR_GRAY_OUT_IF upon receipt
of notification that the current user profile has been changed by using the UEFI Boot Service
CreateEventEx() and the EFI_USER_PROFILE_CHANGED_EVENT_GUID.

33.2.6 Strings

Strings in the UEFI environment are defined using UCS-2, which is a 16-bit-per-character representation.
For user-interface purposes, strings are one of the types of resources which can be installed into the HII
Database (see Section 33.2.9).

In order to facilitate localization, users reference strings by an identifier unique to the package list which
the driver installed. Each identifier may have several translations associated with it, such as English,
French, and Traditional Chinese. When displaying a string, the Forms Browser selects the actual text to
display based on the current platform language setting.

Figure 28. String Identifiers

The actual text for each language is stored separately (in a separate package), which makes it possible to
add and remove language support just by including or excluding the appropriate package.

STRING IDENTIFIER #33

ENGLISH: Hello World

FILIPINO: Mubuhay sa
daigdig!

SIMPLIFIED CHINESE: 你
好世界

SPANISH: ¡Hola mundo!

RUSSIAN: здравствуйте !
мир
UEFI Forum, Inc. March 2019 1774

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Each string may have font information, including the font family name, font size and font style, associated
with it. Not all platforms or displays can support fonts and styles beyond the system default font (see
Section 33.2.7), so the font information associated with the string should be viewed as a set of hints.

33.2.6.1 Configuration Language Paradigm

This specification uses the RFC 4646 language naming scheme to identify the language that a given string
is associated with. Since RFC 4646 allows for the same Primary language tags to contain a large variation
of subtags (e.g. regions), a best matching language algorithm is defined in RFC 4647. Callers of interfaces
that require RFC 4646 language codes to retrieve a Unicode string, must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646 language code.

Since the majority of strings discussed in this specification are associated with generating a user
interface, the languages that are typically associated with strings have commonly defined languages such
as en-US, zh-Hant, and it-IT. The RFC 4646 standard also reserves for private use languages prefixed with
a value of “x”.

Note: This specification defines for its own purposes one of these private use areas as a special-purpose
language that components can use for extracting information out of. Assume that any private-use
languages encountered by a compliant implementation will likely consider those languages as
configuration languages, and the associated behavior when referencing those languages will be
platform specific. Section 33.2.11.2 describes an example of such a use.

33.2.6.2 Unicode Usage

This section describes how different aspects of the Unicode specification related to the strings within this
specification.

33.2.6.2.1 Private Use Area

Unicode defines a private use area of 6500 characters that may be defined for local uses. Suggested uses
include Egyptian Hieroglyphics; see Developing International Software For Windows 95* and Windows
NT* for more information. UEFI prohibits use of this area in a UEFI environment. This is because a
centralized font database accumulated from the various drivers (a valid implementation) would end up
with collisions in the private use area, and, generally, an XML browser could not display these characters.

33.2.6.2.2 Surrogate Area

The Unicode specification has two 16-bit character representations: UCS-2 and UTF-16. The UEFI
specification uses UCS-2. The primary difference is that UTF-16 defines surrogate areas (see page 56 in
Professional XML) that allow for expanded character representations of the 16-bit Unicode. These
character representations are very similar to Double Byte Character Set (DBCS)—2048 Unicode values
split into two groups (D800–DBFF and DC00–DFFF). They are defined as having 16 additional bits of value
to make up the character, for a total of about one million extra characters. UEFI does not support
surrogate characters.

33.2.6.2.3 Non-Spacing Characters

Unicode uses the concept of a nonspacing character. These glyphs are used to add accents, and so on, to
other characters by what amounts to logically OR’ing the glyph over the previous glyph. There does not
appear to be any predictable range in the Unicode encoding to determine nonspacing characters, yet
UEFI Forum, Inc. March 2019 1775

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
these characters appear in many languages. Further, these characters enable spelling of several
languages including many African languages and Vietnamese.

33.2.6.2.4 Common Control Codes

This specification allows the encoding of font display information within the strings using special control
characters. These control codes are meant as display hints, and different platforms may ignore them,
depending on display capabilities.

In single-byte encoding, these are in the form 0x7F 0xyy or 0x7F 0x0y 0xzz. Single-byte encoding is
used only when coupled with the Standard Compression Scheme for Unicode, described in
Section 33.3.6.3.

In double-byte encoding, these are in the form 0xF6yy, 0xF7zz or 0xF8zz. When converted to UCS-2,
all control codes should use the 0xFxyy form.

Table 15. Common Control Codes for Font Display Information

33.2.6.2.5 Line Breaks

This section describes the use of control characters to determine where break opportunities within
strings. These guidelines are based on Unicode Technical Report #14, but are significantly simplified.

Spaces

In general, any of the following space characters is a line-break opportunity:

Value Description Single-Byte
Encoding

Double-Byte
Encoding

0x00 Font Family Select. The subsequent text will be
displayed in the font specified by the following byte.

0x7F 0x00 0xzz 0xF7zz

0x01 Font Size Select. The subsequent text will be
displayed in the point size, in half points, specified
by the following byte.

0x7F 0x01 0xzz 0xF8zz

0x20 Bold On. 0x7F 0x20 0xF620

0x21 Bold Off 0x7F 0x21 0xF621

0x22 Italic On 0x7F 0x22 0xF622

0x23 Italic Off 0x7F 0x23 0xF623

0x24 Underline On 0x7F 0x24 0xF624

0x25 Underline Off 0x7F 0x25 0xF625

0x26 Emboss ON 0x7F 0x26 0xF626

0x27 Emboss OFF 0x7F 0x27 0xF627

0x28 Shadow ON 0x7F 0x28 0xF628

0x29 Shadow OFF 0x7F 0x29 0xF629

0x2A DblUnderline ON 0x7F 0x2A 0xF62A

0x2B DblUnderline OFF 0x7F 0x2B 0xF62B

0020 SPACE

1680 OGHAM SPACE MARK
UEFI Forum, Inc. March 2019 1776

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
When a space is desired without a line-break opportunity, one of the following spaces should be used:

In-Word Break Opportunities

In some cases, allowing line-breaks in a word is desirable. These line break opportunities should be
explicitly described using one of the characters from the following list:

Hyphens

The following characters are hyphens and other characters which describe line break opportunities after
the character.

The following characters describe line break opportunities before and after them, but not between a pair
of them:

2000 EN QUAD

2001 EM QUAD

2002 EN SPACE

2003 EM SPACE

2004 THREE-PER-EM SPACE

2005 FOUR-PER-EM SPACE

2006 SIX-PER-EM SPACE

2008 PUNCTUATION SPACE

2009 THIN SPACE

200A HAIR SPACE

205F MEDIUM MATHEMATICAL SPACE

00A0 NO-BREAK SPACE (NBSP)

202F NARROW NO-BREAK SPACE (NNBSP)

200B ZERO WIDTH SPACE (ZWSP)

058A ARMENIAN HYPHEN

2010 HYPHEN

2012 FIGURE DASH

2013 EN DASH

0F0B TIBETAN MARK INTERSYLLABIC TSHEG

1361 ETHIOPIC WORDSPACE

17D5 KHMER SIGN BARIYOOSAN

2014 EM DASH
UEFI Forum, Inc. March 2019 1777

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
The following characters describe a hyphen which is not a line-breaking opportunity:

Mandatory Breaks

The following characters force a line-break:

33.2.7 Fonts

This section describes how fonts are used within the UEFI environment.

UEFI describes a standard font, which is required for all systems which support text display on bitmapped
output devices. The standard font (named ‘system’) is a fixed pitch font, where all characters are either
narrow (8x19) or wide (16x19). UEFI also allows for display of other fonts, both fixed-pitch and variable-
pitch. Platform support for these fonts is optional.

UEFI fonts are described using either the Simplified Font Package (Section 33.3.2) or the normal Font
Package (Section 33.3.3).

33.2.7.1 Font Attributes

Fonts have the following attributes:

Font Name
The font name describes, in broad terms, the visual style of the font. For example,
“Arial” or “Times New Roman” The standard font always has the name “sysdefault”.

Font Size
The font size describes the maximum height of the character cell, in pixels. The
standard font always has the font size of 19.

Font Style
The font style describes standard visual modifies to the base visual style of a font.
Supported font styles include: bold, italic, underline, double-underline, embossed,
outline and shadowed. Some font styles may also be simulated by the font
rendering engine. The standard font always has no additional font styles.

33.2.7.2 Limiting Glyphs

Strings in the UEFI environment can be presented in environments with very different limitations. The
most constrained environment is in the firmware phases prior to discovery of a boot device with a system
partition. The main limitation in this environment is storage space. If unexpected strings could be

2011 NON-BREAKING HYPHEN (NBHY)

000A NEW LINE

000C FORM FEED

000D CARRIAGE RETURN

2028 LINE SEPARATOR

2029 PARAGRAPH SEPARATOR
UEFI Forum, Inc. March 2019 1778

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
displayed before system partition availability, the UEFI environment would have to store glyphs for all
characters in a Unicode font. After system partition discovery, all glyphs could be made available.

Careful user interface design can limit to a manageable number, the quantity of unexpected characters
that the system could be called on to display. Knowing what strings the firmware is going to display limits
the number of glyphs it is required to carry.

In addition, carefully designed firmware can support a system where a limited number of strings are
displayed before system partition availability. This may be done while enabling the input and display of
large numbers of characters/glyphs using a full font file stored on the system partition. In such a
situation, the designer must ensure that enough information can be displayed. The designer must also
insure that the configuration can be changed using only information from firmware-based non-volatile
storage to obtain access to a satisfactory system partition.

UEFI requires platform support of a font containing the basic Latin character set.

While the system firmware will carry this standard font, there might be times when a UEFI application or
driver requires the printing of a character not contained within the platform firmware. In this case, a UEFI
driver or application can carry this font data and add it to the font already present in the HII Database.
New font glyphs are accepted when there is no font glyph definition for the Unicode character already in
the specified font.

In addition the standard system font and fonts extended by UEFI applications or drivers, it is possible for
drivers that implement the EFI HII Font Glyph Generator Protocol to render additional font glyphs with
specific font name, style, and size information, and add the new font packages to the HII Database. That
is when HII Font Ex searches the glyph block in the existing HII font packages, it will try to locate
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL protocol for generating the corresponding glyph block
and inserting the new glyph block into HII font package if the glyph block information is not exist in any
HII font package. The HII font package which the new glyph block inserted can be an existing HII font
package or a new HII font package created by HII Font Ex according to the EFI_FONT_DISPLAY_INFO of
character.

The figure below shows how fonts interact with the HII database and UEFI drivers, even if the font does
not already exist in the database.
UEFI Forum, Inc. March 2019 1779

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 29. Fonts

33.2.7.3 Fixed Font Description

To allow a UEFI application or driver to extend the existing fonts with additional characters, the UEFI
driver must be able to provide characters that fit aesthetically with the system font. For this reason the
capability to define attributes of different fonts and to suggest a reasonable default target for these
parameters is important.

Fonts can vary in width, style, baseline, height, size, and so on. The fixed font definition includes white
space and the glyph data, as well as the positioning of the glyph data. This prevents characters of
different fixed fonts from being adjusted at runtime to fit aesthetically together. To provide UEFI drivers
UEFI Forum, Inc. March 2019 1780

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
with a basic description of how to design fixed font characters, a subset of industry standard font terms
are defined below:

baseline
The distance from upper left corner of cell to the base of the Caps (A, B, C,…)

cap_height
The distance from the base of the Caps to the top of the Caps

x_height
The distance from the baseline to the top of the lower case ‘x’

descender
The distance some characters extended below the baseline (g, j, p, q, y)

ascender
The distance from the top of the lower case ‘x’ to the tall lower case characters (b, d,
f, h, k, l)

The following figure illustrates the font description terms:

Figure 30. Font Description Terms

This 8x19 system font example (above), follows the original VGA 8x16 definition and creating double
wide vertical lines, giving a bold look to the font (style = bold). Along with matching the 8x19 base system
font, if a UEFI driver wants to extend the DBCS (Double Byte Character Set) font, it must be aware of the
parameters that describe the 16x19 font, as shown below.
UEFI Forum, Inc. March 2019 1781

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 31. 16 x 19 Font Parameters

This 16x19 font example (above) has a style of plain (single width vertical lines) instead of bold like the
8x19 font, since there is not enough horizontal resolution to cleanly define the DBCS glyphs. The 16x19
ASCII characters have also been designed in a style matching the DBCS characters, allowing them to fit
aesthetically together. Note that the default 16x19 fixed width characters are not stored like 1-bit
images, one row after another; but instead stored with the left column (19 bytes) first, followed by the
right column (19 bytes) of character data. The figure below shows how the characters of the previous
figure would be laid out in the font structure.
UEFI Forum, Inc. March 2019 1782

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 32. Font Structure Layout

33.2.7.3.1 System Fixed Font Design Guidelines

To allow a UEFI application or driver to extend the fixed font character set, the UEFI system fonts must
adhere, at least roughly, to the design guidelines in the table below:

Table 16. Guidelines for UEFI System Fonts

In the table above lists the terms in priority order. The most critical guideline to match is the baseline,
followed by cap_height and x_height. The terms descender and ascender are not as critical to the
aesthetic look of the font as are the other terms. These font design parameters are only guidelines.
Failing to match them will not prevent reasonable operation of a UEFI driver that attempting to extend
the system font.

33.2.7.4 Proportional Fonts Description

Unlike the fixed fonts, proportional fonts do not have a predefined character cell; instead the character
cell is created based on the characters that are being displayed in the current line. In a proportional font

Term 8 x 19 Font 16 x 19 Font

baseline 15 pixels 14 pixels

cap_height 12 pixels 11 pixels

x_height 8 pixels 7 pixels

descender 3 pixels 4 pixels

ascender 4 pixels 4 pixels
UEFI Forum, Inc. March 2019 1783

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
only the glyph data is defined, no whitespace. Instead, the proportional font defines five parameters
(Width, Height, Offset_X, Offset_Y, & Advance), which allow the glyph data to be position in the character
cell and calculate the origin of the next character.

In the figure below, you can see these parameters (in ‘[…]’) for the characters shown, in addition you can
see the actual byte storage (the padding to the nearest byte is shown shaded).

Figure 33. Proportional Font Parameters and Byte Padding

To determine font baseline, scan all font glyphs calculating sum of Height and Offset_Y for each glyph.
The largest value of the sum defines location of the baseline.

The font line height is calculated by adding baseline with the largest by absolute value negative Offset_Y
among all the font glyphs.

33.2.7.4.1 Aligning Glyphs to the Baseline

To display a line of proportional glyphs, baseline and line height have to be determined. If all the
characters to be displayed are from the same font, the baseline and line height are the baseline and line
height of the font.

If the characters being displayed are from different fonts, scan glyphs of the characters to be displayed
calculating sum of Height and Offset_Y for each glyph. The largest value of the sum defines location of
the baseline.

The line height is calculated by adding baseline with the largest by absolute value negative Offset_Y
among all the characters to be displayed.

As shown in the following figure, once the baseline value is found it is added to the starting position of
the line to calculate the Origin. From the Origin, each and every glyph can be generated based on the
individual glyph parameters, including the calculation of the next glyph’s Origin.

Figure 34. Aligning Glyphs
UEFI Forum, Inc. March 2019 1784

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
The starting position (upper left hand corner) of the glyph is defined by (Origin_X + Offset_X), (Origin_Y –
(Offset_Y + Height)). The Origin of the next glyph is defined by (Origin_X + Advance), (Origin_Y).

In addition to determining the line height and baseline values; the scan of the characters also calculates
the line width by totaling up all of the advance values.

33.2.7.4.2 Proportional Font Design Guidelines

This method of aligning glyphs to a baseline allows one to place wildly different characters correctly
position on a single line. However there still is a need for the system proportional fonts to roughly adhere
to overall font height (19 pixels high character cells) and the placement of the baseline at the bottom of
the Caps (if applicable or about 5 pixels up from the bottom of the character cell). These guidelines are
not as critical as the fixed font guidelines, since the character cell height are defined at runtime, based on
what else is displayed with that character.

33.2.8 Images

The format of the images to be stored in the Human Interface Infrastructure (HII) database have been
created to conform to the industry standard 1-bit, 4-bit, 8-bit, and 24-bit video memory layouts. The 24-
bit and 32-bit display systems have the exact same display capabilities and the exact same pixel
definition. The difference is that the 32-bit pixels are DWORD aligned for improve CPU efficiency when
accessing video memory. The extra byte that is inserted from the 24-bit and the 32-bit layout has no
bearing on the actual screen.

Video memory is arranged left-to-right, and then top-to-bottom. In a 1-bit or monochrome display, the
most significant bit of the first byte defines the screen’s upper left most pixel. In a 4-bit or 16 color,
display the most significant nibble of the first byte defines the screen’s upper left most pixel. In a 8-bit or
256 color display, the first byte defines the screen’s upper left most pixel.

In both the 24-bit and 32-bit TrueColor displays, the first three bytes defines the screen’s upper left most
pixel. The first byte is the pixel’s blue component value, the next byte is the pixel’s green component
value, and the third byte is the pixel’s red component value (B,G,R). Each color component value can vary
from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions colors that can be specified. In the 32-
bit TrueColor display modes, the fourth byte is a don’t care.

33.2.8.1 Converting to a 32-bit Display

The UEFI recommended video mode for computer-like devices uses a 32-bit Linear Frame Buffer video
mode. All images stored in the HII database will need conversion to 32-bit before display.

To display a 24-bit image into 32-bit video memory, a pixel of the image is retrieved (read DWORD value
advance pixel offset by 3) and then written to the video memory (write DWORD value advance pixel
offset by 4).

To display any of the non-TrueColor images (1-bit, 4-bit, and 8-bit), there is an extra step of indirection
through the palette definition to get the TrueColor pixel value. First retrieve the palette index value by
isolating the corresponding bits, then index into the associated palette to retrieve the 24-bit (B,G,R) color
entry (read DWORD value), then write it to the video memory (write DWORD value advance pixel offset
by 4). For this reason, the palette color entry definition is defined exactly the same as the image color
pixel (B,G,R).
UEFI Forum, Inc. March 2019 1785

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.8.2 Non-TrueColor Displays

It is possible to display the HII database images on non-TrueColor video modes. You cannot however,
display images beyond the bit depth of the target screen resolution. For example you would be able to
display 1-bit, 4-bit, and 8-bit images in a 256 color video mode. To do this you must create a global
palette (256 entries), by merging all images color needs to a best fit palette and then programming the
hardware palette with that data.

The hardware palette color definition (R,G,B) is backwards from the screen pixel definition (B,G,R), and
will have to be swapped before programming. In addition, the hardware palette may only support 6-bit of
magnitude per color component instead of the 8-bit defined in the palette information section; therefore
the values will have to be shifted before writing.

33.2.9 HII Database

The Human Interface Infrastructure (HII) database is the resource that serves as the repository of all the
form, string, image and font data for the system. Drivers that contain information that is appropriate for
the database will export this data to the HII database.

For example, one driver might contain all the motherboard-specific data (the traditional “Setup” for the
system). Additionally, add-in cards may contain their own drivers, which, in turn, have their own Setup-
related data. All of the drivers that contain Setup-related data would export their information to the HII
database, as shown in the figure below.

Figure 35. HII Database

33.2.10 Forms Browser

The UEFI Forms Browser is the service that reads the contents of the HII Database and interprets the
forms data in order to present it to the user. For example, the Forms Browser can be used to gather all
setup-related data and presents it to the user. This service also takes the user input and allows for
changes to be saved into non-volatile storage.

The figure below shows the relationship between the HII database, UEFI drivers, and the UEFI Forms
Browser.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver
UEFI Forum, Inc. March 2019 1786

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 36. Setup Browser

33.2.10.1 User Interaction

The Forms Browser implementer has great flexibility as to the type of actual user interface provided. For
example, while required to support some forms of navigation (see
EFI_FORM_BROWSER2_PROTOCOL.SendForm() or the cross-reference question), it may optionally
support additional navigation capabilities, such as a back button or a menu bar. This section describes the
rules to which the Forms Browser user-interaction must conform.

33.2.10.1.1 Forms Browser details

The forms browser maintains a collection of one or more forms. The forms browser is required to provide
navigation for these forms if there is more than one (see Section 35.6, “Form Browser Protocol”).

The forms browser maintains one or more active forms. An active form is any form where the forms
browser is maintaining a set of question values. A form is considered active after all question values have
been read from storage and the EFI_BROWSER_ACTION_FORM_OPEN action has been sent to all
questions on the form which require callback. A form is considered inactive after all question values have
been either discarded or written to storage and the EFI_BROWSER_ACTION_FORM_CLOSE action has
been sent to all questions on the form which require callback.

The forms browser maintains a selected form. The selected form contains the selected question and
indicates the primary area of user interaction.

The standards form navigation behaviors are:

Navigate Forms.
When the user chooses this required behavior, a new form is selected and, if any
questions on the form are selectable (see Section 33.2.5.3.4), a question is selected.
Forms browsers are required to provide navigation to (at least) the first form in all

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver

UEFI Setup Browser
Provides user-interface support
Callable by a protocol interface
UEFI Forum, Inc. March 2019 1787

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
form sets when FormId is zero (see Section 35.6). This behavior cannot be selected
if the current form is modal (see Section 33.2.5.2, “Forms”).

Exit Browser/Discard All.
When the user chooses this optional behavior, the question values for active forms
are discarded, the active forms are deactivated and the forms browser exits with an
action request of EFI_BROWSER_ACTION_REQUEST_EXIT. This behavior cannot be
selected if the current form is modal (see Section 33.2.5.2, “Forms”).

Exit Browser/Submit All.
When the user chooses optional behavior, the question values are written to
storage, the active forms are deactivated and the forms browser exits with an action
request of EFI_BROWSER_ACTION_REQUEST_SUBMIT or
EFI_BROWSER_ACTION_REQUEST_RESET. This behavior cannot be selected if the
current form is modal (see Section 33.2.5.2, “Forms”).

Default.
When the user chooses this optional behavior, the current question values for the
questions on the focus form are updated from one of the default stores and then
the EFI_IFR_BROWSER_ACTION_REQUEST_DEFAULT_x action is sent for each of the
questions with the Callback attribute. This behavior can be initiated by a Reset
Button question (see sectionSection 33.2.5.3.8).

33.2.10.1.2 Selected Form

When a form is made active, the forms browser sends the EFI_BROWSER_ACTION_FORM_OPEN for all
questions supporting callback, retrieves the current question values, saves those as the original question
values and begins refreshing any questions that support it.

The forms browser maintains a current question value for each question on active forms. The current
question value is the last value that the forms browser read from storage/callback (see
Section 33.2.5.4.1, “Values”) or the last value committed by the user. The form is considered modified if
any of the current question values are modified (see Questions, below). The forms browser refreshes the
current question values of at least questions on the selected with a non-zero refresh interval.

The forms browser maintains a selected question on the selected form. The selected question is the
primary focus of the user’s interaction. When a form is selected, the forms browser must choose a
selectable question (see Section 33.2.5.3.4, “Evaluation of Selectable Statements”) as the selected
question, if one is present on the form.

The standard active form behaviors are:

Exit Browser/Discard All.
When the user chooses this required behavior, the question values for active forms
are discarded, the active forms are deactivated and the forms browser exits with an
action request of EFI_BROWSER_ACTION_REQUEST_EXIT. This behavior can be
initiated by the function associated with a question with the Callback attribute.
UEFI Forum, Inc. March 2019 1788

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Exit Browser/ Submit All.
When the user chooses this required behavior, the current question values for
active forms are validated (see nosubmitif, Section 33.3.8.3.45) and, if successful,
question values for active forms are written to storage, the active forms are
deactivated and the forms browser exits with an action request of
EFI_BROWSER_ACTION_REQUEST_SUBMIT. This behavior can be initiated by the
function associated with a question with the Callback attribute.

Exit Browser/Discard All/Reset Platform.
When the user chooses this required behavior, the question values for active forms
are discarded, the active forms are deactivated and the form browser exits with an
action request of EFI_BROWSER_ACTION_REQUEST_RESET. This behavior can be
initiated by the function associated with a question with the Callback attribute.

Exit Form/Submit Form.
Apply Form. When the user chooses this required behavior, the question values for
the selected form are validated (see ->nosubmitif, BUGBUG<-) and, if successful,
question values for the selected form are written to storage and the selected form is
deselected. This behavior can be initiated by the function associated with a question
with the Callback attribute.

Exit Form/Discard Form.
When the user chooses this required behavior, the question values for the selected
form are discarded and the selected form is deselected. This behavior can be
initiated by the function associated with a question with the Callback attribute.

Apply Form.
When the user chooses this required behavior, the question values for the selected
form are validated (see nosubmitif, BUGBUG) and, if successful, question values for
the selected form are written to storage. This behavior can be initiated by the
function associated with a question with the Callback attribute.

Discard Form.
When the user chooses this required behavior, the question values for the selected
form are discarded. This behavior can be initiated by the function associated with a
question with the Callback attribute.

Default.
When the user chooses this required behavior, the current question values for the
questions on the selected form are updated from a default store. This behavior can
be initiated by a Reset Button question (see Section 33.2.5.3.8).

Navigate To Question.
When the user chooses this required behavior, the selected question is deselected
and another question on the same form is selected. The types of navigation
provided between questions on the same form are beyond the scope of this
specification.
UEFI Forum, Inc. March 2019 1789

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Navigate To Form.
 When the user chooses this required behavior, the selected form is deselected and
the form specified by the question is selected. This behavior can be initiated by a
Cross-Reference question. Note that this behavior is distinct from the Navigate
Forms behavior described in Forms Navigation.

From these basic behaviors, more complex behaviors can be constructed. For example, a forms browser
might check whether the form is modified and, if so, prompt the user to select between the Exit Browser/
Discard All and Exit Browser/Submit All behaviors.

33.2.10.1.3 Selected Question

When the user navigates to a question or the forms browser selects a form with a selectable question,
the forms browser places the question in the static state. When the user is choosing another question
values for the selected question (by typing or from a menu or other means), the forms browser places the
question in the changing state. When the user finalizes selection of a question value the forms browser
returns the question to the static state.

The forms browser refreshes all questions in at least the selected form with a non-zero refresh interval
that are not modified. Typically, a forms browser will not update the displayed question value while the
selected question is in the changing state, but will when the selected question is in the static state. A
question is considered modified if there is storage associated with the question (i.e., a variable store was
specified) and the current question value is different from the original question value.

The standard active question behaviors are:

Change
When the user chooses this required behavior, the forms browser places the
selected question in the changing state and allows the user to specify a new current
question value for the active question. For example, selecting items in a drop box or
beginning to type a new value in an edit box.

With some question types and user interface styles, this behavior is hidden from the
user. For example, with check boxes or radio buttons as found in most windowed
user-interfaces, the user changes and commits the value with one action. Likewise,
with action buttons, selecting the action button implies both the question value and
the commit action.

This behavior corresponds to the CHANGING browser action request for questions
that support callback.

Commit
When the user chooses this required behavior, the forms browser validates the
specified question value (see EFI_IPF_INCONSISTENT_IF, Section 33.3.8.3.33) and,
if successful, places the selected question in the static state and updates the current
question value to that specified while in the changing state. If the selected
question’s current question value is different than the selected question’s original
question value, the selected question is considered modified. The form browser
must then re-evaluate the modifiability, selectability and visibility of other questions
in the selected form.
UEFI Forum, Inc. March 2019 1790

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
This behavior corresponds to the CHANGED browser action request for questions
that support callback.

Discard
When the user chooses this required behavior, the forms browser places the
question in the changed state.

33.2.11 Configuration Settings

In order to save user changes to configuration settings after the system reset or power-off, there must be
some form of non-volatile storage available. There are two types of non-volatile storage: system non-
volatile storage or add-in card non-volatile storage. Both types are supported.

In general, settings are not saved to non-volatile storage until the user specifically directs the Forms
Browser to do so. There are exceptions, such as when operating in a batch or script mode, setting a
system password, and updating the system date and time. The underlying platform support dictates
whether or not hardware configuration changes are committed immediately.

As shown in the figure below, when a system reset occurs, the firmware’s initialization routines will
launch the UEFI drivers (e.g. option ROMs). Drivers enabled to take direction from a non-volatile setting
read the updated settings during their initialization.
UEFI Forum, Inc. March 2019 1791

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 37. Storing Configuration Settings

33.2.11.1 OS Runtime Utilization

Due to the static nature of the data that is contained in the HII Database and the fact that certain classes
of non-volatile storage can be updated during OS run-time, it is possible for an application running under
an OS to read the HII information, make configuration changes and even make changes.

The figure below shows how an OS makes use of the HII database during runtime. In this case, the
contents of the HII Database is exported to a buffer. The pointer to the buffer is placed in the EFI System
Configuration Table, where it can be retrieved by an OS application.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver

UEFI Configuration Driver
Provides user-interface support
Callable by a protocol interface

System Reset

Initialization
Routines

NVRAM

USER
Changes
UEFI Forum, Inc. March 2019 1792

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 38. OS Runtime Utilization

The process used to allow an OS application to use this is as follows:

Drivers/applications in the system register user interface data into the HII Database

When the platform transitions from pre-boot to runtime phases of operation, the HII
ExportPackageLists() is called to export the contents of the HII Database into a runtime buffer.

This runtime buffer is advertised in the UEFI Configuration Table using the HII Database Protocol’s GUID
so that an OS application can find the data.

The HII ExportConfig() is called to export the current configuration into a runtime buffer.

This runtime buffer is advertised in the UEFI Configuration Table using the HII Configuration Routing
Protocol’s GUID so that an OS application can find the data.

When an O/S application wants to display pre-boot configuration content, it searches the UEFI
Configuration Table for the HII Database Protocol’s GUID entry and renders the contents from the
runtime buffer which it points to.

If the OS application needs to update the system configuration, the configuration information can be
updated.

For those configuration settings which are stored in UEFI variables (i.e., using GetVariable() and
SetVariable()), the application can update these using the abstraction provided by the operating
system.

For those configuration settings which are not stored in UEFI variables, the OS application can use the
UEFI UpdateCapsule runtime service to change the configuration.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Configuration Driver
Provides user-interface support
Callable by a protocol interface

Runtime Configuration
Application

Can act as a server to an HTML
browser

OS Buffer
UEFI Forum, Inc. March 2019 1793

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.11.2 Working with a UEFI Configuration Language

By defining the concept of a language that may provide hints to a consumer that the string payload may
contain pre-defined standard keyword content, the user of this solution can export their configuration
data for evaluation. This evaluation enables the consumer to determine if a particular platform supports
a given configuration language, and in-turn be able to adjust known settings that are stored in a platform-
specific manner. An example of this is illustrated below which uses various component described in this
and the other HII chapters of this specification. In the example, a fictional technology called XYZ exists,
and this particular platform supports it. The question is, how does a standard application which is not
privy to the platform’s construction know how this setting is stored? To-date, this is not a reasonably
solvable problem, but in the illustration below, this example shows how one might go about solving this
issue.

Figure 39. Standard Application Obtaining Setting Example

33.2.12 Form Callback Logic

Since it has been the design intent that the forms processor not need to understand the underlying
hardware implementations or design paradigms of the platform, there were certain needs that could
UEFI Forum, Inc. March 2019 1794

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
only be met by calling a more platform knowledgeable component. In this case, the component would
typically be associated with some hardware device (e.g. motherboard, add-in card, etc.). To facilitate this
interaction, some formal interfaces were declared for more platform-specific components to advertise
and the forms processor could then call.

Note that the need for the forms processor to call into an alternate component driver should be limited
as much as possible. The two primary reasons for this are the cases where off-line or O/S-present
configuration is important. The three flow charts which follow describe the typical decisions that a forms
processor would make with regards to handling processes which necessitate a callback.

Figure 40. Typical Forms Processor Decisions Necessitating a Callback (1)

A

Call Callback

(FORM_OPEN)

with Question Id

Call Callback

(RETRIEVE) with

Question Id

For Each Question

Outside of

DISABLE_IF

For Each Question

Inside

DISABLE_IF =

FALSE

Call Callback

(FORM_OPEN)

with Question Id

Call Callback

(RETRIEVE) with

Question Id

Exit

OM13190
UEFI Forum, Inc. March 2019 1795

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 41. Typical Forms Processor Decisions Necessitating a Callback (2)

Forms Browser

A

User Activity?

Refresh Timer

Expired For

Any Question?

Read Value

Call Callback

(RETRIEVE) with

Question Id &

Value

Update Display,

As Necessary

No

Yes

No

Value

Changed?

No

No

Restore

Defaults?

No

Yes

Exit

Call Callback

(FORM_CLOSE)

with Question Id

Yes

Exit

BYes

Yes, For

Each Question

OM13191
UEFI Forum, Inc. March 2019 1796

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 42. Typical Forms Processor Decisions Necessitating a Callback (3)

33.2.13 Driver Model Interaction

The ability for a UEFI driver to interact with a target controller is abstracted through the Configuration
Access Protocol. If a particular piece of hardware managed by a controller needs configuration services, it
is the responsibility of that controller to provide this configuration abstraction for the given device.
Regardless of whether a device driver or bus driver is abstracting the hardware configuration, the
interaction with a configured device is identical.

Note that the ability for a driver to provide these access protocols might be done fairly early in the
initialization process. Depending on the hardware capabilities, one might be advantaged in providing
configuration access very early so that being able to determine a given device’s current settings can be
done without a full enumeration of certain bus devices. Also note that the same recommendations that
are made in the DriverBinding sections should still be maintained. These cover the Supported, Started,
and Stopped functions.

Call Callback

(CHANGING) with

Question Id &

Value

Error Other

Than

UNSUPPORTE

D?

Call Callback

(CHANGED) with

Question Id &

Value

No

B

Yes

OM13192
UEFI Forum, Inc. March 2019 1797

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 43. Driver Model Interactions

33.2.14 Human Interface Component Interactions

The figure below depicts the model used inside a common deployment of HII to manage human interface
components.
UEFI Forum, Inc. March 2019 1798

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 44. Managing Human Interface Components

33.2.15 Standards Map Forms

Configuration settings are configuration settings. But the way in which they are controlled is driven by
different requirements. For example, the UEFI HII infrastructure focuses primarily on the way in which
the configuration settings can be browsed and manipulated by a user. Other standards such as the DMTF
Command-Line Protocol, focus on the way in which configuration settings can be manipulated via text
commands.

Each configuration method tends to view the configuration settings a different way. In the end, they are
changing the same configuration setting, but their means of exposing the control differs. The means by
which a configuration method (HII, DMTF, WMI, SNMP, etc.) exposes an individual configuration setting
is called a question.

In many cases, there is a one-to-one mapping between the questions exposed by these different
configuration methods. That is, a question, as exposed by one configuration method matches the
semantic meaning of the configuration setting exactly.

However, in other cases, there is not a one-to-one mapping. These cases break down into three broad
categories:

1. Value Shift. In this case, the configuration setting has the same scope as the question exposed
by a configuration method, but the values used to describe them are different. It may be as
simple as 1=5, 2=6, 3=7, etc. or something more complicated, where “ON”=1 and “OFF”=0.

2. One-To-Many. In this case, the configuration setting maps to two or more questions exposed
by a configuration method. For example the configuration setting might have the following
enumerated values:

a 0 = Disable Serial Port
b 1 = Enable Serial Port, I/O Port 0x3F8, IRQ 4
UEFI Forum, Inc. March 2019 1799

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
c 2 = Enable Serial Port, I/O Port 0x2F8, IRQ 3
d 3 = Enable Serial Port, I/O Port 0x3E8, IRQ 4
e 4 = Enable Serial Port, I/O Port 0x2E8, IRQ 3

But in the configuration method, the serial port is controlled by three separate questions:

• Question #1: 0 = disable, 1 = enable

• Question #2: I/O Port (disabled if Question #1 = 0)

• Question #3: IRQ (disabled if Question #1 = 0)

Changing the configuration method question #1 to a value of 0 requires that the configuration setting be
set to 0. In this case, there is the possibly of data loss. After changing the configuration setting to 0, the
information about the I/O port and IRQ are not preserved.

So, in order to change the configuration setting to the value of 1 would require three of the configuration
method’s questions to change value: Question #1=1, Question #2=0x3F8, Question #3=IRQ 4.

Figure 45. EFI IFR Form set configuration

3. Many-To-One. In this case, the conditions are reversed from the example described in #2
above. Now there are three configuration settings which map to a single configuration method
question.

For example, the configuration settings are described using three separate questions:

a Question #1: 0 = disable, 1 = enable
b Question #2: I/O Port (disabled if Question #1 = 0)
c Question #3: IRQ (disabled if Question #1 = 0)

EFI_IFR_FORM_SET

EFI_IFR_FORM EFI_IFR_FORM_MAP
(CFG METHOD #1)

ONE-OF QUESTION
(0 = Disable, 1 = 3F8/

IRQ4, etc.)

CHECKBOX
QUESTION (ENABLE)

NUMERIC QUESTION
(I/O PORT)

Button
Configuration

Setting #1

NUMERIC QUESTION
(IRQ)
UEFI Forum, Inc. March 2019 1800

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
But in the configuration method, the serial port is controlled by a single question with the following
enumerated values:

a 0 = Disable Serial Port
b 1 = Enable Serial Port, I/O Port 0x3F8, IRQ 4
c 2 = Enable Serial Port, I/O Port 0x2F8, IRQ 3
d 3 = Enable Serial Port, I/O Port 0x3E8, IRQ 4
e 4 = Enable Serial Port, I/O Port 0x2E8, IRQ 3

So, in order to change the configuration method to the value of 1 would require three configuration
settings to change value: Question #1=1, Question #2=0x3F8, Question #3=IRQ 4.

Figure 46. EFI IFR Form Set question changes

Some configuration settings may involve more than one of these mappings.

Standards map forms describe the questions exposed by these other configuration methods and how
they map back to the configuration settings exposed by the UEFI drivers. Each standards map form
describes the mapping for a single configuration method, along with that configuration method’s name
and version.

The questions within standards map forms are encoded using IFR in the same fashion as those within
other UEFI forms. The prompt strings for these questions are tied back to the names for those questions
within the configuration method (e.g., DMTF CLP).

EFI_IFR_FORM_SET

EFI_IFR_FORM EFI_IFR_FORM_MAP
(CFG METHOD #1)

CHECKBOX
QUESTION (ENABLE)

NUMERIC QUESTION
(I/O PORT)

Button
Configuration

Setting #1

NUMERIC QUESTION
(IRQ)

Button
Configuration

Setting #2

Button
Configuration

Setting #3

ONE-OF QUESTION
UEFI Forum, Inc. March 2019 1801

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.2.15.1 Create A Question’s Value By Combing Multiple Configuration Settings

Rather than reading directly from storage, these standards map questions retrieve their value using the
EFI_IFR_READ (Section 33.3.8.3.58) operator. This operator can aggregate a value from more than one
configuration settings using EFI_IFR_GET (Section 33.3.8.3.27). This operator can also change the type
(integer, string, Boolean) of the value so that, say, a configuration setting with a type of integer can be
represented in a standards map form as a string.

For example, to map a single question to three configuration settings (CS1, CS2 and CS3) as described in
scenario #3 in Section 33.2.1.5 above would have the following truth table:

Table 17. Truth table: Mapping a single question to three configuration settings

These become the following equations:

x0: Get(CS1) ? x1 : 0

x1: ((Get(CS2) & 0xF00) >> 8) == Get(CS3) + 1 ? x2 : Undefined

x2: Map(Get(CS2),0x3f8,1,0x2F8,2,0x3E8,3,0x2E8,4)

33.2.15.2 Changing Multiple Configuration Settings From One Question’s Value

Rather than writing directly to storage, these standards map questions change their value using the
EFI_IFR_WRITE (Section 33.3.8.3.94) operator. This operator can, in turn, use the EFI_IFR_SET
(Section 33.3.8.3.66) operator to change one or more configuration settings. This operator can also
change the type (integer, string, Boolean, etc.) of the value written so that, say, a configuration setting
with a type of integer can be represented in a standards map form as a string question.

For example, in example #2 above, the following table applies:

Table 18. Multiple configuration settings Example #2

CS1 CS2 CS3 Q

false X X 0

true 0x3F8 4 1

true 0x2F8 3 2

true 0x3E8 4 3

true 0x2E8 3 4

true any other value any other value Undefined

CS1 CS2 CS3 Q

false X X 0

true 0x3F8 4 1

true 0x3E8 3 2

true 0x2F8 4 3

true 0x2E8 3 4
UEFI Forum, Inc. March 2019 1802

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Set(CS1,Q != 0) &&

Set(CS2,Map(this,1,0x3F8,2,0x3E8,3,0x2F8,4,0x2E8)) &&

Set(CS3, Map(this,1,4,2,3,3,4,4,3)

33.2.15.3 Value Shifting

Value shifting is facilitated by the EFI_IFR_MAP (Section 33.3.8.3.38) operator. If this operator finds a
value in a list, it replaces it with another value from the list, even if the other value is a different type.

For example, consider the following list of values

Table 19. Values:

If the integer value 10 were supplied, the value “UEFI Boot Service Driver” would be returned. If the
integer value 20 were supplied, Undefined would be returned.

33.2.15.4 Prompts

In standards map forms, the prompts can be used as the key words for the configuration method. They
should be specified in the language i-uefi unless there are multiple translations available. Other standards
may use the question identifiers as the means of identifying the standard question.

33.3 Code Definitions

This chapter describes the binary encoding of the different package types:

• Font Package

• Simplified Font Package

• String Package

• Image Package

• Device Path Package

• Keyboard Layout Package

• GUID Package

• Forms Package

1 PEI Module

2 DXE Boot Service Driver

3 DXE Runtime Driver

10 UEFI Boot Service Driver

11 UEFI Runtime Driver

12 UEFI Application
UEFI Forum, Inc. March 2019 1803

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.1 Package Lists and Package Headers

EFI_HII_PACKAGE_HEADER

Summary

The header found at the start of each package.

Prototype

typedef struct {

 UINT32 Length:24;

 UINT32 Type:8;

 UINT8 Data[…];
} EFI_HII_PACKAGE_HEADER;

Members

Length The size of the package in bytes.
Type The package type. See EFI_HII_PACKAGE_TYPE_x, below.
Data The package data, the format of which is determined by Type.

Description

Each package starts with a header, as defined above, which indicates the size and type of the package.
When added to a pointer pointing to the start of the header, Length points at the next package. The
package lists form a package list when concatenated together and terminated with an
EFI_HII_PACKAGE_HEADER with a Type of EFI_HII_PACKAGE_END.

The type EFI_HII_PACKAGE_TYPE_GUID is used for vendor-defined HII packages, whose contents are
determined by the Guid.

The range of package types starting with EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN through
EFI_HII_PACKAGE_TYPE_SYSTEM_END are reserved for system firmware implementers.
UEFI Forum, Inc. March 2019 1804

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

#define EFI_HII_PACKAGE_TYPE_ALL 0x00

#define EFI_HII_PACKAGE_TYPE_GUID 0x01

#define EFI_HII_PACKAGE_FORMS 0x02

#define EFI_HII_PACKAGE_STRINGS 0x04

#define EFI_HII_PACKAGE_FONTS 0x05

#define EFI_HII_PACKAGE_IMAGES 0x06

#define EFI_HII_PACKAGE_SIMPLE_FONTS 0x07

#define EFI_HII_PACKAGE_DEVICE_PATH 0x08

#define EFI_HII_PACKAGE_KEYBOARD_LAYOUT 0x09

#define EFI_HII_PACKAGE_ANIMATIONS 0x0A

#define EFI_HII_PACKAGE_END 0xDF

#define EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN 0xE0

#define EFI_HII_PACKAGE_TYPE_SYSTEM_END 0xFF

Table 20. Package Types

33.3.1.1 EFI_HII_PACKAGE_LIST_HEADER

Summary

The header found at the start of each package list.

Package Type Description

EFI_HII_PACKAGE_TYPE_ALL Pseudo-package type used when exporting
package lists. See

ExportPackageList().

EFI_HII_PACKAGE_TYPE_GUID Package type where the format of the data
is specified using a GUID immediately
following the package header.

EFI_HII_PACKAGE_FORMS Forms package.

EFI_HII_PACKAGE_STRINGS Strings package

EFI_HII_PACKAGE_FONTS Fonts package.

EFI_HII_PACKAGE_IMAGES Images package.

EFI_HII_PACKAGE_SIMPLE_FONTS Simplified (8x19, 16x19) Fonts package

EFI_HII_PACKAGE_DEVICE_PATH Binary-encoded device path.

EFI_HII_PACKAGE_END Used to mark the end of a package list.

EFI_HII_PACKAGE_ANIMATIONS Animations package.

EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN...
EFI_HII_PACKAGE_TYPE_SYSTEM_END

Package types reserved for use by platform
firmware implementations.
UEFI Forum, Inc. March 2019 1805

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct {

 EFI_GUID PackageListGuid;

 UINT32 PackagLength;
} EFI_HII_PACKAGE_LIST_HEADER;

Members

PackageListGuid The unique identifier applied to the list of packages which
follows.

PackageLength The size of the package list (in bytes), including the header.

Description

This header uniquely identifies the package list and is placed in front of a list of packages. Package lists
with the same PackageListGuid value should contain the same data set. Updated versions should
have updated GUIDs.

33.3.2 Simplified Font Package

The simplified font package describes the font glyphs for the standard 8x19 pixel (narrow) and 16x19
(wide) fonts. Other fonts should be described using the normal Font Package.

A simplified font package consists of a header and two types of glyph structures—standard-width
(narrow) and wide glyphs.

33.3.2.1 EFI_HII_SIMPLE_FONT_PACKAGE_HDR

Summary

A simplified font package consists of a font header followed by a series of glyph structures.

Prototype

typedef struct _EFI_HII_SIMPLE_FONT_PACKAGE_HDR {

 EFI_HII_PACKAGE_HEADER Header;

 UINT16 NumberOfNarrowGlyphs;

 UINT16 NumberOfWideGlyphs;

 EFI_NARROW_GLYPH NarrowGlyphs[];

 EFI_WIDE_GLYPH WideGlyphs[];

} EFI_HII_SIMPLE_FONT_PACKAGE_HDR;

Members

Header

The header contains a Length and Type field. In the case of a font package, the type
will be EFI_HII_PACKAGE_SIMPLE_FONTS and the length will be the total size of
the font package including the size of the narrow and wide glyphs. See
EFI_HII_PACKAGE_HEADER.

NumberOfNarrowGlyphs The number of NarrowGlyphs that are included in the font
package.
UEFI Forum, Inc. March 2019 1806

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
NumberOfWideGlyphsThe number of WideGlyphs that are included in the font
package.

NarrowGlyphs An array of EFI_NARROW_GLYPH entries. The number of entries
is specified by NumberOfNarrowGlyphs.

WideGlyphs An array of EFI_WIDE_GLYPH entries. The number of entries is
specified by NumberOfWideGlyphs. To calculate the offset of
WideGlyphs, use the offset of NarrowGlyphs and add the size
of EFI_NARROW_GLYPH multiplied by the
NumberOfNarrowGlyphs.

Description

The glyphs must be sorted by Unicode character code.

It is up to developers who manage fonts to choose efficient mechanisms for accessing fonts. The
contiguous presentation can easily be used because narrow and wide glyphs are not intermixed, so a
binary search is possible (hence the requirement that the glyphs be sorted by weight).

33.3.2.2 EFI_NARROW_GLYPH

Summary

The EFI_NARROW_GLYPH has a preferred dimension (w x h) of 8 x 19 pixels.

Prototype

typedef struct {

 CHAR16 UnicodeWeight;

 UINT8 Attributes;

 UINT8 GlyphCol1[EFI_GLYPH_HEIGHT];

} EFI_NARROW_GLYPH;

Members

UnicodeWeight The Unicode representation of the glyph. The term weight is
the technical term for a character code.

Attributes The data element containing the glyph definitions; see
"Related Definitions" below.

GlyphCol1 The column major glyph representation of the character. Bits
with values of one indicate that the corresponding pixel is to
be on when normally displayed; those with zero are off.

Description

Glyphs are represented by two structures, one each for the two sizes of glyphs. The narrow glyph
(EFI_NARROW_GLYPH) is the normal glyph used for text display.
UEFI Forum, Inc. March 2019 1807

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

// Contents of EFI_NARROW_GLYPH.Attributes

#define EFI_GLYPH_NON_SPACING 0x01

#define EFI_GLYPH_WIDE 0x02

#define EFI_GLYPH_HEIGHT 19

#define EFI_GLYPH_WIDTH 8

Following is a description of the fields in the above definition:

33.3.2.3 EFI_WIDE_GLYPH

Summary

The EFI_WIDE_GLYPH has a preferred dimension (w x h) of 16 x 19 pixels, which is large enough to
accommodate logographic characters.

Prototype

typedef struct {

 CHAR16 UnicodeWeight;

 UINT8 Attributes;

 UINT8 GlyphCol1[EFI_GLYPH_HEIGHT];

 UINT8 GlyphCol2[EFI_GLYPH_HEIGHT];

 UINT8 Pad[3];

} EFI_WIDE_GLYPH;

Members

UnicodeWeight The Unicode representation of the glyph. The term weight is
the technical term for a character code.

Attributes The data element containing the glyph definitions; see
"Related Definitions" in EFI_NARROW_GLYPH for attribute
values.

GlyphCol1 and GlyphCol2 The column major glyph representation of the character.
Bits with values of one indicate that the corresponding pixel is
to be on when normally displayed; those with zero are off.

Pad Ensures that sizeof (EFI_WIDE_GLYPH) is twice the sizeof
(EFI_NARROW_GLYPH). The contents of Pad must be zero.

Description

Glyphs are represented via the two structures, one each for the two sizes of glyphs. The wide glyph
(EFI_WIDE_GLYPH) is large enough to display logographic characters.

EFI_GLYPH_NON_SPACING This symbol is to be printed "on top of" (OR’d with) the

previous glyph before display.

EFI_GLYPH_WIDE This symbol uses 16x19 formats rather than 8x19.
UEFI Forum, Inc. March 2019 1808

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.3 Font Package

The font package describes the glyphs for a single font with a single family, size and style. The package
has two parts: a fixed header and the glyph blocks. All structures described here are byte packed.

33.3.3.1 Fixed Header

The fixed header consists of a standard record header and then the character values in this section, the
flags (including the encoding method) and the offsets of the glyph information, the glyph bitmaps and the
character map.

typedef struct _EFI_HII_FONT_PACKAGE_HDR {

 EFI_HII_PACKAGE_HEADER Header;

 UINT32 HdrSize;
 UINT32 GlyphBlockOffset;

 EFI_HII_GLYPH_INFO Cell;

 EFI_HII_FONT_STYLE FontStyle;

 CHAR16 FontFamily[];

} EFI_HII_FONT_PACKAGE_HDR;

Header The standard package header, where Header.Type =
EFI_HII_PACKAGE_FONTS.

HdrSize Size of this header.
GlyphBlockOffset The offset, relative to the start of this header, of a series of

variable-length glyph blocks, each describing information
about the bitmap associated with a glyph.

Cell This contains the measurement of the widest and tallest
characters in the font (Cell.Width and Cell.Height). It also
contains the default offset to the horizontal and vertical origin
point of the character cell (Cell.OffsetX and Cell.OffsetY).
Finally, it contains the default AdvanceX.

FontStyle The design style of the font, 1 bit per style. See
EFI_HII_FONT_STYLE.

FontFamily The null-terminated string with the name of the font family to
which the font belongs.
UEFI Forum, Inc. March 2019 1809

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

typedef UINT32 EFI_HII_FONT_STYLE;

#define EFI_HII_FONT_STYLE_NORMAL 0x00000000

#define EFI_HII_FONT_STYLE_BOLD 0x00000001

#define EFI_HII_FONT_STYLE_ITALIC 0x00000002

#define EFI_HII_FONT_STYLE_EMBOSS 0x00010000

#define EFI_HII_FONT_STYLE_OUTLINE 0x00020000

#define EFI_HII_FONT_STYLE_SHADOW 0x00040000

#define EFI_HII_FONT_STYLE_UNDERLINE 0x00080000

#define EFI_HII_FONT_STYLE_DBL_UNDER 0x00100000

33.3.3.2 Glyph Information

For each Unicode character code, the glyph information gives the glyph bitmap, the character size and
the position of the bitmap relative to the origin of the character cell. The glyph information is encoded as
a series of blocks, each with a single byte header. The blocks must be processed in order.

Each block begins with a single byte, which contains the block type.

Figure 47. Glyph Information Encoded in Blocks

GLYPH BLOCK #1 DATA

GLYPH BLOCK #2 DATA

GLYPH BLOCK #n DATA

GLYPH BLOCK
#1 TYPE

GLYPH BLOCK
#2 TYPE

GLYPH BLOCK
#n TYPE
UEFI Forum, Inc. March 2019 1810

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_GLYPH_BLOCK {

 UINT8 BlockType;

 UINT8 BlockBody[];
} EFI_HII_GLYPH_BLOCK;

Members

The following table describes the different block types:

Description

In order to recreate all glyphs, start at the first block and process them all until a EFI_HII_GIBT_END
block is found. When processing the glyph blocks, each block refers to the current character value
(CharValueCurrent), which is initially set to one (1).

Glyph blocks of an unknown type should be skipped. If they cannot be skipped, then processing halts.

Name Value Description

EFI_HII_GIBT_END 0x00 The end of the glyph information.

EFI_HII_GIBT_GLYPH 0x10 Glyph information for a single character value, bit-packed.

EFI_HII_GIBT_GLYPHS 0x11 Glyph information for multiple character values.

EFI_HII_GIBT_GLYPH_DEFAULT 0x12 Glyph information for a single character value, using the
default character cell information.

EFI_HII_GIBT_GLYPHS_DEFAULT 0x13 Glyph information for multiple character values, using the
default character cell information.

EFI_HII_GIBT_GLYPH_VARIABILITY 0x14 Glyph information for the variable glyph.

EFI_HII_GIBT_DUPLICATE 0x20 Create a duplicate of an existing glyph but with a new
character value.

EFI_HII_GIBT_SKIP2 0x21 Skip a number (1-65535) character values.

EFI_HII_GIBT_SKIP1 0x22 Skip a number (1-255) character values.

EFI_HII_GIBT_DEFAULTS 0x23 Set default glyph information for subsequent glyph blocks.

EFI_HII_GIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_GIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_GIBT_EXT4 0x32 For future expansion (four byte length field)
UEFI Forum, Inc. March 2019 1811

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
UEFI Forum, Inc. March 2019 1812

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 48. Glyph Block Processing

Related Definitions

typedef struct _EFI_HII_GLYPH_INFO {

 UINT16 Width;

 UINT16 Height;

 INT16 OffsetX;

 INT16 OffsetY;

 INT16 AdvanceX;

} EFI_HII_GLYPH_INFO;

Width Width of the character or character cell, in pixels. For fixed-
pitch fonts, this is the same as the advance.

Height Height of the character or character cell, in pixels.
OffsetX Offset to the horizontal edge of the character cell.
OffsetY Offset to the vertical edge of the character cell.
AdvanceX Number of pixels to advance to the right when moving from

the origin of the current glyph to the origin of the next glyph.

33.3.3.2.1 EFI_HII_GIBT_DEFAULTS

Summary

Changes the default character cell information.

Prototype

typedef struct _EFI_HII_GIBT_DEFAULTS_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 EFI_HII_GLYPH_INFO Cell;

} EFI_HII_GIBT_DEFAULTS_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_DEFAULTS.

Cell

The new default cell information which will be applied to all subsequent
GLYPH_DEFAULT and GLYPHS_DEFAULT blocks.

Description

Changes the default cell information used for subsequent EFI_HII_GIBT_GLYPH_DEFAULT and
EFI_HII_GIBT_GLYPHS_DEFAULT glyph blocks. The cell information described by Cell remains in
effect until the next EFI_HII_GIBT_DEFAULTS is found. Prior to the first EFI_HII_GIBT_DEFAULTS
block, the cell information in the fixed header are used.
UEFI Forum, Inc. March 2019 1813

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.3.2.2 EFI_HII_GIBT_DUPLICATE

Summary

Assigns a new character value to a previously defined glyph.

Prototype

typedef struct _EFI_HII_GIBT_DUPLICATE_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 CHAR16 CharValue;

} EFI_HII_GIBT_DUPLICATE_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_DUPLICATE.

CharValue

The previously defined character value with the exact same glyph.

Description

Indicates that the glyph with character value CharValueCurrent has the same glyph as a previously
defined character value and increments CharValueCurrent by one.

33.3.3.2.3 EFI_HII_GIBT_END

Summary

Marks the end of the glyph information.

Prototype

typedef struct _EFI_GLYPH_GIBT_END_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

} EFI_GLYPH_GIBT_END_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType = EFI_HII_GIBT_END.

Description

Any glyphs with a character value greater than or equal to CharValueCurrent are empty.

33.3.3.2.4 EFI_HII_GIBT_EXT1, EFI_HII_GIBT_EXT2, EFI_HII_GIBT_EXT4

Summary

Future expansion block types which have a length byte.
UEFI Forum, Inc. March 2019 1814

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_GIBT_EXT1_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT8 BlockType2;

 UINT8 Length;

} EFI_HII_GIBT_EXT1_BLOCK;

typedef struct _EFI_HII_GIBT_EXT2_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT8 BlockType2;

 UINT16 Length;

} EFI_HII_GIBT_EXT2_BLOCK;

typedef struct _EFI_HII_GIBT_EXT4_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT8 BlockType2;

 UINT32 Length;

} EFI_HII_GIBT_EXT4_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType = EFI_HII_GIBT_EXT1,
EFI_HII_GIBT_EXT2 or EFI_HII_GIBT_EXT4.

Length

Size of the glyph block, in bytes.

BlockType2

Indicates the type of extended block. Currently all extended block types are reserved
for future expansion.

Description

These are reserved for future expansion, with length bytes included so that they can be easily skipped.

33.3.3.2.5 EFI_HII_GIBT_GLYPH

Summary

Provide the bitmap for a single glyph.
UEFI Forum, Inc. March 2019 1815

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_GIBT_GLYPH_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 EFI_HII_GLYPH_INFO Cell;

 UINT8 BitmapData[1];
} EFI_HII_GIBT_GLYPH_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPH.

Cell

Contains the width and height of the encoded bitmap (Cell.Width and
Cell.Height), the number of pixels (signed) right of the character cell origin where
the left edge of the bitmap should be placed (Cell.OffsetX), the number of pixels
above the character cell origin where the top edge of the bitmap should be placed
(Cell.OffsetY) and the number of pixels (signed) to move right to find the origin
for the next character cell (Cell.AdvanceX).

GlyphCount

The number of glyph bitmaps.

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom. Each glyph bitmap only encodes the portion of the bitmap enclosed by its
character-bounding box, but the entire glyph is padded out to the nearest byte. The
number of bytes per bitmap can be calculated as: ((Cell.Width + 7)/8) *
Cell.Height.

Description

This block provides the bitmap for the character with the value CharValueCurrent and increments
CharValueCurrent by one. Each glyph contains a glyph width and height, a drawing offset, number of
pixels to advance after drawing and then the encoded bitmap.

33.3.3.2.6 EFI_HII_GIBT_GLYPHS

Summary

Provide the bitmaps for multiple glyphs with the same cell information
UEFI Forum, Inc. March 2019 1816

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_GIBT_GLYPHS_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 EFI_HII_GLYPH_INFO Cell;

 UINT16 Count

 UINT8 BitmapData[1];
} EFI_HII_GIBT_GLYPHS_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPHS.

Cell

Contains the width and height of the encoded bitmap (Cell.Width and
Cell.Height), the number of pixels (signed) right of the character cell origin where
the left edge of the bitmap should be placed (Cell.OffsetX), the number of pixels
above the character cell origin where the top edge of the bitmap should be placed
(Cell.OffsetY) and the number of pixels (signed) to move right to find the origin
for the next character cell (Cell.AdvanceX).

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom, for each glyph. Each glyph bitmap only encodes the portion of the bitmap
enclosed by its character-bounding box. The number of bytes per bitmap can be
calculated as: ((Cell.Width + 7)/8) * Cell.Height.

Description

Provides the bitmaps for the characters with the values CharValueCurrent through
CharValueCurrent + Count -1 and increments CharValueCurrent by Count. These glyphs have
identical cell information and the encoded bitmaps are exactly the same number of byes.

33.3.3.2.7 EFI_HII_GIBT_GLYPH_DEFAULT

Summary

Provide the bitmap for a single glyph, using the default cell information.

Prototype

typedef struct _EFI_HII_GIBT_GLYPH_DEFAULT_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT8 BitmapData[];
} EFI_HII_GIBT_GLYPH_DEFAULT_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPH_DEFAULT.
UEFI Forum, Inc. March 2019 1817

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom. Each glyph bitmap only encodes the portion of the bitmap enclosed by its
character-bounding box. The number of bytes per bitmap can be calculated as:
((Global.Cell.Width + 7)/8) * Global.Cell.Height.

Description

Provides the bitmap for the character with the value CharValueCurrent and increments
CharValueCurrent by 1. This glyph uses the default cell information. The default cell information is
found in the font header or the most recently processed EFI_HII_GIBT_DEFAULTS.

33.3.3.2.8 EFI_HII_GIBT_GLYPHS_DEFAULT

Summary

Provide the bitmaps for multiple glyphs with the default cell information

Prototype

typedef struct _EFI_HII_GIBT_GLYPHS_DEFAULT_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT16 Count;

 UINT8 BitmapData[];
} EFI_HII_GIBT_GLYPHS_DEFAULT_BLOCK;

Members

Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPHS_DEFAULT.

Count

Number of glyphs in the glyph block.

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom, for each glyph. Each glyph bitmap only encodes the portion of the bitmap
enclosed by its character-bounding box. The number of bytes per bitmap can be
calculated as: ((Global.Cell.Width + 7)/8) * Global.Cell.Height.

Description

Provides the bitmaps for the characters with the values CharValueCurrent through
CharValueCurrent + Count -1 and increments CharValueCurrent by Count. These glyphs use the
default cell information and the encoded bitmaps have exactly the same number of byes.

33.3.3.2.9 EFI_HII_GIBT_SKIPx

Summary

Increments the current character value CharValueCurrent by the number specified.
UEFI Forum, Inc. March 2019 1818

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_GIBT_SKIP2_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT16 SkipCount;

} EFI_HII_GIBT_SKIP2_BLOCK;

typedef struct _EFI_HII_GIBT_SKIP1_BLOCK {

 EFI_HII_GLYPH_BLOCK Header;

 UINT8 SkipCount;

} EFI_HII_GIBT_SKIP1_BLOCK;

Members

Header

Standard glyph block header, where BlockType = EFI_HII_GIBT_SKIP1 or
EFI_HII_GIBT_SKIP2.

SkipCount

The unsigned 8- or 16-bit value to add to CharValueCurrent.

Description

Increments the current character value CharValueCurrent by the number specified.

33.3.3.2.10 EFI_HII_GIBT_GLYPH_VARIABILITY

Related Definitions

//***

// EFI_HII_GIBT_GLYPH_VARIABILITY (0x14)

//***

typedef struct _EFI_HII_GIBT_VARIABILITY_BLOCK {
EFI_HII_GLYPH_BLOCK Header;
EFI_HII_GLYPH_INFOCell;
UINT8 GlyphPackInBits;
UINT8 BitmapData [1];

} EFI_HII_GIBT_VARIABILITY_BLOCK;

Member

Header Standard glyph block header, where Blocktype =
EFI_HII_GIBT_GLYPH_VARIABILITY.

Cell Contains the width and height of the encoded bitmap
(Cell.Width and Cell.Height), the number of pixels (signed)
right of the character cell origin where the left edge of the
bitmap should be placed (Cell.OffsetX), the number of pixels
above the character cell origin where the top edge of the
UEFI Forum, Inc. March 2019 1819

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
bitmap should be placed (Cell.OffsetY) and the number of
pixels (signed) to move right to find the origin for the next
character cell (Cell.AdvanceX).

GlyphPackInBits This describes the bit length for each pixel in glyph. With this,
the length of BitmapData can be determined according to
GlyphPackInBits , cell.with and cell.height.
The valid value is GIBT_VARIABILITY_BLOCK_1_BIT,
GIBT_VARIABILITY_BLOCK_2_BIT,

GIBT_VARIABILITY_BLOCK_4_BIT,

GIBT_VARIABILITY_BLOCK_8_BIT,

GIBT_VARIABILITY_BLOCK_16_BIT,

GIBT_VARIABILITY_BLOCK_24_BIT,

GIBT_VARIABILTY_BLOCK_32_BIT

HII Font Ex protocol has no idea about how to decode the
bitmap of glyph if the glyph is declared as
EFI_HII_GIBT_GLYPH_VARIABLITY. The bitmap decoding is
resolved in EFI_HII_FONT_GLPHY_GENERATOR_PROTOCOL.
This field is used to determine the length of entire glyph
block.

BitmapData The raw data of the glyph pixels. The format of the glyph pixel
depends on the glyph generator. Only
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL knows how
to draw the glyph.
UEFI Forum, Inc. March 2019 1820

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 49. EFI_HII_GIBT_GLYPH_VARIABLITY Glyph Drawing Processing

33.3.4 Device Path Package

Summary

The device path package is used to carry a device path associated with the package list.

Prototype

typedef struct _EFI_HII_DEVICE_PATH_PACKAGE {

 EFI_HII_PACKAGE_HEADER Header;

//EFI_DEVICE_PATH_PROTOCOL DevicePath[];
} EFI_HII_DEVICE_PATH_PACKAGE;

Parameters

Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_DEVICE_PATH.

DevicePath

The Device Path description associated with the driver handle that provided the
content sent to the HII database.

 VARIABILITY

 VARIABILITY
UEFI Forum, Inc. March 2019 1821

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This package is created by NewPackageList() when the package list is first added to the HII database
by locating the EFI_DEVICE_PATH_PROTOCOL attached to the driver handle passed in to that function.

33.3.5 GUID Package

The GUID package is used to carry data where the format is defined by a GUID.

Prototype

typedef struct _EFI_HII_GUID_PACKAGE_HDR {

 EFI_HII_PACKAGE_HEADER Header;
 EFI_GUID Guid;

// Data per GUID definition may follow

} EFI_HII_GUID_PACKAGE_HDR;

Members

Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_TYPE_GUID.

Guid

Identifier which describes the remaining data within the package.

Description

This is a free-form package type designed to allow extensibility by allowing the format to be specified
using Guid..

33.3.6 String Package

The Strings package record describes the mapping between string identifiers and the actual text of the
strings themselves. The package consists of three parts: a fixed header, the string information and the
font information.

33.3.6.1 Fixed Header

The fixed header consists of a standard record header and then the string identifiers contained in this
section and the offsets of the string and language information.
UEFI Forum, Inc. March 2019 1822

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_STRING_PACKAGE_HDR {

EFI_HII_PACKAGE_HEADER Header;

 UINT32 HdrSize;

 UINT32 StringInfoOffset;

 CHAR16 LanguageWindow[16];

 EFI_STRING_ID LanguageName;

 CHAR8 Language[…];
} EFI_HII_STRING_PACKAGE_HDR;

Members

Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_STRINGS.

HdrSize

Size of this header.

StringInfoOffset

Offset, relative to the start of this header, of the string information.

LanguageWindow

Specifies the default values placed in the static and dynamic windows before
processing each SCSU-encoded string.

LanguageName

String identifier within the current string package of the full name of the language
specified by Language.

Language

The null-terminated ASCII string that specifies the language of the strings in the
package. The languages are described as specified by Appendix M.

Related Definition

#define UEFI_CONFIG_LANG ”x-UEFI”
#define UEFI_CONFIG_LANG_2 ”x-i-UEFI”

33.3.6.2 String Information

For each string identifier, the string information gives the string’s text and font. The string information is
encoded as a series of blocks, each with a single byte header. The blocks must be processed in order,
using the current string identifier (StringIdCurrent), which is set initially to one (1). Processing
continues until an EFI_SIBT_END block is found.

The types of blocks are: string blocks, duplicate blocks, font blocks, and skip blocks. String blocks specify
the text and font for the current string identifier and increment to the next string identifier. Duplicate
blocks copy the text of a previous string identifier and increment to the next string identifier. Skip bocks
skip string identifiers, leaving them blank.
UEFI Forum, Inc. March 2019 1823

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 50. String Information Encoded in Blocks

Each block begins with a single byte, which contains the block type.

typedef struct {

 UINT8 BlockType;

 UINT8 BlockBody[];
} EFI_HII_STRING_BLOCK;

The following table describes the different block types:

Name Value Description

EFI_HII_SIBT_END 0x00 The end of the string information.

EFI_HII_SIBT_STRING_SCSU 0x10 Single string using default font information.

EFI_HII_SIBT_STRING_SCSU_FONT 0x11 Single string with font information.

EFI_HII_SIBT_STRINGS_SCSU 0x12 Multiple strings using default font
information.

EFI_HII_SIBT_STRINGS_SCSU_FONT 0x13 Multiple strings with font information.

EFI_HII_SIBT_STRING_UCS2 0x14 Single UCS-2 string using default font
information.

EFI_HII_SIBT_STRING_UCS2_FONT 0x15 Single UCS-2 string with font information

EFI_HII_SIBT_STRINGS_UCS2 0x16 Multiple UCS-2 strings using default font
information.

STRING BLOCK #1 DATA

STRING BLOCK #2 DATA

STRING BLOCK #n DATA

STRING BLOCK
#1 TYPE

STRING BLOCK
#2 TYPE

STRING BLOCK
#n TYPE
UEFI Forum, Inc. March 2019 1824

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
When processing the string blocks, each block type refers and modifies the current string identifier
(StringIdCurrent).

EFI_HII_SIBT_STRINGS_UCS2_FONT 0x17 Multiple UCS-2 strings with font
information.

EFI_HII_SIBT_DUPLICATE 0x20 Create a duplicate of an existing string.

EFI_HII_SIBT_SKIP2 0x21 Skip a certain number of string identifiers.

EFI_HII_SIBT_SKIP1 0x22 Skip a certain number of string identifiers.

EFI_HII_SIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_SIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_SIBT_EXT4 0x32 For future expansion (four byte length field)

EFI_HII_SIBT_FONT 0x40 Font information.
UEFI Forum, Inc. March 2019 1825

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 51. String Block Processing: Base Processing

Current = 1

StringBlock.
BlockType =

DUPLICATE?

String[Current] =
String[StringBlock.

StringId]
StringCount = 1

Yes

StringBlock.
BlockType =

SKIPx?

StringCount =
StringBlock.Value

Yes

StringBlock.
BlockType =

EXTx?

Return BlockType
= END?

Advance To Next
Block

Yes

No

No

No

Current +=
StringCount

StringBlock.
BlockType =

FONT

No

No

Font[StringBlock.F
ontId] =

StringBlock.Font
Info

A

B

C

UEFI Forum, Inc. March 2019 1826

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 52. String Block Processing: SCSU Processing

StringBlock.
BlockType =

STRING_SCS
U?

ProcessScsuString(0,
Current

StringBlock.Text)
StringCount = 1

Yes

StringBlock.
BlockType =

STRINGS_SC
SU?

StringCount =
ProcessScsuString

s(0, Current,
StringBlock.Text)

Yes

StringBlock.
BlockType =

STRING_SCS
U_FONT?

ProcessScsuString(
StringBlock.FontId,

Current,
StringBlock.Text)
StringCount = 1

Yes

StringBlock.
BlockType =

STRINGSS_F
ONT?

StringCount =
ProcessScsuString

s(0, Current,
StringBlock.Text)

Yes

No

No

No

A

CExit

No
UEFI Forum, Inc. March 2019 1827

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 53. String Block Processing: UTF Processing

33.3.6.2.1 EFI_HII_SIBT_DUPLICATE

Summary

Creates a duplicate of a previously defined string.

B

StringBlock

BlockType =

 STRING_UCS2?

StringBlock

BlockType =

STRINGS_UCS2_FONT?

StringBlock

BlockType =

STRING_UCS2?

StringBlock

BlockType =

STRINGS_UCS2_FONT?

Exit C

String [Current].Font =

Fonts[0]

String[Current].Text =

StringBlock.Text

StringCount = 1

StringCount =

ProcessUtf16Strings (0, Current,

StringBlock.Text)

String [Current].Font =

Fonts[StringBlock.FontId]

String[Current].Text =

StringBlock.Text

StringCount = 1

StringCount =

ProcessUtf16Strings

(StringBlock.FontId, Current,

StringBlock.Text)

No

No

No

Yes

Yes

Yes

Yes
UEFI Forum, Inc. March 2019 1828

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_SIBT_DUPLICATE_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 EFI_STRING_ID StringId;

} EFI_HII_SIBT_DUPLICATE_BLOCK;

Members

Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_DUPLICATE.

StringId

The string identifier of a previously defined string with the exact same string text.

Description

Indicates that the string with string identifier StringIdCurrent is the same as a previously defined
string and increments StringIdCurrent by one.

33.3.6.2.2 EFI_HII_SIBT_END

Summary

Marks the end of the string information.

Prototype

typedef struct _EFI_HII_SIBT_END_BLOCK {

 EFI_HII_STRING_BLOCK Header;

} EFI_HII_SIBT_END_BLOCK;

Members

Header

Standard extended header, where Header.Header.BlockType =
EFI_HII_SIBT_EXT2 and Header.BlockType2 = EFI_HII_SIBT_FONT.

BlockType2

Indicates the type of extended block. See Section 33.3.6.2 for a list of all block types.

Description

Any strings with a string identifier greater than or equal to StringIdCurrent are empty.

33.3.6.2.3 EFI_HII_SIBT_EXT1, EFI_HII_SIBT_EXT2, EFI_HII_SIBT_EXT4

Summary

Future expansion block types which have a length byte.
UEFI Forum, Inc. March 2019 1829

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_SIBT_EXT1_BLOCK {

EFI_HII_STRING_BLOCK Header;

 UINT8 BlockType2;

 UINT8 Length;

} EFI_HII_SIBT_EXT1_BLOCK;

typedef struct _EFI_HII_SIBT_EXT2_BLOCK {

EFI_HII_STRING_BLOCK Header;

 UINT8 BlockType2;

 UINT16 Length;

} EFI_HII_SIBT_EXT2_BLOCK;

typedef struct _EFI_HII_SIBT_EXT4_BLOCK {

EFI_HII_STRING_BLOCK Header;

 UINT8 BlockType2;

 UINT32 Length;

} EFI_HII_SIBT_EXT4_BLOCK;

Members

Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_EXT1, EFI_HII_SIBT_EXT2 or EFI_HII_SIBT_EXT4.

Length

Size of the string block, in bytes.

BlockType2

 Indicates the type of extended block. See Section 33.3.6.2 for a list of all block types.

Description

These are reserved for future expansion, with length bytes included so that they can be easily skipped.

33.3.6.2.4 EFI_HII_SIBT_FONT

Summary

Provide information about a single font.
UEFI Forum, Inc. March 2019 1830

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_SIBT_FONT_BLOCK {

 EFI_HII_SIBT_EXT2_BLOCK Header;

 UINT8 FontId;

 UINT16 FontSize;

 EFI_HII_FONT_STYLE FontStyle;

 CHAR16 FontName[…];

} EFI_HII_SIBT_FONT_BLOCK;

Members

Header

Standard extended header, where Header.BlockType2 = EFI_HII_SIBT_FONT.

FontId

Font identifier, which must be unique within the string package.

FontSize

Character cell size, in pixels, of the font.

FontStyle

Font style. Type EFI_HII_FONT_STYLE is defined in “Related Definitions” in
EFI_HII_FONT_PACKAGE_HDR.

FontName

Null-terminated font family name.

Description

Associates a font identifier FontId with a font name FontName, size FontSize and style FontStyle.
This font identifier may be used with the string blocks. The font identifier 0 is the default font for those
string blocks which do not specify a font identifier.

33.3.6.2.5 EFI_HII_SIBT_SKIP1

Summary

Skips string identifiers.

Prototype

typedef struct _EFI_HII_SIBT_SKIP1_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 SkipCount;

} EFI_HII_SIBT_SKIP1_BLOCK;

Members

Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_SKIP1.
UEFI Forum, Inc. March 2019 1831

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
SkipCount

The unsigned 8-bit value to add to StringIdCurrent.

Description

Increments the current string identifier StringIdCurrent by the number specified.

33.3.6.2.6 EFI_HII_SIBT_SKIP2

Summary

Skips string ids.

Prototype

typedef struct _EFI_HII_SIBT_SKIP2_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT16 SkipCount;

} EFI_HII_SIBT_SKIP2_BLOCK;

Members

Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_SKIP2.

SkipCount

The unsigned 16-bit value to add to StringIdCurrent.

Description

Increments the current string identifier StringIdCurrent by the number specified.

33.3.6.2.7 EFI_HII_SIBT_STRING_SCSU

Summary

Describe a string encoded using SCSU, in the default font.

Prototype

typedef struct _EFI_HII_SIBT_STRING_SCSU_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 StringText[];
} EFI_HII_SIBT_STRING_SCSU_BLOCK;

Members

Header

Standard header where Header.BlockType = EFI_HII_SIBT_STRING_SCSU.

StringText

The string text is a null-terminated string, which is assigned to the string identifier
StringIdCurrent.
UEFI Forum, Inc. March 2019 1832

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This string block provides the SCSU-encoded text for the string in the default font with string identifier
StringIdCurrent and increments StringIdCurrent by one.

33.3.6.2.8 EFI_HII_SIBT_STRING_SCSU_FONT

Summary

Describe a string in the specified font.

Prototype

typedef struct _EFI_HII_SIBT_STRING_SCSU_FONT_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 FontIdentifier;

 UINT8 StringText[];

} EFI_HII_SIBT_STRING_SCSU_FONT_BLOCK;

Members

Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_STRING_SCSU_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 33.2.6.2.4.

StringText

The string text is a null-terminated encoded string, which is assigned to the string
identifier StringIdCurrent.

Description

This string block provides the SCSU-encoded text for the string in the font specified by FontIdentifier
with string identifier StringIdCurrent and increments StringIdCurrent by one.

33.3.6.2.9 EFI_HII_SIBT_STRINGS_SCSU

Summary

Describe strings in the default font.
UEFI Forum, Inc. March 2019 1833

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_SIBT_STRINGS_SCSU_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT16 StringCount;

 UINT8 StringText[];
} EFI_HII_SIBT_STRINGS_SCSU_BLOCK;

Members

Header

Standard header where Header.BlockType = EFI_HII_SIBT_STRINGS_SCSU

StringCount

Number of strings in StringText.

StringText

The strings, where each string is a null-terminated encoded string.

Description

This string block provides the SCSU-encoded text for StringCount strings which have the default font
and which have sequential string identifiers. The strings are assigned the identifiers, starting with
StringIdCurrent and continuing through StringIdCurrent + StringCount – 1.
StringIdCurrent is incremented by StringCount.

33.3.6.2.10 EFI_HII_SIBT_STRINGS_SCSU_FONT

Summary

Describe strings in the specified font.

Prototype

typedef struct _EFI_HII_SIBT_STRINGS_SCSU_FONT_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 FontIdentifier;

 UINT16 StringCount;

 UINT8 StringText[];
} EFI_HII_SIBT_STRINGS_SCSU_FONT_BLOCK;

Members

Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_SCSU_FONT.

StringCount

Number of strings in StringText.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
UEFI Forum, Inc. March 2019 1834

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 33.2.6.2.4.

StringText

The strings, where each string is a null-terminated encoded string.

Description

This string block provides the SCSU-encoded text for StringCount strings which have the font specified
by FontIdentifier and which have sequential string identifiers. The strings are assigned the
identifiers, starting with StringIdCurrent and continuing through StringIdCurrent +
StringCount – 1. StringIdCurrent is incremented by StringCount.

33.3.6.2.11 EFI_HII_SIBT_STRING_UCS2

Summary

Describe a string in the default font.

Prototype

typedef struct _EFI_HII_SIBT_STRING_UCS2_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 CHAR16 StringText[];
} EFI_HII_SIBT_STRING_UCS2_BLOCK;

Members

Header

Standard header where Header.BlockType = EFI_HII_SIBT_STRING_UCS2.

StringText

The string text is a null-terminated UCS-2 string, which is assigned to the string
identifier StringIdCurrent.

Description

This string block provides the UCS-2 encoded text for the string in the default font with string identifier
StringIdCurrent and increments StringIdCurrent by one.

33.3.6.2.12 EFI_HII_SIBT_STRING_UCS2_FONT

Summary

Describe a string in the specified font.
UEFI Forum, Inc. March 2019 1835

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_SIBT_STRING_UCS2_FONT_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 FontIdentifier;

 CHAR16 StringText[];
} EFI_HII_SIBT_STRING_UCS2_FONT_BLOCK;

Members

Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRING_UCS2_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 33.2.6.2.4.

StringText

The string text is a null-terminated UCS-2 string, which is assigned to the string
identifier StringIdCurrent.

Description

This string block provides the UCS-2 encoded text for the string in the font specified by
FontIdentifier with string identifier StringIdCurrent and increments StringIdCurrent by
one.

33.3.6.2.13 EFI_HII_SIBT_STRINGS_UCS2

Summary

Describes strings in the default font.

Prototype

typedef struct _EFI_HII_SIBT_STRINGS_UCS2_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT16 StringCount;

 CHAR16 StringText[];
} EFI_HII_SIBT_STRINGS_UCS2_BLOCK;

Members

Header

Standard header where Header.BlockType = EFI_HII_SIBT_STRINGS_UCS2.

StringCount

Number of strings in StringText.
UEFI Forum, Inc. March 2019 1836

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
StringText

The string text is a series of null-terminated UCS-2 strings, which are assigned to the
string identifiers StringIdCurrent.to StringIdCurrent + StringCount – 1.

Description

This string block provides the UCS-2 encoded text for the strings in the default font with string identifiers
StringIdCurrent to StringIdCurrent + StringCount – 1 and increments StringIdCurrent by
StringCount.

33.3.6.2.14 EFI_HII_SIBT_STRINGS_UCS2_FONT

Summary

Describes strings in the specified font.

Prototype

typedef struct _EFI_HII_SIBT_STRINGS_UCS2_FONT_BLOCK {

 EFI_HII_STRING_BLOCK Header;

 UINT8 FontIdentifier;

 UINT16 StringCount;

 CHAR16 StringText[];
} EFI_HII_SIBT_STRINGS_UCS2_FONT_BLOCK;

Members

Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_UCS2_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 33.2.6.2.4.

StringCount

Number of strings in StringText.

StringText

The string text is a series of null-terminated UCS-2 strings, which are assigned to the
string identifiers StringIdCurrent.through StringIdCurrent + StringCount
– 1.

Description

This string block provides the UCS-2 encoded text for the strings in the font specified by
FontIdentifier with string identifiers StringIdCurrent to StringIdCurrent + StringCount –
1 and increments StringIdCurrent by StringCount.
UEFI Forum, Inc. March 2019 1837

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.6.3 String Encoding

Each of the following sections describes part of how string text is encoded.

33.3.6.3.1 Standard Compression Scheme for Unicode (SCSU)

The Unicode consortium provides a standard text compression algorithm, which minimizes the amount
of storage required for multiple-language strings. For more information, see “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Unicode Compression Scheme”.

This specification extends the technique described in the following ways:

• The strings use the control code 0x7F to introduce the control codes described in
Section 33.2.6.2.4. The following byte is the control code. The character value 0x7F will be
encoded as 0x01 (SQ0) 0x7F.

• The language information contains default static and dynamic code windows, whereas SCSU
provides fixed values for these.

• Characters between 0xF000 and 0xFCFF should be rejected.

33.3.6.3.2 Unicode 2-Byte Encoding (UCS-2)

The Unicode consortium provides a standard encoding algorithm, which takes two bytes per character.
For more information see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Unicode Consortium”.

Characters between 0xF000 and 0xFCFF should be rejected.

33.3.7 Image Package

The Image package record describes the mapping between image identifiers and the pixels of the image
themselves. The package consists of three parts: a fixed header, image information and the palette
information.

33.3.7.1 Fixed Header

Summary

The fixed header consists of a standard record header and the offsets of the image and palette
information.

Prototype

typedef struct _EFI_HII_IMAGE_PACKAGE_HDR {

 EFI_HII_PACKAGE_HEADER Header;
 UINT32 ImageInfoOffset;

 UINT32 PaletteInfoOffset;

} EFI_HII_IMAGE_PACKAGE_HDR;

Members

Header

Standard package header, where Header.Type = EFI_HII_PACKAGE_IMAGES.
UEFI Forum, Inc. March 2019 1838

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
ImageInfoOffset

Offset, relative to this header, of the image information. If this is zero, then there are
no images in the package.

PaletteInfoOffset

Offset, relative to this header, of the palette information. If this is zero, then there
are no palettes in the image package.

33.3.7.2 Image Information

For each image identifier, the image information gives the bitmap and the relevant palette. The image
information is encoded as a series of blocks, each with a single byte header. The blocks must be
processed in order.

Each block begins with a single byte, which contains the block type.

Figure 54. Image Information Encoded in Blocks

Prototype

typedef struct _EFI_HII_IMAGE_BLOCK {

 UINT8 BlockType;

 UINT8 BlockBody[];
} EFI_HII_IMAGE_BLOCK;

IMAGE BLOCK #1 DATA

IMAGE BLOCK #2 DATA

IMAGE BLOCK #n DATA

IMAGE BLOCK
#1 TYPE

IMAGE BLOCK
#2 TYPE

IMAGE BLOCK
#n TYPE
UEFI Forum, Inc. March 2019 1839

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
The following table describes the different block types:

Table 21. Block Types

In order to recreate all images, start at the first block and process them all until an
EFI_HII_IIBT_END_BLOCK block is found. When processing the image blocks, each block refers to the
current image identifier (ImageIdCurrent), which is initially set to one (1).

Image blocks of an unknown type should be skipped. If they cannot be skipped, then processing halts.

33.3.7.2.1 EFI_HII_IIBT_END

Summary

Marks the end of the image information.

Prototype

define EFI_HII_IIBT_END 0x00

typedef struct _EFI_HII_IIBT_END_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;
} EFI_HII_IIBT_END_BLOCK;

Members

Header

Standard image block header, where Header.BlockType =
EFI_HII_IIBT_END_BLOCK.

Name Value Description

EFI_HII_IIBT_END 0x00 The end of the image information.

EFI_HII_IIBT_IMAGE_1BIT 0x10 1-bit w/palette

EFI_HII_IIBT_IMAGE_1BIT_TRANS 0x11 1-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_4BIT 0x12 4-bit w/palette

EFI_HII_IIBT_IMAGE_4BIT_TRANS 0x13 4-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_8BIT 0x14 8-bit w/palette

EFI_HII_IIBT_IMAGE_8BIT_TRANS 0x15 8-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_24BIT 0x16 24-bit RGB

EFI_HII_IIBT_IMAGE_24BIT_TRANS 0x17 24-bit RGB w/transparency

EFI_HII_IIBT_IMAGE_JPEG 0x18 JPEG encoded image

EFI_HII_IIBT_IMAGE_PNG 0x19 PNG encoded image

EFI_HII_IIBT_DUPLICATE 0x20 Duplicate an existing image identifier

EFI_HII_IIBT_SKIP2 0x21 Skip a certain number of image identifiers.

EFI_HII_IIBT_SKIP1 0x22 Skip a certain number of image identifiers.

EFI_HII_IIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_IIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_IIBT_EXT4 0x32 For future expansion (four byte length field)
UEFI Forum, Inc. March 2019 1840

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
BlockType2

 Indicates the type of extended block. See Section 33.3.6.2 for a list of all block types.

Description

Any images with an image identifier greater than or equal to ImageIdCurrent are empty.

33.3.7.2.2 EFI_HII_IIBT_EXT1, EFI_HII_IIBT_EXT2, EFI_HII_IIBT_EXT4

Summary

Generic prefix for image information with a 1-byte length.

Prototype

#define EFI_HII_IIBT_EXT1 0x30

typedef struct _EFI_HII_IIBT_EXT1_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 BlockType2;

 UINT8 Length;
} EFI_HII_IIBT_EXT1_BLOCK;

#define EFI_HII_IIBT_EXT2 0x31

typedef struct _EFI_HII_IIBT_EXT2_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;
 UINT8 BlockType2;

 UINT16 Length;

} EFI_HII_IIBT_EXT2_BLOCK;

#define EFI_HII_IIBT_EXT4 0x32

typedef struct _EFI_HII_IIBT_EXT4_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 BlockType2;

 UINT32 Length;

} EFI_HII_IIBT_EXT4_BLOCK;

Members

Header

Standard image block header, where Header.BlockType =
EFI_HII_IIBT_EXT1_BLOCK, EFI_HII_IIBT_EXT2_BLOCK or
EFI_HII_IIBT_EXT4_BLOCK.

Length

Size of the image block, in bytes, including the image block header.

BlockType2

 Indicates the type of extended block. See Section 33.3.7.2 for a list of all block types.
UEFI Forum, Inc. March 2019 1841

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

Future extensions for image records which need a length-byte length use this prefix.

33.3.7.2.3 EFI_HII_IIBT_IMAGE_1BIT

Summary

One bit-per-pixel graphics image with palette information.

Prototype

typedef struct _EFI_HII_IIBT_IMAGE_1BIT_BASE {

 UINT16 Width;

 UINT16 Height;

 UINT8 Data[…];
} EFI_HII_IIBT_IMAGE_1BIT_BASE;

#define EFI_HII_IIBT_IMAGE_1BIT 0x10

typedef struct _EFI_HII_IIBT_IMAGE_1BIT_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_1BIT_BASE Bitmap;

} EFI_HII_IIBIT_IMAGE_1BIT_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_1BIT.

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Bitmap

The bitmap specifies a series of pixels, one bit per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 7)/8) * Height.

PaletteIndex

Index of the palette in the palette information.

Description

This record assigns the 1-bit-per-pixel bitmap data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The image’s upper left hand corner pixel is the most significant bit of the first
bitmap byte. An example of a EFI_HII_IIBT_IMAGE_1BIT structure is shown below:
UEFI Forum, Inc. March 2019 1842

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
0x01 ; Palette Index

0x000B ; Width

0x0013 ; Height

10000000b,00000000b ; Bitmap

11000000b,00000000b

11100000b,00000000b

11110000b,00000000b

11111000b,00000000b

11111100b,00000000b

11111110b,00000000b

11111111b,00000000b

11111111b,10000000b

11111111b,11000000b

11111111b,11100000b

11111110b,00000000b

11101111b,00000000b

11001111b,00000000b

10000111b,10000000b

00000111b,10000000b

00000011b,11000000b

00000011b,11000000b

00000001b,10000000b

33.3.7.2.4 EFI_HII_IIBT_IMAGE_1BIT_TRANS

Summary

One bit-per-pixel graphics image with palette information and transparency.

Prototype

#define EFI_HII_IIBT_IMAGE_1BIT_TRANS 0x11

typedef struct _EFI_HII_IIBT_IMAGE_1BIT_TRANS_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_1BIT_BASE Bitmap;

} EFI_HII_IIBT_IMAGE_1BIT_TRANS_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_1BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.
UEFI Forum, Inc. March 2019 1843

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Bitmap

The bitmap specifies a series of pixels, one bit per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 7)/8) * Height.

Description

This record assigns the 1-bit-per-pixel bitmap data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The data in the EFI_HII_IIBT_IMAGE_1BIT_TRANS structure is exactly
the same as the EFI_HII_IIBT_IMAGE_1BIT structure, the difference is how the data is treated.

The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. The bitmap
pixel value 1 will be translated to the color specified by Palette.

33.3.7.2.5 EFI_HII_IIBT_IMAGE_24BIT

Summary

A 24 bit-per-pixel graphics image.

Prototype

#define EFI_HII_IIBT_IMAGE_24BIT 0x16

typedef struct _EFI_HII_IIBT_IMAGE_24BIT_BASE

 UINT16 Width;

 UINT16 Height;

 EFI_HII_RGB_PIXEL Bitmap[...];
} EFI_HII_IIBT_IMAGE_24BIT_BASE;

typedef struct _EFI_HII_IIBT_IMAGE_24BIT_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 EFI_HII_IIBT_IMAGE_24BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_24BIT_BASE;

Members

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_24BIT.

Bitmap

The bitmap specifies a series of pixels, 24 bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: (Width * 3) * Height. Type
EFI_HII_RGB_PIXEL is defined in “Related Definitions” below.
UEFI Forum, Inc. March 2019 1844

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This record assigns the 24-bit-per-pixel bitmap data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The image’s upper left hand corner pixel is composed of the first three bitmap
bytes. The first byte is the pixel’s blue component value, the next byte is the pixel’s green component
value, and the third byte is the pixel’s red component value (B,G,R). Each color component value can vary
from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions colors that can be specified.

Related Definitions

typedef struct _EFI_HII_RGB_PIXEL {
 UINT8 b;
 UINT8 g;
 UINT8 r;
} EFI_HII_RGB_PIXEL;

b

The relative intensity of blue in the pixel’s color, from off (0x00) to full-on (0xFF).

g

The relative intensity of green in the pixel’s color, from off (0x00) to full-on (0xFF).

r

The relative intensity of red in the pixel’s color, from off (0x00) to full-on (0xFF).

33.3.7.2.6 EFI_HII_IIBT_IMAGE_24BIT_TRANS

Summary

A 24 bit-per-pixel graphics image with transparency.

Prototype

#define _EFI_HII_IIBT_IMAGE_24BIT_TRANS 0x17

typedef struct EFI_HII_IIBT_IMAGE_24BIT_TRANS_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 EFI_HII_IIBT_IMAGE_24BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_24BIT_TRANS_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_24BIT_TRANS.

Bitmap

The bitmap specifies a series of pixels, 24 bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: (Width * 3) * Height.

Width

Width of the bitmap in pixels.
UEFI Forum, Inc. March 2019 1845

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Height

Height of the bitmap in pixels.

Description

This record assigns the 24-bit-per-pixel bitmap data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The data in the EFI_HII_IMAGE_24BIT_TRANS structure is exactly the
same as the EFI_HII_IMAGE_24BIT structure, the difference is how the data is treated.

The bitmap pixel value 0x00, 0x00, 0x00 is the ‘transparency’ value and will not be written to the screen.
All other bitmap pixel values will be written as defined to the screen. Since the ‘transparency’ value
replaces true black, for image to display black they should use the color 0x00, 0x00, 0x01 (very dark red)

33.3.7.2.7 EFI_HII_IIBT_IMAGE_4BIT

Summary

Four bits-per-pixel graphics image with palette information.

Prototype

typedef struct _EFI_HII_IIBT_IMAGE_4BIT_BASE {

 UINT16 Width;

 UINT16 Height;

 UINT8 Data[…];
} EFI_HII_IIBT_IMAGE_4BIT_BASE;

#define EFI_HII_IIBT_IMAGE_4BIT 0x12

typedef struct _EFI_HII_IIBT_IMAGE_4BIT_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_4BIT_BASE Bitmap;

} EFI_HII_IIBT_IMAGE_4BIT_BLOCK;

Members

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_4BIT.

PaletteIndex

Index of the palette in the palette information.
UEFI Forum, Inc. March 2019 1846

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Bitmap

The bitmap specifies a series of pixels, four bits per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 1)/2) * Height.

Description

This record assigns the 4-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the specified
palette and increment ImageIdCurrent by one. The image’s upper left hand corner pixel is the most
significant nibble of the first bitmap byte.

33.3.7.2.8 EFI_HII_IIBT_IMAGE_4BIT_TRANS

Summary

Four bits-per-pixel graphics image with palette information and transparency.

Prototype

#define EFI_HII_IIBT_IMAGE_4BIT_TRANS 0x13

typedef struct _EFI_HII_IIBT_IMAGE_4BIT_TRANS_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_4BIT_BASE Bitmap;

} EFI_HII_IIBT_IMAGE_4BIT_TRANS_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_4BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, four bits per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 1)/2) * Height.

Description

This record assigns the 4-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the specified
palette and increment ImageIdCurrent by one. The data in the EFI_HII_IMAGE_4BIT_TRANS
structure is exactly the same as the EFI_HII_IMAGE_4BIT structure, the difference is how the data is
treated.

The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. All the other
bitmap pixel values will be translated to the color specified by Palette.
UEFI Forum, Inc. March 2019 1847

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.7.2.9 EFI_HII_IIBT_IMAGE_8BIT

Summary

Eight bits-per-pixel graphics image with palette information.

Prototype

#define EFI_HII_IIBT_IMAGE_8BIT 0x14

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_BASE {

 UINT16 Width;

 UINT16 Height;

 UINT8 Data[…];

} EFI_HII_IIBT_IMAGE_8BIT_BASE;

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_8BIT_BASE Bitmap;

} EFI_HII_IIBT_IMAGE_8BIT_BLOCK;

Members

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_8BIT.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, eight bits per pixel, left-to-right, top-to-
bottom. The number of bytes per bitmap can be calculated as: Width * Height.

Description

This record assigns the 8-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the specified
palette and increment ImageIdCurrent by one. The image’s upper left hand corner pixel is the first
bitmap byte.

33.3.7.2.10 EFI_HII_IIBT_IMAGE_8BIT_TRANS

Summary

Eight bits-per-pixel graphics image with palette information and transparency.
UEFI Forum, Inc. March 2019 1848

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_HII_IIBT_IMAGE_8BIT_TRANS 0x15

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_TRANS_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 PaletteIndex;

 EFI_HII_IIBT_IMAGE_8BIT_BASE Bitmap;

} EFI_HII_IIBT_IMAGE_8BIT_TRANS_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_8BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, eight bits per pixel, left-to-right, top-to-
bottom. The number of bytes per bitmap can be calculated as: Width * Height.

Description

This record assigns the 8-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the specified
palette and increment ImageIdCurrent by one. The data in the EFI_HII_IMAGE_8BIT_TRANS
structure is exactly the same as the EFI_HII_IMAGE_8BIT structure, the difference is how the data is
treated.

The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. All the other
bitmap pixel values will be translated to the color specified by Palette.

33.3.7.2.11 EFI_HII_IIBT_DUPLICATE

Summary

Assigns a new character value to a previously defined image.

Prototype

#define EFI_HII_IIBT_DUPLICATE 0x20

typedef struct _EFI_HII_IIBT_DUPLICATE_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 EFI_IMAGE_ID ImageId;

} EFI_HII_IIBT_DUPLICATE_BLOCK;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_DUPLICATE.
UEFI Forum, Inc. March 2019 1849

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
ImageId

The previously defined image ID with the exact same image.

Description

Indicates that the image with image ID ImageValueCurrent has the same image as a previously
defined image ID and increments ImageValueCurrent by one.

33.3.7.2.12 EFI_HII_IIBT_IMAGE_JPEG

Summary

A true-color bitmap is encoded with JPEG image compression.

Prototype

#define EFI_HII_IIBT_IMAGE_JPEG 0x18

typedef struct _EFI_HII_IIBT_JPEG_BLOCK {

EFI_HII_IMAGE_BLOCK Header;

 UINT32 Size;

 UINT8 Data[…];

} EFI_HII_IIBT_JPEG;

Members

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_JPEG.

Size

Specifies the size of the JPEG encoded data.

Data

JPEG encoded data with ‘JFIF’ signature at offset 6 in the data block. The JPEG
encoded data, specifies type of encoding and final size of true-color image.

Description

This record assigns the JPEG image data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The JPEG decoder is only required to cover the basic JPEG encoding types,
which are produced by standard available paint packages (for example: MSPaint under Windows from
Microsoft). This would include JPEG encoding of high (1:1:1) and medium (4:1:1) quality with only three
components (R,G,B) – no support for the special gray component encoding.

33.3.7.2.13 EFI_HII_IIBT_SKIP1

Summary

Skips image IDs.
UEFI Forum, Inc. March 2019 1850

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_HII_IIBT_SKIP1 0x22

typedef struct _EFI_HII_IIBT_SKIP1_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT8 SkipCount;

} EFI_HII_IIBT_SKIP1_BLOCK;

Members

Header

Standard image header, where Header.BlockType = EFI_HII_IIBT_SKIP1.

SkipCount

The unsigned 8-bit value to add to ImageIdCurrent.

Description

Increments the current image ID ImageIdCurrent by the number specified.

33.3.7.2.14 EFI_HII_IIBT_SKIP2

Summary

Skips image IDs.

Prototype

#define EFI_HII_IIBT_SKIP2 0x21

typedef struct _EFI_HII_IIBT_SKIP2_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;

 UINT16 SkipCount;

} EFI_HII_IIBT_SKIP2_BLOCK;

Members

Header

Standard image header, where Header.BlockType = EFI_HII_IIBT_SKIP2.

SkipCount

The unsigned 16-bit value to add to ImageIdCurrent.

Description

Increments the current image ID ImageIdCurrent by the number specified.

33.3.7.2.15 EFI_HII_IIBT_PNG_BLOCK

Add a new image block structure for EFI_HII_IIBT_IMAGE_PNG. This supports the PNG image format
in EFI HII image database.
UEFI Forum, Inc. March 2019 1851

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

//***
// EFI_HII_IIBT_IMAGE_PNG(0x19)
//***
typedef struct _EFI_HII_IIBT_PNG_BLOCK {

 EFI_HII_IMAGE_BLOCK Header;
 UINT32 Size;
 UINT8 Data [1];
} EFI_HII_IIBT_PNG_BLOCK;

Member

Header Standard image block header, where Header.locktype =
EFI_HII_IIBT_IMAGE_PNG.

Size Size of the PNG image.
Data The raw data of the PNG image file.

33.3.7.3 Palette Information

Summary

This section describes the palette information within an image package.

Prototype

typedef struct _EFI_HII_IMAGE_PALETTE_INFO_HEADER {

 UINT16 PaletteCount;

} EFI_HII_IMAGE_PALETTE_INFO_HEADER;

Members

PaletteCount

Number of palettes.

Description

This fixed header is followed by zero or more variable-length palette information records. The structures
are assigned a number 1 to n.

33.3.7.3.1 Palette Information Records

Summary

A single palette
UEFI Forum, Inc. March 2019 1852

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_IMAGE_PALETTE_INFO {

 UINT16 PaletteSize;

 EFI_HII_RGB_PIXEL PaletteValue[…];

} EFI_HII_IMAGE_PALETTE_INFO;

Members

PaletteSize

Size of the palette information.

PaletteValue

Array of color values. Type EFI_HII_RGB_PIXEL is described in "Related
Definitions" in EFI_HII_IIBT_IMAGE_24BIT.

Description

Each palette information record is an array of 24-bit color structures. The first entry
(PaletteValue[0]) corresponds to color 0 in the source image; the second entry (PaletteValue[1])
corresponds to color 1, etc. Each palette entry is a three byte entry, with the first byte equal to the blue
component of the color, followed by green, and finally red (B,G,R). Each color component value can vary
from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions colors that can be specified.

A black & white 1-bit image would have the following palette structure:

Figure 55. Palette Structure of a Black & White, One-Bit Image

A 4-bit image would have the following palette structure:
UEFI Forum, Inc. March 2019 1853

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 56. Palette Structure of a Four-Bit Image

The image palette must only contain the palette entries specified in the bitmap. The bitmap should
allocate each color index starting from 0x00, so the palette information can be as small as possible. The
following is an example of a palette structure of a 4-bit image that only uses 6 colors:

Figure 57. Palette Structure of a Four-Bit, Six-Color Image

Each palette entry specifies each unique color in the image. The above figure would be typical of light
blue logo on a black background, with several shades of blue for anti-aliasing the blue logo on the black
background.
UEFI Forum, Inc. March 2019 1854

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8 Forms Package

The Forms package is used to carry forms-based encoding data.

Prototype

typedef struct _EFI_HII_FORM_PACKAGE_HDR {

 EFI_HII_PACKAGE_HEADER Header;
//EFI_IFR_OP_HEADER OpCodeHeader;
//More op-codes follow

} EFI_HII_FORM_PACKAGE_HDR;

Parameters

Header The standard package header, where Header.Type =
EFI_HII_PACKAGE_FORMS.

OpCodeHeader The header for the first of what will be a series of op-codes
associated with the forms data described in this package. The
syntax of the forms can be referenced in Section 33.2.5.

Description

This is a package type designed to represent Internal Forms Representation (IFR) objects as a collection of
op-codes

33.3.8.1 .Binary Encoding

The IFR is a binary encoding for HII-related objects. Every object has (at least) three attributes:

Opcode. The enumeration of all of the different HII-related objects.

Length. The length of the opcode itself (2-127 bytes).

Scope. If set, this opens up a new scope. Certain objects describe attributes or capabilities which only
apply to the current scope rather than the entire form. The scope extends up to the special END opcode,
which marks the end of the current scope.

The binary objects are encoded as byte stream. Every object begins with a standard header
(EFI_IFR_OP_HEADER), which describes the opcode type, length and scope.

The simple binary object consists of a standard header, which contains a single 8-bit opcode, a 7-bit
length and a 1-bit nesting indicator. The length specifies the number of bytes in the opcode, including the
header. The simple binary object may also have zero or more bytes of fixed, object-specific, data.

Figure 58. Simple Binary Object

When the Scope bit is set, it marks the beginning of a new scope which applies to all subsequent
opcodes until the matching EFI_IFR_END opcode is found to close the scope. Those opcodes may, in
turn, open new scopes as well, creating nested scopes.

Op

Le
ng

th Opcode-Specific
Fixed DataS

co
pe
UEFI Forum, Inc. March 2019 1855

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.2 Standard Headers

33.3.8.2.1 EFI_IFR_OP_HEADER

Summary

Standard opcode header

Prototype

typedef struct _EFI_IFR_OP_HEADER {

 UINT8 OpCode;

 UINT8 Length:7;

 UINT8 Scope:1;

} EFI_IFR_OP_HEADER;

Members

OpCode Defines which type of operation is being described by this
header. See Section 33.3.8.3 for a list of IFR opcodes.

Length Defines the number of bytes in the opcode, including this
header.

Scope If this bit is set, the opcode begins a new scope, which is
ended by an EFI_IFR_END opcode.

Description

Forms are represented in a binary format roughly similar to processor instructions.

Each header contains an opcode, a length and a scope indicator.

If Scope indicator is set, the scope exists until it reaches a corresponding EFI_IFR_END opcode. Scopes
may be nested within other scopes.

Related Definitions

typedef UINT16 EFI_QUESTION_ID;

typedef UINT16 EFI_IMAGE_ID;

typedef UINT16 EFI_STRING_ID;

typedef UINT16 EFI_FORM_ID;

typedef UINT16 EFI_VARSTORE_ID;

typedef UINT16 EFI_ANIMATION_ID;

33.3.8.2.2 EFI_IFR_QUESTION_HEADER

Summary

Standard question header.
UEFI Forum, Inc. March 2019 1856

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_IFR_QUESTION_HEADER {

 EFI_IFR_STATEMENT_HEADER Header;

 EFI_QUESTION_ID QuestionId;

 EFI_VARSTORE_ID VarStoreId;

 union {

 EFI_STRING_ID VarName;

 UINT16 VarOffset;

 } VarStoreInfo;

 UINT8 Flags;

} EFI_IFR_QUESTION_HEADER;

Members

Header The standard statement header.
QuestionId The unique value that identifies the particular question being

defined by the opcode. The value of zero is reserved.
Flags A bit-mask that determines which unique settings are active

for this question. See “Related Definitions” below for the
meanings of the individual bits.

VarStoreId Specifies the identifier of a previously declared variable store
to use when storing the question’s value. A value of zero
indicates no associated variable store.

VarStoreInfo If VarStoreId refers to Buffer Storage (EFI_IFR_VARSTORE or
EFI_IFR_VARSTORE_EFI), then VarStoreInfo contains a 16-
bit Buffer Storage offset (VarOffset). If VarStoreId refers to
Name/Value Storage (EFI_IFR_VARSTORE_NAME_VALUE), then
VarStoreInfo contains the String ID of the name (VarName)
for this name/value pair.

Description

This is the standard header for questions.
UEFI Forum, Inc. March 2019 1857

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

//**

// Flags values

//**

#define EFI_IFR_FLAG_READ_ONLY 0x01

#define EFI_IFR_FLAG_CALLBACK 0x04

#define EFI_IFR_FLAG_RESET_REQUIRED 0x10

#define EFI_IFR_FLAG_REST_STYLE 0x20

#define EFI_IFR_FLAG_RECONNECT_REQUIRED 0x40

#define EFI_IFR_FLAG_OPTIONS_ONLY 0x80

33.3.8.2.3 EFI_IFR_STATEMENT_HEADER

Summary

Standard statement header.

Prototype

typedef struct _EFI_IFR_STATEMENT_HEADER {

 EFI_STRING_ID Prompt;

 EFI_STRING_ID Help;

} EFI_IFR_STATEMENT_HEADER;

Members

Prompt The string identifier of the prompt string for this particular
statement. The value 0 indicates no prompt string.

Help The string identifier of the help string for this particular
statement. The value 0 indicates no help string.

EFI_IFR_FLAG_READ_ONLY The question is read-only

EFI_IFR_FLAG_CALLBACK Designates if a particular opcode is to be treated as
something that will initiate a callback to a registered
driver.

EFI_IFR_FLAG_RESET_REQUIRED If a particular choice is modified, designates that a return
flag will be activated upon exiting of the browser, which
indicates that the changes that the user requested
require a reset to enact.

EFI_IFR_FLAG_REST_STYLE Designates if a question supports REST architectural
style operation. This flag can be omitted if the formset
class guid already contains
EFI_HII_REST_STYLE_FORMSET_GUID.

EFI_IFR_FLAG_RECONNECT_REQUIRED If a particular choice is modified, designates that a return
flag will be activated upon exiting of the formset or the
browser, which indicates that the changes that the user
requested require a reconnect to enact.

EFI_IFR_FLAG_OPTIONS_ONLY For questions with options, this indicates that only the
options will be available for user choice.
UEFI Forum, Inc. March 2019 1858

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This is the standard header for statements, including questions.

33.3.8.3 Opcode Reference

This section describes each of the IFR opcode encodings in detail. The table below lists the opcodes in
numeric order while the reference section lists them in alphabetic order.

Table 22. IFR Opcodes

Opcode Value Description

EFI_IFR_FORM_OP 0x01 Form

EFI_IFR_SUBTITLE_OP 0x02 Subtitle statement

EFI_IFR_TEXT_OP 0x03 Static text/image statement

EFI_IFR_IMAGE_OP 0x04 Static image.

EFI_IFR_ONE_OF_OP 0x05 One-of question

EFI_IFR_CHECKBOX_OP 0x06 Boolean question

EFI_IFR_NUMERIC_OP 0x07 Numeric question

EFI_IFR_PASSWORD_OP 0x08 Password string question

EFI_IFR_ONE_OF_OPTION_OP 0x09 Option

EFI_IFR_SUPPRESS_IF_OP 0x0A Suppress if conditional

EFI_IFR_LOCKED_OP 0x0B Marks statement/question as locked

EFI_IFR_ACTION_OP 0x0C Button question

EFI_IFR_RESET_BUTTON_OP 0x0D Reset button statement

EFI_IFR_FORM_SET_OP 0x0E Form set

EFI_IFR_REF_OP 0x0F Cross-reference statement

EFI_IFR_NO_SUBMIT_IF_OP 0x10 Error checking conditional

EFI_IFR_INCONSISTENT_IF_OP 0x11 Error checking conditional

EFI_IFR_EQ_ID_VAL_OP 0x12 Return true if question value equals UINT16

EFI_IFR_EQ_ID_ID_OP 0x13 Return true if question value equals another
question value

EFI_IFR_EQ_ID_VAL_LIST_OP 0x14 Return true if question value is found in list of
UINT16s

EFI_IFR_AND_OP 0x15 Push true if both sub-expressions returns true.

EFI_IFR_OR_OP 0x16 Push true if either sub-expressions returns
true.

EFI_IFR_NOT_OP 0x17 Push false if sub-expression returns true,
otherwise return true.

EFI_IFR_RULE_OP 0x18 Create rule in current form.

EFI_IFR_GRAY_OUT_IF_OP 0x19 Nested statements, questions or options will
not be selectable if expression returns true.
UEFI Forum, Inc. March 2019 1859

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
EFI_IFR_DATE_OP 0x1A Date question.

EFI_IFR_TIME_OP 0x1B Time question.

EFI_IFR_STRING_OP 0x1C String question

EFI_IFR_REFRESH_OP 0x1D Interval for refreshing a question

EFI_IFR_DISABLE_IF_OP 0x1E Nested statements, questions or options will
not be processed if expression returns true.

EFI_IFR_ANIMATION_OP 0x1F Animation associated with question

statement, form or form set.

EFI_IFR_TO_LOWER_OP 0x20 Convert a string on the expression stack to
lower case.

EFI_IFR_TO_UPPER_OP 0x21 Convert a string on the expression stack to
upper case.

EFI_IFR_MAP_OP 0x22 Convert one value to another by selecting a
match from a list.

EFI_IFR_ORDERED_LIST_OP 0x23 Set question

EFI_IFR_VARSTORE_OP 0x24 Define a buffer-style variable storage.

EFI_IFR_VARSTORE_NAME_VALUE_OP 0x25 Define a name/value style variable storage.

EFI_IFR_VARSTORE_EFI_OP 0x26 Define a UEFI variable style variable storage.

EFI_IFR_VARSTORE_DEVICE_OP 0x27 Specify the device path to use for variable
storage.

EFI_IFR_VERSION_OP 0x28 Push the revision level of the UEFI Specification
to which this Forms Processor is compliant.

EFI_IFR_END_OP 0x29 Marks end of scope.

EFI_IFR_MATCH_OP 0x2A Push TRUE if string matches a pattern.

EFI_IFR_GET_OP 0x2B Return a stored value.

EFI_IFR_SET_OP 0x2C Change a stored value.

EFI_IFR_READ_OP 0x2D Provides a value for the current question or
default.

EFI_IFR_WRITE 0x2E Change a value for the current question.

EFI_IFR_EQUAL_OP 0x2F Push TRUE if two expressions are equal.

EFI_IFR_NOT_EQUAL_OP 0x30 Push TRUE if two expressions are not equal.

EFI_IFR_GREATER_THAN_OP 0x31 Push TRUE if one expression is greater than
another expression.

EFI_IFR_GREATER_EQUAL_OP 0x32 Push TRUE if one expression is greater than or
equal to another expression.

EFI_IFR_LESS_THAN_OP 0x33 Push TRUE if one expression is less than
another expression.

EFI_IFR_LESS_EQUAL_OP 0x34 Push TRUE if one expression is less than or
equal to another expression.

EFI_IFR_BITWISE_AND_OP 0x35 Bitwise-AND two unsigned integers and push
the result.

Opcode Value Description
UEFI Forum, Inc. March 2019 1860

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
EFI_IFR_BITWISE_OR_OP 0x36 Bitwise-OR two unsigned integers and push the
result.

EFI_IFR_BITWISE_NOT_OP 0x37 Bitwise-NOT an unsigned integer and push the
result.

EFI_IFR_SHIFT_LEFT_OP 0x38 Shift an unsigned integer left by a number of
bits and push the result.

EFI_IFR_SHIFT_RIGHT_OP 0x39 Shift an unsigned integer right by a number of
bits and push the result.

EFI_IFR_ADD_OP 0x3A Add two unsigned integers and push the result.

EFI_IFR_SUBTRACT_OP 0x3B Subtract two unsigned integers and push the
result.

EFI_IFR_MULTIPLY_OP 0x3C Multiply two unsigned integers and push the
result.

EFI_IFR_DIVIDE_OP 0x3D Divide one unsigned integer by another and
push the result.

EFI_IFR_MODULO_OP 0x3E Divide one unsigned integer by another and
push the remainder.

EFI_IFR_RULE_REF_OP 0x3F Evaluate a rule

EFI_IFR_QUESTION_REF1_OP 0x40 Push a question’s value

EFI_IFR_QUESTION_REF2_OP 0x41 Push a question’s value

EFI_IFR_UINT8_OP 0x42 Push an 8-bit unsigned integer

EFI_IFR_UINT16_OP 0x43 Push a 16-bit unsigned integer.

EFI_IFR_UINT32_OP 0x44 Push a 32-bit unsigned integer

EFI_IFR_UINT64_OP 0x45 Push a 64-bit unsigned integer.

EFI_IFR_TRUE_OP 0x46 Push a boolean TRUE.

EFI_IFR_FALSE_OP 0x47 Push a boolean FALSE

EFI_IFR_TO_UINT_OP 0x48 Convert expression to an unsigned integer

EFI_IFR_TO_STRING_OP 0x49 Convert expression to a string

EFI_IFR_TO_BOOLEAN_OP 0x4A Convert expression to a boolean.

EFI_IFR_MID_OP 0x4B Extract portion of string or buffer

EFI_IFR_FIND_OP 0x4C Find a string in a string.

EFI_IFR_TOKEN_OP 0x4D Extract a delimited byte or character string
from buffer or string.

EFI_IFR_STRING_REF1_OP 0x4E Push a string

EFI_IFR_STRING_REF2_OP 0x4F Push a string

EFI_IFR_CONDITIONAL_OP 0x50 Duplicate one of two expressions depending
on result of the first expression.

EFI_IFR_QUESTION_REF3_OP 0x51 Push a question’s value from a different form.

EFI_IFR_ZERO_OP 0x52 Push a zero

Opcode Value Description
UEFI Forum, Inc. March 2019 1861

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Code Definitions

Each of the following sections gives a detailed description of the opcodes’ behavior.

33.3.8.3.1 EFI_IFR_ACTION

Summary

Create an action button.

EFI_IFR_ONE_OP 0x53 Push a one

EFI_IFR_ONES_OP 0x54 Push a 0xFFFFFFFFFFFFFFFF.

EFI_IFR_UNDEFINED_OP 0x55 Push Undefined

EFI_IFR_LENGTH_OP 0x56 Push length of buffer or string.

EFI_IFR_DUP_OP 0x57 Duplicate top of expression stack

EFI_IFR_THIS_OP 0x58 Push the current question’s value

EFI_IFR_SPAN_OP 0x59 Return first matching/non-matching character
in a string

EFI_IFR_VALUE_OP 0x5A Provide a value for a question

EFI_IFR_DEFAULT_OP 0x5B Provide a default value for a question.

EFI_IFR_DEFAULTSTORE_OP 0x5C Define a Default Type Declaration

EFI_IFR_FORM_MAP_OP 0x5D Create a standards-map form.

EFI_IFR_CATENATE_OP 0x5E Push concatenated buffers or strings.

EFI_IFR_GUID_OP 0x5F An extensible GUIDed op-code

EFI_IFR_SECURITY_OP 0x60 Returns whether current user profile contains
specified setup access privileges.

EFI_IFR_MODAL_TAG_OP 0x61 Specify current form is modal

EFI_IFR_REFRESH_ID_OP 0x62 Establish an event group for refreshing a
forms-based element.

EFI_IFR_WARNING_IF 0x63 Warning conditional

EFI_IFR_MATCH2_OP 0x64 Push TRUE if string matches a Regular
Expression pattern.

Opcode Value Description
UEFI Forum, Inc. March 2019 1862

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_ACTION_OP 0x0C

typedef struct _EFI_IFR_ACTION {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;

 EFI_STRING_ID QuestionConfig;

} EFI_IFR_ACTION;

typedef struct _EFI_IFR_ACTION_1 {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
}_EFI_IFR_ACTION_1;

Members

Header The standard opcode header, where Header.OpCode =
EFI_IFR_ACTION_OP.

Question The standard question header. See
EFI_IFR_QUESTION_HEADER (Section 33.3.8.2.2) for more
information.

QuestionConfig The results string which is in <ConfigResp> format will be
processed when the button is selected by the user.

Description

Creates an action question. When the question is selected, the configuration string specified by
QuestionConfig will be processed. If QuestionConfig is 0 or is not present, then no no
configuration string will be processed. This is useful when using an action button only for the callback.

If the question is marked read-only (see EFI_IFR_QUESTION_HEADER) then the action question cannot
be selected.

33.3.8.3.2 EFI_IFR_ANIMATION

Summary

Creates an image for a statement or question.

Prototype

#define EFI_IFR_ANIMATION_OP 0x1F

typedef struct _EFI_IFR_ANIMATION {

 EFI_IFR_OP_HEADER Header;

 EFI_ANIMATION_ID Id;
} EFI_IFR_ANIMATION;

Members

Header Standard opcode header, where Header.OpCode is
EFI_IFR_ANIMATION_OP

Id Animation identifier in the HII database.
UEFI Forum, Inc. March 2019 1863

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

Associates an animation from the HII database with the current question, statement or form. If the
specified animation does not exist in the HII database.

33.3.8.3.3 EFI_IFR_ADD

Summary

Pops two unsigned integers, adds them and pushes the result.

Prototype

#define EFI_IFR_ADD_OP 0x3a

typedef struct _EFI_IFR_ADD {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ADD;

Members

Header Standard opcode header, where Header.OpCode =
EFI_IFR_ADD_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first popped is the right-hand value. The second
popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the left-hand and right-hand values to 64-bits.

4. Add the left-hand value to right-hand value.

5. Push the lower 64-bits of the result. Overflow is ignored.

33.3.8.3.4 EFI_IFR_AND

Summary

Pops two booleans, push TRUE if both are TRUE, otherwise push FALSE.

Prototype

#define EFI_IFR_AND_OP 0x15

typedef struct _EFI_IFR_AND {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_AND;

Members

Header The standard opcode header, where Header.OpCode =
EFI_IFR_AND_OP.

Description

This opcode performs the following actions:
UEFI Forum, Inc. March 2019 1864

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as boolean, push Undefined.

3. If both expressions evaluate to TRUE, then push TRUE. Otherwise, push FALSE.

33.3.8.3.5 EFI_IFR_BITWISE_AND

Summary

Pops two unsigned integers, perform bitwise AND and push the result.

Prototype

#define EFI_IFR_BITWISE_AND_OP 0x35

typedef struct _EFI_IFR_BITWISE_AND {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_AND;

Members

Header The standard opcode header, where Header.OpCode =
EFI_IFR_BITWISE_AND_OP.

Description

This opcode performs the following actions:

1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as unsigned integers, push Undefined.

3. Otherwise, zero-extend the unsigned integers to 64-bits.

4. Perform a bitwise-AND on the two values.

5. Push the result.

33.3.8.3.6 EFI_IFR_BITWISE_NOT

Summary

Pop an unsigned integer, perform a bitwise NOT and push the result.

Prototype

#define EFI_IFR_BITWISE_NOT_OP 0x37

typedef struct _EFI_IFR_BITWISE_NOT {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_NOT;

Members

Header The standard opcode header, where Header.OpCode =
EFI_IFR_BITWISE_NOT_OP.

Description

This opcode performs the following actions:

1. Pop an expression from the expression stack.
UEFI Forum, Inc. March 2019 1865

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
2. If the expression cannot be evaluated as an unsigned integer, push Undefined.

3. Otherwise, zero-extend the unsigned integer to 64-bits.

4. Perform a bitwise-NOT on the value.

5. Push the result.

33.3.8.3.7 EFI_IFR_BITWISE_OR

Summary

Pops two unsigned integers, perform bitwise OR and push the result.

Prototype

#define EFI_IFR_BITWISE_OR_OP 0x36

typedef struct _EFI_IFR_BITWISE_OR {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_OR;

Members

Header

Standard opcode header, where OpCode is EFI_IFR_BITWISE_OR_OP.

Description

This opcode performs the following actions:

1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as unsigned integers, push Undefined.

3. Otherwise, zero-extend the unsigned integers to 64-bits.

4. Perform a bitwise-OR of the two values.

5. Push the result.

33.3.8.3.8 EFI_IFR_CATENATE

Summary

Pops two buffers or strings, concatenates them and pushes the result.

Prototype

#define EFI_IFR_CATENATE_OP 0x5e

typedef struct _EFI_IFR_CATENATE {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_CATENATE;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_CATENATE_OP.

Description

This opcode performs the following actions:
UEFI Forum, Inc. March 2019 1866

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
1. Pop two expressions from the expression stack. The first expression popped is the left value
and the second value popped is the right value.

2. If the left or right values cannot be evaluated as a string or a buffer, push Undefined. If the left
or right values are of different types, then push Undefined.

3. If the left and right values are strings, push a new string which contains the contents of the left
string (without the NULL terminator) followed by the contents of the right string on to the
expression stack.

4. If the left and right values are buffers, push a new buffer that contains the contents of the left
buffer followed by the contents of the right buffer on to the expression stack.

33.3.8.3.9 EFI_IFR_CHECKBOX

Summary

Creates a boolean checkbox.

Prototype

#define EFI_IFR_CHECKBOX_OP 0x06

typedef struct _EFI_IFR_CHECKBOX {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;

 UINT8 Flags;
} EFI_IFR_CHECKBOX;

Members

Header The standard question header, where Header.OpCode =
EFI_IFR_CHECKBOX_OP.

Question The standard question header. See
EFI_IFR_QUESTION_HEADER (Section 33.3.8.2.2) for more
information.

Flags Flags that describe the behavior of the question. All undefined
bits should be zero. See EFI_IFR_CHECKBOX_x in "Related
Definitions" for more information.

Description

Creates a Boolean checkbox question and adds it to the current form. The checkbox has two values:
FALSE if the box is not checked and TRUE if it is.

There are three ways to specify defaults for this question: the Flags field (lowest priority), one or more
nested EFI_IFR_ONE_OF_OPTION, or nested EFI_IFR_DEFAULT (highest priority).

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation may be
associated with the option using a nested EFI_IFR_ANIMATION.
UEFI Forum, Inc. March 2019 1867

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

#define EFI_IFR_CHECKBOX_DEFAULT 0x01

#define EFI_IFR_CHECKBOX_DEFAULT_MFG 0x02

33.3.8.3.10 EFI_IFR_CONDITIONAL

Summary

Pops two values and a boolean, pushes one of the values depending on the boolean.

Prototype

#define EFI_IFR_CONDITIONAL_OP 0x50

typedef struct _EFI_IFR_CONDITIONAL {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_CONDITIONAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_CONDITIONAL_OP.

Description

This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value. The
second expression popped is the middle value. The last expression popped is the left value.

2. If the left value cannot be evaluated as a boolean, push Undefined.

3. If the left expression evaluates to TRUE, push the right value.

4. Otherwise, push the middle value.

33.3.8.3.11 EFI_IFR_DATE

Summary

Create a date question.

Prototype

#define EFI_IFR_DATE_OP 0x1A

typedef struct _EFI_IFR_DATE {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;

 UINT8 Flags;
} EFI_IFR_DATE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_DATE_OP.
UEFI Forum, Inc. March 2019 1868

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Question The standard question header. See Section 33.3.8.2.2 for
more information.

Flags Flags that describe the behavior of the question. All undefined
bits should be zero.

 #define EFI_QF_DATE_YEAR_SUPPRESS 0x01

 #define EFI_QF_DATE_MONTH_SUPPRESS 0x02

 #define EFI_QF_DATE_DAY_SUPPRESS 0x04

 #define EFI_QF_DATE_STORAGE 0x30

For QF_DATE_STORAGE, there are currently three valid values:

 #define QF_DATE_STORAGE_NORMAL 0x00

 #define QF_DATE_STORAGE_TIME 0x10

 #define QF_DATE_STORAGE_WAKEUP 0x20

Description

Create a Date question (see Section 33.2.5.4.6) and add it to the current form.

There are two ways to specify defaults for this question: one or more nested EFI_IFR_ONE_OF_OPTION
(lowest priority) or nested EFI_IFR_DEFAULT (highest priority). An image may be associated with the
option using a nested EFI_IFR_IMAGE. An animation may be associated with the question using a
nested EFI_IFR_ANIMATION.

33.3.8.3.12 EFI_IFR_DEFAULT

Summary

Provides a default value for the current question
UEFI Forum, Inc. March 2019 1869

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_DEFAULT_OP 0x5b

typedef struct _EFI_IFR_DEFAULT {

 EFI_IFR_OP_HEADER Header;

 UINT16 DefaultId;

 UINT8 Type;

 EFI_IFR_TYPE_VALUE Value;

} EFI_IFR_DEFAULT;

typedef struct _EFI_IFR_DEFAULT_2 {

 EFI_IFR_OP_HEADER Header;

 UINT16 DefaultId;

 UINT8 Type;
} EFI_IFR_DEFAULT_2;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_DEFAULT_OP.

DefaultId Identifies the default store for this value. The default store
must have previously been created using
EFI_IFR_DEFAULTSTORE.

Type The type of data in the Value field. See EFI_IFR_TYPE_x in
EFI_IFR_ONE_OF_OPTION.

Value The default value. The actual size of this field depends on
Type. If Type is EFI_IFR_TYPE_OTHER, then the default value
is provided by a nested EFI_IFR_VALUE.

Description

This opcode specifies a default value for the current question. There are two forms. The first
(EFI_IFR_DEFAULT) assumes that the default value is a constant, embedded directly in the Value
member. The second (EFI_IFR_DEFAULT_2) assumes that the default value is specified using a nested
EFI_IFR_VALUE opcode.

33.3.8.3.13 EFI_IFR_DEFAULTSTORE

Summary

Provides a declaration for the type of default values that a question can be associated with.
UEFI Forum, Inc. March 2019 1870

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_DEFAULTSTORE_OP 0x5c

typedef struct _EFI_IFR_DEFAULTSTORE {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID DefaultName;

 UINT16 DefaultId;

} EFI_IFR_DEFAULTSTORE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_DEFAULTSTORE_OP

DefaultName A string token reference for the human readable string
associated with the type of default being declared.

DefaultId The default identifier, which is unique within the current form
set. The default identifier creates a group of defaults. See
Section for the default identifier ranges.

Description

Declares a class of default which can then have question default values associated with.

An EFI_IFR_DEFAULTSTORE with a specified DefaultId must appear in the IFR before it can be
referenced by an EFI_IFR_DEFAULT.

33.3.8.3.14 EFI_IFR_DISABLE_IF

Summary

Disable all nested questions and expressions if the expression evaluates to TRUE.

Prototype

#define EFI_IFR_DISABLE_IF_OP 0x1e

typedef struct _EFI_IFR_DISABLE_IF {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_DISABLE_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_DISABLE_IF_OP.

Description

All nested statements, questions, options or expressions will not be processed if the expression
appearing as the first nested object evaluates to TRUE. If the expression consists of more than a single
opcode, then the first opcode in the expression must have the Scope bit set and the expression must end
with EFI_IFR_END.
UEFI Forum, Inc. March 2019 1871

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
When this opcode appears under a form set, the expression must only rely on constants. When this
opcode appears under a form, the expression may rely on question values in the same form which are
not inside of an EFI_DISABLE_IF expression.

33.3.8.3.15 EFI_IFR_DIVIDE

Summary

Pops two unsigned integers, divide one by the other and pushes the result.

Prototype

#define EFI_IFR_DIVIDE_OP 0x3d

typedef struct _EFI_IFR_DIVIDE {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_DIVIDE;

Members

Header

Standard opcode header, where OpCode is EFI_IFR_DIVIDE.

Description

1. Pop two expressions from the expression stack. The first popped is the right-hand expression.
The second popped is the left-hand expression.

2. If the two expressions do not evaluate to unsigned integers, push Undefined. If the right-hand
expression is equal to zero, push Undefined.

3. Zero-extend the left-hand and right-hand expressions to 64-bits.

4. Divide the left-hand value to right-hand expression.

5. Push the result.

33.3.8.3.16 EFI_IFR_DUP

Summary

Duplicate the top value on the expression stack.

Prototype

#define EFI_IFR_DUP_OP 0x57

typedef struct _EFI_IFR_DUP {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_DUP;

Members

Header Standard opcode header, where OpCode is EFI_IFR_DUP_OP.

Description

Duplicate the top expression on the expression stack.
UEFI Forum, Inc. March 2019 1872

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Note: This opcode is usually used as an optimization by the tools to help eliminate common sub-
expression calculation and make smaller expressions.

33.3.8.3.17 EFI_IFR_END

Summary

End of the current scope.

Prototype

#define EFI_IFR_END_OP 0x29

typedef struct _EFI_IFR_END {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_END;

Members

Header Standard opcode header, where OpCode is EFI_IFR_END_OP.

Description

Marks the end of the current scope.

33.3.8.3.18 EFI_IFR_EQUAL

Summary

Pop two values, compare and push TRUE if equal, FALSE if not.

Prototype

#define EFI_IFR_EQUAL_OP 0x2f

typedef struct _EFI_IFR_EQUAL {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_EQUAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_EQUAL_OP.

Description

The opcode performs the following actions:

1. Pop two values from the expression stack.

2. If the two values are not strings, Booleans or unsigned integers, push Undefined.

3. If the two values are of different types, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the two values are equal then push TRUE on the expression stack. If they are not equal, push
FALSE.
UEFI Forum, Inc. March 2019 1873

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.19 EFI_IFR_EQ_ID_ID

Summary

Push TRUE if the two questions have the same value or FALSE if they are not equal.

Prototype

#define EFI_IFR_EQ_ID_ID_OP 0x13

typedef struct _EFI_IFR_EQ_ID_ID {

 EFI_IFR_OP_HEADER Header;

 EFI_QUESTION_ID QuestionId1;

 EFI_QUESTION_ID QuestionId2;

} EFI_IFR_EQ_ID_ID;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_EQ_ID_ID_OP.

QuestionId1, QuestionId2
Specifies the identifier of the questions whose values will be
compared.

Description

Evaluate the values of the specified questions (QuestionId1, QuestionId2). If the two values cannot
be evaluated or cannot be converted to comparable types, then push Undefined. If they are equal, push
TRUE. Otherwise push FALSE.

33.3.8.3.20 EFI_IFR_EQ_ID_VAL_LIST

Summary

Push TRUE if the question’s value appears in a list of unsigned integers.

Prototype

#define EFI_IFR_EQ_ID_VAL_LIST_OP 0x14

typedef struct _EFI_IFR_EQ_ID_VAL_LIST {

 EFI_IFR_OP_HEADER Header;

 EFI_QUESTION_ID QuestionId;

 UINT16 ListLength;

 UINT16 ValueList[1];

} EFI_IFR_EQ_ID_VAL_LIST;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_EQ_ID_VAL_LIST_OP.

QuestionId Specifies the identifier of the question whose value will be
compared.

ListLength Number of entries in ValueList.
ValueList Zero or more unsigned integer values to compare against.
UEFI Forum, Inc. March 2019 1874

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

Evaluate the value of the specified question (QuestionId). If the specified question cannot be evaluated
as an unsigned integer, then push Undefined. If the value can be found in ValueList, then push TRUE.
Otherwise push FALSE.

33.3.8.3.21 EFI_IFR_EQ_ID_VAL

Summary

Push TRUE if a question’s value is equal to a 16-bit unsigned integer, otherwise FALSE.

Prototype

#define EFI_IFR_EQ_ID_VAL_OP 0x12

typedef struct _EFI_IFR_EQ_ID_VAL {

 EFI_IFR_OP_HEADER Header;

 EFI_QUESTION_ID QuestionId;

 UINT16 Value;

} EFI_IFR_EQ_ID_VAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_EQ_ID_VAL_OP.

QuestionId Specifies the identifier of the question whose value will be
compared.

Value Unsigned integer value to compare against.

Description

Evaluate the value of the specified question (QuestionId). If the specified question cannot be evaluated
as an unsigned integer, then push Undefined. If they are equal, push TRUE. Otherwise push FALSE.

33.3.8.3.22 EFI_IFR_FALSE

Summary

Push a FALSE on to the expression stack.

Prototype

#define EFI_IFR_FALSE_OP 0x47

typedef struct _EFI_IFR_FALSE {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_FALSE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_FALSE_OP
UEFI Forum, Inc. March 2019 1875

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

Push a FALSE on to the expression stack.

33.3.8.3.23 EFI_IFR_FIND

Summary

Pop two strings and an unsigned integer, find one string in the other and the index where found.

Prototype

#define EFI_IFR_FIND_OP 0x4c

typedef struct _EFI_IFR_FIND {

 EFI_IFR_OP_HEADER Header;

 UINT8 Format;

} EFI_IFR_FIND;

Members

Header Standard opcode header, where OpCode is EFI_IFR_FIND_OP.
Format The following flags govern the matching criteria:

Related Definitions

#define EFI_IFR_FF_CASE_SENSITIVE 0x00

#define EFI_IFR_FF_CASE_INSENSITIVE 0x01

Description

This opcode performs the following actions:

1. Pop three expressions from the expression stack. The first expression popped is the right-hand
value and the second value popped is the middle value and the last value popped is the left-
hand value.

2. If the left-hand or middle values cannot be evaluated as a string, push Undefined. If the third
expression cannot be evaluated as an unsigned integer, push Undefined.

3. The left-hand value is the string to search. The middle value is the string to compare with. The
right-hand expression is the zero-based index of the search. I

4. If the string is found, push the zero-based index of the found string.

5. Otherwise, if the string is not found or the right-hand value specifies a value which is greater-
than or equal to the length of the left-hand value’s string, push 0xFFFFFFFFFFFFFFFF.

33.3.8.3.24 EFI_IFR_FORM

Summary

Creates a form.
UEFI Forum, Inc. March 2019 1876

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_FORM_OP 0x01

typedef struct _EFI_IFR_FORM {

 EFI_IFR_OP_HEADER Header;

 EFI_FORM_ID FormId;

 EFI_STRING_ID FormTitle;

} EFI_IFR_FORM;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_OP.

FormId The form identifier, which uniquely identifies the form within
the form set. The form identifier, along with the device path
and form set GUID, uniquely identifies a form within a system.

FormTitle The string token reference to the title of this particular form.

Description

A form is the encapsulation of what amounts to a browser page. The header defines a FormId, which is
referenced by the form set, among others. It also defines a FormTitle, which is a string to be used as
the title for the form.

33.3.8.3.25 EFI_IFR_FORM_MAP

Summary

Creates a standards map form.

Prototype

#define EFI_IFR_FORM_MAP_OP 0x5D

typedef struct _EFI_IFR_FORM_MAP_METHOD {

 EFI_STRING_ID MethodTitle;

 EFI_GUID MethodIdentifier;
} EFI_IFR_FORM_MAP_METHOD;

typedef struct _EFI_IFR_FORM_MAP {

 EFI_IFR_OP_HEADER Header;

 EFI_FORM_ID FormId;

 //EFI_IFR_FORM_MAP_METHOD Methods[];
} EFI_IFR_FORM_MAP;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_MAP_OP.

FormId The unique identifier for this particular form.
UEFI Forum, Inc. March 2019 1877

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Methods One or more configuration method’s name and unique
identifier.

MethodTitle The string identifier which provides the human-readable
name of the configuration method for this standards map
form.

MethodIdentifier Identifier which uniquely specifies the configuration methods
associated with this standards map form. See “Related
Definitions” for current identifiers.

Description

A standards map form describes how the configuration settings are represented for a configuration
method identified by MethodIdentifier. It also defines a FormTitle, which is a string to be used as
the title for the form.

Related Definitions

#define EFI_HII_STANDARD_FORM_GUID \

{ 0x3bd2f4ec, 0xe524, 0x46e4, \

{ 0xa9, 0xd8, 0x51, 0x01, 0x17, 0x42, 0x55, 0x62 } }

An EFI_IFR_FORM_MAP where the method identifier is EFI_HII_STANDARD_FORM_GUID is
semantically identical to a normal EFI_IFR_FORM.

33.3.8.3.26 EFI_IFR_FORM_SET

Summary

The form set is a collection of forms that are intended to describe the pages that will be displayed to the
user.

Prototype

#define EFI_IFR_FORM_SET_OP 0x0E

typedef struct _EFI_IFR_FORM_SET {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID Guid;

 EFI_STRING_ID FormSetTitle;

 EFI_STRING_ID Help;

 UINT8 Flags;

//EFI_GUID ClassGuid[…];
} EFI_IFR_FORM_SET;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_SET_OP.

Guid The unique GUID value associated with this particular form
set. Type EFI_GUID is defined in
InstallProtocolInterface() in this specification.
UEFI Forum, Inc. March 2019 1878

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
FormSetTitle The string token reference to the title of this particular form
set.

Help The string token reference to the help of this particular form
set.

Flags Flags which describe additional features of the form set. Bits
0:1 = number of members in ClassGuid. Bits 2:7 = Reserved.
Should be set to zero.

ClassGuid Zero to four class identifiers. The standard class identifiers are
described in
EFI_HII_FORM_BROWSER2_PROTOCOL.SendForm(). They do
not need to be unique in the form set.

Description

The form set consists of a header and zero or more forms.

33.3.8.3.27 EFI_IFR_GET

Summary

Return a stored value.

Prototype

#define EFI_IFR_GET_OP 0x2B

typedef struct _EFI_IFR_GET {

 EFI_IFR_OP_HEADER Header;

 EFI_VARSTORE_ID VarStoreId;
 union {

 EFI_STRING_ID VarName;

 UINT16 VarOffset;

 } VarStoreInfo;

 UINT8 VarStoreType;
} EFI_IFR_GET;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_GET_OP.

VarStoreId Specifies the identifier of a previously declared variable store
to use when retrieving the value.

VarStoreInfo Depending on the type of variable store selected, this
contains either a 16-bit Buffer Storage offset (VarOffset) or a
Name/Value or EFI Variable name (VarName).

VarStoreType Specifies the type used for storage. The storage types
EFI_IFR_TYPE_x are defined in EFI_IFR_ONE_OF_OPTION.
UEFI Forum, Inc. March 2019 1879

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This operator takes the value from storage and pushes it on to the expression stack. If the value could not
be retrieved from storage, then Undefined is pushed on to the expression stack.

The type of value retrieved from storage depends on the setting of VarStoreType, as described in the
following table:

Table 23. VarStoreType Descriptions

33.3.8.3.28 EFI_IFR_GRAY_OUT_IF

Summary

Creates a group of statements or questions which are conditionally grayed-out.

Prototype

#define EFI_IFR_GRAY_OUT_IF_OP 0x19

typedef struct _EFI_IFR_GRAY_OUT_IF {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_GRAY_OUT_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_GRAY_OUT_IF_OP.

VarStoreType Storage Description

EFI_IFR_TYPE_NUM_SIZE_8 8-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_16 16-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_32 32-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_64 64-bit unsigned integer

EFI_IFR_TYPE_BOOLEAN 8-bit boolean (0 = false, 1 = true)

EFI_IFR_TYPE_TIME EFI_HII_TIME

EFI_IFR_TYPE_DATE EFI_HII_DATE

EFI_IFR_TYPE_STRING Null-terminated string

EFI_IFR_TYPE_OTHER Invalid

EFI_IFR_TYPE_ACTION Null-Terminated string

EFI_IFR_TYPE_UNDEFINED Invalid

EFI_IFR_TYPE_BUFFER Buffer

 EFI_IFR_TYPE_REF EFI_HII_REF
UEFI Forum, Inc. March 2019 1880

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

All nested statements or questions will be grayed out (not selectable and visually distinct) if the
expression appearing as the first nested object evaluates to TRUE. If the expression consists of more than
a single opcode, then the first opcode in the expression must have the Scope bit set and the expression
must end with EFI_IFR_END.

Different browsers may support this option to varying degrees. For example, HTML has no similar
construct so it may not support this facility.

33.3.8.3.29 EFI_IFR_GREATER_EQUAL

Summary

Pop two values, compare, push TRUE if first is greater than or equal the second, otherwise push FALSE.

Prototype

#define EFI_IFR_GREATER_EQUAL_OP 0x32

typedef struct _EFI_IFR_GREATER_EQUAL {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_GREATER_EQUAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_GREATER_EQUAL_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and
the second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is greater than or equal to the right-hand value, push TRUE. Otherwise
push FALSE.

33.3.8.3.30 EFI_IFR_GREATER_THAN

Summary

Pop two values, compare, push TRUE if first is greater than the second, otherwise push FALSE.
UEFI Forum, Inc. March 2019 1881

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_GREATER_THAN_OP 0x31

typedef struct _EFI_IFR_GREATER_THAN {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_GREATER_THAN;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_GREATER_THAN_OP

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and
the second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is greater than the right-hand value, push TRUE. Otherwise push FALSE.

33.3.8.3.31 EFI_IFR_GUID

Summary

A GUIDed operation. This op-code serves as an extensible op-code which can be defined by the Guid
value to have various functionality. It should be noted that IFR browsers or scripts which cannot interpret
the meaning of this GUIDed op-code will skip it.

Prototype

#define EFI_IFR_GUID_OP 0x5F

typedef struct _EFI_IFR_GUID {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID Guid;
//Optional Data Follows

} EFI_IFR_GUID;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_GUID_OP

Guid The GUID value for this op-code. This field is intended to
define a particular type of special-purpose function, and the
format of the data which immediately follows the Guid field (if
any) is defined by that particular GUID.
UEFI Forum, Inc. March 2019 1882

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.32 EFI_IFR_IMAGE

Summary

Creates an image for a statement or question.

Prototype

#define EFI_IFR_IMAGE_OP 0x04

typedef struct _EFI_IFR_IMAGE {

 EFI_IMAGE_ID Id;
} EFI_IFR_IMAGE;

Members

Id Image identifier in the HII database.

Description

Specifies the image within the HII database.

33.3.8.3.33 EFI_IFR_INCONSISTENT_IF

Summary

Creates a validation expression and error message for a question.

Prototype

#define EFI_IFR_INCONSISTENT_IF_OP 0x011

typedef struct _EFI_IFR_INCONSISTENT_IF {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID Error;

} EFI_IFR_INCONSISTENT_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_INCONSISTENT_IF_OP.

Error The string token reference to the string that will be used for
the consistency check message.

Description

This tag uses a Boolean expression to allow the IFR creator to check options in a richer manner than
provided by the question tags themselves. For example, this tag might be used to validate that two
options are not using the same address or that the numbers that were entered align to some pattern
(such as leap years and February in a date input field). The tag provides a string to be used in a error
display to alert the user to the issue. Inconsistency tags will be evaluated when the user traverses from
tag to tag. The user should not be allowed to submit the results of a form inconsistency.
UEFI Forum, Inc. March 2019 1883

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.34 EFI_IFR_LENGTH

Summary

Pop a string or buffer, push its length.

Prototype

#define EFI_IFR_LENGTH_OP 0x56

typedef struct _EFI_IFR_LENGTH {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LENGTH;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_LENGTH_OP.

Description

This opcode performs the following actions:

1. Pop a value from the expression stack.

2. If the value cannot be evaluated as a buffer or string, then push Undefined.

3. If the value can be evaluated as a buffer, push the length of the buffer, in bytes.

4. If the value can be evaluated as a string, push the length of the string, in characters.

33.3.8.3.35 EFI_IFR_LESS_EQUAL

Summary

Pop two values, compare, push TRUE if first is less than or equal to the second, otherwise push FALSE.

Prototype

#define EFI_IFR_LESS_EQUAL_OP 0x34

typedef struct _EFI_IFR_LESS_EQUAL {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LESS_EQUAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_LESS_EQUAL_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.
UEFI Forum, Inc. March 2019 1884

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
5. If the left-hand value is less than or equal to the right-hand value, push TRUE. Otherwise push FALSE.

33.3.8.3.36 EFI_IFR_LESS_THAN

Summary

Pop two values, compare, push TRUE if the first is less than the second, otherwise push FALSE.

Prototype

#define EFI_IFR_LESS_THAN_OP 0x33

typedef struct _EFI_IFR_LESS_THAN {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LESS_THAN;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_LESS_THAN_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and
the second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is less than the right-hand value, push TRUE. Otherwise push FALSE.

33.3.8.3.37 EFI_IFR_LOCKED

Summary

Specifies that the statement or question is locked.

Prototype

#define EFI_IFR_LOCKED_OP 0x0B

typedef struct _EFI_IFR_LOCKED {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LOCKED;

Parameters

Header Standard opcode header, where Header.Opcode is
EFI_IFR_LOCKED_OP.

Members

None
UEFI Forum, Inc. March 2019 1885

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

The presence of EFI_IFR_LOCKED indicates that the statement or question should not be modified by a
Forms Editor.

33.3.8.3.38 EFI_IFR_MAP

Summary

Pops value, compares against an array of comparison values, pushes the corresponding result value.

Prototype

#define EFI_IFR_MAP_OP 0x22

typedef struct _EFI_IFR_MAP {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_MAP;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_MAP_OP

Description

This operator contains zero or more expression pairs nested within its scope. Each expression pair
contains a match expression and a return expression.

This opcode performs the following actions:

1. This operator pops a single value from the expression stack.

2. Compare this value against the evaluated result of each of the match expressions.

3. If there is a match, then the evaluated result of the corresponding return expression is pushed
on to the expression stack.

4. If there is no match, then Undefined is pushed.

33.3.8.3.39 EFI_IFR_MATCH

Summary

Pop a source string and a pattern string, push TRUE if the source string matches the pattern specified by
the pattern string, otherwise push FALSE.

Prototype

#define EFI_IFR_MATCH_OP 0x2a
typedef struct _EFI_IFR_MATCH {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MATCH;

Members

Header Standard opcode header, where Header.Opcode is
EFI_IFR_MATCH_OP.
UEFI Forum, Inc. March 2019 1886

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

1. Pop two values from the expression stack. The first value popped is the string and the second
value popped is the pattern.

2. If the string or the pattern cannot be evaluated as a string, then push Undefined.

3. Process the string and pattern using the MetaiMatch function of the
EFI_UNICODE_COLLATION2_PROTOCOL.

4. If the result is TRUE, then push TRUE.

5. If the result is FALSE, then push FALSE.

33.3.8.3.40 EFI_IFR_MID

Summary

Pop a string or buffer and two unsigned integers, push an extracted portion of the string or buffer.

Prototype

#define EFI_IFR_MID_OP 0x4b

typedef struct _EFI_IFR_MID {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MID;

Members

Header Standard opcode header, where OpCode is EFI_IFR_MID_OP.

Description

1. Pop three values from the expression stack. The first value popped is the right value and the
second value popped is the middle value and the last expression popped is the left value.

2. If the left value cannot be evaluated as a string or a buffer, push Undefined. If the middle or
right value cannot be evaluated as unsigned integers, push Undefined.

3. If the left value is a string, then the middle value is the 0-based index of the first character in
the string to extract and the right value is the length of the string to extract. If the right value is
zero or the middle value is greater than or equal the string’s length, then push an Empty string.
Push the extracted string on the expression stack. If the right value would cause extraction to
extend beyond the end of the string, then only the characters up to and include the last
character of the string are in the pushed result.

4. If the left value is a buffer, then the middle value is the 0-based index of the first byte in the
buffer to extract and the right value is the length of the buffer to extract. If the right value is
zero or the middle value is greater than the buffer’s length, then push an empty buffer. Push
the extracted buffer on the expression stack. If the right value would cause extraction to
extend beyond the end of the buffer, then only the bytes up to and include the last byte of the
buffer are in the pushed result.

33.3.8.3.41 EFI_IFR_MODAL_TAG

Summary

 Specify that the current form is a modal form.
UEFI Forum, Inc. March 2019 1887

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_MODAL_TAG_OP 0x61

typedef struct _EFI_IFR_MODAL_TAG {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MODAL_TAG;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_MODAL_TAG_OP.

Description
When this opcode is present within the scope of a form, the form is modal; if the opcode is not present,
the form is not modal.

A “modal” form is one that requires specific user interaction before it is deactivated. Examples of modal
forms include error messages or confirmation dialogs.

When a modal form is activated, it is also selected. A modal form is deactivated only when one of the
following occurs:

• The user chooses a “Navigate To Form” behavior (defined in Section 33.2.10.1.2, “Selected
Form”). Note that this is distinct from the “Navigate Forms” behavior.

• A question in the form requires callback, and the callback returns one of the following
ActionRequest values (defined in EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()):

— EFI_BROWSER_ACTION_REQUEST_RESET
— EFI_BROWSER_ACTION_REQUEST_SUBMIT
— EFI_BROWSER_ACTION_REQUEST_EXIT
— EFI_BROWSER_ACTION_REQUEST_FORM_SUBMIT_EXIT
— EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD_EXIT

A modal form cannot be deactivated using other navigation behaviors, including:

• Navigate Forms

• Exit Browser/Discard All (except when initiated by a callback as indicated above)

• Exit Browser/Submit All (except when initiated by a callback as indicated above)

• Exit Browser/Discard All/Reset Platform (except when initiated by a callback as indicated
above)

33.3.8.3.42 EFI_IFR_MODULO

Summary

Pop two unsigned integers, divide one by the other and push the remainder.
UEFI Forum, Inc. March 2019 1888

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_MODULO_OP 0x3e

typedef struct _EFI_IFR_MODULO {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MODULO;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_MODULO_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and
the second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined. If the right-hand value
to 0, push Undefined.

3. Zero-extend the values to 64-bits. Then, divide the left-hand value by the right-hand value.

4. Push the difference between the left-hand value and the product of the right-hand value and
the calculated quotient.

33.3.8.3.43 EFI_IFR_MULTIPLY

Summary

Multiply one unsigned integer by another and push the result.

Prototype

#define EFI_IFR_MULTIPLY_OP 0x3c

typedef struct _EFI_IFR_MULTIPLY {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MULTPLY;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_MULTIPLY_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand expression
and the second value popped is the left-hand expression.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the values to 64-bits. Then, multiply the right-hand value by the left-hand value.
Push the lower 64-bits of the result.
UEFI Forum, Inc. March 2019 1889

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.44 EFI_IFR_NOT

Summary

Pop a boolean and, if TRUE, push FALSE. If FALSE, push TRUE.

Prototype

#define EFI_IFR_NOT_OP 0x17

typedef struct _EFI_IFR_NOT {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_NOT;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_NOT_OP.

Description

This opcode performs the following actions:

1. Pop one value from the expression stack.

2. If the value cannot be evaluated as a Boolean, push Undefined.

3. If the value evaluates to TRUE, then push FALSE. Otherwise, push TRUE.

33.3.8.3.45 EFI_IFR_NOT_EQUAL

Summary

Pop two values, compare and push TRUE if not equal, otherwise push FALSE.

Prototype

#define EFI_IFR_NOT_EQUAL_OP 0x30

typedef struct _EFI_IFR_NOT_EQUAL {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_NOT_EQUAL;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_NOT_EQUAL_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack.

2. If the two values are not strings, Booleans or unsigned integers, push Undefined.

3. If the two values are of different types, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the two values are not equal then push TRUE on the expression stack. If they are equal, push
FALSE.
UEFI Forum, Inc. March 2019 1890

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.46 EFI_IFR_NO_SUBMIT_IF

Summary

Creates a validation expression and error message for a question.

Prototype

#define EFI_IFR_NO_SUBMIT_IF_OP 0x10

typedef struct _EFI_IFR_NO_SUBMIT_IF {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID Error;

} EFI_IFR_NO_SUBMIT_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_NO_SUBMIT_IF_OP.

Error The string token reference to the string that will be used for
the consistency check message.

Description

Creates a conditional expression which will be evaluated when the form is submitted. If the conditional
evaluates to TRUE, then the error message Error will be displayed to the user and the user will be
prevented from submitting the form.

33.3.8.3.47 EFI_IFR_NUMERIC

Summary

Creates a number question.
UEFI Forum, Inc. March 2019 1891

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_NUMERIC_OP 0x07

typedef struct _EFI_IFR_NUMERIC {

 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;

 UINT8 Flags;

 union {

 struct {

 UINT8 MinValue;

 UINT8 MaxValue;

 UINT8 Step;

 } u8;
 struct {

 UINT16 MinValue;

 UINT16 MaxValue;

 UINT16 Step;

 } u16;
 struct {

 UINT32 MinValue;

 UINT32 MaxValue;

 UINT32 Step;

 } u32;
 struct {

 UINT64 MinValue;

 UINT64 MaxValue;

 UINT64 Step;

 } u64;

 } data;
} EFI_IFR_NUMERIC;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_NUMERIC_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

Flags Specifies flags related to the numeric question. See “Related
Definitions”

MinValue The minimum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits.

MaxValue The maximum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits.
UEFI Forum, Inc. March 2019 1892

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Step Defines the amount to increment or decrement the value each
time a user requests a value change. If the step value is 0, then
the input mechanism for the numeric value is to be free-form
and require the user to type in the actual value. The size of the
data field may vary from 8 to 64 bits.

Description

Creates a number question on the current form, with built-in error checking and default information. The
storage size depends on the EFI_IFR_NUMERIC_SIZE portion of the Flags field.

There are two ways to specify defaults for this question: one or more nested EFI_IFR_ONE_OF_OPTION
(lowest priority) or nested EFI_IFR_DEFAULT (highest priority). An image may be associated with the
option using a nested EFI_IFR_IMAGE. An animation may be associated with the question using a
nested EFI_IFR_ANIMATION.

Related Definitions

#define EFI_IFR_NUMERIC_SIZE 0x03

#define EFI_IFR_NUMERIC_SIZE_1 0x00

#define EFI_IFR_NUMERIC_SIZE_2 0x01

#define EFI_IFR_NUMERIC_SIZE_4 0x02

#define EFI_IFR_NUMERIC_SIZE_8 0x03

#define EFI_IFR_DISPLAY 0x30

#define EFI_IFR_DISPLAY_INT_DEC 0x00

#define EFI_IFR_DISPLAY_UINT_DEC 0x10

#define EFI_IFR_DISPLAY_UINT_HEX 0x20

Note: IFR expressions do not support signed types (see Section 33.2.5.7.4 Data Types). The value of a
numeric question is treated during expression evaluation as an unsigned integer even if
EFI_IFR_DISPLAY_INT_DEC flag is specified. However, the EFI_IFR_DISPLAY_INT_DEC
flag is taken into consideration while validating question's current or default value against
MinValue and MaxValue. When EFI_IFR_DISPLAY_INT_DEC flag is specified, forms
processor must treat MinValue, MaxValue, current question value, and default question value
as signed integers.

33.3.8.3.48 EFI_IFR_ONE

Summary

Push a one on to the expression stack.

EFI_IFR_NUMERIC_SIZE Specifies the size of the numeric value, the
storage required and the size of the

MinValue, MaxValue and Step values

in the opcode header.

EFI_IFR_DISPLAY The value will be displayed in signed decimal,
unsigned decimal or unsigned hexadecimal.
Input is still allowed in any form.
UEFI Forum, Inc. March 2019 1893

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_ONE_OP 0x53

typedef struct _EFI_IFR_ONE {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ONE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_ONE_OP

Description

Push a one on to the expression stack.

33.3.8.3.49 EFI_IFR_ONES

Summary

Push 0xFFFFFFFFFFFFFFFF on to the expression stack.

Prototype

#define EFI_IFR_ONES_OP 0x54

typedef struct _EFI_IFR_ONES {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ONES;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_ONES_OP

Description

Push 0xFFFFFFFFFFFFFFFF on to the expression stack.

33.3.8.3.50 EFI_IFR_ONE_OF

Summary

Creates a select-one-of question.
UEFI Forum, Inc. March 2019 1894

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_ONE_OF_OP 0x05

typedef struct _EFI_IFR_ONE_OF {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;

 union {

 struct {

 UINT8 MinValue;

 UINT8 MaxValue;

 UINT8 Step;

 } u8;
 struct {

 UINT16 MinValue;

 UINT16 MaxValue;

 UINT16 Step;

 } u16;
 struct {

 UINT32 MinValue;

 UINT32 MaxValue;

 UINT32 Step;

 } u32;
 struct {

 UINT64 MinValue;

 UINT64 MaxValue;

 UINT64 Step;

 } u64;

 } data;
} EFI_IFR_ONE_OF;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_ONE_OF_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

Flags Specifies flags related to the numeric question. See “Related
Definitions” in EFI_IFR_NUMERIC.

MinValue The minimum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits,
depending on the size specified in Flags
UEFI Forum, Inc. March 2019 1895

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
MaxValue The maximum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits,
depending on the size specified in Flags

Step Defines the amount to increment or decrement the value each
time a user requests a value change. If the step value is 0, then
the input mechanism for the numeric value is to be free-form
and require the user to type in the actual value. The size of the
data field may vary from 8 to 64 bits, depending on the size
specified in Flags

Description

This opcode creates a select-on-of object, where the user must select from one of the nested options.
This is identical to EFI_IFR_NUMERIC.

There are two ways to specify defaults for this question: one or more nested EFI_IFR_ONE_OF_OPTION
(lowest priority) or nested EFI_IFR_DEFAULT (highest priority). An image may be associated with the
option using a nested EFI_IFR_IMAGE. An animation may be associated with the question using a
nested EFI_IFR_ANIMATION.

33.3.8.3.51 EFI_IFR_ONE_OF_OPTION

Summary

Creates a pre-defined option for a question.

Prototype

#define EFI_IFR_ONE_OF_OPTION_OP 0x09

typedef struct _EFI_IFR_ONE_OF_OPTION {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID Option;

 UINT8 Flags;

 UINT8 Type;

 EFI_IFR_TYPE_VALUE Value;

} EFI_IFR_ONE_OF_OPTION;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_ONE_OF_OPTION_OP.

Option The string token reference to the option description string for
this particular opcode.

Flags Specifies the flags associated with the current option. See
EFI_IFR_OPTION_x.

Type Specifies the type of the option’s value. See EFI_IFR_TYPE.
Value The union of all of the different possible values. The actual

contents (and size) of the field depends on Type.
UEFI Forum, Inc. March 2019 1896

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Related Definitions

typedef union {
 UINT8 u8; // EFI_IFR_TYPE_NUM_SIZE_8
 UINT16 u16; // EFI_IFR_TYPE_NUM_SIZE_16
 UINT32 u32; // EFI_IFR_TYPE_NUM_SIZE_32
 UINT64 u64; // EFI_IFR_TYPE_NUM_SIZE_64
 BOOLEAN b; // EFI_IFR_TYPE_BOOLEAN
 EFI_HII_TIME time; // EFI_IFR_TYPE_TIME
 EFI_HII_DATE date; // EFI_IFR_TYPE_DATE
 EFI_STRING_ID string; // EFI_IFR_TYPE_STRING, EFI_IFR_TYPE_ACTION
 EFI_HII_REF ref; // EFI_IFR_TYPE_REF
// UINT8 buffer[]; // EFI_IFR_TYPE_BUFFER
} EFI_IFR_TYPE_VALUE;

typedef struct {
 UINT8 Hour;
 UINT8 Minute;
 UINT8 Second;
} EFI_HII_TIME;

typedef struct {
 UINT16 Year;
 UINT8 Month;
 UINT8 Day; //
} EFI_HII_DATE;

typedef struct {
 EFI_QUESTION_ID QuestionId;
 EFI_FORM_ID FormId;
 EFI_GUID FormSetGuid;
 EFI_STRING_ID DevicePath;
} EFI_HII_REF;

#define EFI_IFR_TYPE_NUM_SIZE_8 0x00
#define EFI_IFR_TYPE_NUM_SIZE_16 0x01
#define EFI_IFR_TYPE_NUM_SIZE_32 0x02
#define EFI_IFR_TYPE_NUM_SIZE_64 0x03
#define EFI_IFR_TYPE_BOOLEAN 0x04
#define EFI_IFR_TYPE_TIME 0x05
#define EFI_IFR_TYPE_DATE 0x06
#define EFI_IFR_TYPE_STRING 0x07
#define EFI_IFR_TYPE_OTHER 0x08
#define EFI_IFR_TYPE_UNDEFINED 0x09
#define EFI_IFR_TYPE_ACTION 0x0A
#define EFI_IFR_TYPE_BUFFER 0x0B
UEFI Forum, Inc. March 2019 1897

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
#define EFI_IFR_TYPE_REF 0x0C

#define EFI_IFR_OPTION_DEFAULT 0x10
#define EFI_IFR_OPTION_DEFAULT_MFG 0x20

Description

Create a selection for use in any of the questions.

The value is encoded within the opcode itself, unless EFI_IFR_TYPE_OTHER is specified, in which case
the value is determined by a nested EFI_IFR_VALUE.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.

33.3.8.3.52 EFI_IFR_OR

Summary

Pop two Booleans, push TRUE if either is TRUE. Otherwise push FALSE.

Prototype

#define EFI_IFR_OR_OP 0x16

typedef struct _EFI_IFR_OR {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_OR;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_OR_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack.

2. If either value does not evaluate as a Boolean, then push Undefined.

3. If either value evaluates to TRUE, then push TRUE. Otherwise, push FALSE.

33.3.8.3.53 EFI_IFR_ORDERED_LIST

Summary

Creates a set question using an ordered list.
UEFI Forum, Inc. March 2019 1898

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_ORDERED_LIST_OP 0x23

typedef struct _EFI_IFR_ORDERED_LIST {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;

 UINT8 MaxContainers;

 UINT8 Flags;

} EFI_IFR_ORDERED_LIST;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_ORDERED_LIST_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

MaxContainers The maximum number of entries for which this tag will
maintain an order. This value also identifies the size of the
storage associated with this tag’s ordering array.

Flags A bit-mask that determines which unique settings are active
for this opcode.

Description

Create an ordered list question in the current form. One thing to note is that valid values for the options
in ordered lists should never be a 0. The value of 0 is used to determine if a particular "slot" in the array is
empty. Therefore, if in the previous example 3 was followed by a 4 and then followed by a 0, the valid
options to be displayed would be 3 and 4 only.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.

Related Definitions

#define EFI_IFR_UNIQUE_SET 0x01
#define EFI_IFR_NO_EMPTY_SET 0x02

These flags determine whether all entries in the list must be unique (EFI_IFR_UNIQUE_SET) and
whether there can be any empty items in the ordered list (EFI_IFR_NO_EMPTY_SET).

33.3.8.3.54 EFI_IFR_PASSWORD

Summary

Creates a password question
UEFI Forum, Inc. March 2019 1899

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_PASSWORD_OP 0x08

typedef struct _EFI_IFR_PASSWORD {

 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;

 UINT16 MinSize;

 UINT16 MaxSize;

} EFI_IFR_PASSWORD;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_PASSWORD_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

MinSize The minimum number of characters that can be accepted for
this opcode.

MaxSize The maximum number of characters that can be accepted for
this opcode.

Description

Creates a password question in the current form.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.The password question has two
modes of operation. The first is when the Header.Flags has the EFI_IFR_FLAG_CALLBACK bit not set. If
the bit isn't set, the browser will handle all password operations itself, including string comparisons as
needed. If the password question has the EFI_IFR_FLAG_CALLBACK bit set, then there will be a formal
handshake initiated between the browser and the registered driver that would accept the callback. See
the flowchart represented in Figure 59 and Figure 60 for details.

 (This flowchart is provided in two parts because of page formatting but should be viewed as a single
continuous chart.)
UEFI Forum, Inc. March 2019 1900

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 59. Password Flowchart (part one)

User selects a password
operation in the browser

Browser
Does Password Opcode have

the INTERACTIVE bit set?

No

Browser calls the ConfigAccess.Callback interface
with the Password opcode’s QuestionId.

Check for an existing password by sending a NULL
string value.

Yes

Driver
Is there a preexisting

password?

Driver returns EFI_SUCCESS to indicate
there is no preexisting password.

No

Driver returns EFI_NOT_AVAILABLE_YET or
EFI_UNSUPPORTED to terminate password
processing. Driver returns any other error

indicating that there is a preexisting password.

Yes

Browser prompts for the new password
and calls ConfigAccess.Callback with the

new password string value.

Browser prompts for the existing password and calls
ConfigAccess.Callback with the old password string value.

Driver
Did the user type the

correct preexisting
password?

Driver returns an error other
than EFI_NOT_READY, indicating
that the browser must exit the

password handshake and refresh
the current displayed form.

No
Driver will return

EFI_SUCCESS if password
was accepted and saved.

Driver returns EFI_SUCCESS to indicate the
user typed the correct preexisting password
and wants the user to type a new password.

Driver
Does the driver expect

to change the
password?

Yes

Yes

No

Driver returns an EFI_NOT_READY,
indicating the user mistyped the previous

password. The browser can optionally
alert the user of the error.

User selects a password
operation in the browser

CONTINUED in part two
UEFI Forum, Inc. March 2019 1901

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Figure 60. Password Flowchart (part two)

33.3.8.3.55 EFI_IFR_QUESTION_REF1

Summary

Push a question’s value on the expression stack.

User selects a password
operation in the browser

Browser checks for an existing password by
comparing against a NULL string value.

Browser
Is there a preexisting password?

Browser returns EFI_SUCCESS to indicate
there is no preexisting password.

No

Browser returns an error,
indicating that there is a

preexisting password.

YesBrowser prompts for the new password

Browser prompts for the existing password and compares
with the old password string value.

Browser
Did the user type the correct

preexisting password?

Browser will return
EFI_SUCCESS

Browser returns EFI_SUCCESS to indicate the
user typed the correct preexisting password
and wants the user to type a new password.

Yes

No

Browser returns an EFI_NOT_READY,
indicating the user mistyped the previous

password. The browser can optionally
alert the user of the error.

CONTINUED FROM part one:
”User selects a password

operation in the browser”
UEFI Forum, Inc. March 2019 1902

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_QUESTION_REF1_OP 0x40

typedef struct _EFI_IFR_QUESTION_REF1 {

 EFI_IFR_OP_HEADER Header;

 EFI_QUESTION_ID QuestionId;

} EFI_IFR_QUESTION_REF1;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF1_OP.

QuestionId The question’s identifier, which must be unique within the
form set.

Description

Push the value of the question specified by QuestionId on to the expression stack. If the question’s
value cannot be determined or the question does not exist, then push Undefined.

33.3.8.3.56 EFI_IFR_QUESTION_REF2

Summary

Pop an integer from the expression stack, convert it to a question id, and push the question value
associated with that question id onto the expression stack.

Prototype

#define EFI_IFR_QUESTION_REF2_OP 0x41

typedef struct _EFI_IFR_QUESTION_REF2 {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_QUESTION_REF2;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF2_OP.

Description

This opcode performs the following actions:

1. Pop an integer from the expression stack

2. Convert it to a question id

3. Push the question value associated with that question id onto the expression stack.

If the popped expression cannot be evaluated as an unsigned integer or the value of the unsigned integer
is greater than 0xFFFF, then push Undefined onto the expression stack in step 3. If the value of the
question specified by the unsigned integer, after converted to a question id, cannot be determined or the
question does not exist, also push Undefined onto the expression stack in step 3.
UEFI Forum, Inc. March 2019 1903

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.57 EFI_IFR_QUESTION_REF3

Summary

Pop an integer from the expression stack, convert it to a question id, and push the question value
associated with that question id onto the expression stack.

Prototype

#define EFI_IFR_QUESTION_REF3_OP 0x51

typedef struct _EFI_IFR_QUESTION_REF3 {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_QUESTION_REF3;

typedef struct _EFI_IFR_QUESTION_REF3_2 {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID DevicePath;

} EFI_IFR_QUESTION_REF3_2;

typedef struct _EFI_IFR_QUESTION_REF3_3 {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID DevicePath;

 EFI_GUID Guid;

} EFI_IFR_QUESTION_REF3_3;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF3_OP.

DevicePath Specifies the text representation of the device path containing
the form set where the question is defined. If this is not
present or the value is 0 then the device path installed on the
EFI_HANDLE which was registered with the form set
containing the current question is used.

Guid Specifies the GUID of the form set where the question is
defined. If the value is Nil or this field is not present, then the
current form set is used (if DevicePath is 0) or the only form
set attached to the device path specified by DevicePath is
used. If the value is Nil and there is more than one form set on
the specified device path, then the value Undefined will be
pushed.

Description

This opcode performs the following actions:

1. Pop an integer from the expression stack

2. Convert it to a question id

3. Push the question value associated with that question id onto the expression stack.
UEFI Forum, Inc. March 2019 1904

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
If the popped expression cannot be evaluated as an unsigned integer or the value of the unsigned integer
is greater than 0xFFFF, then push Undefined onto the expression stack in step 3. If the value of the
question specified by the unsigned integer, after converted to a question id, cannot be determined or the
question does not exist, also push Undefined onto the expression stack in step 3.

This version allows question values from other forms to be referenced in expressions.

33.3.8.3.58 EFI_IFR_READ

Summary

Provides a value for the current question or default.

Prototype

#define EFI_IFR_READ_OP 0x2D

typedef struct _EFI_IFR_READ {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_READ;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_READ_OP

Description

After reading the value for the current question (if any storage was specified) and setting the this
constant (see EFI_IFR_THIS), this expression will be evaluated (if present) to return the value. If the
FormId and QuestionId are either both not present, or are both set to zero, then the link does
nothing.

33.3.8.3.59 EFI_IFR_REF

Summary

Creates a cross-reference statement.
UEFI Forum, Inc. March 2019 1905

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_REF_OP 0x0F

typedef struct _EFI_IFR_REF {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;

} EFI_IFR_REF;

typedef struct _EFI_IFR_REF2 {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;

 EFI_QUESTION_ID QuestionId;

} EFI_IFR_REF2;

typedef struct _EFI_IFR_REF3 {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;

 EFI_QUESTION_ID QuestionId;

 EFI_GUID FormSetId;

} EFI_IFR_REF3;

typedef struct _EFI_IFR_REF4 {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;

 EFI_QUESTION_ID QuestionId;

 EFI_GUID FormSetId;

 EFI_STRING_ID DevicePath;

} EFI_IFR_REF4;

typedef struct _EFI_IFR_REF5 {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_QUESTION_HEADER Question;
} EFI_IFR_REF5;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_REF_OP.

Question Standard question header.See Section 33.3.8.2.2
FormId The form to which this link is referring. If this is zero, then the

link is on the current form. If this is missing, then the link is
determined by the nested EFI_IFR_VALUE.
UEFI Forum, Inc. March 2019 1906

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
QuestionId The question on the form to which this link is referring. If this
field is not present (determined by the length of the opcode)
or the value is zero, then the link refers to the top of the form.

FormSetId The form set to which this link is referring. If it is all
zeroes or not present, and DevicePath is not present,
then the link is to the current form set. If it is all zeroes
(or not present) and the DevicePath is present, then the
link is to the first form set associated with the
DevicePath.

DevicePath The string identifier that specifies the string containing
the text representation of the device path to which the form
set containing the form specified by FormId. If this field is not
present (determined by the opcode’s length) or the value is
zero, then the link refers to the current page. The format of
the device path string that this field references is compatible
with the Text format that is specified in the Text Device Node
Reference (Section 10.6.1.6)

Description

Creates a user-selectable link to a form or a question on a form. There are several forms of this opcode
which are distinguished by the length of the opcode.

33.3.8.3.60 EFI_IFR_REFRESH

Summary

Mark a question for periodic refresh.

Prototype

#define EFI_IFR_REFRESH_OP 0x1d

typedef struct _EFI_IFR_REFRESH {

 EFI_IFR_OP_HEADER Header;
 UINT8 RefreshInterval;

} EFI_IFR_REFRESH;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_REFRESH_OP.

RefreshInterval Minimum number of seconds before the question value
should be refreshed. A value of zero indicates the question
should not be refreshed automatically.

Description

When placed within the scope of a question, it will force the question’s value to be refreshed at least
every RefreshInterval seconds. The value may be refreshed less often, depending on browser policy
or capabilities.
UEFI Forum, Inc. March 2019 1907

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.61 EFI_IFR_REFRESH_ID

Summary

Mark an Question for an asynchronous refresh.

Prototype

#define EFI_IFR_REFRESH_ID_OP 0x62

typedef struct _EFI_IFR_REFRESH_ID {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID RefreshEventGroupId;
} EFI_IFR_REFRESH_ID;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_REFRESH_ID_OP.

RefreshEventGroupId
The GUID associated with the event group which will be used
to initiate a re-evaluation of an element in a set of forms.

Description

This tag op-code must be placed within the scope of a question or a form. If within the scope of a
question and the event is signaled which belongs to the RefreshEventGroupId, the question will be
refreshed. More than one question may share the same Event Group.

 If the tag op-code is placed within the scope of an EFI_IFR_FORM op-code and the event is signaled
which belongs to the RefreshEventGroupId, the entire form’s contents will be refreshed.

• If the contents within a form had an EFI_IFR_REFRESH_ID tag op-code placed within the
scope of the form, and an event is signalled, all questions associated with the
RefreshEventGroupId are marked for refresh. The Forms Browser will update the question
value from storage, reparse the forms from the HII database and, at some time later, reflect
that change if the question is displayed.

When interpreting this op-code, a browser must do the following actions:

• The browser will create an event group via CreateEventEx() based on the specified
RefreshEventGroupId when the form set which contains the op-code is opened by the
browser.

• When an event is signaled, all questions associated with the RefreshEventGroupId are
marked for refresh. The Forms Browser will update the question value from storage and, at
some time later, update the question's display.

• The browser will close the event group which was previously created when the form set which
contains the op-code is closed by the browser.
UEFI Forum, Inc. March 2019 1908

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.62 EFI_IFR_RESET_BUTTON

Summary

Create a reset or submit button on the current form.

Prototype

#define EFI_IFR_RESET_BUTTON_OP 0x0d

typedef struct _EFI_IFR_RESET_BUTTON {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_STATEMENT_HEADER Statement;

 EFI_DEFAULT_ID DefaultId;
} EFI_IFR_RESET_BUTTON;

typedef UINT16 EFI_DEFAULT_ID;

Members

Header The standard header, where Header.OpCode =
EFI_IFR_RESET_BUTTON_OP.

Statement Standard statement header, including the prompt and help
text.

DefaultId Specifies the set of default store to use when restoring the
defaults to the questions on this form. See
EFI_IFR_DEFAULTSTORE (Section 33.3.8.3.13) for more
information.

Description

This opcode creates a user-selectable button that resets the question values for all questions on the
current form to the default values specified by DefaultId. If EFI_IFR_FLAGS_CALLBACK is set in the
question header, then the callback associated with the form set will be called. An image may be
associated with the statement using a nested EFI_IFR_IMAGE. An animation may be associated with the
statement using a nested EFI_IFR_ANIMATION.

33.3.8.3.63 EFI_IFR_RULE

Summary

Create a rule for use in a form and associate it with an identifier.
UEFI Forum, Inc. March 2019 1909

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_RULE_OP 0x18

typedef struct _EFI_IFR_RULE {

 EFI_IFR_OP_HEADER Header;
 UINT8 RuleId;

} EFI_IFR_RULE;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_RULE_OP.

RuleId Unique identifier for the rule. There can only one rule within a
form with the specified RuleId. If another already exists, then
the form is marked as invalid.

Description

Create a rule, which associates an expression with an identifier and attaches it to the currently opened
form. These rules allow common sub-expressions to be re-used within a form.

33.3.8.3.64 EFI_IFR_RULE_REF

Summary

Evaluate a form rule and push its result on the expression stack.

Prototype

#define EFI_IFR_RULE_REF_OP 0x3f

typedef struct _EFI_IFR_RULE_REF {

 EFI_IFR_OP_HEADER Header;

 UINT8 RuleId;

} EFI_IFR_RULE_REF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_RULE_REF_OP.

RuleId The rule’s identifier, which must be unique within the form.

Description

Look up the rule specified by RuleId and push the evaluated result on the expression stack. If the
specified rule does not exist, then push Undefined.

33.3.8.3.65 EFI_IFR_SECURITY

Summary

Push TRUE if the current user profile contains the specified setup access permissions.
UEFI Forum, Inc. March 2019 1910

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_SECURITY_OP 0x60

typedef struct _EFI_IFR_SECURITY {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID Permissions;
} EFI_IFR_SECURITY;

Members

Header Standard opcode header, where Header.Op =
EFI_IFR_SECURITY_OP.

Permissions Security permission level.

Description

This opcode pushes whether or not the current user profile contains the specified setup access
permissions. This opcode can be used in expressions to disable, suppress or gray-out forms, statements
and questions. It can also be used in checking question values to disallow or allow certain values.

This opcode performs the following actions:

1. If the current user profile contains the specified setup access permissions, then push TRUE.
Otherwise, push FALSE.

33.3.8.3.66 EFI_IFR_SET

Summary

Change a stored value.

Prototype

#define EFI_IFR_SET_OP 0x2C

typedef struct _EFI_IFR_SET {

 EFI_IFR_OP_HEADER Header;

 EFI_VARSTORE_ID VarStoreId;
 union {

 EFI_STRING_ID VarName;

 UINT16 VarOffset;

 } VarStoreInfo;

 UINT8 VarStoreType;
} EFI_IFR_SET;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_SET_OP.

VarStoreId Specifies the identifier of a previously declared variable store
to use when storing the question’s value.
UEFI Forum, Inc. March 2019 1911

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
VarStoreInfo Depending on the type of variable store selected, this
contains either a 16-bit Buffer Storage offset (VarOffset) or a
Name/Value or EFI Variable name (VarName).

VarStoreType Specifies the type used for storage. The storage types
EFI_IFR_TYPE_x are defined in EFI_IFR_ONE_OF_OPTION.

Description

This operator pops an expression from the expression stack. The expression popped is the value.

The value is stored into the variable store identified by VarStoreId and VarStoreInfo.

If the value could be stored successfully, then TRUE is pushed on to the expression stack. Otherwise,
FALSE is pushed on the expression stack.

33.3.8.3.67 EFI_IFR_SHIFT_LEFT

Summary

Pop two unsigned integers, shift one left by the number of bits specified by the other and push the result.

Prototype

#define EFI_IFR_SHIFT_LEFT_OP 0x38

typedef struct _EFI_IFR_SHIFT_LEFT {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SHIFT_LEFT;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_SHIFT_LEFT_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Shift the left-hand value left by the number of bits specified by the right-hand value and push the
result.

33.3.8.3.68 EFI_IFR_SHIFT_RIGHT

Summary

Pop two unsigned integers, shift one right by the number of bits specified by the other and push the
result.
UEFI Forum, Inc. March 2019 1912

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_SHIFT_RIGHT_OP 0x39

typedef struct _EFI_IFR_SHIFT_RIGHT {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SHIFT_RIGHT;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_SHIFT_RIGHT_OP.

Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Shift the left-hand value right by the number of bits specified by the right-hand value and push the
result.

33.3.8.3.69 EFI_IFR_SPAN

Summary

Pop two strings and an unsigned integer, find the first character from one string that contains characters
found in another and push its index.

Prototype

#define EFI_IFR_SPAN_OP 0x59

typedef struct _EFI_IFR_SPAN {

 EFI_IFR_OP_HEADER Header;

 UINT8 Flags;
} EFI_IFR_SPAN;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_SPAN_OP.

Flags Specifies whether to find the first matching string
(EFI_IFR_FLAGS_FIRST_MATCHING) or the first non-matching
string (EFI_IFR_FLAGS_FIRST_NON_MATCHING).

Description

This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value and the
second value popped is the middle value and the last value popped is the left expression.

2. If the left or middle values cannot be evaluated as a string, push Undefined. If the right value
cannot be evaluated as an unsigned integer, push Undefined.
UEFI Forum, Inc. March 2019 1913

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
3. The left string is the string to scan. The middle string consists of character pairs representing
the low-end of a range and the high-end of a range of characters. The right unsigned integer
represents the starting location for the scan.

4. The operation will push the zero-based index of the first character after the right value which
falls within any one of the ranges (EFI_IFR_FLAGS_FIRST_MATCHING) or falls within none
of the ranges (EFI_IFR_FLAGS_FIRST_NON_MATCHING).

Related Definitions

#define EFI_IFR_FLAGS_FIRST_MATCHING 0x00

#define EFI_IFR_FLAGS_FIRST_NON_MATCHING 0x01

33.3.8.3.70 EFI_IFR_STRING

Summary

Defines the string question.

Prototype

#define EFI_IFR_STRING_OP 0x1C

typedef struct _EFI_IFR_STRING {

 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;

 UINT8 MinSize;

 UINT8 MaxSize;

 UINT8 Flags;

} EFI_IFR_STRING;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

MinSize The minimum number of characters that can be accepted for
this opcode.

MaxSize The maximum number of characters that can be accepted for
this opcode.

Flags Flags which control the string editing behavior. See “Related
Definitions” below.

Description

This creates a string question. The minimum length is MinSize and the maximum length is MaxSize
characters.

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.

There are two ways to specify defaults for this question: one or more nested EFI_IFR_ONE_OF_OPTION
(lowest priority) or nested EFI_IFR_DEFAULT (highest priority).
UEFI Forum, Inc. March 2019 1914

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
If EFI_IFR_STRING_MULTI_LINE is set, it is a hint to the Forms Browser that multi-line text can be
allowed. If it is clear, then multi-line editing should not be allowed.

Related Definitions

#define EFI_IFR_STRING_MULTI_LINE 0x01

33.3.8.3.71 EFI_IFR_STRING_REF1

Summary

Push a string on the expression stack.

Prototype

#define EFI_IFR_STRING_REF1_OP 0x4e

typedef struct _EFI_IFR_STRING_REF1 {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID StringId;

} EFI_IFR_STRING_REF1;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_REF1_OP.

StringId The string’s identifier, which must be unique within the
package list.

Description

Push the string specified by StringId on to the expression stack. If the string does not exist, then push
an empty string.

33.3.8.3.72 EFI_IFR_STRING_REF2

Summary

Pop a string identifier, push the associated string.

Prototype

#define EFI_IFR_STRING_REF2_OP 0x4f

typedef struct _EFI_IFR_STRING_REF2 {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_STRING_REF2;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_REF2_OP.

Description

This opcode performs the following actions:
UEFI Forum, Inc. March 2019 1915

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
1. Pop a value from the expression stack.

2. If the value cannot be evaluated as an unsigned integer or the value of the unsigned integer is
greater than 0xFFFF, push Undefined.

3. If the string specified by the value (converted to a string identifier) cannot be determined or
the string does not exist, push an empty string.

4. Otherwise, push the string on to the expression stack.

33.3.8.3.73 EFI_IFR_SUBTITLE

Summary

Creates a sub-title in the current form.

Prototype

#define EFI_IFR_SUBTITLE_OP 0x02

typedef struct _EFI_IFR_SUBTITLE {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_STATEMENT_HEADER Statement;
 UINT8 Flags;

} EFI_IFR_SUBTITLE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_SUBTITLE_OP.

Flags Identifies specific behavior for the sub-title.

Description

Subtitle strings are intended to be used by authors to separate sections of questions into semantic
groups. If Header.Scope is set, then the Forms Browser may further distinguish the end of the semantic
group as including only those statements and questions which are nested.

If EFI_IFR_FLAGS_HORIZONTAL is set, then this provides a hint that the nested statements or
questions should be horizontally arranged. Otherwise, they are assumed to be vertically arranged.

An image may be associated with the statement using a nested EFI_IFR_IMAGE. An animation may be
associated with the statement using a nested EFI_IFR_ANIMATION.

Related Definitions

#define EFI_IFR_FLAGS_HORIZONTAL 0x01

33.3.8.3.74 EFI_IFR_SUBTRACT

Summary

Pop two unsigned integers, subtract one from the other, push the result.
UEFI Forum, Inc. March 2019 1916

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_SUBTRACT_OP 0x3b

typedef struct _EFI_IFR_SUBTRACT {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SUBTRACT;

Members

Header

Standard opcode header, where Header.OpCode is EFI_IFR_SUBTRACT_OP.

Description

This opcode performs the following operations:

1. Pop two values from the expression stack. The first value popped is the right-hand value and
the second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the values to 64-bits.

4. Subtract the right-hand value from the left-hand value.

5. Push the lower 64-bits of the result.

33.3.8.3.75 EFI_IFR_SUPPRESS_IF

Summary

Creates a group of statements or questions which are conditionally invisible.

Prototype

#define EFI_IFR_SUPPRESS_IF_OP 0x0a

typedef struct _EFI_IFR_SUPPRESS_IF {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_SUPPRESS_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_SUPPRESS_IF_OP.

Description

The suppress tag causes the nested objects to be hidden from the user if the expression appearing as the
first nested object evaluates to TRUE. If the expression consists of more than a single opcode, then the
first opcode in the expression must have the Scope bit set and the expression must end with
EFI_IFR_END.

This display form is maintained until the scope for this opcode is closed.
UEFI Forum, Inc. March 2019 1917

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.76 EFI_IFR_TEXT

Summary

Creates a static text and image.

Prototype

#define EFI_IFR_TEXT_OP 0x03

typedef struct _EFI_IFR_TEXT {

 EFI_IFR_OP_HEADER Header;

 EFI_IFR_STATEMENT_HEADER Statement;
 EFI_STRING_ID TextTwo;

} EFI_IFR_TEXT;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TEXT_OP.

Statement Standard statement header.
TextTwo The string token reference to the secondary string for this

opcode.

Description

This is a static text/image statement.

An image may be associated with the statement using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.

33.3.8.3.77 EFI_IFR_THIS

Summary

Push current question’s value.

Prototype

#define EFI_IFR_THIS_OP 0x58

typedef struct _EFI_IFR_THIS {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_THIS;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_THIS_OP.

Description

Push the current question’s value.
UEFI Forum, Inc. March 2019 1918

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
33.3.8.3.78 EFI_IFR_TIME

Summary

Create a Time question.

Prototype

#define EFI_IFR_TIME_OP 0x1b

typedef struct _EFI_IFR_TIME {

 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;

 UINT8 Flags;

} EFI_IFR_TIME;

Members

Header Basic question information. Header.Opcode =
EFI_IFR_TIME_OP.

Question The standard question header. See Section 33.3.8.2.2 for
more information.

Flags A bit-mask that determines which unique settings are active
for this opcode.

 QF_TIME_HOUR_SUPPRESS 0x01

 QF_TIME_MINUTE_SUPPRESS 0x02

 QF_TIME_SECOND_SUPPRESS 0x04

 QF_TIME_STORAGE 0x30

For QF_TIME_STORAGE, there are currently three valid values:
 QF_TIME_STORAGE_NORMAL 0x00

 QF_TIME_STORAGE_TIME 0x10

 QF_TIME_STORAGE_WAKEUP 0x20

Description

Create a Time question (see Section 33.2.5.4.11) and add it to the current form.

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation may be
associated with the question using a nested EFI_IFR_ANIMATION.

33.3.8.3.79 EFI_IFR_TOKEN

Summary

Pop two strings and an unsigned integer, then push the nth section of the first string using delimiters
from the second string.
UEFI Forum, Inc. March 2019 1919

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_TOKEN_OP 0x4d

typedef struct _EFI_IFR_TOKEN {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TOKEN;

Members

Header Standard opcode header, where OpCode is
EFI_IFR_TOKEN_OP.

Description

This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value and the second
value popped is the middle value and the last value popped is the left value.

2. If the left or middle values cannot be evaluated as a string, push Undefined. If the right value cannot be
evaluated as an unsigned integer, push Undefined.

3. The first value is the string. The second value is a string, where each character is a valid delimiter. The
third value is the zero-based index.

4. Push the nth delimited sub-string on to the expression stack (0 = left of the first delimiter). The end of
the string always acts a the final delimiter.

5. The no such string exists, an empty string is pushed.

33.3.8.3.80 EFI_IFR_TO_BOOLEAN

Summary

Pop a value, convert to Boolean and push the result.

Prototype

#define EFI_IFR_TO_BOOLEAN_OP 0x4A

typedef struct _EFI_IFR_TO_BOOLEAN{

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_BOOLEAN;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TO_BOOLEAN_OP

Description

This opcode performs the following actions:

1. Pop a value from the expression stack. If the value is Undefined or cannot be evaluated as a
Boolean, push Undefined. Otherwise push the Boolean on the expression stack.
UEFI Forum, Inc. March 2019 1920

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
2. When converting from an unsigned integer, zero will be converted to FALSE and any other
value will be converted to TRUE.

3. When converting from a string, if case-insensitive compare with “true” is True, then push
TRUE. If a case-insensitive compare with “false” is TRUE, then push False. Otherwise, push
Undefined.

4. When converting from a buffer, if the buffer is all zeroes, then push False. Otherwise push
True.

33.3.8.3.81 EFI_IFR_TO_LOWER

Summary

Convert a string on the expression stack to lower case.

Prototype

#define EFI_IFR_TO_LOWER_OP 0x20

typedef struct _EFI_IFR_TO_LOWER {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_LOWER;

Members

Header

The sequence that defines the type of opcode as well as the length of the opcode
being defined. For this tag, Header.OpCode = EFI_IFR_TO_LOWER_OP

Description

Pop an expression from the expression stack. If the expression is Undefined or cannot be evaluated as a
string, push Undefined. Otherwise, convert the string to all lower case using the StrLwr function of the
EFI_UNICODE_COLLATION2_PROTOCOL and push the string on the expression stack.

33.3.8.3.82 EFI_IFR_TO_STRING

Summary

Pop a value, convert to a string, push the result.

Prototype

#define EFI_IFR_TO_STRING_OP 0x49

typedef struct _EFI_IFR_TO_STRING{

 EFI_IFR_OP_HEADER Header;
 UINT8 Format;

} EFI_IFR_TO_STRING;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TO_STRING_OP

Format When converting from unsigned integers, these flags control
the format:
UEFI Forum, Inc. March 2019 1921

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
0 = unsigned decimal
1 = signed decimal
2 = hexadecimal (lower-case alpha)
3 = hexadecimal (upper-case alpha)
When converting from a buffer, these flags control the format:
0 = ASCII
8 = UCS-2

Description

This opcode performs the following actions:

1. Pop a value from the expression stack.

2. If the value is Undefined or cannot be evaluated as a string, push Undefined.

3. Convert the value to a string. When converting from an unsigned integer, the number will be
converted to a unsigned decimal string (Format = 0), signed decimal string (Format = 1) or a
hexadecimal string (Format = 2 or 3).

When converting from a boolean, the boolean will be converted to “True” (True) or
“False” (False). When converting from a buffer, each 8-bit (Format = 0) or 16-bit
(Format = 8) value will be converted into a character and appended to the string, up
until the end of the buffer or a NULL character.

4. Push the result.

33.3.8.3.83 EFI_IFR_TO_UINT

Summary

Pop a value, convert to an unsigned integer, push the result.

Prototype

#define EFI_IFR_TO_UINT_OP 0x48

typedef struct _EFI_IFR_TO_UINT {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_UINT;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TO_UINT_OP

Description

1. Pop a value from the expression stack.

2. If the value is Undefined or cannot be evaluated as an unsigned integer, push Undefined.

3. Convert the value to an unsigned integer. When converting from a boolean, if True, push 1 and
if False, push 0. When converting from a string, whitespace is skipped. The prefix ‘0x’ or ‘0X’
indicates to convert from a hexadecimal string while the prefix ‘-‘ indicates conversion from a
signed integer string. When converting from a buffer, if the buffer is greater than 8 bytes in
length, push Undefined. Otherwise, zero-extend the contents of the buffer to 64-bits.
UEFI Forum, Inc. March 2019 1922

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
4. Push the result.

33.3.8.3.84 EFI_IFR_TO_UPPER

Summary

Convert a string on the expression stack to upper case.

Prototype

#define EFI_IFR_TO_UPPER_OP 0x21

typedef struct _EFI_IFR_TO_UPPER {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_UPPER;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TO_UPPER_OP

Description

Pop an expression from the expression stack. If the expression is Undefined or cannot be evaluated as a
string, push Undefined. Otherwise, convert the string to all upper case using the StrUpr function of the
EFI_UNICODE_COLLATION2_PROTOCOL and push the string on the expression stack.

33.3.8.3.85 EFI_IFR_TRUE

Summary

Push a TRUE on to the expression stack.

Prototype

#define EFI_IFR_TRUE_OP 0x46

typedef struct _EFI_IFR_TRUE {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TRUE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_TRUE_OP

Description

Push a TRUE on to the expression stack.

33.3.8.3.86 EFI_IFR_UINT8, EFI_IFR_UINT16, EFI_IFR_UINT32, EFI_IFR_UINT64

Summary

Push an unsigned integer on to the expression stack.
UEFI Forum, Inc. March 2019 1923

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_UINT8_OP 0x42

typedef struct _EFI_IFR_UINT8 {

 EFI_IFR_OP_HEADER Header;
 UINT8 Value;

} EFI_IFR_UINT8;

#define EFI_IFR_UINT16_OP 0x43

typedef struct _EFI_IFR_UINT16 {

 EFI_IFR_OP_HEADER Header;
 UINT16 Value;

} EFI_IFR_UINT16;

#define EFI_IFR_UINT32_OP 0x44

typedef struct _EFI_IFR_UINT32 {

 EFI_IFR_OP_HEADER Header;
 UINT32 Value;

} EFI_IFR_UINT32;

#define EFI_IFR_UINT64_OP 0x45

typedef struct _EFI_IFR_UINT64 {

 EFI_IFR_OP_HEADER Header;
 UINT64 Value;

} EFI_IFR_UINT64;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_UINT8_OP, EFI_IFR_UINT16_OP,
EFI_IFR_UINT32_OP or EFI_IFR_UINT64_OP.

Value The unsigned integer.

Description

Push the specified unsigned integer, zero-extended to 64-bits, on to the expression stack.

33.3.8.3.87 EFI_IFR_UNDEFINED

Summary

Push an Undefined to the expression stack.
UEFI Forum, Inc. March 2019 1924

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_UNDEFINED_OP 0x55

typedef struct _EFI_IFR_UNDEFINED {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_UNDEFINED;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_UNDEFINED_OP

Description

Push Undefined on to the expression stack.

33.3.8.3.88 EFI_IFR_VALUE

Summary

Provides a value for the current question or default.

Prototype

#define EFI_IFR_VALUE_OP 0x5a

typedef struct _EFI_IFR_VALUE {

 EFI_IFR_OP_HEADER Header;

} EFI_IFR_VALUE;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VALUE_OP

Description

Creates a value for the current question or default with no storage. The value is the result of the
expression nested in the scope.

If used for a question, then the question will be read-only.

33.3.8.3.89 EFI_IFR_VARSTORE

Summary

Creates a variable storage short-cut for linear buffer storage.
UEFI Forum, Inc. March 2019 1925

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_VARSTORE_OP 0x24

typedef struct {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID Guid;

 EFI_VARSTORE_ID VarStoreId;

 UINT16 Size;

 //UINT8 Name[];

} EFI_IFR_VARSTORE;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_OP.

Guid The variable’s GUID definition. This field comprises one half of
the variable name, with the other half being the human-
readable aspect of the name, which is represented by the
string immediately following the Size field. Type EFI_GUID is
defined in InstallProtocolInterface() in this
specification.

VarStoreId The variable store identifier, which is unique within the
current form set. This field is the value that uniquely identify
this instance from others. Question headers refer to this value
to designate which is the active variable that is being used. A
value of zero is invalid.

Size The size of the variable store.
Name A null-terminated ASCII string that specifies the name

associated with the variable store. The field is not actually
included in the structure but is included here to help illustrate
the encoding of the opcode. The size of the string, including
the null termination, is included in the opcode's header size.

Description

This opcode describes a Buffer Storage Variable Store within a form set. A question can select this
variable store by setting the VarStoreId field in its opcode header.

An EFI_IFR_VARSTORE with a specified VarStoreId must appear in the IFR before it can be
referenced by a question.

33.3.8.3.90 EFI_IFR_VARSTORE_NAME_VALUE

Summary

Creates a variable storage short-cut for name/value storage.
UEFI Forum, Inc. March 2019 1926

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_VARSTORE_NAME_VALUE_OP 0x25

typedef struct _EFI_IFR_VARSTORE_NAME_VALUE {

 EFI_IFR_OP_HEADER Header;

 EFI_VARSTORE_ID VarStoreId;

 EFI_GUID Guid;

} EFI_IFR_VARSTORE_NAME_VALUE;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_NAME_VALUE_OP.

Guid The variable’s GUID definition. This field comprises one half of
the variable name, with the other half being the human-
readable aspect of the name, which is specified in the
VariableName field in the question’s header (see
EFI_IFR_QUESTION_HEADER). Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI Specification.

VarStoreId The variable store identifier, which is unique within the
current form set. This field is the value that uniquely identifies
this variable store definition instance from others. Question
headers refer to this value to designate which is the active
variable that is being used. A value of zero is invalid.

Description

This opcode describes a Name/Value Variable Store within a form set. A question can select this variable
store by setting the VarStoreId field in its question header.

An EFI_IFR_VARSTORE_NAME_VALUE with a specified VarStoreId must appear in the IFR before it
can be referenced by a question.

33.3.8.3.91 EFI_IFR_VARSTORE_EFI

Summary

Creates a variable storage short-cut for EFI variable storage.
UEFI Forum, Inc. March 2019 1927

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_VARSTORE_EFI_OP 0x26

typedef struct _EFI_IFR_VARSTORE_EFI {

 EFI_IFR_OP_HEADER Header;

 EFI_VARSTORE_ID VarStoreId;

 EFI_GUID Guid;

 UINT32 Attributes
 UINT16 Size;

 //UINT8 Name[];

} EFI_IFR_VARSTORE_EFI;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_EFI_OP.

VarStoreId The variable store identifier, which is unique within the
current form set. This field is the value that uniquely identifies
this variable store definition instance from others. Question
headers refer to this value to designate which is the active
variable that is being used. A value of zero is invalid.

Guid The EFI variable’s GUID definition. This field comprises one
half of the EFI variable name, with the other half being the
human-readable aspect of the name, which is specified in the
Name field below. Type EFI_GUID is defined in
InstallProtocolInterface() in this specification.

Attributes Specifies the flags to use for the variable.
Size The size of the variable store.
Name A null-terminated ASCII string that specifies one half of the

EFI name for this variable store. The other half is specified in
the Guid field (above). The Name field is not actually included
in the structure but is included here to help illustrate the
encoding of the opcode. The size of the string, including the
null termination, is included in the opcode's header size.

Description

This opcode describes an EFI Variable Variable Store within a form set. The Guid and Name specified here
will be used with GetVariable() and SetVariable().

• A question can select this variable store by setting the VarStoreId field in its question
header.

• A question can refer to a specific offset within the EFI Variable using the VarOffset field in its
question header.
UEFI Forum, Inc. March 2019 1928

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Note: Name must be converted to a CHAR16 string before it is passed to GetVariable() or
SetVariable().

An EFI_IFR_VARSTORE_EFI with a specified VarStoreId must appear in the IFR before it can be
referenced by a question.

33.3.8.3.92 EFI_IFR_VARSTORE_DEVICE

Summary

Select the device which contains the variable store.

Prototype

#define EFI_IFR_VARSTORE_DEVICE_OP 0x27

typedef struct _EFI_IFR_VARSTORE_DEVICE {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID DevicePath;

} EFI_IFR_VARSTORE_DEVICE;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_DEVICE_OP.

DevicePath Specifies the string which contains the device path of the
device where the variable store resides.

Description

This opcode describes the device path where a variable store resides. Normally, the Forms Processor
finds the variable store on the handle specified when the HII database function NewPackageList() was
called. However, if this opcode is found in the scope of a question, the handle specified by the text device
path DevicePath is used instead.

33.3.8.3.93 EFI_IFR_VERSION

Summary

Push the version of the UEFI specification to which the Forms Processor conforms.

Prototype

#define EFI_IFR_VERSION_OP 0x28

typedef struct _EFI_IFR_VERSION {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_VERSION;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VERSION_OP.
UEFI Forum, Inc. March 2019 1929

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

Returns the revision level of the UEFI specification with which the Forms Processor is compliant as a 16-
bit unsigned integer, with the form:

[15:8]Major revision

[7:4]Tens digit of the minor revision

[3:0]Ones digit of the minor revision

The fields of the version have the following correlation with the revision of the UEFI system table.

Major revision: EFI_SYSTEM_TABLE_REVISION >> 16

Tens digit of the minor revision: (EFI_SYSTEM_TABLE_REVISION & 0xFFFF)/10

Ones digit of the minor revision: (EFI_SYSTEM_TABLE_REVISION & 0xFFFF)%10

33.3.8.3.94 EFI_IFR_WRITE

Summary

Change a value for the current question.

Prototype

#define EFI_IFR_WRITE_OP 0x2E

typedef struct _EFI_IFR_WRITE {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_WRITE;

Parameters

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_WRITE_OP

Description

Before writing the value of the current question to storage (if any storage was specified), the this
constant is set (see EFI_IFR_THIS) and then this expression is evaluated.

33.3.8.3.95 EFI_IFR_ZERO

Summary

Push a zero on to the expression stack.
UEFI Forum, Inc. March 2019 1930

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

#define EFI_IFR_ZERO_OP 0x52

typedef struct _EFI_IFR_ZERO {

 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ZERO;

Members

Header The sequence that defines the type of opcode as well as the
length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_ZERO_OP

Description

Push a zero on to the expression stack.

33.3.8.3.96 EFI_IFR_WARNING_IF

Summary

Creates a validation expression and warning message for a question.

Prototype

#define EFI_IFR_WARNING_IF_OP 0x063

typedef struct _EFI_IFR_WARNING_IF {

 EFI_IFR_OP_HEADER Header;

 EFI_STRING_ID Warning;

 UINT8 TimeOut;
} EFI_IFR_WARNING_IF;

Members

Header The byte sequence that defines the type of opcode as well as
the length of the opcode being defined. Header.OpCode =
EFI_IFR_WARNING_IF_OP.

Warning The string token reference to the string that will be used for
the warning check message.

TimeOut The number of seconds for the warning message to be
displayed before it is timed out or acknowledged by the user.
A value of zero indicates that the message is displayed
indefinitely until the user acknowledges it.

Description

This tag uses a Boolean expression to allow the IFR creator to check options in a question, and provide a
warning message if the expression is true. For example, this tag might be used to give a warning if the
user attempts to disable a security setting, or change the value of a sensitive question. The tag provides a
string to be used in a warning display to alert the user of the consequences of changing the question
value. Warning tags will be evaluated when the user traverses from tag to tag. The browser must display
the warning text message and not allow the form to be submitted until either the user acknowledges the
message (with some key press for instance) or the number of seconds in TimeOut elapses. Unlike
UEFI Forum, Inc. March 2019 1931

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
inconsistency tags, the user should still be allowed to submit the results of a form even if the warning
expression evaluates to true.

33.3.8.3.97 EFI_IFR_MATCH2

Summary

Pop a source string and a pattern string, push TRUE if the source string matches the Regular Expression
pattern specified by the pattern string, otherwise push FALSE.

Prototype

#define EFI_IFR_MATCH2_OP 0x64

typedef struct _EFI_IFR_MATCH2 {

 EFI_IFR_OP_HEADER Header;

 EFI_GUID SyntaxType;
} EFI_IFR_MATCH2;

Members

Header Standard opcode header, where Header.Opcode is
EFI_IFR_MATCH2_OP.

SyntaxType A GUID that identifies the regular expression syntax type to
use for the pattern string. See
EFI_REGULAR_EXPRESSION_PROTOCOL for current syntax
definitions.

 Description

This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the string and the
second value popped is the pattern.

2. If the string or the pattern cannot be evaluated as a string, then push Undefined.

3. Call GetInfo function of each instance of EFI_REGULAR_EXPRESSION_PROTOCOL, looking
for a SyntaxType that is listed in the set of supported regular expression syntax types
returned by RegExSyntaxTypeList. If the type specified by SyntaxType is not supported
in any of the EFI_REGULAR_EXPRESSION_PROTOCOL instances, or no
EFI_REGULAR_EXPRESSION_PROTOCOL instance was found, push Undefined.

4. Process the string and pattern using the MatchString function of the
EFI_REGULAR_EXPRESSION_PROTOCOL instance that supports the SyntaxType, where
SyntaxType is the SyntaxType input to MatchString.

5. If the returned regular expression Result is TRUE, then push TRUE.

6. If the return regular expression Result is FALSE, then push FALSE.

Note: To ensure interoperability, drivers that publish HII IFR Forms packages should check the system
capabilities by calling the GetInfo function of each EFI_REGULAR_EXPRESSION_PROTCOL
instance during initialization. If the required regular expression syntax type is not supported, the
driver may install its own instance of EFI_REGULAR_EXPRESSION_PROTCOL to add the support.
UEFI Forum, Inc. March 2019 1932

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
The driver may also choose to fall back to other methods of validation, such as using
EFI_IFR_MATCH or callbacks.

33.3.9 Keyboard Package

//***

// EFI_HII_KEYBOARD_PACKAGE_HDR

//***

typedef struct {

 EFI_HII_PACKAGE_HDR Header;

 UINT16 LayoutCount;

//EFI_HII_KEYBOARD_LAYOUT Layout[];
} EFI_HII_KEYBOARD_PACKAGE_HDR;

Header The general pack header which defines both the type of pack
and the length of the entire pack.

LayoutCount The number of keyboard layouts contained in the entire
keyboard pack.

Layout An array of LayoutCount number of keyboard layouts.

33.3.10 Animations Package

The Animation package record describes how, when, and which EFI images to display. The package
consists of two parts: a fixed header and the animation information.

33.3.10.1 Animated Images Package

Summary

The fixed header consists of a standard record header and the

Prototype

typedef struct _EFI_HII_ANIMATION_PACKAGE_HDR {

EFI_HII_ANIMATION_PACKAGE Header;

UINT32 AnimationInfoOffset;
} EFI_HII_ANIMATION_PACKAGE_HDR;

Members

Header Standard image header, where Header.BlockType =
EFI_HII_PACKAGE_ANIMATIONS.

AnimationInfoOffsetOffset, relative to this header, of the animation information.
If this is zero, then there are no animation sequences in the
package.

33.3.10.2 Animation Information

For each animated image identifier, the animation information gives a sequence of EFI images to display
and how and when to transition to the next image. The animation information is encoded as a series of
UEFI Forum, Inc. March 2019 1933

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
blocks, with each block prefixed by a single byte header (EFI_HII_ANIMATION_BLOCK) or one of the
extension headers (EFI_HII_AIBT_EXTx_BLOCK). The blocks must be processed in
order.

Figure 61. Animation Information Encoded in Blocks

Prototype

typedef struct _EFI_HII_ANIMATION_BLOCK {

 UINT8 BlockType;

//UINT8 BlockBody[];
} EFI_HII_ANIMATION_BLOCK;

The following table describes the different block types:

Table 24. Animation Block Types

Name Value Description

EFI_HII_AIBT_END 0x00 The end of the animation information.

EFI_HII_AIBT_OVERLAY_IMAGES 0x10 Animate sequence once by displaying the next image in
the logical window.

EFI_HII_AIBT_CLEAR_IMAGES 0x11 Animate sequence once by clearing the logical window
before displaying the next image.
UEFI Forum, Inc. March 2019 1934

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
In order to recreate all animation sequences, start at the first block and process them all until either an
EFI_HII_AIBT_END block is found. When processing the animation blocks, each block refers to the
current animation identifier (AnimationIdCurrent), which is initially set to one (1).

Animation blocks of an unknown type should be skipped. If they cannot be skipped, then processing
halts.

33.3.10.2.1 EFI_HII_AIBT_END

Summary

Marks the end of the animation information.

Prototype

None

Members

Header Standard animation header, where Header.BlockType =
EFI_HII_AIBT_END.

Discussion

Any animation sequences with an animation identifier greater than or equal to AnimationIdCurrent
are empty. There is no additional data.

33.3.10.2.2 EFI_HII_AIBT_EXT1, EFI_HII_AIBT_EXT2, EFI_HII_AIBT_EXT4

Summary

Generic prefix for animation information with a 1-byte,2-byte or 4-byte length.

EFI_HII_AIBT_RESTORE_SCRN 0x12 Animate sequence once by clearing the restoring the
logical window before displaying the next image.

EFI_HII_AIBT_OVERLAY_IMAGES_LOOP 0x18 Animate repeating sequence by displaying the next
image in the logical window.

EFI_HII_AIBT_CLEAR_IMAGES_LOOP 0x19 Animate repeating sequence by clearing the logical
window before displaying the next image.

EFI_HII_AIBT_RESTORE_SCRN_LOOP 0x1A Animate repeating sequence by clearing the restoring
the logical window before displaying the next image.

EFI_HII_AIBT_DUPLICATE 0x20 Duplicate an existing animation identifier

EFI_HII_AIBT_SKIP2 0x21 Skip a certain number of animation identifiers.

EFI_HII_AIBT_SKIP1 0x22 Skip a certain number of animation identifiers.

EFI_HII_AIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_AIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_AIBT_EXT4 0x32 For future expansion (four byte length field)

Name Value Description
UEFI Forum, Inc. March 2019 1935

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_AIBT_EXT1_BLOCK {

 EFI_HII_ANIMATION_BLOCK Header;

 UINT8 BlockType2;

 UINT8 Length;
} EFI_HII_AIBT_EXT1_BLOCK;

typedef struct _EFI_HII_AIBT_EXT2_BLOCK {

 EFI_HII_ANIMATION_BLOCK Header;

 UINT8 BlockType2;

 UINT16 Length;
} EFI_HII_AIBT_EXT2_BLOCK;

typedef struct _EFI_HII_AIBT_EXT4_BLOCK {

 EFI_HII_ANIMATION_BLOCK Header;

 UINT8 BlockType2;

 UINT32 Length;
} EFI_HII_AIBT_EXT4_BLOCK;

 Members

 Header Standard animation header, where Header.BlockType =
EFI_HII_AIBT_EXT1, EFI_HII_AIBT_EXT2, or
EFI_HII_AIBT_EXT4.

Length Size of the animation block, in bytes, including the animation
block header.

BlockType2 The block type, as described in Table 21 on page 1840.

Discussion

These records are used for variable sized animation records which need an explicit length.

33.3.10.2.3 EFI_HII_AIBT_OVERLAY_IMAGES

Summary

An animation block to describe an animation sequence that does not cycle, and where one image is
simply displayed over the previous image.
UEFI Forum, Inc. March 2019 1936

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Prototype

typedef struct _EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK {

 EFI_IMAGE_ID DftImageId;

 UINT16 Width;

 UINT16 Height;

 UINT16 CellCount;

 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK;

Members

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window

height).
CellCount The number of EFI_HII_ANIMATION_CELL contained in the

animation sequence.
AnimationCell An array of CellCount animation cells. The type

EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
below.

Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to be displayed only once (it is not a
repeating sequence). Each image in the sequence will remain on the screen for the specified delay before
the next image in the sequence is displayed.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_OVERLAY_IMAGES.

Related Definition

typedef struct _EFI_HII_ANIMATION_CELL {

 UINT16 OffsetX;

 UINT16 OffsetY;

 EFI_IMAGE_ID ImageId;

 UINT16 Delay;
} EFI_HII_ANIMATION_CELL;

OffsetX The X offset from the upper left hand corner of the logical
window to position the indexed image.

OffsetY The Y offset from the upper left hand corner of the logical
window to position the indexed image.
UEFI Forum, Inc. March 2019 1937

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
ImageId The image to display at the specified offset from the upper
left hand corner of the logical window.

Delay The number of milliseconds to delay after displaying the
indexed image and before continuing on to the next linked
image. If value is zero, no delay.

Related Description

The logical window definition allows the animation to be centered, even though the first image might be
way off center (bounds the sequence of images). All images will be clipped to the defined logical window,
since the logical window is suppose to bound all images, normally there is nothing to clip. The
DftImageId definition allows an alternate image to be displayed if animation is currently not
supported. The DftImageId image is to be centered in the defined logical window.

33.3.10.2.4 EFI_HII_AIBT_CLEAR_IMAGES

Summary

An animation block to describe an animation sequence that does not cycle, and where the logical window
is cleared to the specified color before the next image is displayed.

Prototype

typedef struct _EFI_HII_AIBT_CLEAR_IMAGES_BLOCK {

EFI_IMAGE_ID DftImageId;

UINT16 Width;

UINT16 Height;

UINT16 CellCount;

EFI_HII_RGB_PIXEL BackgndColor;

EFI_HII_ANIMATION_CELL AnimationCell[];

} EFI_HII_AIBT_CLEAR_IMAGES_BLOCK;

Members

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window height).
CellCount The number of EFI_HII_ANIMATION_CELL contained in the

animation sequence.
UEFI Forum, Inc. March 2019 1938

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
BackgndColor The color to clear the logical window to before displaying the
indexed image.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
in EFI_HII_AIBT_OVERLAY_IMAGES.

Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to be displayed only once (it is not a
repeating sequence). Each image in the sequence will remain on the screen for the specified delay before
the logical window is cleared to the specified color (BackgndColor) and the next image is displayed. The
logical window is also cleared to the specified color before displaying the DftImageId image.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_CLEAR_IMAGES.

33.3.10.2.5 EFI_HII_AIBT_RESTORE_SCRN

Summary

An animation block to describe an animation sequence that does not cycle, and where the screen is
restored to the original state before the next image is displayed.

Prototype

typedef struct _EFI_HII_AIBT_RESTORE_SCRN_BLOCK {

 EFI_IMAGE_ID DftImageId;

 UINT16 Width;

 UINT16 Height;

 UINT16 CellCount;

 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_RESTORE_SCRN_BLOCK;

Members

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window

height).
CellCount The number of EFI_HII_ANIMATION_CELL contained in the

animation sequence.
AnimationCell An array of CellCount animation cells. The type

EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
in EFI_HII_AIBT_OVERLAY_IMAGES.
UEFI Forum, Inc. March 2019 1939

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to be displayed only once (it is not a
repeating sequence). Before the first image is displayed, the entire defined logical window is saved to a
buffer. Then each image in the sequence will remain on the screen for the specified delay before the
logical window is restored to the original state and the next image is displayed.

If memory buffers are not available to save the logical window, this structure is treated as
EFI_HII_AIBT_CLEAR_IMAGES structure, with the BackgndColor value set to black.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_RESTORE_SCRN.

33.3.10.2.6 EFI_HII_AIBT_OVERLAY_IMAGES_LOOP

Summary

An animation block to describe an animation sequence that continuously cycles, and where one image is
simply displayed over the previous image.

Prototype

typedef EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK
EFI_HII_AIBT_OVERLAY_IMAGES_LOOP_BLOCK {

 EFI_IMAGE_ID DftImageId;

 UINT16 Width;

 UINT16 Height;

 UINT16 CellCount;

 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_OVERLAY_IMAGES_LOOP_BLOCK;

Members

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window

height).
CellCount The number of EFI_HII_ANIMATION_CELL contained in the

animation sequence.
AnimationCell An array of CellCount animation cells. The type

EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
in EFI_HII_AIBT_OVERLAY_IMAGES
UEFI Forum, Inc. March 2019 1940

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to continuously cycle until stopped or
paused. Each image in the sequence will remain on the screen for the specified delay before the next
image in the sequence is displayed.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_OVERLAY_IMAGES_LOOP.

33.3.10.2.7 EFI_HII_AIBT_CLEAR_IMAGES_LOOP

Summary

An animation block to describe an animation sequence that continuously cycles, and where the logical
window is cleared to the specified color before the next image is displayed.

Prototype

typedef EFI_HII_AIBT_CLEAR_IMAGES_BLOCK EFI_HII_AIBT_CLEAR_IMAGES_LOOP_BLOCK

{

 EFI_IMAGE_ID DftImageId;

 UINT16 Width;

 UINT16 Height;

 UINT16 CellCount;

 EFI_HII_RGB_PIXEL BackgndColor;

 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_CLEAR_IMAGES_LOOP_BLOCK;

Members

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window

height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

BackgndColor The color to clear the logical window to before displaying the
indexed image.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
in EFI_HII_AIBT_OVERLAY_IMAGES
UEFI Forum, Inc. March 2019 1941

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to continuously cycle until stopped
or paused. Each image in the sequence will remain on the screen for the specified delay before the logical
window is cleared to the specified color (BackgndColor) and the next image is displayed. The logical
window is also cleared to the specified color before displaying the DftImageId image.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_CLEAR_IMAGES_LOOP.

33.3.10.2.8 EFI_HII_AIBT_RESTORE_SCRN_LOOP

Summary

An animation block to describe an animation sequence that continuously cycles, and where the screen is
restored to the original state before the next image is displayed.

Prototype

typedef EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK
EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK {

 EFI_IMAGE_ID DftImageId;

 UINT16 Width;

 UINT16 Height;

 UINT16 CellCount;

 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK;

Members

Header Standard image header, where Header.BlockType =
EFI_HII_AIBT_RESTORE_SCRN_LOOP.

DftImageId This is image that is to be reference by the image protocols, if
the animation function is not supported or disabled. This
image can be one particular image from the animation
sequence (if any one of the animation frames has a complete
image) or an alternate image that can be displayed alone. If
the value is zero, no image is displayed.

Length Size of the animation block, in bytes, including the animation
block header.

Width The overall width of the set of images (logical window width).
Height The overall height of the set of images (logical window

height).
CellCount The number of EFI_HII_ANIMATION_CELL contained in the

animation sequence.
AnimationCell An array of CellCount animation cells. The type

EFI_HII_ANIMATION_CELL is defined in “Related Definitions”
in EFI_HII_AIBT_OVERLAY_IMAGES
UEFI Forum, Inc. March 2019 1942

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Description

This record assigns the animation sequence data to the AnimationIdCurrent identifier and increment
AnimationIdCurrent by one. This animation sequence is meant to continuously cycle until stopped or
paused. Before the first image is displayed, the entire defined logical window is saved to a buffer. Then
each image in the sequence will remain on the screen for the specified delay before the logical window is
restored to the original state and the next image is displayed.

If memory buffers are not available to save the logical window, this structure is treated as
EFI_HII_AIBT_CLEAR_IMAGES_LOOP structure, with the BackgndColor value set to black.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_RESTORE_SCRN_LOOP.

33.3.10.2.9 EFI_HII_AIBT_DUPLICATE

Summary

Assigns a new character value to a previously defined animation sequence.

Prototype

typedef struct _EFI_HII_AIBT_DUPLICATE_BLOCK {

 EFI_ANIMATION_ID AnimationId;
} EFI_HII_AIBT_DUPLICATE_BLOCK;

Members

AnimationId The previously defined animation ID with the exact same
animation information.

Discussion

Indicates that the animation sequence with animation ID AnimationIdCurrent has the same
animation information as a previously defined animation ID and increments AnimationIdCurrent by
one.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_DUPLICATE.

33.3.10.2.10 EFI_HII_AIBT_SKIP1

Summary

Skips animation IDs.

Prototype

typedef struct _EFI_HII_AIBT_SKIP1_BLOCK {

 UINT8 SkipCount;
} EFI_HII_AIBT_SKIP1_BLOCK;

Members

SkipCount The unsigned 8-bit value to add to AnimationIdCurrent.
UEFI Forum, Inc. March 2019 1943

UEFI Specification, Version 2.8 Human Interface Infrastructure Overview
Discussion

Increments the current animation ID AnimationIdCurrent by the number specified. The header type
(either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_SKIP1.

33.3.10.2.11 EFI_HII_AIBT_SKIP2

Summary

Skips animation IDs.

Prototype

typedef struct _EFI_HII_AIBT_SKIP2_BLOCK {

 UINT16 SkipCount;
} EFI_HII_AIBT_SKIP2_BLOCK;

Members

SkipCount The unsigned 16-bit value to add to AnimationIdCurrent.

Discussion

Increments the current animation ID AnimationIdCurrent by the number specified.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_SKIP2.
UEFI Forum, Inc. March 2019 1944

UEFI Specification, Version 2.8
34 - HII Protocols

This section provides code definitions for the HII-related protocols, functions, and type definitions, which
are the required architectural mechanisms by which UEFI-compliant systems manage user input. The
major areas described include the following:

• Font management.

• String management.

• Image management.

• Database management.

34.1 Font Protocol

EFI_HII_FONT_PROTOCOL

Summary

Interfaces which retrieve font information.

GUID

#define EFI_HII_FONT_PROTOCOL_GUID \

 { 0xe9ca4775, 0x8657, 0x47fc, \

 {0x97, 0xe7, 0x7e, 0xd6, 0x5a, 0x8, 0x43, 0x24 }}

Protocol

typedef struct _EFI_HII_FONT_PROTOCOL {

 EFI_HII_STRING_TO_IMAGE StringToImage;

 EFI_HII_STRING_ID_TO_IMAGE StringIdToImage;

 EFI_HII_GET_GLYPH GetGlyph;

 EFI_HII_GET_FONT_INFO GetFontInfo;
} EFI_HII_FONT_PROTOCOL;

Members

StringToImage, StringIdToImage

Render a string to a bitmap or to the display.

GetGlyph

Return a specific glyph in a specific font.

GetFontInfo

Return font information for a specific font.

EFI_HII_FONT_PROTOCOL.StringToImage()

Summary

Renders a string to a bitmap or to the display.
UEFI Forum, Inc. March 2019 1945

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_STRING_TO_IMAGE) (

 IN CONST EFI_HII_FONT_PROTOCOL *This,

 IN EFI_HII_OUT_FLAGS Flags,

 IN CONST EFI_STRING String,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,

 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,

 OUT UINTN *RowInfoArraySize OPTIONAL,

 OUT UINTN *ColumnInfoArray OPTIONAL
);

Parameters

This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Flags

Describes how the string is to be drawn. EFI_HII_OUT_FLAGS is defined in Related
Definitions, below.

String

Points to the null-terminated string to be displayed.

StringInfo

Points to the string output information, including the color and font. If NULL, then
the string will be output in the default system font and color.

Blt

If this points to a non-NULL on entry, this points to the image, which is Blt.Width
pixels wide and Blt.Height pixels high. The string will be drawn onto this image
and EFI_HII_OUT_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit.
It is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the image of the first character cell
in the image.

RowInfoArray

If this is non-NULL on entry, then on exit, this will point to an allocated buffer
containing row information and RowInfoArraySize will be updated to contain the
number of elements. This array describes the characters which were at least partially
drawn and the heights of the rows. It is the caller’s responsibility to free this buffer.
UEFI Forum, Inc. March 2019 1946

UEFI Specification, Version 2.8 HII Protocols
RowInfoArraySize

If this is non-NULL on entry, then on exit it contains the number of elements in
RowInfoArray.

ColumnInfoArray

If this is non-NULL, then on return it will be filled with the horizontal offset for each
character in the string on the row where it is displayed. Non-printing characters will
have the offset ~0. The caller is responsible to allocate a buffer large enough so that
there is one entry for each character in the string, not including the null-terminator.
It is possible when character display is normalized that some character cells overlap.

Description

This function renders a string to a bitmap or the screen using the specified font, color and options. It
either draws the string and glyphs on an existing bitmap, allocates a new bitmap or uses the screen. The
strings can be clipped or wrapped. Optionally, the function also returns the information about each row
and the character position on that row.

If EFI_HII_OUT_FLAG_CLIP is set, then text will be formatted only based on explicit line breaks and all
pixels which would lie outside the bounding box specified by Blt.Width and Blt.Height are ignored.
The information in the RowInfoArray only describes characters which are at least partially displayed.
For the final row, the RowInfoArray.LineHeight and RowInfoArray.BaseLine may describe
pixels which are outside the limit specified by Blt. Height (unless
EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is specified) even though those pixels were not drawn. The
LineWidth may describe pixels which are outside the limit specified by Blt.Width (unless
EFI_HII_OUT_FLAG_CLIP_CLEAN_X is specified) even though those pixels were not drawn.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a character’s right-most on pixel cannot fit, then it will not be
drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a row’s bottom-most pixel cannot fit, then it will not be drawn at
all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_WRAP is set, then text will be wrapped at the right-most line-break opportunity
prior to a character whose right-most extent would exceed Blt.Width. If no line-break opportunity can
be found, then the text will behave as if EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set. This flag cannot be
used with EFI_HII_OUT_FLAG_CLIP_CLEAN_X.

If EFI_HII_OUT_FLAG_TRANSPARENT is set, then StringInfo.BackgroundColor is ignored and all
“off” pixels in the character’s drawn will use the pixel value from Blt. This flag cannot be used if Blt is
NULL upon entry.

If EFI_HII_IGNORE_IF_NO_GLYPH is set, then characters which have no glyphs are not drawn.
Otherwise, they are replaced with Unicode character code 0xFFFD (REPLACEMENT CHARACTER).

If EFI_HII_IGNORE_LINE_BREAK is set, then explicit line break characters will be ignored.

If EFI_HII_DIRECT_TO_SCREEN is set, then the string will be written directly to the output device
specified by Screen. Otherwise the string will be rendered to the bitmap specified by Bitmap.
UEFI Forum, Inc. March 2019 1947

UEFI Specification, Version 2.8 HII Protocols
Related Definitions

typedef UINT32 EFI_HII_OUT_FLAGS;

#define EFI_HII_OUT_FLAG_CLIP 0x00000001

#define EFI_HII_OUT_FLAG_WRAP 0x00000002

#define EFI_HII_OUT_FLAG_CLIP_CLEAN_Y 0x00000004

#define EFI_HII_OUT_FLAG_CLIP_CLEAN_X 0x00000008

#define EFI_HII_OUT_FLAG_TRANSPARENT 0x00000010

#define EFI_HII_IGNORE_IF_NO_GLYPH 0x00000020

#define EFI_HII_IGNORE_LINE_BREAK 0x00000040

#define EFI_HII_DIRECT_TO_SCREEN 0x00000080

typedef CHAR16 *EFI_STRING;

typedef struct _EFI_HII_ROW_INFO {

 UINTN StartIndex;

 UINTN EndIndex;

 UINTN LineHeight;

 UINTN LineWidth;

 UINTN BaselineOffset;
} EFI_HII_ROW_INFO;

StartIndex

The index of the first character in the string which is displayed on the line.

EndIndex

The index of the last character in the string which is displayed on the line.

LineHeight

The height of the line, in pixels.

LineWidth

The width of the text on the line, in pixels.

BaselineOffset

The font baseline offset in pixels from the bottom of the row, or 0 if none.
UEFI Forum, Inc. March 2019 1948

UEFI Specification, Version 2.8 HII Protocols
Status Codes Returned

EFI_HII_FONT_PROTOCOL.StringIdToImage()

Summary

Render a string to a bitmap or the screen containing the contents of the specified string.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_STRING_ID_TO_IMAGE) (

 IN CONST EFI_HII_FONT_PROTOCOL *This,

 IN EFI_HII_OUT_FLAGS Flags,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_STRING_ID StringId,

 IN CONST CHAR8* Language,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,
 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,

 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,

 OUT UINTN *RowInfoArraySize OPTIONAL,

 OUT UINTN *ColumnInfoArray OPTIONAL

);

Parameters

This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Flags

Describes how the string is to be drawn. EFI_HII_OUT_FLAGS is defined in Related
Definitions, below.

PackageList

The package list in the HII database to search for the specified string.

StringId

The string’s id, which is unique within PackageList.

EFI_SUCCESS The string was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_INVALID_PARAMETER The String or Blt was NULL.

EFI_INVALID_PARAMETER Flags were invalid combination
UEFI Forum, Inc. March 2019 1949

UEFI Specification, Version 2.8 HII Protocols
Language

Points to the language for the retrieved string. If NULL, then the current system
language is used.

StringInfo

Points to the string output information, including the color and font. If NULL, then
the string will be output in the default system font and color.

Blt

If this points to a non-NULL on entry, this points to the image, which is Blt.Width
pixels wide and Height pixels high. The string will be drawn onto this image and
EFI_HII_OUT_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit.
It is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the output image of the first
character cell in the image.

RowInfoArray

If this is non-NULL on entry, then on exit, this will point to an allocated buffer
containing row information and RowInfoArraySize will be updated to contain
the number of elements. This array describes the characters which were at least
partially drawn and the heights of the rows. It is the caller’s responsibility to free this
buffer.

RowInfoArraySize

If this is non-NULL on entry, then on exit it contains the number of elements in
RowInfoArray.

ColumnInfoArray

If non-NULL, on return it is filled with the horizontal offset for each character in the
string on the row where it is displayed. Non-printing characters will have the offset
~0. The caller is responsible to allocate a buffer large enough so that there is one
entry for each character in the string, not including the null-terminator. It is possible
when character display is normalized that some character cells overlap.

Description

This function renders a string as a bitmap or to the screen and can clip or wrap the string. The bitmap is
either supplied by the caller or else is allocated by the function. The strings are drawn with the font, size
and style specified and can be drawn transparently or opaquely. The function can also return information
about each row and each character’s position on the row.

If EFI_HII_OUT_FLAG_CLIP is set, then text will be formatted only based on explicit line breaks and all
pixels which would lie outside the bounding box specified by Width and Height are ignored. The
information in the RowInfoArray only describes characters which are at least partially displayed. For
the final row, the LineHeight and BaseLine may describe pixels which are outside the limit specified by
Height (unless EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is specified) even though those pixels were not
drawn.
UEFI Forum, Inc. March 2019 1950

UEFI Specification, Version 2.8 HII Protocols
If EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a character’s right-most on pixel cannot fit, then it will not be
drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a row’s bottom most pixel cannot fit, then it will not be drawn at
all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_WRAP is set, then text will be wrapped at the right-most line-break opportunity
prior to a character whose right-most extent would exceed Width. If no line-break opportunity can be
found, then the text will behave as if EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set. This flag cannot be
used with EFI_HII_OUT_FLAG_CLIP_CLEAN_X.

If EFI_HII_OUT_FLAG_TRANSPARENT is set, then BackgroundColor is ignored and all “off” pixels in
the character’s glyph will use the pixel value from Blt. This flag cannot be used if Blt is NULL upon
entry.

If EFI_HII_IGNORE_IF_NO_GLYPH is set, then characters which have no glyphs are not drawn.
Otherwise, they are replaced with Unicode character code 0xFFFD (REPLACEMENT CHARACTER).

If EFI_HII_IGNORE_LINE_BREAK is set, then explicit line break characters will be ignored.

If EFI_HII_DIRECT_TO_SCREEN is set, then the string will be written directly to the output device
specified by Screen. Otherwise the string will be rendered to the bitmap specified by Bitmap.

Status Codes Returned

EFI_HII_FONT_PROTOCOL.GetGlyph()

Summary

Return image and information about a single glyph.

EFI_SUCCESS The string was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_INVALID_PARAMETER The StringId or PackageList was NULL.

EFI_INVALID_PARAMETER Flags were invalid combination.

EFI_NOT_FOUND The StringId is not in the specified PackageList.

The specified PackageList is not in the Database.
UEFI Forum, Inc. March 2019 1951

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_GLYPH) (

 IN CONST EFI_HII_FONT_PROTOCOL *This,

 IN CHAR16 Char,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo,

 OUT EFI_IMAGE_OUTPUT **Blt;

 OUT UINTN *Baseline OPTIONAL;

);

Parameters

This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Char

Character to retrieve.

StringInfo

Points to the string font and color information or NULL if the string should use the
default system font and color.

Blt

Thus must point to a NULL on entry. A buffer will be allocated to hold the output and
the pointer updated on exit. It is the caller’s responsibility to free this buffer.On
return, only Blt.Width, Blt.Height, and Blt.Image.Bitmap are valid.

Baseline

Number of pixels from the bottom of the bitmap to the baseline.

Description

Convert the glyph for a single character into a bitmap.

Status Codes Returned

EFI_HII_FONT_PROTOCOL.GetFontInfo()

Summary

Return information about a particular font.

EFI_SUCCESS Glyph bitmap created.

EFI_OUT_OF_RESOURCES Unable to allocate the output buffer Blt.

EFI_WARN_UNKNOWN_GLYPH The glyph was unknown and was replaced
with the glyph for Unicode character code
0xFFFD.

EFI_INVALID_PARAMETER Blt is NULL or *Blt is !Null
UEFI Forum, Inc. March 2019 1952

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_FONT_INFO) (

 IN CONST EFI_HII_FONT_PROTOCOL *This,

 IN OUT EFI_FONT_HANDLE *FontHandle,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfoIn, OPTIONAL

 OUT EFI_FONT_DISPLAY_INFO **StringInfoOut,

 IN CONST EFI_STRING String OPTIONAL
);

typedef VOID *EFI_FONT_HANDLE;

Parameters

This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

FontHandle

On entry, points to the font handle returned by a previous call to GetFontInfo()
or points to NULL to start with the first font. On return, points to the returned font
handle or points to NULL if there are no more matching fonts.

StringInfoIn

Upon entry, points to the font to return information about. If NULL, then the
information about the system default font will be returned.

StringInfoOut

Upon return, contains the matching font’s information. If NULL, then no information
is returned. This buffer is allocated with a call to the Boot Service
AllocatePool(). It is the caller's responsibility to call the Boot Service
FreePool() when the caller no longer requires the contents of StringInfoOut.

String

Points to the string which will be tested to determine if all characters are available. If
NULL, then any font is acceptable.

Description

This function iterates through fonts which match the specified font, using the specified criteria. If String is
non-NULL, then all of the characters in the string must exist in order for a candidate font to be returned.
UEFI Forum, Inc. March 2019 1953

UEFI Specification, Version 2.8 HII Protocols
Status Codes Returned

34.2 EFI HII Font Ex Protocol

The EFI HII Font Ex protocol defines an extension to the EFI HII Font protocol which enables various new
capabilities described in this section.

EFI_HII_FONT_EX_PROTOCOL

Summary
Interfaces which retrieve the font information.

GUID

#define EFI_HII_FONT_EX_PROTOCOL_GUID \

 { 0x849e6875, 0xdb35, 0x4df8, 0xb4, \

 {0x1e, 0xc8, 0xf3, 0x37, 0x18, 0x7, 0x3f }}

Protocol
typedef struct _EFI_HII_FONT_EX_PROTOCOL {

 EFI_HII_STRING_TO_IMAGE_EX StringToImageEx;

 EFI_HII_STRING_ID_TO_IMAGE_EX StringIdToImageEx;

 EFI_HII_GET_GLYPH_EX GetGlyphEx;

 EFI_HII_GET_FONT_INFO_EX GetFontInfoEx;

 EFI_HII_GET_GLYPH_INFO GetGlyphInfo;
} EFI_HII_FONT_EX_PROTOCOL;

Members

StringToImageEx, StringIdToImageEx

Render a string to a bitmap or to the display. This function will
try to use the external font glyph generator for generating the
glyph if it can’t find the glyph in the font database.

GetGlphyEx Return a specific glyph in a specific font. This function will try
to use the external font glyph generator for generating the
glyph if it can’t find the glyph in the font database.

GetFontInfoEx Return the font information for a specific font, this protocol
invokes original EFI_HII_FONT_PROTOCOL.GetFontInfo()
implicitly.

GetGlphyInfoEx Return the glyph information for the single glyph.

EFI_SUCCESS Matching font returned successfully.

EFI_NOT_FOUND No matching font was found.

EFI_OUT_OF_RESOURCES There were insufficient resources to
complete the request.
UEFI Forum, Inc. March 2019 1954

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_FONT_EX_PROTOCOL.StringToImageEx()

Summary
Render a string to a bitmap or to the display. The prototype of this extension function is the same with
EFI_HII_FONT_PROTOCOL.StringToImage().

Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_STRING_TO_IMAGE_EX)(

 IN CONST EFI_HII_FONT_EX_PROTOCOL *This,

 IN EFI_HII_OUT_FLAGS Flags,

 IN CONST EFI_STRING String,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,

 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,

 OUT UINTN *RowInfoArraySize OPTIONAL,

 OUT UINTN *ColumnInfoArray OPTIONAL

);

Parameters

Same with EFI_HII_FONT_PROTOCOL.StringToImage().

Description

This function is similar to EFI_HII_FONT_PROTOCOL.StringToImage(). The difference is that this
function will locate all EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instances that are installed in
the system when the glyph in the string with the given font information is not found in the current HII
glyph database. The function will attempt to generate the glyph information and the bitmap using the
first EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instance that supports the requested font
information in the EFI_FONT_DISPLAY_INFO.

Status Codes Returned

Same with EFI_HII_FONT_PROTOCOL.StringToImage().

EFI_HII_FONT_EX_PROTOCOL.StringIdToImageEx()

Summary
Render a string to a bitmap or the screen containing the contents of the specified string. The prototype of
this extension function is the same with EFI_HII_FONT_PROTOCOL.StringIdToImage().
UEFI Forum, Inc. March 2019 1955

UEFI Specification, Version 2.8 HII Protocols
Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_STRING_ID_TO_IMAGE_EX)(

 IN CONST EFI_HII_FONT_EX_PROTOCOL *This,

 IN EFI_HII_OUT_FLAGS Flags,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_STRING_ID StringId,

 IN CONST CHAR8 *Language,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,

 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,

 OUT UINTN *RowInfoArraySize OPTIONAL,

 OUT UINTN *ColumnInfoArray OPTIONAL
);

Parameters
Same with EFI_HII_FONT_PROTOCOL.StringIdToImage().

Description

This function is similar to EFI_HII_FONT_PROTOCOL.StringIdToImage().The difference is that this
function will locate all EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instances that are installed in
the system when the glyph in the string with the given font information is not found in the current HII
glyph database. The function will attempt to generate the glyph information and the bitmap using the
first EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instance that supports the requested font
information in the EFI_FONT_DISPLAY_INFO.

Status Codes Returned

Same with EFI_HII_FONT_PROTOCOL.StringToImage().

EFI_HII_FONT_EX_PROTOCOL.GetGlyphEx()

Summary
Return image and baseline about a single glyph. The prototype of this extension function is the same with
EFI_HII_FONT_PROTOCOL.GetGlyph().
UEFI Forum, Inc. March 2019 1956

UEFI Specification, Version 2.8 HII Protocols
Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_GLYPH_EX)(

 IN CONST EFI_HII_FONT_EX_PROTOCOL *This,

 IN CHAR16 Char,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN Baseline OPTIONAL
);

Parameters
Same with EFI_HII_FONT_PROTOCOL.GetGlyph().

Description
This function is similar to EFI_HII_FONT_PROTOCOL.GetGlyph().The difference is that this function
will locate all EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instances that are installed in the system
when the glyph in the string with the given font information is not found in the current HII glyph
database. The function will attempt to generate the glyph information and the bitmap using the first
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instance that supports the requested font information
in the EFI_FONT_DISPLAY_INFO.

Status Codes Returned

Same as EFI_HII_FONT_PROTOCOL.GetGlyph().

EFI_HII_FONT_EX_PROTOCOL.GetFontInfoEx()

Summary
Return information about a particular font. The prototype of this extension function is the same with
EFI_HII_FONT_PROTOCOL.GetFontInformation().

Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_FONT_INFO_EX)(

 IN CONST EFI_HII_FONT_EX_PROTOCOL *This,

 IN OUT EFI_FONT_HANDLE *FontHandle,

 IN CONST EFI_FONT_DISPLAY_INFO *StringInfoIn, OPTIONAL

 OUT EFI_FONT_DISPLAY_INFO **StringInfoOut,

 IN CONST EFI_STRING String OPTIONAL
);

Parameters
UEFI Forum, Inc. March 2019 1957

UEFI Specification, Version 2.8 HII Protocols
Same with EFI_HII_FONT_PROTOCOL.GetFontInfo().

Description
Same with EFI_HII_FONT_PROTOCOL.GetFontInfo(). This protocol invokes

EFI_HII_FONT_PROTOCOL.GetFontInfo() implicitly.

Status Codes Returned

Same as EFI_HII_FONT_PROTOCOL.GetFontInfo().

EFI_HII_FONT_EX_PROTOCOL.GetGlyphInfo()

Summary

The function returns the information of the single glyph.

Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_GLYPH_INFO)(

 IN CONST EFI_HII_FONT_EX_PROTOCOL *This,

 IN CHAR16 Char,

 IN CONST EFI_FONT_DISPLAY_INFO *FontDisplayInfo,

 OUT EFI_HII_GLYPH_INFO * GlyphInfo

);

Parameters

This EFI_HII_FONT_EX_PROTOCOL instance.
Char Information of Character to retrieve.
FontDisplayInfo Font display information of this character.
GlyphInfo Pointer to retrieve the glyph information.

Description

This function returns the glyph information of character in the specific font family. This function will
locate all EFI_HII_FONT_GLYPH_GENERATOR protocol instances that are installed in the system, and
attempt to use them if it can’t find the glyph information in the font database. It returns
EFI_UNSUPPORTED if neither the font database nor any instances of the
EFI_HII_FONT_GLYPH_GENRATOR protocols support the font glyph in the specific font family.
Otherwise, the EFI_HII_GLYPH_INFO is returned in GlyphInfo. This function only returns the glyph
UEFI Forum, Inc. March 2019 1958

UEFI Specification, Version 2.8 HII Protocols
geometry information instead of allocating the buffer for EFI_IMAGE_OUTPUT and drawing the glyph in
the buffer.

Figure 62. Glyph Example

Status Codes Returned

34.2.1 Code Definitions

EFI_FONT_DISPLAY_INFO

Summary

Describes font output-related information.

EFI_SUCCESS The glyph information was returned to GlyphInfo.
EFI_OUT_OF_RESOURCES Memory allocation failed in this function.
EFI_NOT_FOUND The input character was not found in the database.
EFI_UNSUPPORTED The font is not supported.
EFI_INVALID_PARAMETER The GlyphInfo or FontDisplayInfo was NULL.

UEFI Forum, Inc. March 2019 1959

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef struct _EFI_FONT_DISPLAY_INFO {

 EFI_GRAPHICS_OUTPUT_BLT_PIXEL ForegroundColor;

 EFI_GRAPHICS_OUTPUT_BLT_PIXEL BackgroundColor;

 EFI_FONT_INFO_MASK FontInfoMask;

 EFI_FONT_INFO FontInfo
} EFI_FONT_DISPLAY_INFO;

Members

FontInfo

The font information. Type EFI_FONT_INFO is defined in
EFI_HII_STRING_PROTOCOL.NewString().

ForegroundColor

The color of the “on” pixels in the glyph in the bitmap.

BackgroundColor

The color of the “off” pixels in the glyph in the bitmap.

FontInfoMask

The font information mask determines which portion of the font information will be
used and what to do if the specific font is not available.

Description

This structure is used for describing the way in which a string should be rendered in a particular font.
FontInfo specifies the basic font information and ForegroundColor and BackgroundColor specify the color
in which they should be displayed. The flags in FontInfoMask describe where the system default should
be supplied instead of the specified information. The flags also describe what options can be used to
make a match between the font requested and the font available.

If EFI_FONT_INFO_SYS_FONT is specified, then the font name in FontInfo is ignored and the system
font name is used. This flag cannot be used with EFI_FONT_INFO_ANY_FONT.

If EFI_FONT_INFO_SYS_SIZE is specified, then the font height specified in FontInfo is ignored and the
system font height is used instead. This flag cannot be used with EFI_FONT_INFO_ANY_SIZE.

If EFI_FONT_INFO_SYS_STYLE is specified, then the font style in FontInfo is ignored and the system
font style is used. This flag cannot be used with EFI_FONT_INFO_ANY_STYLE.

If EFI_FONT_INFO_SYS_FORE_COLOR is specified, then ForegroundColor is ignored and the system
foreground color is used.

If EFI_FONT_INFO_SYS_BACK_COLOR is specified, then BackgroundColor is ignored and the system
background color is used.

If EFI_FONT_INFO_RESIZE is specified, then the system may attempt to stretch or shrink a font to
meet the size requested. This flag cannot be used with EFI_FONT_INFO_ANY_SIZE.
UEFI Forum, Inc. March 2019 1960

UEFI Specification, Version 2.8 HII Protocols
If EFI_FONT_INFO_RESTYLE is specified, then the system may attempt to remove some of the
specified styles in order to meet the style requested. This flag cannot be used with
EFI_FONT_INFO_ANY_STYLE.

If EFI_FONT_INFO_ANY_FONT is specified, then the system may attempt to match with any font. This
flag cannot be used with EFI_FONT_INFO_SYS_FONT.

If EFI_FONT_INFO_ANY_SIZE is specified, then the system may attempt to match with any font size.
This flag cannot be used with EFI_FONT_INFO_SYS_SIZE or EFI_FONT_INFO_RESIZE.

If EFI_FONT_INFO_ANY_STYLE is specified, then the system may attempt to match with any font style.
This flag cannot be used with EFI_FONT_INFO_SYS_STYLE or EFI_FONT_INFO_RESTYLE.

Related Definitions

typedef UINT32 EFI_FONT_INFO_MASK;

#define EFI_FONT_INFO_SYS_FONT 0x00000001

#define EFI_FONT_INFO_SYS_SIZE 0x00000002

#define EFI_FONT_INFO_SYS_STYLE 0x00000004

#define EFI_FONT_INFO_SYS_FORE_COLOR 0x00000010

#define EFI_FONT_INFO_SYS_BACK_COLOR 0x00000020

#define EFI_FONT_INFO_RESIZE 0x00001000

#define EFI_FONT_INFO_RESTYLE 0x00002000

#define EFI_FONT_INFO_ANY_FONT 0x00010000

#define EFI_FONT_INFO_ANY_SIZE 0x00020000

#define EFI_FONT_INFO_ANY_STYLE 0x00040000

EFI_IMAGE_OUTPUT

Summary

Describes information about either a bitmap or a graphical output device.

Prototype

typedef struct _EFI_IMAGE_OUTPUT {

 UINT16 Width;

 UINT16 Height;

 union {

 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *Bitmap;

 EFI_GRAPHICS_OUTPUT_PROTOCOL *Screen;

 } Image;

} EFI_IMAGE_OUTPUT;

Members

Width

Width of the output image.
UEFI Forum, Inc. March 2019 1961

UEFI Specification, Version 2.8 HII Protocols
Height

Height of the output image.

Bitmap

Points to the output bitmap.

Screen

Points to the EFI_GRAPHICS_OUTPUT_PROTOCOL which describes the screen on
which to draw the specified string.

34.3 String Protocol

EFI_HII_STRING_PROTOCOL

Summary

Interfaces which manipulate string data.

GUID

#define EFI_HII_STRING_PROTOCOL_GUID \

 { 0xfd96974, 0x23aa, 0x4cdc,\

 { 0xb9, 0xcb, 0x98, 0xd1, 0x77, 0x50, 0x32, 0x2a }}

Protocol

typedef struct _EFI_HII_STRING_PROTOCOL {

 EFI_HII_NEW_STRING NewString;

 EFI_HII_GET_STRING GetString;

 EFI_HII_SET_STRING SetString;

 EFI_HII_GET_LANGUAGES GetLanguages;

 EFI_HII_GET_2ND_LANGUAGES GetSecondaryLanguages;

} EFI_HII_STRING_PROTOCOL;

Members

NewString

Add a new string.

GetString

Retrieve a string and related string information.

SetString

Change a string.

GetLanguages

List the languages for a particular package list.

GetSecondaryLanguages

List supported secondary languages for a particular primary language.
UEFI Forum, Inc. March 2019 1962

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_STRING_PROTOCOL.NewString()

Summary

Creates a new string in a specific language and add it to strings from a specific package list.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_NEW_STRING) (

 IN CONST EFI_HII_STRING_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 OUT EFI_STRING_ID *StringId

 IN CONST CHAR8 *Language,

 IN CONST CHAR16 *LanguageName OPTIONAL,

 IN CONST EFI_STRING String,

 IN CONST EFI_FONT_INFO *StringFontInfo
);

Parameters

This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

Handle of the package list where this string will be added.

Language

Points to the language for the new string. The language information is in the format
described by Appendix M of the UEFI Specification.

LanguageName

Points to the printable language name to associate with the passed in Language
field. This is analogous to passing in "zh-Hans" in the Language field and
LanguageName might contain "Simplified Chinese" as the printable language.

String

Points to the new null-terminated string.

StringFontInfo

Points to the new string’s font information or NULL if the string should have the
default system font, size and style.

StringId

On return, contains the new strings id, which is unique within PackageList. Type
EFI_STRING_ID is defined in Section 33.3.8.2.1.

Description

This function adds the string String to the group of strings owned by PackageList, with the specified
font information StringFontInfo and returns a new string id. The new string identifier is guaranteed
UEFI Forum, Inc. March 2019 1963

UEFI Specification, Version 2.8 HII Protocols
to be unique within the package list. That new string identifier is reserved for all languages in the package
list.

Related Definitions

typedef struct {

 EFI_HII_FONT_STYLE FontStyle;

 UINT16 FontSize;

 CHAR16 FontName[…];
} EFI_FONT_INFO;

FontStyle

 The design style of the font. Type EFI_HII_FONT_STYLE is defined in
Section 33.3.3.1 .

FontSize

 The character cell height, in pixels.

FontName

 The null-terminated font family name.

Status Codes Returns

EFI_HII_STRING_PROTOCOL.GetString()

Summary

Returns information about a string in a specific language, associated with a package list.

EFI_SUCCESS The new string was added successfully

EFI_OUT_OF_RESOURCES Could not add the string.

EFI_INVALID_PARAMETER String is NULL or StringId is NULL or Language is NULL.

EFI_NOT_FOUND The input package list could not be found in the current database.
UEFI Forum, Inc. March 2019 1964

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_STRING) (

 IN CONST EFI_HII_STRING_PROTOCOL *This,

 IN CONST CHAR8 *Language,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_STRING_ID StringId,

 OUT EFI_STRING String,

 IN OUT UINTN *StringSize,

 OUT EFI_FONT_INFO **StringFontInfo OPTIONAL
);

Parameters

This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list in the HII database to search for the specified string.

Language

Points to the language for the retrieved string. Callers of interfaces that require RFC
4646 language codes to retrieve a Unicode string must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646 language code.

StringId

The string’s id, which is unique within PackageList.

String

Points to the new null-terminated string.

StringSize

On entry, points to the size of the buffer pointed to by String, in bytes. On return,
points to the length of the string, in bytes.

StringFontInfo

Points to a buffer that will be callee allocated and will have the string's font
information into this buffer. The caller is responsible for freeing this buffer. If the
parameter is NULL a buffer will not be allocated and the string font information will
not be returned.

Description

This function retrieves the string specified by StringId which is associated with the specified
PackageList in the language Language and copies it into the buffer specified by String.
UEFI Forum, Inc. March 2019 1965

UEFI Specification, Version 2.8 HII Protocols
If the string specified by StringId is not present in the specified PackageList, then EFI_NOT_FOUND
is returned. If the string specified by StringId is present, but not in the specified language then
EFI_INVALID_LANGUAGE is returned.

If the buffer specified by StringSize is too small to hold the string, then EFI_BUFFER_TOO_SMALL will
be returned. StringSize will be updated to the size of buffer actually required to hold the string.

Status Codes Returned

EFI_HII_STRING_PROTOCOL.SetString()

Summary

Change information about the string.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_SET_STRING) (

 IN CONST EFI_HII_STRING_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_STRING_ID StringId,

 IN CONST CHAR8 *Language,

 IN CONST EFI_STRING String,

 IN CONST EFI_FONT_INFO *StringFontInfo OPTIONAL
);

Parameters

This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list containing the strings.

Language

Points to the language for the updated string.

EFI_SUCCESS The string was returned successfully.

EFI_NOT_FOUND The string specified by StringId is not available. The specified

PackageList is not in the Database.

EFI_INVALID_LANGUAGE The string specified by StringId is available but not in the specified

language.

EFI_BUFFER_TOO_SMALL The buffer specified by StringLength is too small to hold the string.

EFI_INVALID_PARAMETER The Language or StringSize was NULL.

EFI_INVALID_PARAMETER The value referenced by StringLength was not zero and String

was NULL.

EFI_OUT_OF_RESOURCES There were insufficient resources to complete the request.
UEFI Forum, Inc. March 2019 1966

UEFI Specification, Version 2.8 HII Protocols
StringId

The string id, which is unique within PackageList.

String

Points to the new null-terminated string.

StringFontInfo

Points to the string’s font information or NULL if the string font information is not
changed.

Description

This function updates the string specified by StringId in the specified PackageList to the text specified by
String and, optionally, the font information specified by StringFontInfo. There is no way to change
the font information without changing the string text.

Status Codes Returned

EFI_HII_STRING_PROTOCOL.GetLanguages()

Summary

Returns a list of the languages present in strings in a package list.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_LANGUAGES) (

 IN CONST EFI_HII_STRING_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 IN OUT CHAR8 *Languages,

 IN OUT UINTN *LanguagesSize
);

Parameters

This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

EFI_SUCCESS The string was successfully updated.

EFI_NOT_FOUND The string specified by StringId is not in the database. The specified

PackageList is not in the Database.

EFI_INVALID_PARAMETER The String or Language was NULL.

EFI_OUT_OF_RESOURCES The system is out of resources to accomplish the task.
UEFI Forum, Inc. March 2019 1967

UEFI Specification, Version 2.8 HII Protocols
PackageList

The package list to examine.

Languages

Points to the buffer to hold the returned null-terminated ASCII string.

LanguageSize

On entry, points to the size of the buffer pointed to by Languages, in bytes. On
return, points to the length of Languages, in bytes.

Description

This function returns the list of supported languages, in the format specified in Appendix M.

Status Codes Returned

EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages()

Summary

Given a primary language, returns the secondary languages supported in a package list.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_2ND_LANGUAGES) (

 IN CONST EFI_HII_STRING_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 IN CONST CHAR8* PrimaryLanguage;

 IN OUT CHAR8 *SecondaryLanguages,

 IN OUT UINTN *SecondaryLanguagesSize
);

Parameters

This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list to examine.

EFI_SUCCESS The languages were returned successfully.

EFI_BUFFER_TOO_SMALL The LanguagesSize is too small to hold the list of supported

languages. LanguageSize is updated to contain the required size.

EFI_NOT_FOUND The specified PackageList is not in the Database.

EFI_INVALID_PARAMETER LanguagesSize is NULL.

EFI_INVALID_PARAMETER The value referenced by LanguagesSize is not zero and

Languages is NULL.
UEFI Forum, Inc. March 2019 1968

UEFI Specification, Version 2.8 HII Protocols
PrimaryLanguage

Points to the null-terminated ASCII string that specifies the primary language.
 Languages are specified in the format specified in Appendix M of the UEFI
Specification.

SecondaryLanguages

Points to the buffer to hold the returned null-terminated ASCII string that describes
the list of secondary languages for the specified PrimaryLanguage. If there are no
secondary languages, the function returns successfully, but this is set to NULL.

SecondaryLanguagesSize

On entry, points to the size of the buffer pointed to by SecondaryLanguages, in
bytes. On return, points to the length of SecondaryLanguages in bytes.

Description

Each string package has associated with it a single primary language and zero or more secondary
languages. This routine returns the secondary languages associated with a package list.

Status Codes Returned

34.4 Image Protocol

EFI_HII_IMAGE_PROTOCOL

Summary

Protocol which allow access to images in the images database.

EFI_SUCCESS Secondary languages correctly returned

EFI_BUFFER_TOO_SMALL The buffer specified by SecondaryLanguagesSize is

too small to hold the returned information.

SecondaryLanguageSize is updated to hold the size of

the buffer required.

EFI_INVALID_LANGUAGE The language specified by FirstLanguage is not present in

the specified package list.

EFI_NOT_FOUND The specified PackageList is not in the Database.

EFI_INVALID_PARAMETER PrimaryLanguage or

SecondaryLanguagesSize is NULL.

EFI_INVALID_PARAMETER The value referenced by SecondaryLanguagesSize is

not zero and SecondaryLanguages is NULL.
UEFI Forum, Inc. March 2019 1969

UEFI Specification, Version 2.8 HII Protocols
GUID

#define EFI_HII_IMAGE_PROTOCOL_GUID \

 { 0x31a6406a, 0x6bdf, 0x4e46,\

 { 0xb2, 0xa2, 0xeb, 0xaa, 0x89, 0xc4, 0x9, 0x20 }}

Protocol

typedef struct _EFI_HII_IMAGE_PROTOCOL {

 EFI_HII_NEW_IMAGE NewImage;

 EFI_HII_GET_IMAGE GetImage;

 EFI_HII_SET_IMAGE SetImage;

 EFI_HII_DRAW_IMAGE DrawImage;

 EFI_HII_DRAW_IMAGE_ID DrawImageId;
} EFI_HII_IMAGE_PROTOCOL;

Members

NewImage

Add a new image.

GetImage

Retrieve an image and related font information.

SetImage

Change an image.

EFI_HII_IMAGE_PROTOCOL.NewImage()

Summary

Creates a new image and add it to images from a specific package list.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_NEW_IMAGE) (

 IN CONST EFI_HII_IMAGE_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 OUT EFI_IMAGE_ID *ImageId

 IN CONST EFI_IMAGE_INPUT *Image
);

Parameters

This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

Handle of the package list where this image will be added.
UEFI Forum, Inc. March 2019 1970

UEFI Specification, Version 2.8 HII Protocols
ImageId

On return, contains the new image id, which is unique within PackageList.

Image

Points to the image.

Description

This function adds the image Image to the group of images owned by PackageList, and returns a new
image identifier (ImageId).

Related Definitions

typedef UINT16 EFI_IMAGE_ID;

typedef struct { 
 UINT32 Flags; 
 UINT16 Width; 
 UINT16 Height; 
 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *Bitmap; 
} EFI_IMAGE_INPUT;

Flags

Describe image characteristics. If EFI_IMAGE_TRANSPARENT is set, then the image
was designed for transparent display.

#define EFI_IMAGE_TRANSPARENT 0x00000001

Width

Image width, in pixels.

Height

Image height, in pixels.

Bitmap

A pointer to the actual bitmap, organized left-to-right, top-to-bottom. The size of the
bitmap is Width * Height *. sizeof(EFI_GRAPHICS_OUTPUT_BLT_PIXEL).

Status Codes Returns

EFI_HII_IMAGE_PROTOCOL.GetImage()

Summary

Returns information about an image, associated with a package list.

EFI_SUCCESS The new image was added successfully

EFI_OUT_OF_RESOURCES Could not add the image.

EFI_INVALID_PARAMETER Image is NULL or ImageId is NULL.

EFI_NOT_FOUND The PackageList could not be found.
UEFI Forum, Inc. March 2019 1971

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_IMAGE) (

 IN CONST EFI_HII_IMAGE_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_IMAGE_ID ImageId,

 OUT EFI_IMAGE_INPUT *Image
);

Parameters

This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

The package list in the HII database to search for the specified image.

ImageId

The image’s id, which is unique within PackageList.

Image

Points to the new image.

Description

This function retrieves the image specified by ImageId which is associated with the specified
PackageList and copies it into the buffer specified by Image.

If the image specified by ImageId is not present in the specified PackageList, then EFI_NOT_FOUND
is returned.

The actual bitmap (Image->Bitmap) should not be freed by the caller and should not be modified
directly.

Status Codes Returned

EFI_HII_IMAGE_PROTOCOL.SetImage()

Summary

Change information about the image.

EFI_SUCCESS The image was returned successfully.

EFI_NOT_FOUND The image specified by ImageId is not available. The specified

PackageList is not in the Database.

EFI_INVALID_PARAMETER Image was NULL.

EFI_OUT_OF_RESOURCES The bitmap could not be retrieved because there was not enough memory.
UEFI Forum, Inc. March 2019 1972

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_SET_IMAGE) (

 IN CONST EFI_HII_IMAGE_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_IMAGE_ID ImageId,

 IN CONST EFI_IMAGE_INPUT *Image,
);

Parameters

This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

The package list containing the images.

ImageId

The image id, which is unique within PackageList.

Image

Points to the image.

Description

This function updates the image specified by ImageId in the specified PackageListHandle to the
image specified by Image.

Status Codes Returned

EFI_HII_IMAGE_PROTOCOL.DrawImage()

Summary

Renders an image to a bitmap or to the display.

EFI_SUCCESS The image was successfully updated.

EFI_NOT_FOUND The image specified by ImageId is not in the database. The specified

PackageList is not in the Database.

EFI_INVALID_PARAMETER The Image was NULL.
UEFI Forum, Inc. March 2019 1973

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DRAW_IMAGE) (

 IN CONST EFI_HII_IMAGE_PROTOCOL *This,

 IN EFI_HII_DRAW_FLAGS Flags,

 IN CONST EFI_IMAGE_INPUT *Image,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,
);

Parameters

This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

Flags

Describes how the image is to be drawn. EFI_HII_DRAW_FLAGS is defined in
Related Definitions, below.

Image

Points to the image to be displayed.

Blt

If this points to a non-NULL on entry, this points to the image, which is Width pixels
wide and Height pixels high. The image will be drawn onto this image and
EFI_HII_DRAW_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit.
It is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the image of the first pixel in the
image.

 Description

This function renders an image to a bitmap or the screen using the specified color and options. It draws
the image on an existing bitmap, allocates a new bitmap or uses the screen. The images can be clipped.

If EFI_HII_DRAW_FLAG_CLIP is set, then all pixels drawn outside the bounding box specified by Width
and Height are ignored.

The EFI_HII_DRAW_FLAG_TRANSPARENT flag determines whether the image will be drawn
transparent or opaque. If EFI_HII_DRAW_FLAG_FORCE_TRANS is set then the image’s pixels will be
drawn so that all “off” pixels in the image will be drawn using the pixel value from BLT and all other pixels
will be copied. If EFI_HII_DRAW_FLAG_FORCE_OPAQUE is set, then the image’s pixels will be copied
directly to the destination. If EFI_HII_DRAW_FLAG_DEFAULT is set, then the image will be drawn
UEFI Forum, Inc. March 2019 1974

UEFI Specification, Version 2.8 HII Protocols
transparently or opaque, depending on the image’s transparency setting (see
EFI_IMAGE_TRANSPARENT). Images cannot be drawn transparently if Blt is NULL.

If EFI_HII_DIRECT_TO_SCREEN is set, then the image will be written directly to the output device
specified by Screen. Otherwise the image will be rendered to the bitmap specified by Bitmap.

Status Codes Returned

EFI_HII_IMAGE_PROTOCOL.DrawImageId()

Summary

Render an image to a bitmap or the screen containing the contents of the specified image.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DRAW_IMAGE_ID) (

 IN CONST EFI_HII_IMAGE_PROTOCOL *This,

 IN EFI_HII_DRAW_FLAGS Flags,

 IN EFI_HII_HANDLE PackageList,

 IN EFI_IMAGE_ID ImageId,

 IN OUT EFI_IMAGE_OUTPUT **Blt,

 IN UINTN BltX,

 IN UINTN BltY,
);

Parameters

This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

Flags

Describes how the image is to be drawn. EFI_HII_DRAW_FLAGS is defined in
Related Definitions, below.

PackageList

The package list in the HII database to search for the specified image.

ImageId

The image’s id, which is unique within PackageList.

Blt

If this points to a non-NULL on entry, this points to the image, which is Width pixels
wide and Height pixels high. The image will be drawn onto this image and

EFI_SUCCESS The image was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for Blt.

EFI_INVALID_PARAMETER The Image or Blt was NULL.
UEFI Forum, Inc. March 2019 1975

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_DRAW_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit.
It is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the output image of the first pixel in
the image.

Description

This function renders an image to a bitmap or the screen using the specified color and options. It draws
the image on an existing bitmap, allocates a new bitmap or uses the screen. The images can be clipped.

If EFI_HII_DRAW_FLAG_CLIP is set, then all pixels drawn outside the bounding box specified by Width
and Height are ignored.

The EFI_HII_DRAW_FLAG_TRANSPARENT flag determines whether the image will be drawn transparent
or opaque. If EFI_HII_DRAW_FLAG_FORCE_TRANS is set, then the image will be drawn so that all “off”
pixels in the image will be drawn using the pixel value from Blt and all other pixels will be copied. If
EFI_HII_DRAW_FLAG_FORCE_OPAQUE is set, then the image’s pixels will be copied directly to the
destination. If EFI_HII_DRAW_FLAG_DEFAULT is set, then the image will be drawn transparently or
opaque, depending on the image’s transparency setting (see EFI_IMAGE_TRANSPARENT). Images cannot
be drawn transparently if Blt is NULL.

If EFI_HII_DIRECT_TO_SCREEN is set, then the image will be written directly to the output device
specified by Screen. Otherwise the image will be rendered to the bitmap specified by Bitmap.

Related Definitions

typedef UINT32 EFI_HII_DRAW_FLAGS;

#define EFI_HII_DRAW_FLAG_CLIP 0x00000001 
#define EFI_HII_DRAW_FLAG_TRANSPARENT 0x00000030 
#define EFI_HII_DRAW_FLAG_DEFAULT 0x00000000 
#define EFI_HII_DRAW_FLAG_FORCE_TRANS 0x00000010 
#define EFI_HII_DRAW_FLAG_FORCE_OPAQUE 0x00000020 
#define EFI_HII_DIRECT_TO_SCREEN 0x00000080

Status Codes Returned

34.5 EFI HII Image Ex Protocol

The EFI HII Image Ex protocol defines an extension to the EFI HII Image protocol which enables various
new capabilities described in this section.

EFI_SUCCESS The image was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_NOT_FOUND The image specified by ImageId is not in the database. The specified

PackageList is not in the Database

EFI_INVALID_PARAMETER The Image or Blt was NULL.
UEFI Forum, Inc. March 2019 1976

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_IMAGE_EX_PROTOCOL

Summary
Protocol which allows access to the images in the images database

GUID

#define EFI_HII_IMAGE_EX_PROTOCOL_GUID \
 {0x1a1241e6, 0x8f19, 0x41a9, 0xbc, \
 {0xe, 0xe8, 0xef,0x39, 0xe0, 0x65, 0x46}}

Protocol
typedef struct _EFI_HII_IMAGE_EX_PROTOCOL {
 EFI_HII_NEW_IMAGE_EX NewImageEx;
 EFI_HII_GET_IMAGE_EX GetImageEx;
 EFI_HII_SET_IMAGE_EX SetImageEx;
 EFI_HII_DRAW_IMAGE_EX DrawImageEx;
 EFI_HII_DRAW_IMAGE_ID_EX DrawImageIdEx;
 EFI_HII_GET_IMAGE_INFO GetImageInfo;
} EFI_HII_IMAGE_EX_PROTOCOL;

Members
NewImageEx Add a new image. This protocol invokes the original

EFI_HII_IMAGE_PROTOCOL.NewImage() implicitly.
GetImageEx Retrieve an image and the related image information. This

function will try to locate the
EFI_HII_IMAGE_DECODER_PROTOCOL if the image decoder for
the image is not supported by the EFI HII image EX protocol.

SetImageEx Change information about the image, this protocol invokes
original EFI_HII_IMAGE_PROTOCOL.SetImage() implicitly.

DrawImageEx Renders an image to a bitmap or the display, this protocol
invokes original EFI_HII_IMAGE_PROTOCOL.DrawImage()
implicitly.

DrawImageIdEx Renders an image to a bitmap or the screen containing the
contents of the specified image, this protocol invokes original
EFI_HII_IMAGE_PROTOCOL.DrawImageId() implicitly.

GetImageInfo This function retrieves the image information specified by the
image ID which is associated with the specified HII package
list. This function only returns the geometry of the image
instead of allocating the memory buffer and decoding the
image to the buffer.

EFI_HII_IMAGE_EX_PROTOCOL.NewImageEx()

Summary
The prototype of this extension function is the same with EFI_HII_IMAGE_PROTOCOL.NewImage().
UEFI Forum, Inc. March 2019 1977

UEFI Specification, Version 2.8 HII Protocols
Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_NEW_IMAGE_EX)(
 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 OUT EFI_IMAGE_ID *ImageId
 IN OUT EFI_IMAGE_INPUT *Image
);

Parameters
Same with EFI_HII_IMAGE_PROTOCOL.NewImage().

Description
Same with EFI_HII_IMAGE_PROTOCOL.NewImage().This protocol invokes

EFI_HII_IMAGE_PROTOCOL.NewImage()implicitly.

Status Codes Returned

Same as EFI_HII_IMAGE_PROTOCOL.NewImage().

EFI_HII_IMAGE_EX_PROTOCOL.GetImageEx()

Summary
Return the information about the image, associated with the package list. The prototype of this extension
function is the same with EFI_HII_IMAGE_PROTOCOL.GetImage().

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_IMAGE_EX)(
 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 OUT EFI_IMAGE_INPUT *Image
);

Parameters
Same with EFI_HII_IMAGE_PROTOCOL.GetImage()

Description
This function is similar to EFI_HII_IMAGE_PROTOCOL.GetImage().The difference is that this function
will locate all EFI_HII_IMAGE_DECODER_PROTOCOL instances installed in the system if the decoder of
the certain image type is not supported by the EFI_HII_IMAGE_EX_PROTOCOL. The function will
UEFI Forum, Inc. March 2019 1978

UEFI Specification, Version 2.8 HII Protocols
attempt to decode the image to the EFI_IMAGE_INPUT using the first
EFI_HII_IMAGE_DECODER_PROTOCOL instance that supports the requested image type.

Status Codes Returned

Same as EFI_HII_IMAGE_PROTOCOL.GetImage().

EFI_HII_IMAGE_EX_PROTOCOL.SetImageEx()

Summary
Change the information about the image. The prototype of this extension function is the same with
EFI_HII_IMAGE_PROTOCOL.SetImage().

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_SET_IMAGE_EX)(

 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 IN CONST EFI_IMAGE_INPUT *Image
);

Parameters
Same with EFI_HII_IMAGE_PROTOCOL.SetImage().

Description
Same with EFI_HII_IMAGE_PROTOCOL.SetImage(),this protocol invokes

EFI_HII_IMAGE_PROTOCOL.SetImage()implicitly.

Status Codes Returned

Same as EFI_HII_IMAGE_PROTOCOL.SetImage().

EFI_HII_IMAGE_EX_PROTOCOL.DrawImageEx()

Summary
Renders an image to a bitmap or to the display. The prototype of this extension function is the same with
EFI_HII_IMAGE_PROTOCOL.DrawImage().
UEFI Forum, Inc. March 2019 1979

UEFI Specification, Version 2.8 HII Protocols
Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DRAW_IMAGE_EX)(

 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_DRAW_FLAGS Flags,
 IN CONST EFI_IMAGE_INPUT *Image,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY
);

Parameters

Same with EFI_HII_IMAGE_PROTOCOL.DrawImageId().

Description

Same with EFI_HII_IMAGE_PROTOCOL.DrawImage(),this protocol invokes

EFI_HII_IMAGE_PROTOCOL.DrawImage()implicitly.

Status Codes Returned

Same as EFI_HII_IMAGE_PROTOCOL.DrawImage().

EFI_HII_IMAGE_EX_PROTOCOL.DrawImageIdEx()

Summary
Renders an image to a bitmap or the screen containing the contents of the specified image. The
prototype of this extension function is the same with EFI_HII_IMAGE_PROTOCOL.DrawImageId().

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DRAW_IMAGE_ID_EX)(

 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_DRAW_FLAGS Flags,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY
);

Parameters

Same with EFI_HII_IMAGE_PROTOCOL.DrawImageId().
UEFI Forum, Inc. March 2019 1980

UEFI Specification, Version 2.8 HII Protocols
Description

This function is similar to EFI_HII_IMAGE_PROTOCOL.DrawImageId(). The difference is
thatthis function will locate all EFI_HII_IMAGE_DECODER_PROTOCOL instances installed
in the system if the decoder of the certain image type is not supported by the
EFI_HII_IMAGE_EX_PROTOCOL. The function will attempt to decode the image to the
EFI_IMAGE_INPUT using the first EFI_HII_IMAGE_DECODER_PROTOCOL instance that
supports the requested image type.

Status Codes Returned

Same as EFI_HII_IMAGE_PROTOCOL.DrawImageId().

EFI_HII_IMAGE_EX_PROTOCOL.GetImageInfo()

Summary
The function returns the information of the image. This function is differ from the
EFI_HII_IMAGE_EX_PROTOCOL.GetImageEx()This function only returns the geometry of the image
instead of decoding the image to the buffer.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_IMAGE_INFO)(

 IN CONST EFI_HII_IMAGE_EX_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 OUT EFI_IMAGE_OUTPUT *Image
);

Parameters

This EFI_HII_IMAGE_EX_PROTOCOL instance.
PackageList The HII package list.
ImageId The HII image ID.
Image EFI_IMAGE_OUTPUT to retrieve the image information. Only

Image.Width and Image.Height will be updated by this
function. Image.Bitmap is always set to NULL.

Description

This function returns the image information to EFI_IMAGE_OUTPUT. Only the width and height are
returned to the EFI_IMAGE_OUTPUT instead of decoding the image to the buffer. This function is used
to get the geometry of the image. This function will try to locate all of the
EFI_HII_IMAGE_DECODER_PROTOCOL installed on the system if the decoder of image type is not
supported by the EFI_HII_IMAGE_EX_PROTOCOL.
UEFI Forum, Inc. March 2019 1981

UEFI Specification, Version 2.8 HII Protocols
Status Codes Returned

34.6 EFI HII Image Decoder Protocol

For those HII image block types which don’t have the corresponding image decoder supported in EFI HII
image EX protocol, EFI_HII_IMAGE_DECODER_PROTOCOL can be used to provide the proper image
decoder. There may be more than one EFI_HII_IMAGE_DECODER_PROTOCOL instance installed in the
system. Each image decoder can decode more than on HII image block types. Whether or not the HII
image block type of image is supported by the certain image decoder is reported through the
EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageDecoderName(). Caller can invoke this function to
verify the image is supported by the image decoder before sending the image raw data to the image
decoder. There are two image decoder names defined in this specification:
EFI_HII_IMAGE_DECODER_NAME_JPEG and EFI_HII_IMAGE_DECODER_NAME_PNG.

The image decoder protocol can publish the support for additional image decoder names other than the
ones defined in this specification. This allows the image decoder to support additional image formats that
are not defined by the HII image block types. In that case, callers can send the image raw data to the
image decoder protocol instance to retrieve the image information or decode the image. Since the HII
image block type of such images is not defined, the image may or may not be decoded by that decoder.
The decoder can use the signature or data structures in the image raw data is check the format before it
processes the image.

The EFI_HII_IMAGE_EX_PROTOCOL uses EFI_HII_IMAGE_DECODER_PROTOCOL as follows:

EFI_SUCCESS The image information was returned to Image.
EFI_OUT_OF_RESOURCES Memory allocation failed in this function.
EFI_UNSUPPORTED The format of image is not supported.
EFI_NOT_FOUND The image was not found in the database.
EFI_INVALID_PARAMETER The Image was NULL or ImageId was 0.
UEFI Forum, Inc. March 2019 1982

UEFI Specification, Version 2.8 HII Protocols
Figure 63. How EFI_HII_IMAGE_EX_PROTOCOL uses EFI_HII_IMAGE_DECODER_PROTOCOL

EFI_HII_IMAGE_DECODER_PROTOCOL.DecodeImage()

Summary

Provides the image decoder for specific image file formats.

GUID

#define EFI_HII_IMAGE_DECODER_PROTOCOL_GUID \

{0x9E66F251, 0x727C, 0x418C, \
{0xBF, 0xD6, 0xC2, 0xB4, 0x25, 0x28, 0x18, 0xEA}}

Protocol
typedef struct _EFI_HII_IMAGE_DECODER_PROTOCOL {

 EFI_HII_IMAGE_DECODER_GET_NAME GetImageDecoderName;
 EFI_HII_IMAGE_DECODER_GET_IMAGE_INFO GetImageInfo;
 EFI_HII_IMAGE_DECODER_DECODE DecodeImage;
 } EFI_HII_IMAGE_DECODER_PROTOCOL;

Members

UEFI Forum, Inc. March 2019 1983

UEFI Specification, Version 2.8 HII Protocols
GetImageDecodeNameThe function returns the decoder name.
GetImageInfo The function returns the image information
DecodeImage The function decodes the image to the EFI_IMAGE_INPUT

Status Codes Returned

EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageDecoderName()

Summary

This function returns the decoder name.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_IMAGE_DECODER_GET_NAME)(
 IN CONST EFI_HII_IMAGE_DECODER_PROTOCOL *This,

 IN OUT EFI_GUID **DecoderName,
 OUT UINT16 *NumberOfDecoderName
);

Parameters

This EFI_HII_IMAGE_DECODER_PROTOCOL instance.
DecoderName Pointer to a dimension to retrieve the decoder names in

EFI_GUID format. The number of the decoder names is
returned in NumberOfDecoderName.

NumberOfDecoderNamePointer to retrieve the number of decoders which supported
by this decoder driver.

Description

There could be more than one EFI_HII_IMAGE_DECODER_PROTOCOL instances installed in the system
for different image formats. This function returns the decoder name which callers can use to find the
proper image decoder for the image. It is possible to support multiple image formats in one
EFI_HII_IMAGE_DECODER_PROTOCOL. The capability of the supported image formats is returned in
DecoderName and NumberOfDecoderName.

EFI_SUCCESS The image information was returned to Bitmap.
EFI_UNSUPPORTED The image decoder can’t decode this image.
EFI_OUT_OF_RESOURCE Not enough memory to decode this image.
EFI_INVALID_PARAMETER The Image was NULL or ImageRawDataSize was 0.
UEFI Forum, Inc. March 2019 1984

UEFI Specification, Version 2.8 HII Protocols
Related Definitions

//**
// EFI_HII_IMAGE_DECODER_NAME
//**
#define EFI_HII_IMAGE_DECODER_NAME_JPEG_GUID \
 {0xefefd093, 0xd9b, 0x46eb, 0xa8, \
 {0x56, 0x48, 0x35,0x7, 0x0, 0xc9, 0x8}}

#define EFI_HII_IMAGE_DECODER_NAME_PNG_GUID \
 {0xaf060190, 0x5e3a, 0x4025, 0xaf, \
 {0xbd, 0xe1, 0xf9,0x5, 0xbf, 0xaa, 0x4c}}

Status Codes Returned

EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageInfo()

Summary

The function returns the EFI_HII_IMAGE_DECODER_IMAGE_INFO to the caller.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_IMAGE_DECODER_GET_IMAGE_INFO)(

 IN CONST EFI_HII_IMAGE_DECODER_PROTOCOL *This,
 IN VOID *Image,
 IN UINTN SizeOfImage,
 IN OUT EFI_HII_IMAGE_DECODER_IMAGE_INFO **ImageInfo
);

Parameters

This EFI_HII_IMAGE_DECODER_PROTOCOL instance.
Image Pointer to the image raw data
SizeOfImage Size of the entire image raw data
ImageInfo Pointer to receive the EFI_HII_IMAGE_DECODER_IMAGE_INFO

Description
This function returns the image information of the given image raw data. This
function first checks whether the image raw data is supported by this decoder or not.
This function may go through the first few bytes in the image raw data for the specific
data structure or the image signature. If the image is not supported by this image
decoder, this function returns EFI_UNSUPPORTED to the caller. Otherwise, this

EFI_SUCCESS The image decoder names were returned in DecoderName.
EFI_UNSUPPORTED No image decoders found in this EFI_HII_IMAGE_DECODER instance.
UEFI Forum, Inc. March 2019 1985

UEFI Specification, Version 2.8 HII Protocols
function returns the proper image information to the caller. It is the caller’s
responsibility to free the ImageInfo.

Status Codes Returned

Related Definitions

 //**
// EFI_HII_IMAGE_DECODER_COLOR_TYPE
//**

typedef enum {
 EFI_HII_IMAGE_DECODER_COLOR_TYPE_RGB = 0,
 EFI_HII_IMAGE_DECODER_COLOR_TYPE_RGBA = 1,
 EFI_HII_IMAGE_DECODER_COLOR_TYPE_CMYK = 2,
 EFI_HII_IMAGE_DECODER_COLOR_TYPE_UNKNOWN = 0xff,
} EFI_HII_IMAGE_DECODER_COLOR_TYPE

//**
// EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER
//**
typedef struct _EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER {

 EFI_GUID DecoderName;
 UINT16 ImageInfoSize;
 UINT16 ImageWidth;
 UINT16 ImageHeight;
 EFI_HII_IMAGE_DECODER_COLOR_TYPE ColorType;
 UINT8 ColorDepthInBits;
} EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER;

DecoderName Decoder Name
ImageInfoSize The size of entire image information structure in bytes.
ImageWidth The image width.
ImageHeight The image height.
ColorType The color type, refer to

EFI_HII_IMAGE_DECODER_COLOR_TYPE.
ColorDepthInBits The color depth in bits.

EFI_SUCCESS The image information was returned to ImageInfo.
EFI_UNSUPPORTED No image decoder for the given Image or the image decoder can’t

decode this image.
EFI_OUT_OF_RESOURCE Not enough memory to decode this image for getting the image

information.
EFI_INVALID_PARAMETER The Image was NULL, SizeOfImage was 0 or the image is corrupted.
UEFI Forum, Inc. March 2019 1986

UEFI Specification, Version 2.8 HII Protocols
//**
// EFI_HII_IMAGE_DECODER_JPEG_INFO
//**
typedef struct _EFI_HII_IMAGE_DECODER_JPEG_INFO {

 EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER Header;
 UINT16 ScanType;
 UINT64 Reserved;
} EFI_HII_IMAGE_DECODER_JPEG_INFO;

Header EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER
ScanType The scan type of the JPEG image

 #define EFI_IMAGE_JPEG_SCANTYPE_PROGREESSIVE 0x01
 #define EFI_IMAGE_JPEG_SCANTYPE_INTERLACED 0x02

Reserved Reserved

//**
// EFI_HII_IMAGE_DECODER_PNG_INFO
//**
typedef struct _EFI_HII_IMAGE_DECODER_PNG_INFO {

 EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER Header;
 UINT16 Channels;
 UINT64 Reserved;
} EFI_HII_IMAGE_DECODER_PNG_INFO;

Header EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER

Channels Number of channels in the PNG image.
Reserved Reserved

//**
// EFI_HII_IMAGE_DECODER_OTHER_INFO
//**
typedef struct _EFI_HII_IMAGE_DECODER_OTHER_INFO {

 EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER Header;
 CHAR16 ImageExtenion[1];
 //
 // Variable length of image file extension name.
 //
} EFI_HII_IMAGE_DECODER_OTHER_INFO;

Header EFI_HII_IMAGE_DECODER_IMAGE_INFO_HEADER

ImageExtenion The string of the image file extension. For example, “GIF”,
“TIFF” or others.
UEFI Forum, Inc. March 2019 1987

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_IMAGE_DECODER_PROTOCOL.Decode()

Summary

The function decodes the image

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HII_IMAGE_DECODER_DECODE)(

 IN CONST EFI_HII_IMAGE_DECODER_PROTOCOL *This,
 IN VOID *Image,
 IN UINTN ImageRawDataSize,
 IN OUT EFI_IMAGE_OUTPUT **Bitmap,
 IN BOOLEAN Transparent
);

Parameters

This EFI_HII_IMAGE_DECODER_PROTOCOL instance.
Image Pointer to the image raw data
ImageRawDataSize Size of the entire image raw data
Bitmap EFI_IMAGE_OUTPUT to receive the image or overlap the image

on the original buffer.
Transparent BOOLEAN value indicates whether the image decoder has to

handle the transparent image or not.

Description

This function decodes the image which the image type of this image is supported by this
EFI_HII_IMAGE_DECODER_PROTOCOL. If *Bitmap is not NULL, the caller intends to put the image in
the given image buffer. That allows the caller to put an image overlap on the original image. The
transparency is handled by the image decoder because the transparency capability depends on the image
format. Callers can set Transparent to FALSE to force disabling the transparency process on the image.
Forcing Transparent to FALSE may also improve the performance of the image decoding because the
image decoder can skip the transparency processing.

If *Bitmap is NULL, the image decoder allocates the memory buffer for the EFI_IMAGE_OUTPUT and
decodes the image to the image buffer. It is the caller’s responsibility to free the memory for
EFI_IMAGE_OUTPUT. Image decoder doesn’t have to handle the transparency in this case because there
is no background image given by the caller. The background color in this case is all black (#00000000).

34.7 Font Glyph Generator Protocol

The EFI HII Font glyph generator protocol generates font glyphs of the requested
characters according to the given font information. This protocol is utilized by the
EFI_HII_FONT_EX_PROTOCOL when the character can’t be found in the existing glyph
database. That is when glyph is not found in any HII font package,
UEFI Forum, Inc. March 2019 1988

UEFI Specification, Version 2.8 HII Protocols
EFI_HII_FONT_EX_PROTOCOL locates EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL to
generate glyph block and insert glyph block into HII font package. The HII font package
can be an existing HII font package or a new HII font package. This protocol can be
provided by any driver that knows how to generate the glyph for a specific font family. For
example, EFI application or driver may provide "Times new roman" font glyph generator
driver. With this driver, platform can have "Times new roman" font supported on system.

EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL

Summary
EFI HII Font glyph generator protocol generates the glyph of the character according to the given font
information.

GUID

#define EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL_GUID \

 { 0xf7102853, 0x7787, 0x4dc2, 0xa8, \

 {0xa8, 0x21, 0xb5, 0xdd, 0x5, 0xc8, 0x9b }}

Protocol
typedef struct _EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL {

 EFI_GENERATE_GLYPH GenerateGlyph;

 EFI_GENERATE_IMAGE GenerateGlyphImage;

} EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL;

Members

GenerateGlyph The function generates the glyph information according to
the given font information.

GenerateGlyphImageThe function generates the glyph image according to the
given font information.

EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyph()

Summary

The function generates the glyph information according to the given font information. This function
returns the glyph block in EFI_HII_GIBT_GLYPH_VARIABILITY type.
UEFI Forum, Inc. March 2019 1989

UEFI Specification, Version 2.8 HII Protocols

ay
Protocol
typedef

 EFI_STATUS

 (EFIAPI *EFI_HII_GENERATE_GLYPH)(

 IN CONST EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL *This,

 IN CHAR16 Char,

 IN CONST EFI_FONT_DISPLAY_INFO *FontInfo,

 OUT EFI_HII_GIBT_VARIABILITY_BLOCK *GlyphBlock
);

Parameters

This EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instance.
Char Character to retrieve.
FontInfo Font display information of this character.
GlyphBlock Pointer to retrieve the EFI_HII_GIBT_VARIABILITY_BLOCK

Description

This function generates the glyph information of the character in the specific font family.
EFI_HII_GIBT_VARIABILITY_BLOCK is returned to GlyphBlock if GlyphBlock is not NULL.
GlyphBlock can be called by EFI_HII_FONT_EX_PROTOCOL to retrieve the glyph information which
are provided by the font family specific driver, or can be used to build up the HII font package if the HII
font package with the specific font family does not exist in the HII database.

Status Codes Returned

EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyphImage()

Summary

The function generates the glyph image according to the given font information. This function returns
EFI_GRAPHICS_OUTPUT_BLT_PIXEL points to the EFI_IMAGE_OUTPUT buffer. This function is used
for glyphs which are reported in the font database as EFI_HII_GIBT_GLYPH_VARIABILITY glyph
blocks.

EFI_SUCCESS The glyph information was returned to GlyphBlock.
EFI_INVALID_PARAMETER The FontInfo or GlyphBlock was NULL,
EFI_OUT_OF_RESOURCE Not enough memory to generate the glyph information.
EFI_UNSUPPORTED The font glyph generator can’t generate the glyph for the given Char. This m

caused by the unsupported character, font name font style or font size.
UEFI Forum, Inc. March 2019 1990

UEFI Specification, Version 2.8 HII Protocols

his

as
Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_GENERATE_GLYPH_IMAGE)(

 IN CONST EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL *This,

 IN CONST EFI_HII_GLYPH_INFO *Cell,

 IN UINT8 *GlyphBuffer,

 IN CONST EFI_FONT_DISPLAY_INFO *FontInfo,

 IN OUT EFI_IMAGE_OUTPUT *Image,

 IN INT32 *BltX,

 IN INT32 *BltY,

 IN BOOLEAN Transparent
);

Parameters

This EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL instance.
Cell Pointer to EFI_HII_GLYPH_INFO
GlyphBuffer The buffer points to the bitmap of glyph. This pointer points to

GlyphBlock.BitmapData which returned from
GenerateGlyph()function

FontInfo Font display information of this glyph.
Image Image output buffer to retrieve the glyph image.

BltX Together with BltY, specifies the offset from the left and top
edge of the image of the first character cell in the *Image.

BltY Together with BltX, specifies the offset from the left and top
edge of the image of the first character cell in the *Image.

Transparent If TRUE, the Background color is ignored and all"off" pixels in
the character's drawn will use the pixel value from *Image.

Description

This function generates the glyph image of the character in the specific font family on the given
EFI_IMAGE_OUTPUT

Status Codes Returned

EFI_SUCCESS The glyph image was generated in Image.
EFI_OUT_OF_RESOURCE Not enough memory to generate image of the given glyph.
EFI_UNSUPPORTED The font glyph generator can’t generate the glyph for the given FontInfo. T

may caused by the unsupported font name, font style or font size.
EFI_INVALID_PARAMETER One or more parameters of Cell, GlyphBuffe, FontInfo, Image, BltX or BltY w

NULL.
UEFI Forum, Inc. March 2019 1991

UEFI Specification, Version 2.8 HII Protocols
34.8 Database Protocol

EFI_HII_DATABASE_PROTOCOL

Summary

Database manager for HII-related data structures.

GUID

#define EFI_HII_DATABASE_PROTOCOL_GUID \

 { 0xef9fc172, 0xa1b2, 0x4693,\

 { 0xb3, 0x27, 0x6d, 0x32, 0xfc, 0x41, 0x60, 0x42 }}

Protocol

typedef struct _EFI_HII_DATABASE_PROTOCOL {

 EFI_HII_DATABASE_NEW_PACK NewPackageList;

 EFI_HII_DATABASE_REMOVE_PACK RemovePackageList;

 EFI_HII_DATABASE_UPDATE_PACK UpdatePackageList;

 EFI_HII_DATABASE_LIST_PACKS ListPackageLists;

 EFI_HII_DATABASE_EXPORT_PACKS ExportPackageLists;

 EFI_HII_DATABASE_REGISTER_NOTIFY RegisterPackageNotify;

 EFI_HII_DATABASE_UNREGISTER_NOTIFY UnregisterPackageNotify;

 EFI_HII_FIND_KEYBOARD_LAYOUTS FindKeyboardLayouts;
 EFI_HII_GET_KEYBOARD_LAYOUT GetKeyboardLayout;

 EFI_HII_SET_KEYBOARD_LAYOUT SetKeyboardLayout;

 EFI_HII_DATABASE_GET_PACK_HANDLE GetPackageListHandle;

} EFI_HII_DATABASE_PROTOCOL;

Members

NewPackageList

Add a new package list to the HII database.

RemovePackageList

Remove a package list from the HII database.

UpdatePackageList

Update a package list in the HII database.

ListPackageLists

List the handles of the package lists within the HII database.

ExportPackageLists

Export package lists from the HII database.

RegisterPackageNotify

Register notification when packages of a certain type are installed.

UnregisterPackageNotify

Unregister notification of packages.
UEFI Forum, Inc. March 2019 1992

UEFI Specification, Version 2.8 HII Protocols
FindKeyboardLayouts

Retrieves a list of the keyboard layouts in the system.

GetKeyboardLayout

Allows a program to extract the current keyboard layout. See the
GetKeyboardLayout() function description.

SetKeyboardLayout

Changes the current keyboard layout. See the SetKeyboardLayout() function
description.

GetPackageListHandle

Return the EFI handle associated with a given package list.

EFI_HII_DATABASE_PROTOCOL.NewPackageList()

Summary

Adds the packages in the package list to the HII database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_NEW_PACK) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN CONST EFI_HII_PACKAGE_LIST_HEADER *PackageList,

 IN CONST EFI_HANDLE DriverHandle, OPTIONAL

 OUT EFI_HII_HANDLE *Handle
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageList

A pointer to an EFI_HII_PACKAGE_LIST_HEADER structure.

DriverHandle

Associate the package list with this EFI handle

Handle

A pointer to the EFI_HII_HANDLE instance. Type EFI_HII_HANDLE is defined in
"Related Definitions" below.

Description

This function adds the packages in the package list to the database and returns a handle. If there is a
EFI_DEVICE_PATH_PROTOCOL associated with the DriverHandle, then this function will create a
package of type EFI_PACKAGE_TYPE_DEVICE_PATH and add it to the package list.
UEFI Forum, Inc. March 2019 1993

UEFI Specification, Version 2.8 HII Protocols
For each package in the package list, registered functions with the notification type NEW_PACK and
having the same package type will be called.

For each call to NewPackageList(), there should be a corresponding call to
EFI_HII_DATABASE_PROTOCOL.RemovePackageList().

Related Definitions

typedef VOID *EFI_HII_HANDLE;

Status Codes Returns

EFI_HII_DATABASE_PROTOCOL.RemovePackageList()

Summary

Removes a package list from the HII database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_REMOVE_PACK) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_HII_HANDLE Handle
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

The handle that was registered to the data that is requested for removal. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages section.

Description

This function removes the package list that is associated with a handle Handle from the HII database.
Before removing the package, any registered functions with the notification type REMOVE_PACK and the
same package type will be called.

For each call to EFI_HII_DATABASE_PROTOCOL.NewPackageList(), there should be a
corresponding call to RemovePackageList.

EFI_SUCCESS The package list associated with the Handle was

added to the HII database.

EFI_OUT_OF_RESOURCES Unable to allocate necessary resources for the new
database contents.

EFI_INVALID_PARAMETER PackageList is NULL or Handle is NULL.
UEFI Forum, Inc. March 2019 1994

UEFI Specification, Version 2.8 HII Protocols
Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.UpdatePackageList()

Summary

Update a package list in the HII database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_UPDATE_PACK) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_HII_HANDLE Handle,

 IN CONST EFI_HII_PACKAGE_LIST_HEADER *PackageList,
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

The handle that was registered to the data that is requested to be updated. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages section.

PackageList

A pointer to an instance of EFI_HII_PACKAGE_LIST_HEADER.

Description

This function updates the existing package list (which has the specified Handle) in the HII databases,
using the new package list specified by PackageList. The update process has the following steps:

Collect all the package types in the package list specified by PackageList. A package type consists of
the Type field of EFI_HII_PACKAGE_HEADER and, if the Type is EFI_HII_PACKAGE_TYPE_GUID, the
Guid field, as defined in EFI_HII_GUID_PACKAGE_HDR.

Iterate through the packages within the existing package list in the HII database specified by Handle. If a
package’s type matches one of the types collected in step 1, then perform the following steps:

• Call any functions registered with the notification type REMOVE_PACK.

• Remove the package from the package list and the HII database.

Add all of the packages within the new package list specified by PackageList, using the following steps:

• Add the package to the package list and the HII database.

EFI_SUCCESS The data associated with the Handle was removed from the HII

database.

EFI_NOT_FOUND The specified Handle is not in the Database.
UEFI Forum, Inc. March 2019 1995

UEFI Specification, Version 2.8 HII Protocols
• Call any functions registered with the notification type ADD_PACK.

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.ListPackageLists()

Summary

Determines the handles that are currently active in the database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_LIST_PACKS) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN UINT8 PackageType,

 IN CONST EFI_GUID *PackageGuid,

 IN OUT UINTN *HandleBufferLength,

 OUT EFI_HII_HANDLE *Handle

);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageType

Specifies the package type of the packages to list or EFI_HII_PACKAGE_TYPE_ALL
for all packages to be listed.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to the
GUID which must match the Guid field of EFI_HII_GUID_PACKAGE_HDR.
Otherwise, it must be NULL.

HandleBufferLength

On input, a pointer to the length of the handle buffer. On output, the length of the
handle buffer that is required for the handles found.

Handle

An array of EFI_HII_HANDLE instances returned. Type EFI_HII_HANDLE is
defined in EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

EFI_SUCCESS The HII database was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate enough memory for the updated database.

EFI_INVALID_PARAMETER PackageList was NULL.

EFI_NOT_FOUND The specified Handle is not in the Database.
UEFI Forum, Inc. March 2019 1996

UEFI Specification, Version 2.8 HII Protocols
Description

This function returns a list of the package handles of the specified type that are currently active in the
database. The pseudo-type EFI_HII_PACKAGE_TYPE_ALL will cause all package handles to be listed.

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.ExportPackageLists()

Summary

Exports the contents of one or all package lists in the HII database into a buffer.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_EXPORT_PACKS) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_HII_HANDLE Handle,

 IN OUT UINTN *BufferSize,

 OUT EFI_HII_PACKAGE_LIST_HEADER *Buffer
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

An EFI_HII_HANDLE that corresponds to the desired package list in the HII
database to export or NULL to indicate all package lists should be exported.

EFI_SUCCESS A list of Packages was placed in Handle successfully.

HandleBufferLength is updated with the actual length.

EFI_BUFFER_TOO_SMALL The HandleBufferLength parameter indicates that Handle is

too small to support the number of handles. HandleBufferLength

is updated with a value that will enable the data to fit.

EFI_INVALID_PARAMETER HandleBufferLength was NULL.

EFI_INVALID_PARAMETER The value referenced by HandleBufferLength was not zero and

Handle was NULL.

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is not NULL .

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is NULL .

EFI_NOT_FOUND No matching handles were found
UEFI Forum, Inc. March 2019 1997

UEFI Specification, Version 2.8 HII Protocols
BufferSize

On input, a pointer to the length of the buffer. On output, the length of the buffer
that is required for the exported data.

Buffer

A pointer to a buffer that will contain the results of the export function.

Description

This function will export one or all package lists in the database to a buffer. For each package list
exported, this function will call functions registered with EXPORT_PACK and then copy the package list to
the buffer. The registered functions may call
EFI_HII_DATABASE_PROTOCOL.UpdatePackageList() to modify the package list before it is
copied to the buffer.

If the specified BufferSize is too small, then the status EFI_BUFFER_TOO_SMALL will be returned and
the actual package size will be returned in BufferSize.

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify()

Summary

Registers a notification function for HII database-related events.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_REGISTER_NOTIFY) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN UINT8 PackageType,

 IN CONST EFI_GUID *PackageGuid,

 IN CONST EFI_HII_DATABASE_NOTIFY PackageNotifyFn,

 IN EFI_HII_DATABASE_NOTIFY_TYPE NotifyType,

 OUT EFI_HANDLE *NotifyHandle
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

EFI_SUCCESS Package exported.

EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the package.

EFI_INVALID_PARAMETER BufferSize was NULL

EFI_INVALID_PARAMETER The value referenced by BufferSize was not zero and Buffer was NULL.

EFI_NOT_FOUND The specified Handle could not be found in the current database.
UEFI Forum, Inc. March 2019 1998

UEFI Specification, Version 2.8 HII Protocols
PackageType

The package type. See EFI_HII_PACKAGE_TYPE_x in
EFI_HII_PACKAGE_HEADER.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to the
GUID which must match the Guid field of EFI_HII_GUID_PACKAGE_HDR.
Otherwise, it must be NULL.

PackageNotifyFn

Points to the function to be called when the event specified by NotificationType
occurs. See EFI_HII_DATABASE_NOTIFY.

NotifyType

Describes the types of notification which this function will be receiving. See
EFI_HII_DATABASE_NOTIFY_TYPE for more a list of types.

NotifyHandle

Points to the unique handle assigned to the registered notification. Can be used in
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() to stop
notifications.

Description

This function registers a function which will be called when specified actions related to packages of the
specified type occur in the HII database. By registering a function, other HII-related drivers are notified
when specific package types are added, removed or updated in the HII database.

Each driver or application which registers a notification should use
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() before exiting.

If a driver registers a NULL PackageGuid when PackageType is EFI_HII_PACKAGE_TYPE_GUID, a
notification will occur for every package of type EFI_HII_PACKAGE_TYPE_GUID that is registered.

Related Definitions

EFI_HII_PACKAGE_HEADER is defined in EFI_HII_PACKAGE_HEADER.

EFI_HII_DATABASE_NOTIFY is defined in EFI_HII_DATABASE_NOTIFY.

EIF_HII_DATABASE_NOTIFY_TYPE is defined in EFI_HII_DATABASE_NOTIFY_TYPE.
UEFI Forum, Inc. March 2019 1999

UEFI Specification, Version 2.8 HII Protocols
Returned Status Codes

EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify()

Summary

Removes the specified HII database package-related notification.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_UNREGISTER_NOTIFY) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_HANDLE NotificationHandle
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

NotificationHandle

The handle of the notification function being unregistered.

Returned Status Codes

EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts()

Summary

Retrieves a list of the keyboard layouts in the system.

EFI_SUCCESS Notification registered successfully.

EFI_OUT_OF_RESOURCES Unable to allocate necessary data structures.

EFI_INVALID_PARAMETER NotifyHandle is NULL.

EFI_INVALID_PARAMETER PackageType is not a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is not NULL.

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is NULL

EFI_SUCCESS Invalidated

EFI_NOT_FOUND The NotificationHandle could not be found in the database.
UEFI Forum, Inc. March 2019 2000

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_FIND_KEYBOARD_LAYOUTS) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN OUT UINT16 *KeyGuidBufferLength,

 OUT EFI_GUID *KeyGuidBuffer

);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuidBufferLength

On input, a pointer to the length of the keyboard GUID buffer. On output, the length
of the handle buffer that is required for the handles found.

KeyGuidBuffer

An array of keyboard layout GUID instances returned.

Description

This routine retrieves an array of GUID values for each keyboard layout that was previously registered in
the system.

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout()

Summary

Retrieves the requested keyboard layout.

EFI_SUCCESS KeyGuidBuffer was updated successfully.

EFI_BUFFER_TOO_SMALL The KeyGuidBufferLength parameter indicates that

KeyGuidBuffer is too small to support the number of

GUIDs. KeyGuidBufferLength is updated with a value

that will enable the data to fit.

EFI_INVALID_PARAMETER KeyGuidBufferLength is NULL.

EFI_INVALID_PARAMETER The value referenced by KeyGuidBufferLength is not

zero and KeyGuidBuffer is NULL.
UEFI Forum, Inc. March 2019 2001

UEFI Specification, Version 2.8 HII Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_GET_KEYBOARD_LAYOUT) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_GUID *KeyGuid,

 IN OUT UINIT16 *KeyboardLayoutLength,
 OUT EFI_HII_KEYBOARD_LAYOUT *KeyboardLayout

);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuid

A pointer to the unique ID associated with a given keyboard layout. If KeyGuid is
NULL then the current layout will be retrieved.

KeyboardLayout

A pointer to a buffer containing the retrieved keyboard layout. below.

KeyboardLayoutLength

On input, a pointer to the length of the KeyboardLayout buffer. On output, the
length of the data placed into KeyboardLayout.

Description

This routine retrieves the requested keyboard layout. The layout is a physical description of the keys on a
keyboard and the character(s) that are associated with a particular set of key strokes.

Related Definitions

//***

// EFI_HII_KEYBOARD_LAYOUT

//***

typedef struct {

 UINT16 LayoutLength;

 EFI_GUID Guid;

 UINT32 LayoutDescriptorStringOffset;

 UINT8 DescriptorCount;

 EFI_KEY_DESCRIPTOR Descriptors[];

} EFI_HII_KEYBOARD_LAYOUT;

LayoutLength

The length of the current keyboard layout.

Guid

The unique ID associated with this keyboard layout.
UEFI Forum, Inc. March 2019 2002

UEFI Specification, Version 2.8 HII Protocols
LayoutDescriptorStringOffset

An offset location (0 is the beginning of the EFI_KEYBOARD_LAYOUT instance) of
the string which describes this keyboard layout. The data that is being referenced is
in EFI_DESCRIPTION_STRING_BUNDLE format.

DescriptorCount

The number of Descriptor entries in this layout.

Descriptors

An array of key descriptors.

//***

// EFI_DESCRIPTION_STRING - byte packed data

//***

 CHAR16 Language[];

 CHAR16 Space;

 //CHAR16 DescriptionString[];

Language

The language in RFC 4646 format to associate with DescriptionString.

Space

A space (U-0x0020) character to force as a separator between the Language field
and the formal description string.

DescriptionString

A null-terminated description string.

//***

// EFI_DESCRIPTION_STRING_BUNDLE - byte packed data

//

// Example: 2en-US English Keyboard<null>es-ES Keyboard en ingles<null>

// <null> = U-0000

//***

 UINT16 DescriptionCount;

 EFI_DESCRIPTION_STRING DescriptionString[];

DescriptionCount

The number of description strings.

DescriptionString

An array of language-specific description strings.
UEFI Forum, Inc. March 2019 2003

UEFI Specification, Version 2.8 HII Protocols
//***

// EFI_KEY_DESCRIPTOR

//***

typedef struct {

 EFI_KEY Key;

 CHAR16 Unicode;

 CHAR16 ShiftedUnicode;

 CHAR16 AltGrUnicode;

 CHAR16 ShiftedAltGrUnicode;

 UINT16 Modifier;

 UINT16 AffectedAttribute;

} EFI_KEY_DESCRIPTOR;

// A key which is affected by all the standard shift modifiers.

// Most keys would be expected to have this bit active.

#define EFI_AFFECTED_BY_STANDARD_SHIFT 0x0001

// This key is affected by the caps lock so that if a keyboard

// driver would need to disambiguate between a key which had a

// "1" defined versus a "a" character. Having this bit turned on

// would tell the keyboard driver to use the appropriate shifted // state or
not.

#define EFI_AFFECTED_BY_CAPS_LOCK 0x0002

// Similar to the case of CAPS lock, if this bit is active, the

// key is affected by the num lock being turned on.

#define EFI_AFFECTED_BY_NUM_LOCK 0x0004

Key

Used to describe a physical key on a keyboard. Type EFI_KEY is defined below.

Unicode

Unicode character code for the Key.

ShiftedUnicode

Unicode character code for the key with the shift key being held down.

AltGrUnicode

Unicode character code for the key with the Alt-GR being held down.

ShiftedAltGrUnicode

Unicode character code for the key with the Alt-GR and shift keys being held down.

Modifier

Modifier keys are defined to allow for special functionality that is not necessarily
accomplished by a printable character. Many of these modifier keys are flags to
UEFI Forum, Inc. March 2019 2004

UEFI Specification, Version 2.8 HII Protocols
toggle certain state bits on and off inside of a keyboard driver. Values for Modifier
are defined below.

//***

// EFI_KEY

//***

typedef enum {

 EfiKeyLCtrl, EfiKeyA0, EfiKeyLAlt, EfiKeySpaceBar,

 EfiKeyA2, EfiKeyA3, EfiKeyA4, EfiKeyRCtrl, EfiKeyLeftArrow,

 EfiKeyDownArrow, EfiKeyRightArrow, EfiKeyZero,

 EfiKeyPeriod, EfiKeyEnter, EfiKeyLShift, EfiKeyB0,

 EfiKeyB1, EfiKeyB2, EfiKeyB3, EfiKeyB4, EfiKeyB5, EfiKeyB6,

 EfiKeyB7, EfiKeyB8, EfiKeyB9, EfiKeyB10, EfiKeyRShift,

 EfiKeyUpArrow, EfiKeyOne, EfiKeyTwo, EfiKeyThree,

 EfiKeyCapsLock, EfiKeyC1, EfiKeyC2, EfiKeyC3, EfiKeyC4,

 EfiKeyC5, EfiKeyC6, EfiKeyC7, EfiKeyC8, EfiKeyC9,

 EfiKeyC10, EfiKeyC11, EfiKeyC12, EfiKeyFour, EfiKeyFive,

 EfiKeySix, EfiKeyPlus, EfiKeyTab, EfiKeyD1, EfiKeyD2,

 EfiKeyD3, EfiKeyD4, EfiKeyD5, EfiKeyD6, EfiKeyD7, EfiKeyD8,

 EfiKeyD9, EfiKeyD10, EfiKeyD11, EfiKeyD12, EfiKeyD13,

 EfiKeyDel, EfiKeyEnd, EfiKeyPgDn, EfiKeySeven, EfiKeyEight,

 EfiKeyNine, EfiKeyE0, EfiKeyE1, EfiKeyE2, EfiKeyE3,

 EfiKeyE4, EfiKeyE5, EfiKeyE6, EfiKeyE7, EfiKeyE8, EfiKeyE9,

 EfiKeyE10, EfiKeyE11, EfiKeyE12, EfiKeyBackSpace,

 EfiKeyIns, EfiKeyHome, EfiKeyPgUp, EfiKeyNLck, EfiKeySlash,

 EfiKeyAsterisk, EfiKeyMinus, EfiKeyEsc, EfiKeyF1, EfiKeyF2,

 EfiKeyF3, EfiKeyF4, EfiKeyF5, EfiKeyF6, EfiKeyF7, EfiKeyF8,

 EfiKeyF9, EfiKeyF10, EfiKeyF11, EfiKeyF12, EfiKeyPrint,

 EfiKeySLck, EfiKeyPause
} EFI_KEY;

See the figure below for which key corresponds to the values in the enumeration above. For example,
EfiKeyLCtrl corresponds to the left control key in the lower-left corner of the keyboard, EfiKeyFour
corresponds to the 4 key on the numeric keypad, and EfiKeySLck corresponds to the Scroll Lock key in
the upper-right corner of the keyboard.

Figure 64. Keyboard Layout
UEFI Forum, Inc. March 2019 2005

UEFI Specification, Version 2.8 HII Protocols
//***

// Modifier values

//***

#define EFI_NULL_MODIFIER 0x0000

#define EFI_LEFT_CONTROL_MODIFIER 0x0001

#define EFI_RIGHT_CONTROL_MODIFIER 0x0002

#define EFI_LEFT_ALT_MODIFIER 0x0003

#define EFI_RIGHT_ALT_MODIFIER 0x0004

#define EFI_ALT_GR_MODIFIER 0x0005

#define EFI_INSERT_MODIFIER 0x0006

#define EFI_DELETE_MODIFIER 0x0007

#define EFI_PAGE_DOWN_MODIFIER 0x0008

#define EFI_PAGE_UP_MODIFIER 0x0009

#define EFI_HOME_MODIFIER 0x000A

#define EFI_END_MODIFIER 0x000B

#define EFI_LEFT_SHIFT_MODIFIER 0x000C

#define EFI_RIGHT_SHIFT_MODIFIER 0x000D

#define EFI_CAPS_LOCK_MODIFIER 0x000E

#define EFI_NUM_LOCK_MODIFIER 0x000F

#define EFI_LEFT_ARROW_MODIFIER 0x0010

#define EFI_RIGHT_ARROW_MODIFIER 0x0011

#define EFI_DOWN_ARROW_MODIFIER 0x0012

#define EFI_UP_ARROW_MODIFIER 0x0013

#define EFI_NS_KEY_MODIFIER 0x0014

#define EFI_NS_KEY_DEPENDENCY_MODIFIER 0x0015

#define EFI_FUNCTION_KEY_ONE_MODIFIER 0x0016

#define EFI_FUNCTION_KEY_TWO_MODIFIER 0x0017

#define EFI_FUNCTION_KEY_THREE_MODIFIER 0x0018

#define EFI_FUNCTION_KEY_FOUR_MODIFIER 0x0019

#define EFI_FUNCTION_KEY_FIVE_MODIFIER 0x001A

#define EFI_FUNCTION_KEY_SIX_MODIFIER 0x001B

#define EFI_FUNCTION_KEY_SEVEN_MODIFIER 0x001C

#define EFI_FUNCTION_KEY_EIGHT_MODIFIER 0x001D

#define EFI_FUNCTION_KEY_NINE_MODIFIER 0x001E

#define EFI_FUNCTION_KEY_TEN_MODIFIER 0x001F

#define EFI_FUNCTION_KEY_ELEVEN_MODIFIER 0x0020

#define EFI_FUNCTION_KEY_TWELVE_MODIFIER 0x0021

//

// Keys that have multiple control functions based on modifier

// settings are handled in the keyboard driver implementation.

// For instance PRINT_KEY might have a modifier held down and

// is still a nonprinting character, but might have an alternate

// control function like SYSREQUEST

//

#define EFI_PRINT_MODIFIER 0x0022

#define EFI_SYS_REQUEST_MODIFIER 0x0023

#define EFI_SCROLL_LOCK_MODIFIER 0x0024
UEFI Forum, Inc. March 2019 2006

UEFI Specification, Version 2.8 HII Protocols
#define EFI_PAUSE_MODIFIER 0x0025

#define EFI_BREAK_MODIFIER 0x0026

#define EFI_LEFT_LOGO_MODIFIER 0x0027

#define EFI_RIGHT_LOGO_MODIFIER 0x0028

#define EFI_MENU_MODIFIER 0x0029

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()

Summary

Sets the currently active keyboard layout.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_SET_KEYBOARD_LAYOUT) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_GUID *KeyGuid

);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuid

A pointer to the unique ID associated with a given keyboard layout.

Description

This routine sets the default keyboard layout to the one referenced by KeyGuid. When this routine is
called, an event will be signaled of the EFI_HII_SET_KEYBOARD_LAYOUT_EVENT_GUID group type.
This is so that agents which are sensitive to the current keyboard layout being changed can be notified of
this change.

EFI_SUCCESS The keyboard layout was retrieved successfully.

EFI_NOT_FOUND The requested keyboard layout was not found.

EFI_BUFFER_TOO_SMALL The KeyboardLayoutLength parameter indicates the

KeyboardLayout is too small to hold the keyboard layout.

EFI_INVALID_PARAMETER KeyboardLayoutLength is NULL

EFI_INVALID_PARAMETER The value referenced by KeyboardLayoutLength is not

zero and KeyboardLayout is NULL.
UEFI Forum, Inc. March 2019 2007

UEFI Specification, Version 2.8 HII Protocols
Related Definitions

GUID

#define EFI_HII_SET_KEYBOARD_LAYOUT_EVENT_GUID \

 { 0x14982a4f, 0xb0ed, 0x45b8, \

 { 0xa8, 0x11, 0x5a, 0x7a, 0x9b, 0xc2, 0x32, 0xdf }}

Status Codes Returned

EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle()

Summary

Return the EFI handle associated with a package list.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_GET_PACK_HANDLE) (

 IN CONST EFI_HII_DATABASE_PROTOCOL *This,

 IN EFI_HII_HANDLE PackageListHandle,

 OUT EFI_HANDLE *DriverHandle
);

Parameters

This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageListHandle

An EFI_HII_HANDLE that corresponds to the desired package list in the
HIIdatabase.

DriverHandle

On return, contains the EFI_HANDLE which was registered with the package list in
NewPackageList().

EFI_SUCCESS The current keyboard layout was successfully set.

EFI_NOT_FOUND The referenced keyboard layout was not found, so action was
taken.

EFI_INVALID_PARAMETER KeyGuid is NULL.
UEFI Forum, Inc. March 2019 2008

UEFI Specification, Version 2.8 HII Protocols
Status Codes Returned

34.8.1 Database Structures

EFI_HII_DATABASE_NOTIFY

Summary

Handle a registered notification for a package change to the database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HII_DATABASE_NOTIFY) (

 IN UINT8 PackageType,

 IN CONST EFI_GUID *PackageGuid,

 IN CONST EFI_HII_PACKAGE_HEADER *Package,

 IN EFI_HII_HANDLE Handle,

 IN EFI_HII_DATABASE_NOTIFY_TYPE NotifyType
);

Parameters

PackageType

Package type of the notification.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to the
GUID from the Guid field of EFI_HII_GUID_PACKAGE_HDR. Otherwise, it must be
NULL.

Package

Points to the package referred to by the notification

Handle

The handle of the package list which contains the specified package.

NotifyType

The type of change concerning the database. See
EFI_HII_DATABASE_NOTIFY_TYPE.

EFI_SUCCESS The DriverHandle was returned successfully.

EFI_INVALID_PARAMETER The PackageListHandle was not valid.

EFI_INVALID_PARAMETER The DriverHandle must not be NULL.
UEFI Forum, Inc. March 2019 2009

UEFI Specification, Version 2.8 HII Protocols
Description

Functions which are registered to receive notification of database events have this prototype. The actual
event is encoded in NotifyType. The following table describes how PackageType, PackageGuid,
Handle, and Package are used for each of the notification types.

EFI_HII_DATABASE_NOTIFY_TYPE
typedef UINTN EFI_HII_DATABASE_NOTIFY_TYPE;

#define EFI_HII_DATABASE_NOTIFY_NEW_PACK 0x00000001

#define EFI_HII_DATABASE_NOTIFY_REMOVE_PACK 0x00000002

#define EFI_HII_DATABASE_NOTIFY_EXPORT_PACK 0x00000004

#define EFI_HII_DATABASE_NOTIFY_ADD_PACK 0x00000008

Notification Type Parameter Description

NEW_PACK PackageType and PackageGuid are the type of the

new package. Package points to the new package. Handle

is the handle of the package list which is being added to the
database.

REMOVE_PACK PackageType and PackageGuid are the type of the

package which is being removed. Package points to the

package being removed. Handle is the package list from

which the package is being removed.

EXPORT_PACK PackageType and PackageGuid are the type of the

package being exported. Package points to the existing

package in the database. Handle is the package list being

exported.

ADD_PACK PackageType and PackageGuid are the type of the

package being added. Package points to the package being

added. Handle is the package list to which the package is

being added.
UEFI Forum, Inc. March 2019 2010

UEFI Specification, Version 2.8
35 - HII Configuration Processing and Browser Protocol

35.1 Introduction

This section describes the data and APIs used to manage the system’s configuration: the actual data that
describes the knobs and settings.

35.1.1 Common Configuration Data Format

The configuration data is stored as name / value string pairs. As in e.g. HTML, the name and value are
separated by ‘=’ and the pairs are separated one from the next by ‘&’. The configuration data structures
are thus variable length UNICODE (UCS-2) strings.

Certain names and values have limitations on their syntax to manage routing and to enable extended
support for common storage mechanisms.

35.1.2 Data Flow

There is a two-way flow through the hierarchy of drivers and protocols that parallels the flow in other
parts of HII. Initially, the flow is from the drivers up to the HII database and on to configuration
applications. When changes to configuration are accepted, the flow reverses itself, going from the
configuration applications through the HII database protocols back to the drivers through separate
protocols.

The flow from driver up consists of the current and alternative (default) configurations. The flow down
from the configuration applications consists of changed configurations.

The protocol managed by the HII Database is known as the EFI HII Configuration Routing Protocol, while
the one presented by the drivers themselves is known as the EFI HII Configuration Access Protocol. The
HII Configuration Routing Protocol is the only one that outside callers should invoke.

35.2 Configuration Strings

The configuration strings follow the same general format as HTTP argument strings, which is to say ‘&’
separated name / value pairs. The name and value are separated by ‘=’. The strings are a subset of full
HTML argument strings and do not require quoting, the ‘%’ character sequences used to insert spaces,
ampersands, equal signs, and the like into HTTP argument strings.

35.2.1 String Syntax

Assumptions are typical for BNF with the following extensions

Characters in single quotes, e.g. ‘a’, indicate terminals.

Square brackets immediately followed by a number n indicate that the contents are to be repeated n
times, so [‘a’]4 would be “aaaa”.

An italicized non-terminal, e. g. <All Printable ASCII Characters> is used to indicate a set of terminals
whose definition is outside the scope of this document.

The syntax for configuration strings is as follows.
UEFI Forum, Inc. March 2019 2011

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
35.2.1.1 Basic forms
<Dec19> ::= ‘1’ | ‘2’ | … | ‘9’

<DecCh> ::= ‘0’ | <Dec19>

<HexAf> ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’

<Hex1f> ::= <Dec19> | <HexAf>

<HexCh> ::= <DecCh> | <HexAf>

<Number> ::= <HexCh>+

<Alpha> ::= ‘a’ | ... | ‘z’ | ‘A’ | … | ‘Z’

35.2.1.2 Types
<Guid> ::= <HexCh>32

<LabelStart> ::= <Alpha> | “_”

<LabelBody> ::= <LabelStart> | <DecCh>

<Label> ::= <LabelStart> [<LabelBody>]*

<Char> ::= <HexCh>4

<String> ::= [<Char>]+

<AltCfgId> ::= <HexCh>4

35.2.1.3 Routing elements
<GuidHdr> ::= ‘GUID=’<Guid>

<NameHdr> ::= ‘NAME=’<String>

<PathHdr> ::= ‘PATH=’<UEFI binary Device Path represented as hex number>

<DescHdr> ::= ‘ALTCFG=’<AltCfgId>

<ConfigHdr> ::= <GuidHdr>’&’<NameHdr>’&’<PathHdr>

<AltConfigHdr> ::= <ConfigHdr> ‘&’<DescHdr>

35.2.1.4 Body elements
<ConfigBody> ::= <ConfigElement>*

<ConfigElement> ::= ‘&’<BlockConfig> | ‘&’<NvConfig>

<BlockName> ::= ‘OFFSET=’<Number>’&WIDTH=’<Number>

<BlockConfig> ::= <BlockName>’&VALUE=’<Number>

<RequestElement> ::= ‘&’<BlockName> | ‘&’<Label>

<NvConfig> ::= <Label>’=’<String> | <Label>’=’<Number>

35.2.1.5 Configuration strings
<ConfigRequest> ::= <ConfigHdr><RequestElement>*

<MultiConfigRequest> ::= <ConfigRequest>[‘&’ <ConfigRequest>]*

<ConfigResp> ::= <ConfigHdr><ConfigBody>

<AltResp> ::= <AltConfigHdr><ConfigBody>

<ConfigAltResp> ::= <ConfigResp> [‘&’ <AltResp>]*

<MultiConfigAltResp> ::= <ConfigAltResp> [‘&’ <ConfigAltResp>]*

<MultiConfigResp> ::= <ConfigResp> [‘&’<ConfigResp>]*

Notes:
UEFI Forum, Inc. March 2019 2012

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
The <Number> represents a data buffer and is encoded as a sequence of bytes in the format %02x in the
same order as the buffer bytes reside in memory.

The <Guid> represents a hex encoding of GUID and is encoded as a sequence of bytes in the format %02x
in the same order as the GUID bytes reside in memory.

The syntax for a <Label> is the C label (e.g. Variable) syntax.

The <ConfigHdr> provides routing information. The name field is required even if non-block storage is
targeted. In these cases, it may be used as a way to distinguish like storages from one another when a
driver is being used

The <BlockName> provides addressing information for managing block (e.g. UEFI Variable) storage. The
first number provides the byte offset into the block while the second provides the length of bytes.

The <PathHdr> presents a hex encoding of a UEFI device path. This is not the printable path since the
printable path is optional in UEFI and to enable simpler comparisons. The data is encoded as strings with
the format %02x bytes in the same order as the device path resides in RAM memory.

The <ConfigRequest> provides a mechanism to request the current configuration for one or more
elements.

The <AltCfgId> is the identifier of a configuration declared in the corresponding IFR.

The name ‘GUID’ is also used to separate <String> or <ConfigRequest> elements in the equivalent Multi
version. That is:

GUID=…&NAME=…&…&fred=12&GUID=…&NAME=…&…&goyle=11

Indicates two <String>, with one ending with fred=12.

The following are reserved <name>s and cannot be used as names in a <ConfigElement>:

GUID

NAME

PATH

ALTCFG

OFFSET

WIDTH

VALUE
UEFI Forum, Inc. March 2019 2013

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
35.2.1.6 Keyword strings
<NameSpaceId> ::=‘NAMESPACE=’<String>’&’

<Keyword> ::=‘KEYWORD=’<String>[‘:’<DecCh>(1/4)]

<DataFilter> ::=‘Buffer’|‘Numeric’[‘:1’|‘:2’|‘:4’|‘:8’]

 |‘String’|‘Boolean’|‘Date’|’Time’

<UsageFilter> ::=‘ReadOnly’|‘ReadWrite’

<Filter> ::=<UsageFilter>|<DataFilter>|<UsageFilter>
 ’&’<DataFilter>

<ValueRange> ::=‘&MAX=’<Number>‘&MIN=’<Number>[’&STEP=’<Number>]

<ValueOption> ::=‘&OPTIONVALUE=’<Number>’&OPTIONSTRING=’<String>
 [‘&VALUETYPE=‘Numeric’[‘:1’|‘:2’|‘:4’|‘:8’]]

<ValueAttribute> ::=[<ValueRange>][<ValueOption>*]

<Default> ::=[‘&STANDARDDEFAULT=’<Number>]

 [‘&MFGDEFAULT=’<Number>]

 [‘&SAFEDEFAULT=’<Number>]

<Display> ::=’&DISPLAYNAME=’<String>

<DataType> ::=‘&DATATYPE=’<DataFilter>

<KeywordInfoFilter> ::=‘All’|[‘DataType’][‘ValueAttribute’][‘Default’]
 [’DisplayName’]

<Boolean> ::=’True’|’False’

<KeywordInfoRequest> ::=’KEYWORDINFO=’<KeywordInfoFilter>

<KeywordInfoResp> ::=[<DataType>][<ValueAttribute>][<Default>][<Display>]

<KeywordRequest> ::=[<PathHdr>’&’]<Keyword>
 [’&’<KeywordInfoRequest>][’&’<Filter>]

<KeywordResp> ::=<NameSpaceId><PathHdr>’&’<Keyword>’&VALUE=’<Number>
 [‘&READONLY’][<KeywordInfoResp>]

<MultiKeywordRequest> ::=<KeywordRequest>[‘&’<KeywordRequest>]*

<MultiKeywordResp> ::=<KeywordResp>[‘&’<KeywordResp>]*

Note: For Keyword definitions, see the UEFI Configuration Namespace Registry document on http://
uefi.org/uefi.

HII Question Type HII Keyword Data Type Data information in
<ValueAttribute>

Numeric Numeric ValueRanges

One-Of Numeric ValueOptions

Checkbox Boolean

String String ValueRanges

Ordered-List Buffer ValueOptions

Date Date

Time Time
UEFI Forum, Inc. March 2019 2014

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
The <NameSpaceId> element is equivalent to the platform configuration language being used for the
keyword definition.

The <Keyword> element uses the ‘KEYWORD=’ name to designate that immediately following the
reserved name is a string value associated with a configuration namespace keyword as defined in the
Configuration NameSpace Registry document (http://uefi.org/uefi).

Typically, when a Keyword is defined, the value is a solitary string such as “BIOSVendor”. However, when
certain Keywords are intended to represent a setting that may have multiple instances (e.g.
ChipsetSATAPortEnable), that is when a “:<DecCh>(1/4)” suffix will be appended to the keyword
definition. In that case, we might see something like: “ChipsetSATAPortEnable:5” if a particular platform
had at least five SATA ports and one of the questions was represented by the aforementioned string. It
would also be reasonable to expect that there might also be a “ChipsetSATAPortEnable:1” and a “:2”, “:3”
etc.

If the <PathHdr> element within <KeywordRequest> is omitted, then all instances are returned.

If the Keyboard Handler protocol knows or detects that a particular Keyword is read-only, then the
<KeywordResp> must include the “&READONLY” tag.

The <DataFilter> element specifies the optional filter based on data type to use when a request is
made. If no filtering is desired, then this element must be omitted from the <KeywordRequest>.
Filtering is not guaranteed to work on any platform configuration language that isn’t defined in the UEFI
Configuration Namespace Document.

DataFilter.Buffer
HII questions with EFI_IFR_TYPE_BUFFER type are treated as this type. This is most
commonly represented in ‘C’ as a VOID type, or as a more complex type. 
Other than the EFI_IFR_TYPE_BOOLEAN and EFI_IFR_TYPE_NUM_x data types, all of the
HII configuration data types are treated as a sequence of data.

DataFilter.Numeric
A sequence of data that must be interpreted as a one, two, four, or eight-byte wide numeric
value. For instance, a definition of “Numeric:2” would indicate that the keyword is a two-
byte numeric value. If no byte-size designation is specified, then the value may vary in size.

DataFilter.String
HII questions with EFI_IFR_TYPE_STRING type are treated as this type.

DataFilter.Boolean
HII questions with EFI_IFR_TYPE_BOOLEAN type are treated as this type.

DataFilter.Date
HII questions with EFI_IFR_TYPE_DATE type are treated as this type.

DataFilter.Time
HII questions with EFI_IFR_TYPE_TIME type are treated as this type.
UEFI Forum, Inc. March 2019 2015

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
The <UsageFilter> element defines the optional filter to use based on usage type when a request is
made. If no filtering is desired, then this element must be omitted from the <KeywordRequest>.

UsageType.ReadOnly
The data for the keyword cannot be changed. It is intended solely for informational purposes,
and can be used to read a setting that may be static or dynamic (e.g. CPU temperature).

UsageType.ReadWrite
The data for the keyword can be changed.

The <KeywordInfoRequest> element allows the callers to request some additional information of the
keyword to be returned. <KeywordInfoRequest> element is used when user doesn’t know the
information about the keyword and wants to get more information about this keyword. When
<KeywordInfoRequest> element is specified with <KeywordRequest>, the <KeywordInfoResp>
element will be specified with <KeywordResp> to return the info requested by
<KeywordInfoRequest>.

The <KeywordInfoFilter> element is used to specify the additional information that caller wants to
know about the keyword. Caller can specify any type of additional information he/she wants to know.
When ‘All’ is specified, means all the supported information need to be returned.

The <DataType> element specifies the data type of a keyword, can refer to <DataFilter> for the detailed
info the data types.

The <ValueAttribute> element specifies the value attribute of a keyword. Such as the value range of
a keyword or the selectable values for a keyword.

<ValueRange> element specifies the variation range of a keyword value. Such as it can be specified for
a keyword used in EFI_IFR_NUMERIC_OP, EFI_IFR_STRING_OP opcode. For EFI_IFR_NUMERIC_OP
opcode, it specifies the maximum value, minimum value and increment or decrement step. For
EFI_IFR_STRING_OP opcode, it specifies the maximum length and minimum length of the string can be
input.

<ValueOption> element specifies all the (selectable) values and related string representation of these
values for a keyword. Such as it can be specified for keyword used in EFI_IFR_ONE_OF_OP,
EFI_IFR_ORDERED_LIST_OP opcode. For EFI_IFR_ONE_OF_OP, it specifies the all selectable values
and the string representation of the values. The keyword value can be one of them.

For EFI_IFR_ORDERED_LIST_OP, it specifies all values and the string representation of the values. The
keyword value can be the permutation and combination of these values. And for
EFI_IFR_ORDERED_LIST_OP, its data type is Buffer, so can return the value type in a <ValueOption> to
indicate the data stored in the Buffer is numeric as a one, two, four, or eight-byte wide.

The <Default> element specifies the default value of a keyword. Only the three standard defaults
stores are supported including the standard defaults, the manufacturing defaults and the Safe defaults. If
the keyword doesn’t have any type of defaults, then there is no default info returned. And if the keyword
only has the standard default, then only the standard default information will be returned.

The <Display> element specifies the displayed prompt string of this keyword in the UI page.
UEFI Forum, Inc. March 2019 2016

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
35.2.1.6.1 An example of some basic keyword-related strings:

<KeywordRequest> to retrieve the current BIOS Vendor name:

KEYWORD=BIOSVendor

35.2.1.6.2 A possible response might look like:
x-UEFI-ns&KEYWORD=BIOSVendor&VALUE=AcmeBIOSCompany

If a request was made to retrieve all of the settings for a platform, a user would initiate a call to
KeywordHandleràGetData() with the KeywordString and NamespaceId being NULL.

35.2.1.6.3 A possible response might look like:
x-UEFI-ns&KEYWORD=BIOSVendor&VALUE=AcmeBIOSCompany&x-UEFI-extension-
ACME&KEYWORD=SpecialSettingX&VALUE=3

In this case, the string returned tells us that there was one discovered keyword called “BIOSVendor”
under the standard UEFI namespace and its value was “AcmeBIOS”. There was also an ACME branded
namespace element which was discovered that had a keyword called “SpecialSettingX” whose value was
3.

35.2.1.6.4 An example to get more information of a keyword:
KEYWORD=BIOSVendor&KEYWORDINFO=All

A possible response might look like:

x-UEFI-
ns&KEYWORD=BIOSVendor&VALUE=AcmeBIOSCompany&DataType=String&MAX=30&MIN=6&STA
NDARDDEFAULT=AcmeBIOSCompany&MFGDEFAULT=AcmeBIOSCompany

35.2.2 String Types

There are six string types. As can be seen from the BNF, the syntax of all is quite similar. The first three
are used in communications between drivers and HII. The last three are used for analogous
communication between external applications and HII.

<ConfigRequest>: This string is used by HII to request the current and any alternative configurations from
a driver. It consists of routing information and only ampersand separated names.

<ConfigAltResp>: A string in this format is returned by the driver in response to a request to fill in a
<ConfigRequest> string. The string consists of the current configuration followed by possibly several
alternative configurations. The alternative configurations have the ALTCFG name / value pair in addition
to the usual GUID, NAME, and PATH entries in the routing prefix. The ALTCFG value is a Default ID which
is used to describe the alternative default configuration.

<ConfigResp>: A sting in this format is handed by the HII to the driver to cause the driver to change its
configuration. It consists of routing information and name / value pairs which correspond to the
questions in the driver’s IFR. Only <ConfigResp> strings which refer to a driver in question may be handed
to that driver. The driver shall reject all others.
UEFI Forum, Inc. March 2019 2017

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
<MultiConfigRequest>: A string in this format is handed to HII by an external application in order to
request the current an alternate configurations of the system’s drivers. The format of this string is a
series of <ConfigRequest> strings separated by ampersands. The HII’s job is to separate the requests and
hand them off to the appropriate drivers (as indicated by the routing headers).

<MultiConfigAltResp>: A string in this format is handed back to an external application which has
requested the current and alternate configurations of the system’s drivers. The format of this string is a
series of <ConfigAltResp> strings separated by ampersands. The HII creates this string by concatenating
the current and alternate configuration strings provided by each driver.

<MultiConfigResp>: A string in this format is handed to the HII in order to update the system’s
configuration. Analogous to the other “Multi” string formats, its syntax is a series of ampersand
separated <ConfigResp> strings. Upon receipt, the HII routes the <ConfigResp> strings to the
corresponding drivers.

35.3 EFI Configuration Keyword Handler Protocol

This section provides a detailed description of the EFI Configuration Keyword Handler
Protocol.

EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL

Summary

The EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL provides the mechanism to set and get the values
associated with a keyword exposed through a x-UEFI- prefixed configuration language namespace.

GUID

#define EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL_GUID \

{ 0x0a8badd5, 0x03b8, 0x4d19,\

 {0xb1, 0x28, 0x7b, 0x8f, 0x0e, 0xda, 0xa5, 0x96 }}

Protocol Interface Structure

typedef struct _EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL {

 EFI_CONFIG_KEYWORD_HANDLER_SET_DATA SetData;

 EFI_CONFIG_KEYWORD_HANDLER_GET_DATA GetData;
} EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL;

Parameters

SetData Set the data associated with a particular configuration
namespace keyword.

GetData Get the data associated with a particular configuration
namespace keyword.

Description

The EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL allows other components in the platform (e.g.
Browser, Manageability Software, etc.) to retrieve and set configuration settings within the system.
UEFI Forum, Inc. March 2019 2018

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Keywords are text elements which are associated with a particular configuration option within the
platform. These keywords are intended to add semantic meaning to the configuration option they are
attached to. The text associated for the keyword would be encoded in a UEFI configuration language.
These languages are like French or German or Japanese, but are not designed for display purposes for an
end-user. Instead each language serves as a namespace for the purposes of grouping and manipulating
groups of platform configurations options. See Section 33.2.11.2 (Working with a UEFI Configuration
Language) for more information.

Note: Not all configuration options will be associated with a keyword. Associating a keyword with a
configuration option is at the discretion of the platform and/or the hardware vendor. For more
information about keyword definitions associated with a UEFI namespace, see the UEFI Keyword
Namespace Registry link in the UEFI Link Document.

EFI_KEYWORD_HANDLER _PROTOCOL.SetData()

Summary

Set the data associated with a particular configuration namespace keyword.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KEYWORD_HANDLER _SET_DATA) (

 IN EFI_KEYWORD_HANDLER_PROTOCOL *This,

 IN CONST EFI_STRING KeywordString,

 OUT EFI_STRING *Progress,

 OUT UINT32 *ProgressErr
);

Parameters

This Pointer to the EFI_KEYWORD_HANDLER _PROTOCOL instance.
KeywordString A null-terminated string in <MultiKeywordResp> format.
Progress On return, points to a character in the KeywordString. Points

to the string’s NULL terminator if the request was successful.
Points to the most recent ‘&’ before the first failing name /
value pair (or the beginning of the string if the failure is in the
first name / value pair) if the request was not successful.

ProgressErr If during the processing of the KeywordString there was a
failure, this parameter gives additional information about the
possible source of the problem. The various errors are
defined in “Related Definitions” below.

Description

This function accepts a <MultiKeywordResp> formatted string, finds the associated keyword owners,
creates a <MultiConfigResp> string from it and forwards it to the
EFI_HII_ROUTING_PROTOCOL.RouteConfig function.
UEFI Forum, Inc. March 2019 2019

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
If there is an issue in resolving the contents of the KeywordString, then the function returns an error
and also sets the Progress and ProgressErr with the appropriate information about where the issue
occurred and additional data about the nature of the issue.

In the case when KeywordString containing multiple keywords, when an EFI_NOT_FOUND error is
generated during processing the second or later keyword element, the system storage associated with
earlier keywords is not modified. All elements of the KeywordString must successfully pass all tests for
format and access prior to making any modifications to storage.

In the case when EFI_DEVICE_ERROR is returned from the processing of a KeywordString containing
multiple keywords, the state of storage associated with earlier keywords is undefined.

Related Definitions

//***

// Progress Errors

//***

#define KEYWORD_HANDLER_NO_ERROR 0x00000000

#define KEYWORD_HANDLER_NAMESPACE_ID_NOT_FOUND 0x00000001

#define KEYWORD_HANDLER_MALFORMED_STRING 0x00000002

#define KEYWORD_HANDLER_KEYWORD_NOT_FOUND 0x00000004

#define KEYWORD_HANDLER_INCOMPATIBLE_VALUE_DETECTED 0x00000008

#define KEYWORD_HANDLER_ACCESS_NOT_PERMITTED 0x00000010

#define KEYWORD_HANDLER_UNDEFINED_PROCESSING_ERROR 0x80000000

The KEYWORD_HANDLER_x values describe the error values returned in the ProgressErr field.

If no errors were encountered, then KEYWORD_HANDLER_NO_ERROR is returned with no bits are set.

If the <NameSpaceId> specified by the KeywordString was not found in any of the registered
configuration data, the KEYWORD_HANDLER_NAMESPACE_ID_NOT_FOUND bit is set.

If there was an error in the parsing of the KeywordString, the KEYWORD_HANDLER_MALFORMED_STRING
bit is set.

If there was a keyword specified in the KeywordString which was not found in any of the registered
configuration data, KEYWORD_HANDLER_KEYWORD_NOT_FOUND bit is set.

If the value either passed into KeywordString (during a SetData operation) or the value discovered for
the Keyword (during a GetData operation) did not match what was known to be valid for the defined
keyword, the KEYWORD_HANDLER_INCOMPATIBLE_VALUE_DETECTED bit is set.

If there was an error as a result of a violation of system policy. For example trying to write a read-only
element, the KEYWORD_HANDLER_ACCESS_NOT_PERMITTED bit is set.

If there was an undefined type of error in processing the passed in data, the
KEYWORD_HANDLER_UNDEFINED_PROCESSING_ERROR bit is set.
UEFI Forum, Inc. March 2019 2020

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Status Codes Returned

EFI_KEYWORD_HANDLER _PROTOCOL.GetData()

Summary

Get the data associated with a particular configuration namespace keyword.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KEYWORD_HANDLER _GET_DATA) (

 IN EFI_KEYWORD_HANDLER_PROTOCOL *This,

 IN CONST EFI_STRING NameSpaceId, OPTIONAL

 IN CONST EFI_STRING KeywordString, OPTIONAL

 OUT EFI_STRING *Progress,

 OUT UINT32 *ProgressErr,

 OUT EFI_STRING *Results
);

Parameters

This Pointer to the EFI_KEYWORD_HANDLER _PROTOCOL instance.
NamespaceId A null-terminated string containing the platform configuration

language to search through in the system. If a NULL is passed
in, then it is assumed that any platform configuration
language with the prefix of “x-UEFI-” are searched.

KeywordString A null-terminated string in <MultiKeywordRequest> format.
If a NULL is passed in the KeywordString field, all of the
known keywords in the system for the NameSpaceId specified
are returned in the Results field.

Progress On return, points to a character in the KeywordString. Points
to the string’s NULL terminator if the request was successful.
Points to the most recent ‘&’ before the first failing name /

EFI_SUCCESS The specified action was completed successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

KeywordString is NULL.
Parsing of the KeywordString resulted in an error. See

Progress and ProgressErr for more data.

EFI_NOT_FOUND An element of the KeywordString was not found. See

ProgressErr for more data.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated. See ProgressErr

for more data.

EFI_ACCESS_DENIED The action violated system policy. See ProgressErr for more data.

EFI_DEVICE_ERROR An unexpected system error occurred. See ProgressErr for more

data.
UEFI Forum, Inc. March 2019 2021

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
value pair (or the beginning of the string if the failure is in the
first name / value pair) if the request was not successful.

ProgressErr If during the processing of the KeywordString there was a
failure, this parameter gives additional information about the
possible source of the problem. See the definitions in
SetData() for valid value definitions.

Results A null-terminated string in <MultiKeywordResp> format is
returned which has all the values filled in for the keywords in
the KeywordString. This is a callee-allocated field, and must
be freed by the caller after being used.

Description

This function accepts a <MultiKeywordRequest> formatted string, finds the underlying keyword
owners, creates a <MultiConfigRequest> string from it and forwards it to the
EFI_HII_ROUTING_PROTOCOL.ExtractConfig function.

If there is an issue in resolving the contents of the KeywordString, then the function returns an
EFI_INVALID_PARAMETER and also set the Progress and ProgressErr with the appropriate
information about where the issue occurred and additional data about the nature of the issue.

In the case when KeywordString is NULL, or contains multiple keywords, or when EFI_NOT_FOUND is
generated while processing the keyword elements, the Results string contains values returned for all
keywords processed prior to the keyword generating the error but no values for the keyword with error
or any following keywords.
UEFI Forum, Inc. March 2019 2022

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Status Codes Returned

35.4 EFI HII Configuration Routing Protocol

EFI_HII_CONFIG_ROUTING_PROTOCOL

Summary

The EFI HII Configuration Routing Protocol manages the movement of configuration data from drivers to
configuration applications. It then serves as the single point to receive configuration information from
configuration applications, routing the results to the appropriate drivers.

GUID

#define EFI_HII_CONFIG_ROUTING_PROTOCOL_GUID \

 { 0x587e72d7, 0xcc50, 0x4f79,\

 { 0x82, 0x09, 0xca, 0x29, 0x1f, 0xc1, 0xa1, 0x0f }}

Protocol Interface Structure

typedef struct {

 EFI_HII_EXTRACT_CONFIG ExtractConfig;

 EFI_HII_EXPORT_CONFIG ExportConfig

 EFI_HII_ROUTE_CONFIG RouteConfig;

 EFI_HII_BLOCK_TO_CONFIG BlockToConfig;

 EFI_HII_CONFIG_TO_BLOCK ConfigToBlock;

 EFI_HII_GET_ALT_CFG GetAltConfig;
} EFI_HII_CONFIG_ROUTING_PROTOCOL;

Related Definitions

None

EFI_SUCCESS The specified action was completed successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

Progress, ProgressErr, or Results is NULL.
Parsing of the KeywordString resulted in an error. See Progress and

ProgressErr for more data.

EFI_NOT_FOUND An element of the KeywordString was not found. See

ProgressErr for more data.

EFI_NOT_FOUND The NamespaceId specified was not found. See ProgressErr

for more data.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated. See ProgressErr

for more data.

EFI_ACCESS_DENIED The action violated system policy. See ProgressErr for more data.

EFI_DEVICE_ERROR An unexpected system error occurred. See ProgressErr for more

data.
UEFI Forum, Inc. March 2019 2023

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Parameters

Description

This protocol defines the configuration routing interfaces between external applications and the HII.

There may only be one instance of this protocol in the system.

EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig()

Summary

This function allows a caller to extract the current configuration for one or more named elements from
one or more drivers.

Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_EXTRACT_CONFIG) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 IN CONST EFI_STRING Request,

 OUT EFI_STRING *Progress,

 OUT EFI_STRING *Results

);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Request

A null-terminated string in <MultiConfigRequest> format.

Progress

On return, points to a character in the Request string. Points to the string’s null
terminator if request was successful. Points to the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) if the request was not successful

Results

A null-terminated string in <MultiConfigAltResp> format which has all values
filled in for the names in the Request string.

Description

This function allows the caller to request the current configuration for one or more named elements from
one or more drivers. The resulting string is in the standard HII configuration string format. If Successful
Results contains an equivalent string with “=” and the values associated with all names added in.

The expected implementation is for each <ConfigRequest> substring in the Request, call the HII
Configuration Access Protocol ExtractConfig function for the driver corresponding to the
<ConfigHdr> at the start of the <ConfigRequest> substring. The request fails if no driver matches the
<ConfigRequest> substring.
UEFI Forum, Inc. March 2019 2024

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Note: Alternative configuration strings may also be appended to the end of the current configuration
string. If they are, they must appear after the current configuration. They must contain the same
routing (GUID, NAME, PATH) as the current configuration string. They must have an additional
description indicating the type of alternative configuration the string represents,
“ALTCFG=<AltCfgId>”. The <AltCfgId> is a reference to a Default ID which stipulates the type
of Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:

GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:

GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&
GUID=…&PATH=…&ALTCFG=0037&Fred=12&Neville=7

Note: For the output Results, the value filled in the names in the Request string with
<MultiConfigAltResp> format may change when called multiple times due to some data
being of a dynamic nature.

Status Codes Returned

EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig()

Summary

This function allows the caller to request the current configuration for the entirety of the current HII
database and returns the data in a null-terminated string.

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future protocols.

EFI_NOT_FOUND Routing data doesn’t match any known driver. Progress
set to the “G” in “GUID” of the routing header that
doesn’t match. Note: There is no requirement that all
routing data be validated before any configuration
extraction.

EFI_INVALID_PARAMETER Illegal syntax. Progress set to most recent “&” before
the error or the beginning of the string.

EFI_INVALID_PARAMETER The ExtractConfig function of the underlying HII
Configuration Access Protocol returned
EFI_INVALID_PARAMETER.
Progress set to most recent “&” before the error or the
beginning of the string.

EFI_ACCESS_DENIED The action violated a system policy.
UEFI Forum, Inc. March 2019 2025

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_EXPORT_CONFIG) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 OUT EFI_STRING *Results

);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Results

A null-terminated string in <MultiConfigAltResp> format which has all values
filled in for the entirety of the current HII database.

Description

This function allows the caller to request the current configuration for all of the current HII database. The
results include both the current and alternate configurations as described in ExtractConfig() above.

EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() interfaces below.

Status Codes Returned

EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig()

Summary

This function processes the results of processing forms and routes it to the appropriate handlers or
storage.

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future protocols.

EFI_INVALID_PARAMETER For example, passing in a NULL for the Results

parameter would result in this type of error.
UEFI Forum, Inc. March 2019 2026

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_ROUTE_CONFIG) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 IN CONST EFI_STRING Configuration,

 OUT EFI_STRING *Progress

);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Configuration

A null-terminated string in <MultiConfigResp> format.

Progress

A pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description

This function routes the results of processing forms to the appropriate targets. It scans for <ConfigHdr>
within the string and passes the header and subsequent body to the driver whose location is described in
the <ConfigHdr>. Many <ConfigHdr>s may appear as a single request.

The expected implementation is to hand off the various <ConfigResp> substrings to the Configuration
Access Protocol RouteConfig routine corresponding to the driver whose routing information is defined
by the <ConfigHdr> in turn.

Status Codes Returned

EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig()

Summary

This helper function is to be called by drivers to map configuration data stored in byte array (“block”)
formats such as UEFI Variables into current configuration strings.

EFI_SUCCESS The results have been distributed or are awaiting
distribution.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future protocols.

EFI_INVALID_PARAMETERS Passing in a NULL for the Configuration

parameter would result in this type of error.

EFI_NOT_FOUND Target for the specified routing data was not found

EFI_ACCESS_DENIED The action violated a system policy.
UEFI Forum, Inc. March 2019 2027

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_BLOCK_TO_CONFIG) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 IN CONST EFI_STRING ConfigRequest,

 IN CONST UINT8 *Block,

 IN CONST UINTN BlockSize,

 OUT EFI_STRING *Config,

 OUT EFI_STRING *Progress

);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigRequest

A null-terminated string in <ConfigRequest> format.

Block

Array of bytes defining the block’s configuration.

BlockSize

Length in bytes of Block.

Config

Filled-in configuration string. String allocated by the function. Returned only if call is
successful. The null-terminated string will be in <ConfigResp> format

Progress

A pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description

This function extracts the current configuration from a block of bytes. To do so, it requires that the
ConfigRequest string consists of a list of <BlockName> formatted names. It uses the offset in the
name to determine the index into the Block to start the extraction and the width of each name to
determine the number of bytes to extract. These are mapped to a string using the equivalent of the C
“%x” format (with optional leading spaces).

The call fails if, for any (offset, width) pair in ConfigRequest, offset+value >= BlockSize.
UEFI Forum, Inc. March 2019 2028

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Status Codes Returned

EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock()

Summary

This helper function is to be called by drivers to map configuration strings to configurations stored in byte
array (“block”) formats such as UEFI Variables.

Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_CONFIG_TO_BLOCK) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 IN CONST EFI_STRING *ConfigResp,
 IN OUT CONST UINT8 *Block,

 IN OUT UINTN *BlockSize,

 OUT EFI_STRING *Progress

);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigResp

A null-terminated string in <ConfigResp> format.

Block

A possibly null array of bytes representing the current block. Only bytes referenced
in the ConfigResp string in the block are modified. If this parameter is null or if the
*BlockSize parameter is (on input) shorter than required by the Configuration

EFI_SUCCESS The request succeeded. Progress points to the null

terminator at the end of the ConfigRequest

string.

EFI_OUT_OF_RESOURCES Not enough memory to allocate Config. Progress

points to the first character of ConfigRequest.

EFI_INVALID_PARAMETERS Passing in a NULL for the ConfigRequest or

Block parameter would result in this type of error.

Progress points to the first character of

ConfigRequest.

EFI_NOT_FOUND Target for the specified routing data was not found.

Progress points to the “G” in “GUID” of the errant

routing data.

EFI_DEVICE_ERROR Block not large enough. Progress undefined.

EFI_INVALID_PARAMETER Encountered non <BlockName> formatted string. Block
is left updated and Progress points at the ‘&’ preceding
the first non-<BlockName>.
UEFI Forum, Inc. March 2019 2029

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
string, only the BlockSize parameter is updated and an appropriate status (see
below) is returned.

BlockSize

The length of the Block in units of UINT8. On input, this is the size of the Block. On
output, if successful, contains the largest index of the modified byte in the Block, or
the required buffer size if the Block is not large enough.

Progress

On return, points to an element of the ConfigResp string filled in with the offset of
the most recent ‘&’ before the first failing name / value pair (or the beginning of the
string if the failure is in the first name / value pair) or the terminating NULL if all was
successful.

Description

This function maps a configuration containing a series of <BlockConfig> formatted name value pairs in
ConfigResp into a Block so it may be stored in a linear mapped storage such as a UEFI Variable. If
present, the function skips GUID, NAME, and PATH in <ConfigResp>. It stops when it finds a non-
<BlockConfig> name / value pair (after skipping the routing header) or when it reaches the end of the
string.

Example

Assume an existing block containing:

00 01 02 03 04 05

And the ConfigResp string is:

OFFSET=3WIDTH=1&VALUE=7&OFFSET=0&WIDTH=2&VALUE=AA55

The results are

55 AA 02 07 04 05
UEFI Forum, Inc. March 2019 2030

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Status Codes Returned

EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg()

Summary

This helper function is to be called by drivers to extract portions of a larger configuration string.

Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_GET_ALT_CFG) (

 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,

 IN CONST EFI_STRING ConfigResp,

 IN CONST EFI_GUID *Guid,

 IN CONST EFI_STRING Name,

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN CONST EFI_STRING AltCfgId,

 OUT EFI_STRING *AltCfgResp
);

Parameters

This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigResp

A null-terminated string in <ConfigAltResp> format.

Guid

A pointer to the GUID value to search for in the routing portion of the ConfigResp
string when retrieving the requested data. If Guid is NULL, then all GUID values will
be searched for.

EFI_SUCCESS The request succeeded. Progress points to the null terminator at the end of

the ConfigResp string.

EFI_OUT_OF_RESOURCES Not enough memory to allocate Config. Progress points to the first

character of ConfigResp.

EFI_INVALID_PARAMETER Passing in a NULL for the ConfigResp or Block parameter would result

in this type of error. Progress points to the first character of ConfigResp.

EFI_NOT_FOUND Target for the specified routing data was not found. Progress points to

the “G” in “GUID” of the errant routing data.

EFI_BUFFER_TOO_SMALL Block not large enough. Progress undefined. BlockSize is updated

with the required buffer size.

EFI_INVALID_PARAMETER Encountered non <BlockName> formatted name / value pair. Block is left

updated and Progress points at the ‘&’ preceding the first non-

<BlockName>.
UEFI Forum, Inc. March 2019 2031

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Name

A pointer to the NAME value to search for in the routing portion of the ConfigResp
string when retrieving the requested data. If Name is NULL, then all Name values will
be searched for.

DevicePath

A pointer to the PATH value to search for in the routing portion of the ConfigResp
string when retrieving the requested data. If DevicePath is NULL, then all
DevicePath values will be searched for.

AltCfgId

A pointer to the ALTCFG value to search for in the routing portion of the
ConfigResp string when retrieving the requested data. If this parameter is NULL,
then the current setting will be retrieved.

AltCfgResp

A pointer to a buffer which will be allocated by the function which contains the
retrieved string as requested. This buffer is only allocated if the call was successful.
The null-terminated string will be in <ConfigResp> format.

Description

This function retrieves the requested portion of the configuration string from a larger configuration
string. This function will use the Guid, Name, and DevicePath parameters to find the appropriate
section of the ConfigResp string. Upon finding this portion of the string, it will use the AltCfgId
parameter to find the appropriate instance of data in the ConfigResp string. Once found, the found
data will be copied to a buffer which is allocated by the function so that it can be returned to the caller.
The caller is responsible for freeing this allocated buffer.

Status Codes Returned

35.5 EFI HII Configuration Access Protocol

EFI_HII_CONFIG_ACCESS_PROTOCOL

Summary

The EFI HII configuration routing protocol invokes this type of protocol when it needs to forward requests
to a driver's configuration handler. This protocol is published by drivers providing and receiving
configuration data from HII. The ExtractConfig() and RouteConfig() functions are typically
invoked by the driver which implements the HII Configuration Routing Protocol. The Callback()
function is typically invoked by the Forms Browser.

EFI_SUCCESS The request succeeded. The requested data was extracted and placed in the newly

allocated AltCfgResp buffer.

EFI_OUT_OF_RESOURCES Not enough memory to allocate AltCfgResp.

EFI_INVALID_PARAMETER Passing in a NULL for the ConfigResp or AltCfgResp would result in this

type of error.
UEFI Forum, Inc. March 2019 2032

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
If the protocol functions modify active form set, they must not change layout and size of the existing
variable stores. The forms browser processes updated IFR package in accordance with the following
rules:

1. If active form set no longer exists, the behavior is browser specific. The browser identifies form
set using a combination of the form set GUID and device path associated with the package list
containing the form set.

2. If form set update has been initiated by the Callback() function, the browser executes
action requested by the function. See EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()
section for additional details regarding browser action requests.

Note: If browser action implies saving of the modified questions values, the browser will use
uncommitted data associated with the old form set instance. The HII Configuration Access
implementation is responsible for properly handling such requests.

3. The browser performs standard processing steps that are performed on a form set prior to
displaying it (including reading question values and generating
EFI_BROWSER_ACTION_FORM_OPEN and EFI_BROWSER_ACTION_FORM_RETRIEVE
callbacks).

4. If there is an uncommitted browser data associated with an active form set, the browser
applies it, matching variable stores by their identifiers. If variable store no longer exists, the
uncommitted data for this store is discarded.

Note: Changing layout or size of the existing variable stores during form set update is not allowed and
can lead to unpredictable results.

5. The browser applies prior browsing history, matching forms by their identifiers. If a form saved
in the browsing history no longer exists, the behavior is browser-specific.

6. If all forms in the browsing history have been matched, the browser sets selection on a
question that was active prior to the form set update, matching question by its identifier. If
question does not exist, the first question on the form is selected.

GUID

 #define EFI_HII_CONFIG_ACCESS_PROTOCOL_GUID \
 { 0x330d4706, 0xf2a0, 0x4e4f,\

 {0xa3,0x69, 0xb6, 0x6f,0xa8, 0xd5, 0x43, 0x85}}

Protocol Interface Structure

typedef struct {

 EFI_HII_ACCESS_EXTRACT_CONFIG ExtractConfig;

 EFI_HII_ACCESS_ROUTE_CONFIG RouteConfig;

 EFI_HII_ACCESS_FORM_CALLBACK Callback;

} EFI_HII_CONFIG_ACCESS_PROTOCOL;

Related Definitions

None
UEFI Forum, Inc. March 2019 2033

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Parameters

ExtractConfig

This function breaks apart the request strings routing them to the appropriate
drivers. This function is analogous to the similarly named function in the HII Routing
Protocol.

RouteConfig

This function breaks apart the results strings and returns configuration information
as specified by the request.

Callback

This function is called from the configuration browser to communicate certain
activities that were initiated by a user.

Description

This protocol provides a callable interface between the HII and drivers. Only drivers which provide IFR
data to HII are required to publish this protocol.

EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig()

Summary

This function allows a caller to extract the current configuration for one or more named elements from
the target driver.

Prototype

typedef

EFI_STATUS

 (EFIAPI * EFI_HII_ACCESS_EXTRACT_CONFIG) (

 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,

 IN CONST EFI_STRING Request,

 OUT EFI_STRING *Progress,

 OUT EFI_STRING *Results

);

Parameters

This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Request

A null-terminated string in <ConfigRequest> format. Note that this includes the
routing information as well as the configurable name / value pairs. It is invalid for this
string to be in <MultiConfigRequest> format.

If a NULL is passed in for the Request field, all of the settings being abstracted by
this function will be returned in the Results field. In addition, if a ConfigHdr is
passed in with no request elements, all of the settings being abstracted for that
particular ConfigHdr reference will be returned in the Results Field.
UEFI Forum, Inc. March 2019 2034

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Progress

On return, points to a character in the Request string. Points to the string’s null
terminator if request was successful. Points to the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) if the request was not successful

Results

A null-terminated string in <MultiConfigAltResp> format which has all values filled in
for the names in the Request string. String to be allocated by the called function.

Description

This function allows the caller to request the current configuration for one or more named elements. The
resulting string is in <ConfigAltResp> format.

In order to support forms processors other than a Forms Browser, the configuration returned by this
function must not depend on context in which the function is used. In particular, it must not depend on
the current state of the Forms Browser (including any uncommitted state information) and actions
performed by the driver callbacks invoked prior to the ExtractConfig call. Section 33.2.1.8 provides
additional details regarding forms browser/processor.

Any and all alternative configuration strings shall also be appended to the end of the current
configuration string. If they are, they must appear after the current configuration. They must contain the
same routing (GUID, NAME, PATH) as the current configuration string. They must have an additional
description indicating the type of alternative configuration the string represents,
"ALTCFG=<AltCfgId>". The <AltCfgId> is a reference to a Default ID which stipulates the type of
Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:

GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:

GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&GUID=…&PATH=…&ALTCFG=0037&
Fred=12&Neville=7

This function allows the caller to request the current configuration for one or more named elements. The
resulting string is in <ConfigAltResp> format.

Any and all alternative configuration strings shall also be appended to the end of the current
configuration string. If they are, they must appear after the current configuration. They must contain the
same routing (GUID, NAME, PATH) as the current configuration string. They must have an additional
description indicating the type of alternative configuration the string represents,
“ALTCFG=<AltCfgId>”. The <AltCfgId> is a reference to a Default ID which stipulates the type of
Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:

GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:
UEFI Forum, Inc. March 2019 2035

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&
GUID=…&PATH=…&ALTCFG=0037&Fred=12&Neville=7

Note: For the output Results, the value filled in the names in the Request string with
<ConfigAltResp> format may change when called multiple times due to some data being of a
dynamic nature.

Status Codes Returned

EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig()

Summary

This function processes the results of changes in configuration for the driver that published this protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_HII_ACCESS_ROUTE_CONFIG) (

 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,

 IN CONST EFI_STRING Configuration,

 OUT EFI_STRING *Progress

);

Parameters

This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Configuration

A null-terminated string in <ConfigResp> format.

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future protocols.

EFI_NOT_FOUND A configuration element matching the routing data is
not found. Progress set to the first character in the
routing header.

EFI_INVALID_PARAMETER Illegal syntax. Progress set to most recent ”&” before
the error or the beginning of the string.

EFI_INVALID_PARAMETER Unknown name. Progress points to the “&” before

the name in question.

EFI_INVALID_PARAMETER If Results or Progress is NULL.

EFI_ACCESS_DENIED The action violated a system policy.

EFI_DEVICE_ERROR Failed to extract the current configuration for one or
more named elements.
UEFI Forum, Inc. March 2019 2036

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Progress

a pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description

This function applies changes in a driver's configuration. Input is a Configuration, which has the
routing data for this driver followed by name / value configuration pairs. The driver must apply those
pairs to its configurable storage.

In order to support forms processors other than a Forms Browser, the way in which configuration data is
applied must not depend on context in which the function is used. In particular, it must not depend on
the current state of the Forms Browser (including any uncommitted state information) and actions
performed by the driver callbacks invoked prior to the RouteConfig call. Section 33.2.1.8 provides
additional details regarding forms browser/processor.

If the driver's configuration is stored in a linear block of data and the driver's name / value pairs are in
<BlockConfig> format, it may use the ConfigToBlock helper function (above) to simplify the job.

Status Codes Returned

EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()

Summary

This function is called to provide results data to the driver.

Prototype

EFI_SUCCESS The results have been distributed or are awaiting
distribution.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future protocols.

EFI_INVALID_PARAMETER If Configuration or Progress is NULL.

EFI_NOT_FOUND Target for the specified routing data was not found

EFI_ACCESS_DENIED The action violated a system policy.
UEFI Forum, Inc. March 2019 2037

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
typedef

EFI_STATUS

(EFIAPI *EFI_HII_ACCESS_FORM_CALLBACK) (

 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,

 IN EFI_BROWSER_ACTION Action,

 IN EFI_QUESTION_ID QuestionId,

 IN UINT8 Type

 IN OUT EFI_IFR_TYPE_VALUE *Value,

 OUT EFI_BROWSER_ACTION_REQUEST *ActionRequest,
);

Parameters

This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Action

Specifies the type of action taken by the browser. See EFI_BROWSER_ACTION_x in

“Related Definitions” below.

QuestionId

A unique value which is sent to the original exporting driver so that it can identify the
type of data to expect. The format of the data tends to vary based on the opcode
that generated the callback.

Type

The type of value for the question. See EFI_IFR_TYPE_x in
EFI_IFR_ONE_OF_OPTION.

Value

A pointer to the data being sent to the original exporting driver. The type is specified
by Type. Type EFI_IFR_TYPE_VALUE is defined in EFI_IFR_ONE_OF_OPTION.

ActionRequest

On return, points to the action requested by the callback function. Type
EFI_BROWSER_ACTION_REQUEST is specified in SendForm() in the Form Browser
Protocol.

Description

This function is called by the forms browser in response to a user action on a question which has the
EFI_IFR_FLAG_CALLBACK bit set in the EFI_IFR_QUESTION_HEADER. The user action is specified by
Action. Depending on the action, the browser may also pass the question value using Type and Value.
Upon return, the callback function may specify the desired browser action.

The browser maintains uncommitted browser data (modified and unsaved question values) across
Callback function boundaries. Callback function may change unsaved question values using one of the
following methods:

• Current question's value may be changed by updating the Value parameter.
UEFI Forum, Inc. March 2019 2038

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
• Values of other questions from the active formset can be changed using
EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback() interface.

Note: Modification of the question values by the Callback function without notifying the browser using
one of the above mentioned methods can lead to unpredictable browser behavior.

Callback function may request configuration update from the browser by returning an appropriate
ActionRequest.

In order to save uncommitted data, driver should return one of the _SUBMIT actions or _APPLY action.
The browser will then write all modified question values (in case of the _SUBMIT actions) or modified
question values from an active form (in case of the _APPLY action) to storage using RouteConfig()
function. This will include questions modified prior to an invocation of the Callback() function as well
as questions modified by the Callback() function.

The behavior of the ExtractConfig and RouteConfig functions must not depend on the actions
performed by this function.

Callback functions should return EFI_UNSUPPORTED for all values of Action that they do not support.

Related Definitions

typedef UINTN EFI_BROWSER_ACTION;

#define EFI_BROWSER_ACTION_CHANGING 0

#define EFI_BROWSER_ACTION_CHANGED 1

#define EFI_BROWSER_ACTION_RETRIEVE 2

#define EFI_BROWSER_ACTION_FORM_OPEN 3

#define EFI_BROWSER_ACTION_FORM_CLOSE 4

#define EFI_BROWSER_ACTION_SUBMITTED 5

#define EFI_BROWSER_ACTION_DEFAULT_STANDARD 0x1000

#define EFI_BROWSER_ACTION_DEFAULT_MANUFACTURING 0x1001

#define EFI_BROWSER_ACTION_DEFAULT_SAFE 0x1002

#define EFI_BROWSER_ACTION_DEFAULT_PLATFORM 0x2000

#define EFI_BROWSER_ACTION_DEFAULT_HARDWARE 0x3000

#define EFI_BROWSER_ACTION_DEFAULT_FIRMWARE 0x4000

The following table describes the behavior of the callback for each question type.

Table 25. Callback Behavior

Question Type Type Action

Action Button EFI_IFR_TYPE_ACTION No special behavior. If the short form of the
opcode is used, then the value will be a
string identifier of zero.

Checkbox EFI_IFR_TYPE_BOOLEAN No special behavior
UEFI Forum, Inc. March 2019 2039

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
The value EFI_BROWSER_ACTION_CHANGING is called before the browser changes the value in the
display (for questions which have a value) or takes an action (in the case of an action button or cross-
reference). If the callback returns EFI_UNSUPPORTED , then the browser will use the value passed to
Callback() and ignore the value returned by Callback(). If the callback returns EFI_SUCCESS,
then the browser will use the value returned by Callback(). If any other error is returned, then the
browser will not update the current question value. ActionRequest is used. The Value represents the
updated value. The changes here should not be finalized until the user submits the results.

The value EFI_BROWSER_ACTION_CHANGED is called after the browser has changed its internal copy of
the question value and displayed it (if appropriate). For action buttons, this is called after the value has
been processed. For cross-references, this is never called. Errors returned are ignored. ActionRequest
is used. The changes here should not be finalized until the user submits the results.

The value EFI_BROWSER_ACTION_RETRIEVE is called after the browser has read the current question value, but before

it has been displayed. If the callback returns EFI_UNSUPPORTED or any other error then the original value is used. If

EFI_SUCCESS is returned, then the updated value is used.

The value EFI_BROWSER_ACTION_FORM_OPEN is called for each question on a form prior to its value
being retrieved or displayed. If a question appears on more than one form, and the Forms Browser
supports more than one form being active simultaneously, this may be called more than once, even prior
to any EFI_BROWSER_ACTION_FORM_CLOSE callback.

NOTE: EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback() cannot be used with this browser
action because question values have not been retrieved yet.

The value EFI_BROWSER_ACTION_FORM_CLOSE is called for each question on a form after the
processing of any submit actions for that form. If a question appears on more than one form, and the
Forms Processor supports more than one form being active simultaneously, this will be called more than
once.

Cross-Reference EFI_IFR_TYPE_REF
EFI_IFR_TYPE_UNDEFINED

CHANGING: If EFI_UNSUPPORTED or
EFI_SUCCESS, the updated cross-reference
is taken. Any other error the cross-
reference will not be taken.
CHANGED: Never called.
RETRIEVE: Called before displaying the
cross-reference. Error codes ignored. The
Ref field of the Value parameter is
initialized with the REF question's value
prior to CHANGING and RETRIEVE.

Date EFI_IFR_TYPE_DATE No special behavior

Numeric,
One-Of

EFI_IFR_TYPE_NUM_SIZE_8,
EFI_IFR_TYPE_NUM_SIZE_16,
EFI_IFR_TYPE_NUM_SIZE_32,
EFI_IFR_TYPE_NUM_SIZE_64

No special behavior.

Ordered-List EFI_IFR_TYPE_BUFFER No special behavior

String, Password EFI_IFR_TYPE_STRING No special behavior.

Time EFI_IFR_TYPE_DATE No special behavior.
UEFI Forum, Inc. March 2019 2040

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
The value EFI_BROWSER_ACTION_SUBMITTED is called after Browser submits the modified question
value. ActionRequest is ignored.

When Action specifies one of the "default" actions, such as
EFI_BROWSER_ACTION_DEFAULT_STANDARD, etc. it indicates that the Forms Processor is attempting
to retrieve the default value for the specified question. The proposed default value is passed in using
Type and Value and reflects the value which the Forms Processor was able to select based on the lower-
priority defaulting methods (see Section 33.2.5.8). If the function returns EFI_SUCCESS, then the
updated value will be used. If the function does not have an updated default value for the specified
question or specified default store, or does not provide any support for the actions, it should return
EFI_UNSUPPORTED, and the returned value will be ignored.

The DEFAULT_PLATFORM, DEFAULT_HARDWARE and DEFAULT_FIRMWARE represent ranges of 4096
(0x1000) possible default store identifiers. The DEFAULT_STANDARD represents the range of 4096
possible action values reserved for UEFI-defined default store identifiers. See Section 33.2.5.8 for more
information on defaults.

typedef UINTN EFI_BROWSER_ACTION_REQUEST;

#define EFI_BROWSER_ACTION_REQUEST_NONE 0

#define EFI_BROWSER_ACTION_REQUEST_RESET 1

#define EFI_BROWSER_ACTION_REQUEST_SUBMIT 2

#define EFI_BROWSER_ACTION_REQUEST_EXIT 3

#define EFI_BROWSER_ACTION_REQUEST_FORM_SUBMIT_EXIT 4

#define EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD_EXIT 5

#define EFI_BROWSER_ACTION_REQUEST_FORM_APPLY 6

#define EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD 7

#define EFI_BROWSER_ACTION_REQUEST_RECONNECT 8

If the callback function returns with the ActionRequest set to _NONE, then the Forms Browser will
take no special behavior.

If the callback function returns with the ActionRequest set to _RESET, then the Forms Browser will exit
and request the platform to reset.

If the callback function returns with the ActionRequest set to _SUBMIT, then the Forms Browser will
save all modified question values to storage and exit.

If the callback function returns with the ActionRequest et to _EXIT, then the Forms Browser will
discard all modified question values and exit.

If the callback function returns with the ActionRequest set to _FORM_SUBMIT_EXIT, then the Forms
Browser will write all modified question values on the selected form to storage and then exit the selected
form.

If the callback function returns with the ActionRequest set to _FORM_DISCARD_EXIT, then the Forms
Browser will discard the modified question values on the selected form and then exit the selected form.

If the callback function returns with the ActionRequest set to _FORM_APPLY, then the Forms Browser
will write all modified current question values on the selected form to storage.
UEFI Forum, Inc. March 2019 2041

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
If the callback function returns with the ActionRequest set to _FORM_DISCARD, then the Forms
Browser will discard the current question values on the selected form and replace them with the original
question values.

If the callback function returns with the ActionRequest set to _RECONNECT, a hardware and/or
software configuration change was performed by the user, and the controller needs to be reconnected
for the driver to recognize the change. The Forms Browser is required to call the EFI Boot Service
DisconnectController()followed by the EFI Boot Service ConnectController() to reconnect the
controller, and then exit. The controller handle passed to DisconnectController()and
ConnectController()is the handle on which this EFI_HII_CONFIG_ACCESS_PROTOCOLis installed.

Status Codes Returned

35.6 Form Browser Protocol

The EFI_FORM_BROWSER2_PROTOCOL is the interface to call for drivers to leverage the EFI
configuration driver interface.

EFI_FORM_BROWSER2_PROTOCOL

Summary

The EFI_FORM_BROWSER2_PROTOCOL is the interface to the UEFI configuration driver. This interface
will allow the caller to direct the configuration driver to use either the HII database or use the passed-in
packet of data.

GUID

#define EFI_FORM_BROWSER2_PROTOCOL_GUID \

 { 0xb9d4c360, 0xbcfb, 0x4f9b, \

 { 0x92, 0x98, 0x53, 0xc1, 0x36, 0x98, 0x22, 0x58 } }

Protocol Interface Structure

typedef struct _EFI_FORM_BROWSER2_PROTOCOL {

 EFI_SEND_FORM2 SendForm;

 EFI_BROWSER_CALLBACK2 BrowserCallback;

} EFI_FORM_BROWSER2_PROTOCOL;

Parameters

SendForm

Browse the specified configuration forms. See the SendForm() function
description.

EFI_SUCCESS The callback successfully handled the action.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its
data.

EFI_DEVICE_ERROR The variable could not be saved.

EFI_UNSUPPORTED The specified Action is not supported by the callback.
UEFI Forum, Inc. March 2019 2042

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
BrowserCallback

Routine used to expose internal configuration state of the browser. This is primarily
used by callback handler routines which were called by the browser and in-turn need
to get additional information from the browser itself. See the BrowserCallback()
function description.

Description

This protocol is the interface to call for drivers to leverage the EFI configuration driver interface.

EFI_FORM_BROWSER2_PROTOCOL.SendForm()

Summary

Initialize the browser to display the specified configuration forms.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SEND_FORM2) (

 IN CONST EFI_FORM_BROWSER2_PROTOCOL *This,

 IN EFI_HII_HANDLE *Handles,

 IN UINTN HandleCount,

 IN CONST EFI_GUID *FormsetGuid, OPTIONAL

 IN EFI_FORM_ID FormId, OPTIONAL
 IN CONST EFI_SCREEN_DESCRIPTOR *ScreenDimensions, OPTIONAL

 OUT EFI_BROWSER_ACTION_REQUEST *ActionRequest OPTIONAL

);

Parameters

This

A pointer to the EFI_FORM_BROWSER2_PROTOCOL instance.

Handles

A pointer to an array of HII handles to display. This value should correspond to the
value of the HII form package that is required to be displayed. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in Section 33.3.1.

HandleCount

The number of handles in the array specified by Handle.

FormsetGuid

This field points to the EFI_GUID which must match the Guid field or one of the
elements of the ClassId field in the EFI_IFR_FORM_SET op-code. If FormsetGuid
is NULL, then this function will display the form set class
EFI_HII_PLATFORM_SETUP_FORMSET_GUID.
UEFI Forum, Inc. March 2019 2043

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
FormId

This field specifies the identifier of the form within the form set to render as the first
displayable page. If this field has a value of 0x0000, then the Forms Browser will
render the first enabled form in the form set.

ScreenDimensions

Points to recommended form dimensions, including any non-content area, in
characters. Type EFI_SCREEN_DESCRIPTOR is defined in "Related Definitions"
below.

ActionRequested

Points to the action recommended by the form.

Description

This function is the primary interface to the Forms Browser. The Forms Browser displays the forms
specified by FormsetGuid and FormId from all of HII handles specified by Handles. If more than one
form can be displayed, the Forms Browser will provide some means for the user to navigate between the
forms in addition to that provided by cross-references in the forms themselves.

If ScreenDimensions is non-NULL, then it points to a recommended display size for the form. If browsing
in text mode, then these are recommended character positions. If browsing in graphics mode, then these
values are converted to pixel locations using the standard font size (8 pixels per horizontal character cell
and 19 pixels per vertical character cell). If ScreenDimensions is NULL the browser may choose the size
based on platform policy. The browser may choose to ignore the size based on platform policy.

If ActionRequested is non-NULL, then upon return, it points to an enumerated value (see
EFI_BROWSER_ACTION_x in “Related Definitions” below) which describes the action requested by the
user. If set to EFI_BROWSER_ACTION_NONE, then no specific action was requested by the form. If set to
EFI_BROWSER_ACTION_RESET, then the form requested that the platform be reset. The browser may,
based on platform policy, ignore such action requests.

If FormsetGuid is set to EFI_HII_PLATFORM_SETUP_FORMSET_GUID, it indicates that the form set
contains forms designed to be used for platform configuration. If FormsetGuid is set to
EFI_HII_DRIVER_HEALTH_FORMSET_GUID, it indicates that the form set contains forms designed to
be used for support of the Driver Health Protocol (see Section 11.10). If FormsetGuid is set to
EFI_HII_USER_CREDENTIAL_FORMSET_GUID, it indicates that the form set contains forms designed
to be used for support of the User Credential Protocol (see Section 36.3.2) If FormsetGuid is set to
EFI_HII_REST_STYLE_FORMSET_GUID, it indicates that the form set contains forms designed to be
used for support configuration of REST architectural style (see Section 29.7)Other values may be used for
other applications.
UEFI Forum, Inc. March 2019 2044

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Related Definitions

//**

// EFI_SCREEN_DESCRIPTOR

//**

typedef struct {

 UINTN LeftColumn;

 UINTN RightColumn;

 UINTN TopRow;

 UINTN BottomRow;

} EFI_SCREEN_DESCRIPTOR;

LeftColumn

Value that designates the text column where the browser window will begin from
the left-hand side of the screen

RightColumn

Value that designates the text column where the browser window will end on the
right-hand side of the screen.

TopRow

Value that designates the text row from the top of the screen where the browser
window will start.

BottomRow

Value that designates the text row from the bottom of the screen where the browser
window will end.

typedef UINTN EFI_BROWSER_ACTION_REQUEST;

#define EFI_BROWSER_ACTION_REQUEST_NONE 0

#define EFI_BROWSER_ACTION_REQUEST_RESET 1

#define EFI_BROWSER_ACTION_REQUEST_SUBMIT 2

#define EFI_BROWSER_ACTION_REQUEST_EXIT 3

The value EFI_BROWSER_ACTION_REQUEST_NONE indicates that no specific caller action is required.
The value EFI_BROWSER_ACTION_REQUEST_RESET indicates that the caller requested a platform
reset. The value EFI_BROWSER_ACTION_REQUEST_SUBMIT indicates that a callback requested that the
browser submit all values and exit. The value EFI_BROWSER_ACTION_REQUEST_EXIT indicates that a
callback requested that the browser exit without saving all values.
UEFI Forum, Inc. March 2019 2045

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
#define EFI_HII_PLATFORM_SETUP_FORMSET_GUID \

 { 0x93039971, 0x8545, 0x4b04, \

 { 0xb4, 0x5e, 0x32, 0xeb, 0x83, 0x26, 0x04, 0x0e } }

#define EFI_HII_DRIVER_HEALTH_FORMSET_GUID \

 { 0xf22fc20c, 0x8cf4, 0x45eb, \

 { 0x8e, 0x06, 0xad, 0x4e, 0x50, 0xb9, 0x5d, 0xd3 } }

#define EFI_HII_USER_CREDENTIAL_FORMSET_GUID \

 { 0x337f4407, 0x5aee, 0x4b83, \

 { 0xb2, 0xa7, 0x4e, 0xad, 0xca, 0x30, 0x88, 0xcd } }

#define EFI_HII_REST_STYLE_FORMSET_GUID \

{ 0x790217bd, 0xbecf, 0x485b, \

{ 0x91, 0x70, 0x5f, 0xf7, 0x11, 0x31, 0x8b, 0x27 } }

Status Codes Returned

EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()

Summary

This function is called by a callback handler to retrieve uncommitted state data from the browser.

Prototype

EFI_STATUS

 (EFIAPI *EFI_BROWSER_CALLBACK2) (

 IN CONST EFI_FORM_BROWSER2_PROTOCOL *This,

 IN OUT UINTN *ResultsDataSize,

 IN OUT EFI_STRING ResultsData,

 IN BOOLEAN RetrieveData,

 IN CONST EFI_GUID *VariableGuid, OPTIONAL

 IN CONST CHAR16 *VariableName OPTIONAL

);

Parameters

This

A pointer to the EFI_FORM_BROWSER2_PROTOCOL instance.

ResultsDataSize

A pointer to the size of the buffer associated with ResultsData. On input, the size in
bytes of ResultsData. On output, the size of data returned in ResultsData.

EFI_SUCCESS The function completed successfully

EFI_NOT_FOUND No valid forms could be found to display.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.
UEFI Forum, Inc. March 2019 2046

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
ResultsData

A string returned from an IFR browser or equivalent. The results string will have no
routing information in them.

RetrieveData

A BOOLEAN field which allows an agent to retrieve (if RetrieveData = TRUE) data
from the uncommitted browser state information or set (if RetrieveData = FALSE)
data in the uncommitted browser state information.

VariableGuid

An optional field to indicate the target variable GUID name to use.

VariableName

An optional field to indicate the target human-readable variable name.

Description

This service is typically called by a driver's callback routine which was in turn called by the browser. The
routine called this service in the browser to retrieve or set certain uncommitted state information that
resides in the open formsets.

Status Codes Returned

35.7 HII Popup Protocol

EFI_HII_POPUP_PROTOCOL

Summary

This protocol provides services to display a popup window.

The protocol is typically produced by the forms browser and consumed by a driver’s callback handler.

EFI_SUCCESS The results have been distributed or are awaiting distribution.

EFI_BUFFER_TOO_SMALL The ResultsDataSize specified was too small to contain the

results data.

EFI_UNSUPPORTED Uncommitted browser state is not available at the current stage of
execution.
UEFI Forum, Inc. March 2019 2047

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
GUID

#define EFI_HII_POPUP_PROTOCOL_GUID \

{ 0x4311edc0, 0x6054, 0x46d4, { 0x9e, 0x40, 0x89, 0x3e, 0xa9, 0x52, 0xfc, 0xcc
} }

Protocol Interface Structure

typedef struct {

 UINT64 Revision;

EFI_HII_CREATE_POPUPCreatePopup;

} EFI_HII_POPUP_PROTOCOL;

Parameters

Revision

Protocol revision

CreatePopup

Displays a popup window

Related Definitions

#define EFI_HII_POPUP_PROTOCOL_REVISION 1

EFI_HII_POPUP_PROTOCOL.CreatePopup()

Summary

Displays a popup window.

Prototype

typedef 
EFI_STATUS
(EFIAPI * EFI_HII_CREATE_POPUP) (

IN EFI_HII_POPUP_PROTOCOL *This,

IN EFI_HII_POPUP_STYLE PopupStyle,

IN EFI_HII_POPUP_TYPE PopupType,

EFI_HII_HANDLE HiiHandle

IN EFI_STRING_ID Message,
OUT EFI_HII_POPUP_SELECTION *UserSelectionOPTIONAL,

);

Parameters

This

A pointer to the EFI_HII_POPUP_PROTOCOL instance.

PopupStyle

Popup style to use. EFI_HII_POPUP_STYLE is defined in the “Related Definitions” below.

PopupType
UEFI Forum, Inc. March 2019 2048

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Type of the popup to display. EFI_HII_POPUP_TYPE is defined in the “Related
Definitions” below.

HiiHandle

HII handle of the string pack containing Message

Message

A message to display in the popup box.

UserSelection

User selection. EFI_HII_POPUP_SELECTION is defined in the “Related Definitions”
below.
UEFI Forum, Inc. March 2019 2049

UEFI Specification, Version 2.8 HII Configuration Processing and Browser Protocol
Description

The CreatePopup() function displays a modal message box that contains string specified by
Message. Explicit line break characters can be used to specify a multi-line message (see
Section 33.2.6.2.4). A popup window may contain user selectable options. The option selected by a
user is returned via an optional UserSelection parameter.

A list of options presented to a user is defined by the PopupType.

The PopupStyle provides a hint to protocol implementation regarding nature of the message being
displayed. The function may optionally use PopupStyle to customize visual appearance of the
message box.

EfiHiiPopupTypeOk is a simple popup window with a single user selectable option that can be used
to acknowledge the message. If UserSelection is specified, it is set to EfiHiiPopupSelectionOk.

EfiHiiPopupTypeOkCancel is a popup window with two user selectable options: OK and Cancel.

EfiHiiPopupTypeYesNo is a popup window with two user selectable options: Yes and No.

EfiHiiPopupTypeYesNoCancel is a popup window with three user selectable options: Yes, No, and
Cancel.

Related Definitions

typedef enum {

 EfiHiiPopupStyleInfo,

 EfiHiiPopupStyleWarning,

 EfiHiiPopupStyleError

} EFI_HII_POPUP_STYLE;

typedef enum {

 EfiHiiPopupTypeOk,

 EfiHiiPopupTypeOkCancel,

 EfiHiiPopupTypeYesNo,

EfiHiiPopupTypeYesNoCancel

} EFI_HII_POPUP_TYPE;

typedef enum {

 EfiHiiPopupSelectionOk,

 EfiHiiPopupSelectionCancel,

 EfiHiiPopupSelectionYes,

 EfiHiiPopupSelectionNo

} EFI_HII_POPUP_SELECTION;

Status Codes Returned

EFI_SUCCESS The popup box was successfully displayed

EFI_INVALID_PARAMETER HiiHandle and Message do not define is a valid HII string.

EFI_INVALID_PARAMETER PopupType is not one of the values defined by this specification.

EFI_OUT_OF_RESOURCES There are not enough resources available to display the popup box.
UEFI Forum, Inc. March 2019 2050

UEFI Specification, Version 2.8
36 - User Identification

36.1 User Identification Overview

This section describes services which describe the current user of the platform. A user is the entity which
is controlling the behavior of the machine. The user may be an individual, a class or group of individuals
or another machine.

Each user has a user profile. There is always at least one user profile for a machine. This profile governs
the behavior of the user identification process until a another user has been selected. The nature and
definition of these privileges are beyond the scope of this section. One user profile is always active and
describes the platform’s current user.

New user profiles are introduced into the system through enrollment. During enrollment, information
about a new user is gathered. Some of this information identifies the user for specific purposes, such as a
user’s name or a user’s network domain. Other information is gathered in the form of credentials, which
is information which can be used at a later time to verify the identity of a user. Credentials are generally
divided into three categories: something you know (password), something you have (smart card, smart
token, RFID), something you are (fingerprint). The means by which a platform determines the user’s
identity based on credentials is user identification.

In the simplest case, a single set of credentials are required to establish a user’s identity. This is called
single-factor authentication. In more rigorous cases, multiple credentials might be required to establish a
user’s identity or different privilege levels given if only a single factor is available. This is called multi-
factor authentication.

If the credentials are checked only once, this is called static authentication. For example, a sign-on box
where the user enters a password and provides a fingerprint would be examples of static authentication.
However, if credentials (and thus the user’s identity) can be changed during system execution, this is
called dynamic authentication. For example, a smart token which can be hot-removed from the system or
an RFID tag which is moved in and out of range would be examples of dynamic authentication.

The user identity manager is the optional UEFI driver which manages the process of determining the
user’s identity and storing information about the user.

The user enrollment manager is the optional application which adds or enrolls new users, gathering the
necessary information to ascertain their identity in the future.

The credential provider driver manages a single class of credentials. Examples include a USB fingerprint
sensor, a smart card or a password. The means by which these drivers are selected and invoked is beyond
the scope of this specification.

36.1.1 User Identify

The process of identifying the user occurs after platform initialization has made the services described in
the EFI System Table available. Before the Boot Manager behavior described in chapter 3, a user profile
must be established. The user profile established might be:

• A default user profile, giving a standard set of privileges. This is similar to a “guest” login.
UEFI Forum, Inc. March 2019 2051

UEFI Specification, Version 2.8 User Identification
• A default user profile, based on a User Credential Provider where Default() returns AutoLogon
= TRUE.

• A specific user profile, established using the Identify() function of the User Manager.

Every time the user profile is modified, the User Identity Manager will signal the
EFI_EVENT_GROUP_USER_PROFILE_CHANGED event. The current user profile can only be changed by
calling the User Identity Manager’s Identify() function or as the result of a credential provider calling the
Notify() function (when dynamic authentication is supported). The Identify() function changes the
current user profile after examining the credentials provided by the various credential providers and
comparing these against those found in the user profile database.

Figure 65. User Identity

When the UEFI Boot Manager signals the EFI_EVENT_GROUP_READY_TO_BOOT event group, the User
Identity Manager publishes the current user profile information in the EFI System Configuration Table.

Depending on the security considerations in the implementation (see Section 36.1.4), user identification
can continue into different phases of execution.

1. Boot Manager, Once. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_READY_TO_BOOT is signaled by the Boot Manager. After this time, user
identification is not allowed again. This is the simplest, since the user profile database can be
locked at this time using a simple one-time lock.

2. Boot Manager, Multiple. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_READY_TO_BOOT is signaled by the Boot Manager. After this time, if the
boot option returns back into the Boot Manager, identification is allowed again. This scenario
requires that the user profile database only be updatable while in the Boot Manager.

User
Profile

Database

Credential
Provider

Credential
Provider

Identify
()

Current
User

Profile

UEFI
Forms

Browser
UEFI Forum, Inc. March 2019 2052

UEFI Specification, Version 2.8 User Identification
3. Until ExitBootServices. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled by the Boot Manager. This scenario
requires that the user profile database cannot be updated by unauthorized executables.

36.1.2 User Profiles

The user profiles are collections of information about users. There is always a current user (and thus, a
currently selected user profile). The user profiles are stored in a user profile database.

Each user profile has the following attributes:

§ User Identifier
User identifiers are unique to a particular user profile. The uniqueness of the user
profile identifier must persist across reboots. Credentials return this identifier during
the identification process.

§ User Identification Policy
The user identification policy determines which credentials must be presented in
order to establish the user’s identity and set the user profile as the current user
profile. The policy consists of a boolean expression consisting of credential handles
and the operators AND, OR and NOT. This allows the user profile to be selected, for
example, depending on a password credential OR a fingerprint credential. Or the
profile might be selected depending on a password credential AND a fingerprint
credential.

§ User Privileges
The user privileges control what the user can and cannot do. For example, can the
user enroll other users, boot off of a selected device, etc.

§ User Information
User information consists of typed data records attached to the user profile handle.
Some of this information is non-volatile. Some of this information may be provided
by a specific credential driver. User information is classified as public, private or
protected:

• Public user information is available at any time.
• Private user information is only available while it is part of the current

user profile.
• Protected user information is only available once user has been

authenticated by a credential provider.

Drivers and applications can be notified when the current user profile is changed, by using the UEFI Boot
Service CreateEventEx() and the EFI_EVENT_GROUP_USER_PROFILE_CHANGED

User profiles are available while the User Identity Manager is running, but only the current user profile is
available after the UEFI Boot Manager has started execution.
UEFI Forum, Inc. March 2019 2053

UEFI Specification, Version 2.8 User Identification
36.1.2.1 User Profile Database

The user profile database is a repository of all users known to the user identity manager. The user profile
database should be maintained in non-volatile memory and this memory must be protected against
corruption and erasure.

The user profile database is considered “open” if the user profile database can still be updated and the
current profile can still be changed using the EFI User Manager Protocol. The user profile database is
considered “closed” if the user profile database cannot be updated nor the current user profile changes
using the EFI User Manager Protocol.

36.1.2.2 User Identification Policy

The user identification policy is a boolean expression which determines which class of credential or which
credential providers must assert the user’s identity in order to a user profile to be eligible for selection as
the current user profile.

For example, assume that you want a password:

CredentialClass(Password)

This expression would assert true if any credential provider asserts that a user has successfully entered a
password.

CredentialClass(Password) && CredentialClass(Fingerprint)

This expression would require the user to present both a fingerprint AND a password in order to select
this user profile.

CredentialClass(Password) || CredentialClass(Fingerprint)

This expression, on the other hand, allows the user to present a fingerprint OR a password in order to
select this user profile.

Let’s say you only want the Phoenix password provider:

CredentialClass(Password) && CredentialProvider(Phoenix)

In all of these cases, the class of credential and the provider of the credential are actually GUIDs. The
standard credential class GUIDs are assigned by this specification. The credential provider identifiers are
generated by the companies creating the credential providers.

36.1.3 Credential Providers

The User Credential Provider drivers follow the UEFI driver model. During initialization, they install an
instance of the EFI Driver Binding Protocol. For hardware devices, the User Credential Provider may
consume the bus I/O protocol and produce the User Credential Protocol. For software-based User
Credential Providers, the User Credential Protocol could be installed on the image handler. The exact
implementation depends on the number of separate credential types that the User Identity Manager will
display.

When Start() is called, they:
UEFI Forum, Inc. March 2019 2054

UEFI Specification, Version 2.8 User Identification
1. Install one instance of the EFI_USER_CREDENTIAL2_PROTOCOL for each simultaneous user
which might be authenticated. For example, if more than one smart token were inserted, then
one instance might be created for each token. However, for a fingerprint sensor, one instance
might be created for all fingerprint sensors managed by the same driver.

2. Install the user-interface forms used for interacting with the user using the HII Database
Protocol. The form must be encoded using the GUID
EFI_USER_CREDENTIAL2_PROTOCOL_GUID.

3. Install the EFI HII Configuration Access Protocol to handle interaction with the UEFI forms
browser. This protocol is called to retrieve the current information from the credential
provider. It is also called when the user presses OK to save the current form values. It also
provides the callback functionality which allows real-time processing of the form values.

User Credential Providers are responsible to creating a one-to-one mapping between a device,
fingerprint or password and a user identifier.

This specification does not explicitly support passing of user credential information related to operating
system logon to an OS-present environment. For example, User Credential Providers may encrypt the
user credential information and pass it, either as a part of the User Information Table or the EFI System
Configuration Table, to an OS-present driver or application.

This specification does not explicitly support OS-present update of user credential information or user
identification policy. Such support may be implemented in many ways, including the usage of write-
authenticated EFI variables (see SetVariable()) or capsules (seeUpdateCapsule()).

36.1.4 Security Considerations

Since the current profile details a number of security-related privileges, it is important that the User
Identity Manager and User Credential Providers and the environment in which they execute are trusted.

This includes:

• Protecting the storage area where these drivers are stored

• Protecting the means by which these drivers are selected.

• Protecting the execution environment of these drivers from unverified drivers.

• The data structures used by these drivers should not be corrupted by unauthorized drivers
while they are still being used.
UEFI Forum, Inc. March 2019 2055

UEFI Specification, Version 2.8 User Identification
In many cases, the User Identity Manager, the User Credential drivers and the on-board drivers are
located in a protected location (e.g. a write-protected flash device) and the platform policy for these
locations allows them to be trusted.

However, other drivers may be loaded from unprotected location or may be loaded from devices (such as
PCI cards) or a hard drive which are easily replaced. Therefore, all drivers loaded prior to the User Identity
Manager should be verified. No unverified drivers or applications should be allowed to execute while
decisions based on the current user policy are still being made.

For example, either the default platform policy must successfully be able to verify drivers listed in the
Driver#### load options, or else the user must be identified prior to processing these drivers.
Otherwise, the drivers’ execution should be deferred. If the user profile is changed through a subsequent
call to Identify() or through dynamic authentication, the Driver#### options may not be processed
again.

In systems where the user profile database and current user profile can be protected from corruption,
the user profile database is closed when the system signals the event EFI
EXIT_BOOT_SERVICES_EVENT_GUID. In systems where the user profile database and current user
profile cannot be protected from corruption, the user profile database is closed when the system signals
the event EFI_READY_TO_BOOT_EVENT_GUID.

User Identity
Manager

User Credential
Driver

Boot Manager

Option ROM

OS Loaded From Boot ####

Shell
Drivers Loaded

From
Driver####

On-Board
Silicon Driver

On-Board
Silicon Driver

Driver From
Unprotected

Flash
UEFI Forum, Inc. March 2019 2056

UEFI Specification, Version 2.8 User Identification
36.1.5 Deferred Execution

The platform may need to defer the execution of an image because of security considerations. For
example, see LoadImage(). Information about the images which are not executed because of security
considerations may be recorded and then reported by installing an instance of the
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL (see Section 36.3.3). There may be more than one producer of
the protocol.

The firmware’s boot manager may use the instances of this protocol in order to automatically load
drivers whose execution was deferred because of inadequate privileges once the current user profile
contains adequate security privileges.

This boot manager can reevaluate the deferred images each time that the event
EFI_EVENT_GROUP_USER_IDENTITY_CHANGED is signaled

Images which have been loaded may not be unloaded when the current user profile is changed, even if
the new user profile would have prevented that driver from being loaded.

36.2 User Identification Process

This section describes the typical initialization steps required for the user identification process.

36.2.1 User Identification Process

1. The User Identity Manager is launched. This driver reads all of the user profiles from the user
profile database, sets the default user profile as the current profile, and installs an instance of
the EFI_USER_MANAGER_PROTOCOL.

2. Each credential provider driver registers their user-interface related forms and installs an
instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

3. The User Identity Manager’s Identify() function is called to select the current user.

4. The User Identity Manager enumerates all of the User Credential Providers required by the
User Identification Policy.

a Select the User Credential Provider which returns Default = TRUE from the
Default() function. If more than one return TRUE or none return TRUE, choose a
default based on implementation-specific criteria (last-logged-on, etc.)

b If that credential provider also returns AutoLogon = TRUE from the Default()
function, then call User(). If no error was returned and a user profile with the
specified user identifier exists, select the specified user profile as the current user
profile and jump to step 9.

5. The User Identity Manager enumerates all of the User Credential Providers required by the
User Identification Policy:

a Call the Title() and (optionally) the Tile() function to retrieve the text and image
indicated for each User Credential Provider.

b Call the Form() function to retrieve the form indicated for each User Credential
Provider.

c Create the user interface to allow the user to select between the different User
Credential Providers.
UEFI Forum, Inc. March 2019 2057

UEFI Specification, Version 2.8 User Identification
d Highlight the default User Credential Provider, as specified in step 4.a.
6. If the user selects one of the User Credential Providers, call Select(). If AutoLogon = TRUE on

return, then call User(). If no error was returned and a user profile with the specified user
identifier exists, select the specified user profile as the current user profile and jump to step 9.

7. Interact with the user. Regular interaction can occur using the Callback() functions. If another
User Credential Provider is selected then Deselect() is called for the current User Credential
Provider and Select() is called for the newly selected User Credential Provider.

8. If the user presses OK then the User Manager will saved settings using the EFI Configuration
Access protocol. Then it will call the User() function of each credential provider. If it returns
successfully and one of the user policies evaluates to true, then select the specified user profile
as the current user profile and go to step 9. Otherwise display an error and go back.

9. Go through all of the credential providers using GetNextInfo() and GetInfo() and add the
information to the current user profile.

10. Exit

36.2.2 Changing The Current User Profile

This section describes the typical actions taken when the current user profile is changed.

1. If there was already a valid current user profile, then all records marked as private in that
profile are no longer available.

2. All records marked as private in the new user profile will be available.

3. The handle of the current user profile is changed.

4. An event with the GUID EFI_EVENT_GROUP_USER_IDENTITY_CHANGED is signaled to indicate
that the current user profile has been changed.

36.2.3 Ready To Boot

Before the boot manager is read to pass control to the boot option and signals the
EFI_EVENT_GROUP_READY_TO_BOOT event group, the User Identity Manager will publish the current
user profile into the EFI System Configuration Table with the EFI_USER_MANAGER_PROTOCOL_GUID.
The format is described in “User Information Table” (page 58). It will also save all non-volatile profile
information.

User Credential drivers with non-volatile storage should also store non-volatile credential information
which has changed.

36.3 Code Definitions

36.3.1 User Manager Protocol

EFI_USER_MANAGER_PROTOCOL

Summary

Reports information about a user.
UEFI Forum, Inc. March 2019 2058

UEFI Specification, Version 2.8 User Identification
GUID

#define EFI_USER_MANAGER_PROTOCOL_GUID \

 { 0x6fd5b00c, 0xd426, 0x4283, \
 { 0x98, 0x87, 0x6c, 0xf5, 0xcf, 0x1c, 0xb1, 0xfe } };

Protocol Interface Structure

typedef struct _EFI_USER_MANAGER_PROTOCOL {

 EFI_USER_PROFILE_CREATE Create;

 EFI_USER_PROFILE_DELETE Delete;

 EFI_USER_PROFILE_GET_NEXT GetNext;

 EFI_USER_PROFILE_CURRENT Current;

 EFI_USER_PROFILE_IDENTIFY Identify;

 EFI_USER_PROFILE_FIND Find;

 EFI_USER_PROFILE_NOTIFY Notify;

 EFI_USER_PROFILE_GET_INFO GetInfo;

 EFI_USER_PROFILE_SET_INFO SetInfo;

 EFI_USER_PROFILE_DELETE_INFO DeleteInfo;

 EFI_USER_PROFILE_GET_NEXT_INFO GetNextInfo;
} EFI_USER_MANAGER_PROTOCOL;

Parameters

Create

Create a new user profile.

Delete

Delete an existing user profile.

GetNext

Cycle through all user profiles.

Current

Return the current user profile.

Identify

Identify a user and set the current user profile using credentials.

Find

Find a user by a piece of user information.

Notify

Notify the user manager driver that credential information has changed.

GetInfo

Return information from a user profile.

SetInfo

Change information in a user profile.
UEFI Forum, Inc. March 2019 2059

UEFI Specification, Version 2.8 User Identification
DeleteInfo

Delete information from a user profile.

GetNextInfo

Cycle through all information from a user profile.

Description

This protocol manages user profiles.

EFI_USER_MANAGER_PROTOCOL.Create()

Summary

Create a new user profile.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_CREATE) (

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

On return, points to the new user profile handle. The user profile handle is unique
only during this boot.

Description

This function creates a new user profile with only a new user identifier attached and returns its handle.
The user profile is non-volatile, but the handle User can change across reboots.

If the current user profile does not permit creation of new user profiles then EFI_ACCESS_DENIED will
be returned. If creation of new user profiles is not supported, then EFI_UNSUPPORTED is returned.
UEFI Forum, Inc. March 2019 2060

UEFI Specification, Version 2.8 User Identification
Related Definitions

typedef VOID *EFI_USER_PROFILE_HANDLE;

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.Delete()

Summary

Delete an existing user profile.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_DELETE) (

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

User profile handle. Type EFI_USER_PROFILE_HANDLE is defined in Create().

Description

Delete an existing user profile. If the current user profile does not permit deletion of user profiles then
EFI_ACCESS_DENIED will be returned. If there is only a single user profile then EFI_ACCESS_DENIED
will be returned. If deletion of user profiles is not supported, then EFI_UNSUPPORTED will be returned.

EFI_SUCCESS User profile was successfully created.

EFI_ACCESS_DENIED Current user does not have sufficient permissions to create a user profile.

EFI_UNSUPPORTED Creation of new user profiles is not supported.

EFI_INVALID_PARAMETER User is NULL.
UEFI Forum, Inc. March 2019 2061

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.GetNext()

Summary

Enumerate all of the enrolled users on the platform.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_GET_NEXT)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters

This

Points to the instance of this EFI_USER_MANAGER_PROTOCOL.

User

On entry, points to the previous user profile handle or NULL to start enumeration. On
exit, points to the next user profile handle or NULL if there are no more user profiles.

Description

This function returns the next enrolled user profile. To retrieve the first user profile handle, point User at
a NULL. Each subsequent call will retrieve another user profile handle until there are no more, at which
point User will point to NULL.

Note: There is always at least one user profile.

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.Current()

Summary

Return the current user profile handle.

EFI_SUCCESS User profile was successfully deleted.

EFI_ACCESS_DENIED Current user does not have sufficient permissions to delete a user profile or
there is only one user profile.

EFI_UNSUPPORTED Deletion of new user profiles is not supported.

EFI_INVALID_PARAMETER User does not refer to a valid user profile.

EFI_SUCCESS Next enrolled user profile successfully returned.

EFI_INVALID_PARAMETER User is NULL.

EFI_ACCESS_DENIED Next enrolled user profile was not successfully returned.
UEFI Forum, Inc. March 2019 2062

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_CURRENT)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 OUT EFI_USER_PROFILE_HANDLE *CurrentUser

);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

CurrentUser

On return, points to the current user profile handle.

Description

This function returns the current user profile handle.

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.Identify()

Summary

Identify a user.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_IDENTIFY) (

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters

This

Points to the instance of the EFI_USER_MANAGER_PROTOCOL.

User

On return, points to the user profile handle for the current user profile.

Description

Identify the user and, if authenticated, returns the user handle and changes the current user profile.

EFI_SUCCESS Current user profile handle returned successfully.

EFI_INVALID_PARAMETER CurrentUser is NULL.
UEFI Forum, Inc. March 2019 2063

UEFI Specification, Version 2.8 User Identification
All user information marked as private in a previously selected profile is no longer available for
inspection.

Whenever the current user profile is changed then the an event with the GUID
EFI_EVENT_GROUP_USER_PROFILE_CHANGED is signaled.

The function can only be called at TPL_APPLICATION.

Related Definitions

#define EFI_EVENT_GROUP_USER_PROFILE_CHANGED \

 { 0xbaf1e6de, 0x209e, 0x4adb, \

 { 0x8d, 0x96, 0xfd, 0x8b, 0x71, 0xf3, 0xf6, 0x83 } }

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.Find()

Summary

Find a user using a user information record.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_FIND)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN OUT EFI_USER_PROFILE_HANDLE *User,

 IN OUT EFI_USER_INFO_HANDLE *UserInfo OPTIONAL,

 IN CONST EFI_USER_INFO *Info,

 IN UINTN InfoSize
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

On entry, points to the previously returned user profile handle or NULL to start
searching with the first user profile. On return, points to the user profile handle or
NULL if not found.

EFI_SUCCESS User was successfully identified.

EFI_INVALID_PARAMETER User is NULL.

EFI_ACCESS_DENIED User was not successfully identified.
UEFI Forum, Inc. March 2019 2064

UEFI Specification, Version 2.8 User Identification
UserInfo

On entry, points to the previously returned user information handle or NULL to start
searching with the first. On return, points to the user information handle of the user
information record or NULL if not found. Can be NULL, in which case only one user
information record per user can be returned. Type EFI_USER_INFO_HANDLE is
defined in “Related Definitions” below.

Info

Points to the buffer containing the user information to be compared to the user
information record.If the user information record data is empty, then only the user
information record type is compared.

If InfoSize is 0, then the user information record data must be empty.

InfoSize

The size of Info, in bytes.

Description

This function searches all user profiles for the specified user information record. The search starts with
the user information record handle following UserInfo and continues until either the information is
found or there are no more user profiles.

A match occurs when the Info.InfoType field matches the user information record type and the user
information record data matches a portion of Info.

Status Codes Returned

Related Definitions

typedef VOID *EFI_USER_INFO_HANDLE;

EFI_USER_MANAGER_PROTOCOL.Notify()

Summary

Called by credential provider to notify of information change.

EFI_SUCCESS User information was found. User points to the user profile handle and

UserInfo points to the user information handle.

EFI_NOT_FOUND User information was not found. User points to NULL and UserInfo points

to NULL.

EFI_INVALID_PARAMETER User is NULL. Or Info is NULL.
UEFI Forum, Inc. March 2019 2065

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

 (EFIAPI *EFI_USER_PROFILE_NOTIFY)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_HANDLE Changed
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

Changed

Handle on which is installed an instance of the
EFI_USER_CREDENTIAL2_PROTOCOL where the user has changed.

Description

This function allows the credential provider to notify the User Identity Manager when user status has
changed.

If the User Identity Manager doesn’t support asynchronous changes in credentials, then this function
should return EFI_UNSUPPORTED.

If current user does not exist, and the credential provider can identify a user, then make the user to be
current user and signal the EFI_EVENT_GROUP_USER_PROFILE_CHANGED event.

If current user already exists, and the credential provider can identify another user, then switch current
user to the newly identified user, and signal the EFI_EVENT_GROUP_USER_PROFILE_CHANGED event.

If current user was identified by this credential provider and now the credential provider cannot identify
current user, then logout current user and signal the EFI_EVENT_GROUP_USER_PROFILE_CHANGED
event.

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.GetInfo()

Summary

Return information attached to the user.

EFI_SUCCESS The User Identity Manager has handled the notification.

EFI_NOT_READY The function was called while the specified credential provider was not selected.

EFI_UNSUPPORTED The User Identity Manager doesn’t support asynchronous notifications.
UEFI Forum, Inc. March 2019 2066

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_GET_INFO)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User,

 IN EFI_USER_INFO_HANDLE UserInfo,

 OUT EFI_USER_INFO *Info,

 IN OUT UINTN *InfoSize
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose profile will be retrieved.

UserInfo

Handle of the user information data record. Type EFI_USER_INFO_HANDLE is
defined in GetInfo().

Info

On entry, points to a buffer of at least *InfoSize bytes. On exit, holds the user
information. If the buffer is too small to hold the information, then
EFI_BUFFER_TOO_SMALL is returned and InfoSize is updated to contain the
number of bytes actually required. Type EFI_USER_INFO is described in “Related
Definitions” below.

InfoSize

On entry, points to the size of Info. On return, points to the size of the user
information.

Description

This function returns user information. The format of the information is described in User Information.
The function may return EFI_ACCESS_DENIED if the information is marked private and the handle
specified by User is not the current user profile. The function may return EFI_ACCESS_DENIED if the
information is marked protected and the information is associated with a credential provider for which
the user has not been authenticated.
UEFI Forum, Inc. March 2019 2067

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

Related Definitions

typedef struct {

 EFI_GUID Credential;

 UINT8 InfoType;

 UINT8 Reserved1;

 EFI_USER_INFO_ATTRIBS InfoAttribs;

 UINT32 InfoSize;
} EFI_USER_INFO;

Credential

The user credential identifier associated with this user information or else Nil if the
information is not associated with any specific credential.

InfoType

The type of user information. See EFI_USER_INFO_x_RECORD in User Information
for a description of the different types of user information.

Reserved1

Must be set to 0.

InfoAttribs

The attributes of the user profile information.

InfoSize

The size of the user information, in bytes, including this header.

EFI_SUCCESS Information returned successfully.

EFI_ACCESS_DENIED The information about the specified user cannot be accessed by the current
user.

EFI_BUFFER_TOO_SMALL The number of bytes specified by *InfoSize is too small to hold the

returned data. The actual size required is returned in *InfoSize.

EFI_NOT_FOUND User does not refer to a valid user profile or UserInfo does not refer to

a valid user info handle.

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
UEFI Forum, Inc. March 2019 2068

UEFI Specification, Version 2.8 User Identification
typedef UINT16 EFI_USER_INFO_ATTRIBS;

#define EFI_USER_INFO_STORAGE 0x000F

#define EFI_USER_INFO_STORAGE_VOLATILE 0x0000

#define EFI_USER_INFO_STORAGE_CREDENTIAL_NV 0x0001

#define EFI_USER_INFO_STORAGE_PLATFORM_NV 0x0002

#define EFI_USER_INFO_ACCESS 0x0070

#define EFI_USER_INFO_PUBLIC 0x0010

#define EFI_USER_INFO_PRIVATE 0x0020

#define EFI_USER_INFO_PROTECTED 0x0030

#define EFI_USER_INFO_EXCLUSIVE 0x0080

The EFI_USER_INFO_STORAGE_x values describe how the user information should be stored. If
EFI_USER_INFO_STORAGE_VOLATILE is specified, then the user profile information will be lost after a
reboot. If EFI_USER_INFO_STORAGE_CREDENTIAL_NV is specified, then the information will be stored
by the driver which created the handle Credential. If USER_INFO_STORAGE_PLATFORM_NV is specified,
then the information will be stored by the User Identity Manager in platform non-volatile storage.

There are three levels of access to information associated with the user profile: public, private or
protected. If EFI_USER_INFO_PUBLIC is specified, then the user profile information is available always.
If EFI_USER_INFO_PRIVATE is specified, then the user profile information is only available if the user
has been authenticated (whether or not they are the current user). If EFI_USER_INFO_PROTECTED is
specified, then the user profile information is only available if the user has been authenticated and is the
current user.

If EFI_USER_INFO_EXCLUSIVE is specified then there can only be one user information record of this
type in the user profile. Attempts to use SetInfo() will fail.

EFI_USER_MANAGER_PROTOCOL.SetInfo()

Summary

Add or update user information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_SET_INFO) (

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User,

 IN OUT EFI_USER_INFO_HANDLE *UserInfo,

 IN CONST EFI_USER_INFO *Info,

 IN UINTN InfoSize
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.
UEFI Forum, Inc. March 2019 2069

UEFI Specification, Version 2.8 User Identification
User

Handle of the user whose profile will be changed.

UserInfo

On entry, points to the handle of the user information record to change or NULL if
the user information should be added to the user profile. On exit, points to the
handle of the user credential information record.

Info

Points to the user information. See EFI_USER_INFO for more information.

InfoSize

The size of Info, in bytes.

Description

This function changes user information. If NULL is pointed to by UserInfo, then a new user information
record is created and its handle is returned in UserInfo. Otherwise, the existing one is replaced.

If EFI_USER_INFO_IDENTITY_POLICY_RECORD is changed, it is the caller's responsibility to keep it to
be synced with the information on credential providers.

If EFI_USER_INFO_EXCLUSIVE is specified in Info and a user information record of the same type
already exists in the user profile, then EFI_ACCESS_DENIED will be returned and UserInfo will point
to the handle of the existing record.

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.DeleteInfo()

Summary

Delete user information.

EFI_SUCCESS User profile information was successfully changed/added.

EFI_ACCESS_DENIED The record is exclusive.

EFI_SECURITY_VIOLATION The current user does not have permission to change the specified user
profile or user information record.

EFI_NOT_FOUND User does not refer to a valid user profile or UserInfo does not refer

to a valid user info handle.

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
UEFI Forum, Inc. March 2019 2070

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_DELETE_INFO) (

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User,

 IN EFI_USER_INFO_HANDLE UserInfo
);

Parameters

This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose information will be deleted.

UserInfo

Handle of the user information to remove.

Description

Delete the user information attached to the user profile specified by the UserInfo.

Status Codes Returned

EFI_USER_MANAGER_PROTOCOL.GetNextInfo()

Summary

Enumerate all of the enrolled users on the platform.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_PROFILE_GET_NEXT_INFO)(

 IN CONST EFI_USER_MANAGER_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User,

 IN OUT EFI_USER_INFO_HANDLE *UserInfo
);

Parameters

This

Points to the instance of this EFI_USER_MANAGER_PROTOCOL.

EFI_SUCCESS User information deleted successfully.

EFI_NOT_FOUND User information record UserInfo does not exist in the user profile.

EFI_ACCESS_DENIED The current user does not have permission to delete this user information.
UEFI Forum, Inc. March 2019 2071

UEFI Specification, Version 2.8 User Identification
User

Handle of the user whose information will be enumerated

UserInfo

On entry, points to the previous user information handle or NULL to start
enumeration. On exit, points to the next user information handle or NULL if there is
no more user information.

Description

This function returns the next user information record. To retrieve the first user information record
handle, point UserInfo at a NULL. Each subsequent call will retrieve another user information record
handle until there are no more, at which point UserInfo will point to NULL.

Status Codes Returned

36.3.2 Credential Provider Protocols

EFI_USER_CREDENTIAL2_PROTOCOL

Summary

Provide support for a single class of credentials

EFI_SUCCESS User information returned.

EFI_NOT_FOUND No more user information found.

EFI_INVALID_PARAMETER UserInfo is NULL.
UEFI Forum, Inc. March 2019 2072

UEFI Specification, Version 2.8 User Identification
GUID

#define EFI_USER_CREDENTIAL2_PROTOCOL_GUID \

 { 0xe98adb03, 0xb8b9, 0x4af8, \

 { 0xba, 0x20, 0x26, 0xe9, 0x11, 0x4c, 0xbc, 0xe5 } }

Prototype

typedef struct _EFI_USER_CREDENTIAL2_PROTOCOL {

 EFI_GUID Identifier;

 EFI_GUID Type;

 EFI_CREDENTIAL_ENROLL Enroll;

 EFI_CREDENTIAL_FORM Form;

 EFI_CREDENTIAL_TILE Tile;

 EFI_CREDENTIAL_TITLE Title;

 EFI_CREDENTIAL_USER User;

 EFI_CREDENTIAL_SELECT Select;

 EFI_CREDENTIAL_DESELECT Deselect;

 EFI_CREDENTIAL_DEFAULT Default;

 EFI_CREDENTIAL_GET_INFO GetInfo;

 EFI_CREDENTIAL_GET_NEXT_INFO GetNextInfo;

 EFI_CREDENTIAL_CAPABILITIES Capabilities;

 EFI_CREDENTIAL_DELETE Delete;
} EFI_USER_CREDENTIAL2_PROTOCOL;

Parameters

Identifier

Uniquely identifies this credential provider.

Type

Identifies this class of User Credential Provider. See EFI_CREDENTIAL_CLASS_x in
“Related Definitions” below.

Enroll

Enroll a user using this credential provider.

Form

Return the form set and form identifier for the form.

Tile

Returns an optional bitmap image used to identify this credential provider.

Title

Returns a string used to identify this credential provider.

User

Returns the user profile identifier ascertained by using this credential.

Select

Called when a credential provider is selected.
UEFI Forum, Inc. March 2019 2073

UEFI Specification, Version 2.8 User Identification
Deselect

Called when a credential provider is deselected.

Default

Returns whether the credential provider can provide the default credential.

GetInfo

Return user information provided by the credential provider.

GetNextInfo

Cycle through all user information available from the credential provider.

Capabilities

Bitmask which describes the capabilities supported by the credential provider. Type
EFI_CREDENTIAL_CAPABILITIES is defined in “Related Definitions” below.

Delete

Delete a user on this credential provider.

Description

Attached to a device handle, this protocol identifies a single means of identifying the user.

If EFI_CREDENTIAL_CAPABILITIES_ENROLL is specified, then this credential provider supports the ability
to enroll new user identification information using the Enroll() function.
UEFI Forum, Inc. March 2019 2074

UEFI Specification, Version 2.8 User Identification
Related Definitions

#define EFI_USER_CREDENTIAL_CLASS_UNKNOWN \

 { 0x5cf32e68, 0x7660, 0x449b, \

 { 0x80, 0xe6, 0x7e, 0xa3, 0x6e, 0x3, 0xf6, 0xa8 } };

#define EFI_USER_CREDENTIAL_CLASS_PASSWORD \

 { 0xf8e5058c, 0xccb6, 0x4714, \

 { 0xb2, 0x20, 0x3f, 0x7e, 0x3a, 0x64, 0xb, 0xd1 } };

#define EFI_USER_CREDENTIAL_CLASS_SMART_CARD \

 { 0x5f03ba33, 0x8c6b, 0x4c24, \

 { 0xaa, 0x2e, 0x14, 0xa2, 0x65, 0x7b, 0xd4, 0x54 } };

#define EFI_USER_CREDENTIAL_CLASS_FINGERPRINT \

 { 0x32cba21f, 0xf308, 0x4cbc, \

 { 0x9a, 0xb5, 0xf5, 0xa3, 0x69, 0x9f, 0x4, 0x4a } };

#define EFI_USER_CREDENTIAL_CLASS_HANDPRINT \

 { 0x5917ef16, 0xf723, 0x4bb9, \

 { 0xa6, 0x4b, 0xd8, 0xc5, 0x32, 0xf4, 0xd8, 0xb5 } };

#define EFI_USER_CREDENTIAL_CLASS_SECURE_CARD \

 { 0x8a6b4a83, 0x42fe, 0x45d2, \

 { 0xa2, 0xef, 0x46, 0xf0, 0x6c, 0x7d, 0x98, 0x52 } };

typedef UINT64 EFI_CREDENTIAL_CAPABILITIES;

#define EFI_CREDENTIAL_CAPABILITIES_ENROLL 0x0000000000000001

EFI_USER_CREDENTIAL2_PROTOCOL.Enroll()

Summary

Enroll a user on a credential provider.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL2_ENROLL)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.
UEFI Forum, Inc. March 2019 2075

UEFI Specification, Version 2.8 User Identification
User

The user profile to enroll.

Description

This function enrolls a user on this credential provider. If the user exists on this credential provider,
update the user information on this credential provider; otherwise add the user information on
credential provider.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Form()

Summary

Returns the user interface information used during user identification.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_FORM)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 OUT EFI_HII_HANDLE *Hii,

 OUT EFI_GUID *FormSetId,

 OUT EFI_FORM_ID *FormId
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Hii

On return, holds the HII database handle. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages section.

FormSetId

On return, holds the identifier of the form set which contains the form used during
user identification.

FormId

On return, holds the identifier of the form used during user identification.

EFI_SUCCESS User profile was successfully enrolled

EFI_ACCESS_DENIED Current user profile does not permit enrollment on the user profile handle.
Either the user profile cannot enroll on any user profile or cannot enroll on a
user profile other than the current user profile.

EFI_UNSUPPORTED This credential provider does not support enrollment in the pre-OS.

EFI_DEVICE_ERROR The new credential could not be created because of a device error.

EFI_INVALID_PARAMETER User does not refer to a valid user profile handle.
UEFI Forum, Inc. March 2019 2076

UEFI Specification, Version 2.8 User Identification
Description

This function returns information about the form used when interacting with the user during user
identification. The form is the first enabled form in the form-set class
EFI_HII_USER_CREDENTIAL_FORMSET_GUID installed on the HII handle HiiHandle. If the user
credential provider does not require a form to identify the user, then this function should return
EFI_NOT_FOUND.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Tile()

Summary

Returns bitmap used to describe the credential provider type.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_TILE)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN OUT UINTN *Width,

 IN OUT UINTN *Height,

 OUT EFI_HII_HANDLE *Hii,

 OUT EFI_IMAGE_ID *Image
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Width

On entry, points to the desired bitmap width. If NULL then no bitmap information
will be returned. On exit, points to the width of the bitmap returned.

Height

On entry, points to the desired bitmap height. If NULL then no bitmap information
will be returned. On exit, points to the height of the bitmap returned.

Hii

On return, holds the HII database handle. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages section.

EFI_SUCCESS Form returned successfully.

EFI_NOT_FOUND Form not returned.

EFI_INVALID_PARAMETER Hii is NULL or FormSetId is NULL or FormId is NULL
UEFI Forum, Inc. March 2019 2077

UEFI Specification, Version 2.8 User Identification
Image

On return, holds the HII image identifier. Type EFI_IMAGE_ID is defined in this
specification, Section 34.4.

Description

This optional function returns a bitmap which is less than or equal to the number of pixels specified by
Width and Height. If no such bitmap exists, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Title()

Summary

Returns string used to describe the credential provider type.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_TITLE)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 OUT EFI_HII_HANDLE *Hii,

 OUT EFI_STRING_ID *String
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Hii

On return, holds the HII database handle. TType EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages section.

String

On return, holds the HII string identifier. Type EFI_STRING_ID is defined in
Section 33.3.8.2.1.

Description

This function returns a string which describes the credential provider. If no such string exists, then
EFI_NOT_FOUND is returned.

EFI_SUCCESS Image identifier returned successfully.

EFI_NOT_FOUND Image identifier not returned.

EFI_INVALID_PARAMETER Hii is NULL or Image is NULL.
UEFI Forum, Inc. March 2019 2078

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.User()

Summary

Return the user identifier associated with the currently authenticated user.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_USER)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User,

 OUT EFI_USER_INFO_IDENTIFIER *Identifier
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

User

The user profile handle of the user profile currently being considered by the user
identity manager. If NULL, then no user profile is currently under consideration.

Identifier

On return, points to the user identifier. Type EFI_USER_INFO_IDENTIFIER is
defined in “Related Definitions” below.

Description

This function returns the user identifier of the user authenticated by this credential provider. This
function is called after the credential-related information has been submitted on a form OR after a call to
Default() has returned that this credential is ready to log on.

This function can return one of five possible responses:

• If no user profile can yet be identified, then EFI_NOT_READY is returned.

• If the user has been locked out, then EFI_ACCESS_DENIED is returned.

• If the user specified by User is identified, then Identifier returns with the user identifier
associated with that handle and EFI_SUCCESS is returned.

• If Identifier is NULL, then EFI_INVALID_PARAMETER is returned.

• If specified User does not refer to a valid user profile, then EFI_NOT_FOUND is returned.

EFI_SUCCESS String identifier returned successfully.

EFI_NOT_FOUND String identifier not returned.

EFI_INVALID_PARAMETER Hii is NULL or String is NULL.
UEFI Forum, Inc. March 2019 2079

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Select()

Summary

Indicate that user interface interaction has begun for the specified credential.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_SELECT)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 OUT EFI_CREDENTIAL_LOGON_FLAGS *AutoLogon
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

AutoLogon

On return, points to the credential provider’s capabilities after the credential
provider has been selected by the user. Type EFI_CREDENTIAL_LOGON_FLAGS is
defined in “Related Definitions” below.

Description

This function is called when a credential provider is selected by the user. If AutoLogon returns FALSE,
then the user interface will be constructed by the User Identity Manager.

Related Definitions

typedef UINT32 EFI_CREDENTIAL_LOGON_FLAGS;

#define EFI_CREDENTIAL_LOGON_FLAG_AUTO 0x00000001

#define EFI_CREDENTIAL_LOGON_FLAG_DEFAULT 0x00000002

If EFI_CREDENTIAL_LOGON_FLAG_AUTO is set, then the User Identity Manager may use this as a hint
to try logging on immediately. If not set, then the User Identity Manager may use this as an indication to
wait for the user to submit the information.

If EFI_CREDENTIAL_LOGON_FLAG_DEFAULT is set, then the User Identity Manager may use this as a
hint to use this credential provider as the default credential provider. If more than one credential

EFI_SUCCESS User identifier returned successfully.

EFI_NOT_READY No user identifier can be returned.

EFI_ACCESS_DENIED The user has been locked out of this user credential.

EFI_NOT_FOUND User is not NULL, and the specified user handle can't be found in user

profile database

EFI_INVALID_PARAMETER Identifier is NULL.
UEFI Forum, Inc. March 2019 2080

UEFI Specification, Version 2.8 User Identification
provider returns with this set, then the selection is implementation specific. If
EFI_CREDENTIAL_LOGON_FLAG_DEFAULT is set and EFI_CREDENTIAL_LOGON_FLAG_AUTO is set
then the User Identity Manager may uses this as a hint to log the user on immediately.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Deselect()

Summary

Indicate that user interface interaction has ended for the specified credential.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_DESELECT)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Description

This function is called when a credential provider is deselected by the user.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Default()

Summary

Return the default logon behavior for this user credential.

EFI_SUCCESS Credential provider successfully selected.

EFI_INVALID_PARAMETER AutoLogon is NULL

EFI_SUCCESS Credential provider successfully selected.
UEFI Forum, Inc. March 2019 2081

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_DEFAULT)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 OUT EFI_CREDENTIAL_LOGON_FLAGS *AutoLogon
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

AutoLogon

On return, holds whether the credential provider should be used by default to
automatically log on the user. Type EFI_CREDENTIAL_LOGON_FLAGS is defined in
EFI_USER_CREDENTIAL2_PROTOCOL.Select().

Description

This function reports the default login behavior regarding this credential provider.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo()

Summary

Return information attached to the credential provider.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREDENTIAL_GET_INFO)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN EFI_USER_INFO_HANDLE UserInfo,

 OUT EFI_USER_INFO *Info,

 IN OUT UINTN *InfoSize
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

EFI_SUCCESS Default information successfully returned.

EFI_INVALID_PARAMETER AutoLogon is NULL
UEFI Forum, Inc. March 2019 2082

UEFI Specification, Version 2.8 User Identification
UserInfo

Handle of the user information data record. Type EFI_USER_INFO_HANDLE is
defined in GetInfo().

Info

On entry, points to a buffer of at least *InfoSize bytes. On exit, holds the user
information. If the buffer is too small to hold the information, then
EFI_BUFFER_TOO_SMALL is returned and InfoSize is updated to contain the
number of bytes actually required. Type EFI_USER_INFO is described in “Related
Definitions” below.

InfoSize

On entry, points to the size of Info. On return, points to the size of the user
information.

Description

This function returns user information.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo()

Summary

Enumerate all of the user information records on the credential provider..

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_USER_CREDENTIAL_GET_NEXT_INFO)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN OUT EFI_USER_INFO_HANDLE *UserInfo
);

Parameters

This

Points to the instance of this EFI_USER_CREDENTIAL2_PROTOCOL.

EFI_SUCCESS Information returned successfully.

EFI_BUFFER_TOO_SMALL The size specified by InfoSize is too small to hold all of the user

information. The size required is returned in *InfoSize.

EFI_NOT_FOUND The specified UserInfo does not refer to a valid user info handle

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
UEFI Forum, Inc. March 2019 2083

UEFI Specification, Version 2.8 User Identification
UserInfo

On entry, points to the previous user information handle or NULL to start
enumeration. On exit, points to the next user information handle or NULL if there is
no more user information.

Description

This function returns the next user information record. To retrieve the first user information record
handle, point UserInfo at a NULL. Each subsequent call will retrieve another user information record
handle until there are no more, at which point UserInfo will point to NULL.

Status Codes Returned

EFI_USER_CREDENTIAL2_PROTOCOL.Delete()

Summary

Delete a user on a credential provider.

Prototype

typedef

EFI_STATUS (EFIAPI *EFI_CREDENTIAL_DELETE)(

 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,

 IN EFI_USER_PROFILE_HANDLE User
);

Parameters

This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

User

The user profile handle to delete.

Description

This function deletes a user on this credential provider.

EFI_SUCCESS User information returned.

EFI_NOT_FOUND No more user information found.

EFI_INVALID_PARAMETER UserInfo is NULL.
UEFI Forum, Inc. March 2019 2084

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

36.3.3 Deferred Image Load Protocol

EFI_DEFERRED_IMAGE_LOAD_PROTOCOL

Summary

Enumerates images whose load was deferred due to security considerations.

GUID

#define EFI_DEFERRED_IMAGE_LOAD_PROTOCOL_GUID \

 { 0x15853d7c, 0x3ddf, 0x43e0, \

 { 0xa1, 0xcb, 0xeb, 0xf8, 0x5b, 0x8f, 0x87, 0x2c } };

Protocol Interface Structure

typedef struct _EFI_DEFERRED_IMAGE_LOAD_PROTOCOL {

 EFI_DEFERRED_IMAGE_INFO GetImageInfo();

} EFI_DEFERRED_IMAGE_LOAD_PROTOCOL;

Members

GetImageInfo

Return information about a single deferred image. See GetImageInfo() for more
information.

Description

This protocol returns information about images whose load was denied because of security
considerations. This information can be used by the Boot Manager or another agent to reevaluate the
images when the current security profile has been changed, such as when the current user profile
changes. There can be more than one instance of this protocol installed.

EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetImageInfo()

Summary

Returns information about a deferred image.

EFI_SUCCESS User profile was successfully deleted .

EFI_ACCESS_DENIED Current user profile does not permit deletion on the user profile handle. Either
the user profile cannot delete on any user profile or cannot delete on a user
profile other than the current user profile.

EFI_UNSUPPORTED This credential provider does not support deletion in the pre-OS.

EFI_DEVICE_ERROR The new credential could not be deleted because of a device error.

EFI_INVALID_PARAMETER User does not refer to a valid user profile handle.
UEFI Forum, Inc. March 2019 2085

UEFI Specification, Version 2.8 User Identification
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_DEFERRED_IMAGE_INFO)(

 IN EFI_DEFERRED_IMAGE_LOAD_PROTOCOL *This,

 IN UINTN ImageIndex,

 OUT EFI_DEVICE_PATH_PROTOCOL **ImageDevicePath,

 OUT VOID **Image,

 OUT UINTN *ImageSize,

 OUT BOOLEAN *BootOption
);

Parameters

This

Points to this instance of the EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.

ImageIndex

Zero-based index of the deferred index.

ImageDevicePath

On return, points to a pointer to the device path of the image. The device path
should not be freed by the caller.

Image

On return, points to the first byte of the image or NULL if the image is not available.
The image should not be freed by the caller unless LoadImage() has been called
successfully.

ImageSize

On return, the size of the image, or 0 if the image is not available.

BootOption

On return, points to TRUE if the image was intended as a boot option or FALSE if it
was not intended as a boot option.

Description

This function returns information about a single deferred image. The deferred images are numbered
consecutively, starting with 0. If there is no image which corresponds to ImageIndex, then
EFI_NOT_FOUND is returned. , All deferred images may be returned by iteratively calling this function
until EFI_NOT_FOUND is returned.

Image may be NULL and ImageSize set to 0 if the decision to defer execution was made because of the
location of the executable image rather than its actual contents.
UEFI Forum, Inc. March 2019 2086

UEFI Specification, Version 2.8 User Identification
Status Codes Returned

36.4 User Information

This section describes the different user information and the format of the data. Each of the following
records is prefixed with the EFI_USER_INFO structure. The format of the record is determined by the
type specified by the InfoType field in the structure, as listed in the table below:

Table 26. Record values and descriptions

EFI_SUCCESS Image information returned successfully.

EFI_NOT_FOUND ImageIndex does not refer to a valid image.

EFI_INVALID_PARAMETER ImageDevicePath is NULL or Image is NULL or ImageSize is

NULL or BootOption is NULL

Name Value Description

EFI_USER_INFO_EMPTY_RECORD 0x00 No information.

EFI_USER_INFO_NAME_RECORD 0x01 User’s name

EFI_USER_INFO_CREATE_DATE_RECORD 0x02 Date which the user profile
was created.

EFI_USER_INFO_USAGE_DATE_RECORD 0x03 Date which the user profile
was last modified.

EFI_USER_INFO_USAGE_COUNT_RECORD 0x04 Number of times the
credential has been used.

EFI_USER_INFO_IDENTIFIER_RECORD 0x05 User’s unique identifier *

EFI_USER_INFO_CREDENTIAL_TYPE_RECORD 0x06 Credential type.

EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD 0x07 Credential type name.

EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD 0x08 Credential provider

EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD 0x09 Credential provider name

EFI_USER_INFO_PKCS11_RECORD 0x0A PKCS11 Data Object

EFI_USER_INFO_CBEFF_RECORD 0x0B ISO 19785 (Common Biometric
Exchange Formats
Framework) Data Object

EFI_USER_INFO_FAR_RECORD 0x0C How exact a match is required
for biometric identification,
measured in percentage.

EFI_USER_INFO_RETRY_RECORD 0x0D Number of retries allowed
during verification.

EFI_USER_INFO_ACCESS_POLICY_RECORD 0x0E Access control information.

EFI_USER_INFO_IDENTITY_POLICY_RECORD 0x0F User identity expression.

EFI_USER_INFO_GUID_RECORD 0xFF Extended profile information,
qualified by a GUID in the
header.
UEFI Forum, Inc. March 2019 2087

UEFI Specification, Version 2.8 User Identification
36.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD

Summary

Provides the user’s pre-OS access rights.

Prototype

#define EFI_USER_INFO_ACCESS_POLICY_RECORD 0x0E

typedef EFI_USER_INFO_ACCESS_CONTROL EFI_USER_INFO_ACCESS_POLICY;

Description

This structure described the access policy for the user. There can be, at most, one access policy record
per credential (including NULL credential). Policy records with a credential specified means that the
policy is associated specifically with the credential.

The policy is detailed in a series of encapsulated records of type EFI_USER_INFO_ACCESS_CONTROL.

Related Definitions

typedef struct {

 UINT32 Type;

 UINT32 Size;
} EFI_USER_INFO_ACCESS_CONTROL;

Type

Specifies the type of user access control. See EFI_USER_INFO_ACCESS_x for more
information.

Size

Specifies the size of the user access control record, in bytes, including this header.

36.4.1.1 EFI_USER_INFO_ACCESS_FORBID_LOAD

Summary

Forbids the user from booting or loading executables from the specified device path or any child device
paths.

Prototype

#define EFI_USER_INFO_ACCESS_FORBID_LOAD 0x00000001

Description

This record prohibits the user from loading any executables from zero or device paths or any child device
paths. The device paths may contain a specific executable name, in which case the prohibition applies to
only that executable.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition is overridden by the EFI_USER_INFO_ACCESS_PERMIT_LOAD record.
UEFI Forum, Inc. March 2019 2088

UEFI Specification, Version 2.8 User Identification
36.4.1.2 EFI_USER_INFO_ACCESS_PERMIT_LOAD

Summary

Permits the user from booting or loading executables from the specified device path or any child device
paths.

Prototype

#define EFI_USER_INFO_ACCESS_PERMIT_LOAD 0x00000002

Description

This record allows the user to load executables from locations specified by zero or more device paths or
child paths. The device paths may contain specific executable names, in which case, the permission
applies only to that executable.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition overrides any restrictions put in place by the EFI_USER_INFO_ACCESS_FORBID_LOAD
record.

36.4.1.3 EFI_USER_INFO_ACCESS_ENROLL_SELF

Summary

Presence of this record indicates that a user can update enrollment information.

Prototype

#define EFI_USER_INFO_ACCESS_ENROLL_SELF 0x00000003

Description

If this record is present, then the pre-OS environment will allow the user to initiate an update of
authentication information for his/her own profile, but not other user information or other user’s
information. This would allow, for example, fingerprint update or password change.

There is no data for this record.

36.4.1.4 EFI_USER_INFO_ACCESS_ENROLL_OTHERS

Summary

Presence of this record indicates that a user can enroll new users.

Prototype

#define EFI_USER_INFO_ACCESS_ENROLL_OTHERS 0x00000004

Description

If this record is present, then the pre-OS environment will allow the user to initiate enrollment of new user profiles. It does not
give permission to update existing user profiles.

There is no data for this record.
UEFI Forum, Inc. March 2019 2089

UEFI Specification, Version 2.8 User Identification
36.4.1.5 EFI_USER_INFO_ACCESS_MANAGE

Summary

Presence of this record indicates that a user can update the user information of any user.

Prototype

#define EFI_USER_INFO_ACCESS_MANAGE 0x00000005

Description

If this record is present, then the pre-OS environment will allow the user to update any information about
his/her own profile or other profiles.

There is no data for this record.

36.4.1.6 EFI_USER_INFO_ACCESS_SETUP

Summary

Describes permissions usable when configuring the platform.

Prototype

#define EFI_USER_INFO_ACCESS_SETUP 0x00000006

Description

This record describes access permission for use in configuring the platform using an UEFI Forms Processor
using zero or more GUIDs. There are three standard values (see below) and any number of others may be
added.

Table 27. Standard values for access to configure the platform

EFI_USER_INFO_ACCESS_SETUP_ADMIN_GUID System administrator only.

EFI_USER_INFO_ACCESS_SETUP_NORMAL_GUID Normal user.

EFI_USER_INFO_ACCESS_SETUP_RESTRICTED_GUID Restricted user.
UEFI Forum, Inc. March 2019 2090

UEFI Specification, Version 2.8 User Identification
 Related Definitions

#define EFI_USER_INFO_ACCESS_SETUP_ADMIN_GUID \

 { 0x85b75607, 0xf7ce, 0x471e, \

 { 0xb7, 0xe4, 0x2a, 0xea, 0x5f, 0x72, 0x32, 0xee } };

#define EFI_USER_INFO_ACCESS_SETUP_NORMAL_GUID \

 { 0x1db29ae0, 0x9dcb, 0x43bc, \

 { 0x8d, 0x87, 0x5d, 0xa1, 0x49, 0x64, 0xdd, 0xe2 } };

#define EFI_USER_INFO_ACCESS_SETUP_RESTRICTED_GUID \

 { 0xbdb38125, 0x4d63, 0x49f4, \

 { 0x82, 0x12, 0x61, 0xcf, 0x5a, 0x19, 0x0a, 0xf8 } };

36.4.1.7 EFI_USER_INFO_ACCESS_FORBID_CONNECT

Summary

Forbids UEFI drivers from being started from the specified device path(s) or any child device paths.

Prototype

#define EFI_USER_INFO_ACCESS_FORBID_CONNECT 0x00000007

Description

This record prohibits UEFI drivers from being started from the specified device path(s) or any of their
child device path(s). This is enforced in the ConnectController() function.

This record prohibits the user from loading a device driver associated with zero or more device paths or
their child paths.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition is overridden by the EFI_USER_INFO_ACCESS_PERMIT_CONNECT record.

36.4.1.8 EFI_USER_INFO_ACCESS_PERMIT_CONNECT

Summary

Permits UEFI drivers to be started on the specified device path(s) or any child device paths.

Prototype

#define EFI_USER_INFO_ACCESS_PERMIT_CONNECT 0x00000008

Description

This record allows loading of device drivers associated with zero or more device paths or their child
paths.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition overrides any restrictions put in place by the
EFI_USER_INFO_ACCESS_FORBID_CONNECT record.
UEFI Forum, Inc. March 2019 2091

UEFI Specification, Version 2.8 User Identification
36.4.1.9 EFI_USER_INFO_ACCESS_BOOT_ORDER

Summary

Modifies the boot order.

Prototype

#define EFI_USER_INFO_ACCESS_BOOT_ORDER 0x00000009

typedef UINT32 EFI_USER_INFO_ACCESS_BOOT_ORDER_HDR;

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_MASK 0x000F

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_INSERT 0x0000

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_APPEND 0x0001

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_REPLACE 0x0002

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_NODEFAULT 0x0010

Description

This exclusive record allows the user profile to insert new boot options at the beginning of the boot order
(EFI_USER_INFO_ACCESS_BOOT_ORDER_INSERT), append new boot options to the end of the boot
order (EFI_USER_INFO_ACCESS_BOOT_ORDER_APPEND) or replace the entire boot order
(EFI_USER_INFO_ACCESS_BOOT_ORDER_REPLACE). If
EFI_USER_INFO_ACCESS_BOOT_ORDER_NODEFAULT is specified then the Boot Manager will not
attempt find a default boot device when the default boot order is does not lead to a bootable device.

The boot options specified by this record are still subject to the permissions specified by
EFI_USER_INFO_ACCESS_FORBID_LOAD and EFI_USER_INFO_ACCESS_PERMIT_LOAD.

The record consists of a single EFI_USER_INFO_ACCESS_BOOT_ORDER_HDR followed by zero or more
UEFI device paths.

36.4.2 EFI_USER_INFO_CBEFF_RECORD

Summary

Provides standard biometric information in the format specified by the ISO 19785 (Common Biometric
Exchange Formats Framework) specification.

Prototype

#define EFI_USER_INFO_CBEFF_RECORD 0x0B

typedef VOID *EFI_USER_INFO_CBEFF;

36.4.3 EFI_USER_INFO_CREATE_DATE_RECORD

Summary

Provides the date and time when the user profile was created.
UEFI Forum, Inc. March 2019 2092

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_CREATE_DATE_RECORD 0x02

typedef EFI_TIME EFI_USER_INFO_CREATE_DATE;

Description

The optional record describing the date and time when the user profile was created. Type EFI_TIME is
defined in GetTime() in this specification.

36.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD

Summary

Specifies the credential provider.

Prototype

#define EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD 0x08

typedef EFI_GUID EFI_USER_INFO_CREDENTIAL_PROVIDER;

Description

This record specifies the credential provider via a unique GUID. The credential’s handle is found in the
EFI_USER_INFO structure associated with this user information record.

36.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD

Summary

Specifies the user-readable name of a particular credential’s provider.

Prototype

#define EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD 0x09

typedef CHAR16 *EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME;

Description

This record specifies the null-terminated name of a particular credential provider. The credential’s handle
is found in the EFI_USER_INFO structure associated with this user information record.

36.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD

Summary

Specifies the type of a particular credential associated with the user profile.
UEFI Forum, Inc. March 2019 2093

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_CREDENTIAL_TYPE_RECORD 0x06

typedef EFI_GUID EFI_USER_INFO_CREDENTIAL_TYPE;

Description

This record specifies the type of a particular credential. The credential’s identifier is found in the
Credential field of the EFI_USER_INFO structure. The credential types are listed with the
EFI_USER_CREDENTIAL2_PROTOCOL.

36.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD

Summary

Specifies the user-readable name of a particular credential type.

Prototype

#define EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD 0x07

typedef CHAR16 *EFI_USER_INFO_CREDENTIAL_TYPE_NAME;

Description

This record specifies the null-terminated name of a particular credential type. The credential’ handle is
found in the EFI_USER_INFO structure associated with this user information record

36.4.8 EFI_USER_INFO_GUID_RECORD

Summary

Provides placeholder for additional user profile information identified by a GUID.

Prototype

#define EFI_USER_INFO_GUID_RECORD 0xFF

typedef EFI_GUID EFI_USER_INFO_GUID;

Description

This record type provides extensibility by prefixing further data fields in the record with a GUID which
identifies the format.

36.4.9 EFI_USER_INFO_FAR_RECORD

Summary

Indicates how close of a match the fingerprint must be in order to be considered a match.
UEFI Forum, Inc. March 2019 2094

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_FAR_RECORD 0x0C

typedef UINT8 EFI_USER_INFO_FAR;

Description

This record specifies how accurate the fingerprint template match must be in order to be considered a
match, as a percentage from 0 (no match) to 100 (perfect match). The accuracy may be for all fingerprint
sensors (EFI_USER_INFO.Credential is zero) or for a particular fingerprint sensor
(EFI_USER_INFO.Credential is non-zero).

Access:

Exclusive:No

Modify:Only with user-enrollment permissions.

Visibility:Public

36.4.10 EFI_USER_INFO_IDENTIFIER_RECORD

Summary

Provides a unique non-volatile user identifier for each enrolled user.

Prototype

#define EFI_USER_INFO_IDENTIFIER_RECORD 0x05

typedef UINT8 EFI_USER_INFO_IDENTIFIER[16];

Description

The user identifier is unique to each enrolled user and non-volatile. Each user profile must have exactly
one of these user information records installed. The format of the value is not specified.

Access

Exclusive:Yes

Modify:Only with user-enrollment permissions.

Visibility:Public.

36.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD

Summary

Provides the expression which determines which credentials are required to assert user identity.
UEFI Forum, Inc. March 2019 2095

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_IDENTITY_POLICY_RECORD 0x0F

typedef struct {

 UINT32 Type;

 UINT32 Length;
} EFI_USER_INFO_IDENTITY_POLICY;

Parameters

Type

Specifies either an operator or a data item. See EFI_USER_INFO_IDENTITY_x in
“Related Definitions” below.

Length

The length of this block, in bytes, including this header.

Description

The user identity policy is an expression made up of operators and data items. If the expression evaluates
to TRUE, then this user profile can be selected as the current profile. If the expression evaluates to
FALSE, then this user profile cannot be selected as the current profile.

Data items are pushed onto an expression stack. Operators pop items off of the expression stack,
perform an operator and push the results back.

Note: If there is no user identity policy set for a user profile, then FALSE is assumed.

Access

Exclusive:Yes

Modify:Only with user-enrollment permissions.

Visibility:Public.

Related Definitions

#define EFI_USER_INFO_IDENTITY_FALSE 0x00

#define EFI_USER_INFO_IDENTITY_TRUE 0x01

#define EFI_USER_INFO_IDENTITY_CREDENTIAL_TYPE 0x02

#define EFI_USER_INFO_IDENTITY_CREDENTIAL_PROVIDER 0x03

#define EFI_USER_INFO_IDENTITY_NOT 0x10

#define EFI_USER_INFO_IDENTITY_AND 0x11

#define EFI_USER_INFO_IDENTITY_OR 0x12

Type Name Description

EFI_USER_INFO_IDENTITY_FALSE Push FALSE on to the expression stack.

EFI_USER_INFO_IDENTITY_TRUE Push TRUE on to the expression stack.
UEFI Forum, Inc. March 2019 2096

UEFI Specification, Version 2.8 User Identification
36.4.12 EFI_USER_INFO_NAME_RECORD

Summary

Provide the user’s name for the enrolled user.

Prototype

#define EFI_USER_INFO_NAME_RECORD 0x01

typedef CHAR16 *EFI_USER_INFO_NAME;

Description

The user’s name is a NULL-terminated string.

Access

Exclusive:Yes

Visibility:Public.

36.4.13 EFI_USER_INFO_PKCS11_RECORD

Summary

Provides PKCS#11 credential information from a smart card.

EFI_USER_INFO_IDENTITY_CREDENTIAL_-

TYPE

If a credential provider with the specified

class asserts the user’s identity, push TRUE.

Otherwise push FALSE. The

EFI_USER_INFO_IDENTITY_POLI
CY structure is followed immediately by a

GUID.

EFI_USER_INFO_IDENTITY_CREDEN-

TIAL_PROVIDER

If a credential provider with the specified
provider identifier asserts the user’s identity,

push TRUE. Otherwise, push FALSE. The

EFI_USER_INFO_IDENTITY_POLI
CY structure is followed immediately by a

GUID.

EFI_USER_INFO_IDENTITY_NOT Pop a boolean off the stack. If TRUE, then

push FALSE. If FALSE, then push TRUE.

EFI_USER_INFO_IDENTITY_AND Pop two Booleans off the stack. If both are

TRUE, then push TRUE. Otherwise push
FALSE.

EFI_USER_INFO_IDENTITY_OR Pop two Booleans off the stack. If either is

TRUE, then push TRUE. Otherwise push

FALSE.
UEFI Forum, Inc. March 2019 2097

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_PKCS11_RECORD 0x0A

36.4.14 EFI_USER_INFO_RETRY_RECORD

Summary

Indicates how many attempts the user has to with a particular credential before the system prevents
further attempts.

Prototype

#define EFI_USER_INFO_RETRY_RECORD 0x0D

typedef UINT8 EFI_USER_INFO_RETRY;

Description

This record indicates the number of times the user may fail identification with all credential providers
(EFI_USER_INFO.Credential is zero) or a particular credential provider
(EFI_USER_INFO.Credential is non-zero).

Access:

Exclusive:No

Modify:Only with user-enrollment permissions.

Visibility:Public

36.4.15 EFI_USER_INFO_USAGE_DATE_RECORD

Summary

Provides the date and time when the user profile was selected.

Prototype

#define EFI_USER_INFO_USAGE_DATE_RECORD 0x03

typedef EFI_TIME EFI_USER_INFO_USAGE_DATE;

Description

The optional record describing the date and time when the user profile was last selected. Type
EFI_TIME is defined in GetTime() in this specification.

36.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD

Summary

Provides the number of times that the user profile has been selected.
UEFI Forum, Inc. March 2019 2098

UEFI Specification, Version 2.8 User Identification
Prototype

#define EFI_USER_INFO_USAGE_COUNT 0x04

typedef UINT64 EFI_USER_INFO_USAGE_COUNT;

Description

The optional record describing the number of times that the user profile was selected.

36.5 User Information Table

Summary

A collection of EFI_USER_INFO records, prefixed with this header.

Prototype

typedef struct {

 UINT64 Size;
} EFI_USER_INFO_TABLE;

Members

Size

Total size of the user information table, in bytes.

Description

This header is followed by a series of records. Each record is prefixed by the EFI_USER_INFO structure.
The total size of this header and all records is equal to Size.
UEFI Forum, Inc. March 2019 2099

UEFI Specification, Version 2.8
37 - Secure Technologies

37.1 Hash Overview

For the purposes of this specification, a hash function takes a variable length input and generates a fixed
length hash value. In general, hash functions are collision-resistant, which means that it is infeasible to
find two distinct inputs which produce the same hash value. Hash functions are generally one-way which
means that it is infeasible to find an input based on the output hash value.

This specification describes a protocol which allows a driver to produce a protocol which supports zero or
more hash functions.

37.1.1 Hash References

The following references define the standard means of creating the hashes used in this specification:

Secure Hash Standard (SHS) (FIPS PUB 180-3), National Institute of Standards and Technology (October
2008).

For more information

• see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Archived FIPS
publication”.

• see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ MD5
Message-Digest Algorithm”. EFI Hash Protocols

EFI_HASH_SERVICE_BINDING_PROTOCOL

Summary

The EFI Hash Service Binding Protocol is used to locate hashing services support provided by a driver and
create and destroy instances of the EFI Hash Protocol so that a multiple drivers can use the underlying
hashing services.

The EFI Service Binding Protocol that is defined in Section 2.5.8 defines the generic Service Binding
Protocol functions. This section discusses the details that are specific to the EFI Hash Protocol.

GUID

#define EFI_HASH_SERVICE_BINDING_PROTOCOL_GUID \

 {0x42881c98,0xa4f3,0x44b0,\

 {0xa3,0x9d,0xdf,0xa1,0x86,0x67,0xd8,0xcd}}

Description

An application (or driver) that requires hashing services can use one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search for devices that publish an EFI Hash Service Binding
Protocol.

After a successful call to the EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()function, the
child EFI Hash Protocol driver instance is ready for use. The instance of EFI_HASH_PROTOCOL must be
UEFI Forum, Inc. March 2019 2100

UEFI Specification, Version 2.8 Secure Technologies
obtained by performing HandleProtocol() against the handle returned by CreateChild(). Use of
other methods, such as LocateHandle(), are not supported.

Once obtained, the driver may use the EFI_HASH_PROTOCOL instance for any number of non-
overlapping hash operations. Overlapping hash operations require an additional call to
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild() for a new instance.

Before a driver or application terminates execution, every successful call to the
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_HASH_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_HASH_PROTOCOL

Summary

This protocol describes standard hashing functions.

GUID

#define EFI_HASH_PROTOCOL_GUID \

 {0xc5184932,0xdba5,0x46db,\

 {0xa5,0xba,0xcc,0x0b,0xda,0x9c,0x14,0x35}}

Protocol Interface Structure

typedef _EFI_HASH_PROTOCOL {

 EFI_HASH_GET_HASH_SIZE GetHashSize;

 EFI_HASH_HASH Hash;

} EFI_HASH_PROTOCOL;

Parameters

GetHashSize Return the size of a specific type of resulting hash.
Hash Create a hash for the specified message.

Description

This protocol allows creating a hash of an arbitrary message digest using one or more hash algorithms.
The GetHashSize returns the expected size of the hash for a particular algorithm and whether or not
that algorithm is, in fact, supported. The Hash actually creates a hash using the specified algorithm.

Related Definitions

None.

EFI_HASH_PROTOCOL.GetHashSize()

Summary

Returns the size of the hash which results from a specific algorithm.
UEFI Forum, Inc. March 2019 2101

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

GetHashSize(

 IN CONST EFI_HASH_PROTOCOL *This,

 IN CONST EFI_GUID *HashAlgorithm,

 OUT UINTN *HashSize
);

Parameters

This Points to this instance of EFI_HASH_PROTOCOL.
HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.

See Section 37.1.2.1.
HashSize Holds the returned size of the algorithm’s hash.

Description

This function returns the size of the hash which will be produced by the specified algorithm.

Related Definitions

None

Status Codes Returned

EFI_HASH_PROTOCOL.Hash()

Summary

Creates a hash for the specified message text.

EFI_SUCCESS Hash size returned successfully.

EFI_INVALID_PARAMETER HashSize is NULL or HashAlgorithm is NULL.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this

driver.
UEFI Forum, Inc. March 2019 2102

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

Hash(

 IN CONST EFI_HASH_PROTOCOL *This,

 IN CONST EFI_GUID *HashAlgorithm,

 IN BOOLEAN Extend,

 IN CONST UINT8 *Message,

 IN UINT64 MessageSize,

 IN OUT EFI_HASH_OUTPUT *Hash
);

Parameters

This Points to this instance of EFI_HASH_PROTOCOL.
HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.

See Section 37.1.2.1.
Extend Specifies whether to create a new hash (FALSE) or extend the

specified existing hash (TRUE).
Message Points to the start of the message.
MessageSize The size of Message, in bytes. Must be integer multiple of

block size.
Hash On input, if Extend is TRUE, then this parameter holds a

pointer to a pointer to an array containing the hash to extend.
If Extend is FALSE, then this parameter holds a pointer to a
pointer to a caller-allocated array that will receive the result of
the hash computation. On output (regardless of the value of
Extend), the array will contain the result of the hash
computation.

Description

This function creates the hash of the specified message text based on the specified algorithm
HashAlgorithm and copies the result to the caller-provided buffer Hash. If Extend is TRUE, then the
hash specified on input by Hash is extended. If Extend is FALSE, then the starting hash value will be that
specified by the algorithm.

Note: For the all algorithms used with EFI_HASH_PROTOCOL, the following apply:

• The EFI_HASH_PROTOCOL.Hash() function does not perform padding of message data for
these algorithms. Hence, MessageSize shall always be an integer multiple of the
HashAlgorithm block size, and the final supplied Message in a sequence of invocations
shall contain caller-provided padding. This will ensure that the final Hash output will be the
correct hash of the provided message(s).

• The result of a Hash() call for one of these algorithms when the caller does not supply
message data whose length is an integer multiple of the algorithm’s block size is a returned
error.
UEFI Forum, Inc. March 2019 2103

UEFI Specification, Version 2.8 Secure Technologies
• The EFI_HASH_OUTPUT options for these two algorithms shall be EFI_SHA1_HASH and
EFI_SHA256_HASH, respectively.

• Callers using these algorithms may consult the aforementioned Secure Hash Standard for
details on how to perform proper padding required by standard prior to final invocation.

Related Definitions

EFI_HASH_OUTPUT

Status Codes Returned

37.1.2 Other Code Definitions

EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH, EFI_SHA384_HASH,
EFI_SHA512HASH, EFI_MD5_HASH

Summary

Data structure which holds the result of the hash.

Prototype

typedef UINT8 EFI_MD5_HASH[16];

typedef UINT8 EFI_SHA1_HASH[20];

typedef UINT8 EFI_SHA224_HASH[28];

typedef UINT8 EFI_SHA256_HASH[32];

typedef UINT8 EFI_SHA384_HASH[48];

typedef UINT8 EFI_SHA512_HASH[64];

typedef union _EFI_HASH_OUTPUT {

 EFI_MD5_HASH *Md5Hash;

 EFI_SHA1_HASH *Sha1Hash;

 EFI_SHA224_HASH *Sha224Hash;

 EFI_SHA256_HASH *Sha256Hash;

 EFI_SHA384_HASH *Sha384Hash;

 EFI_SHA512_HASH *Sha512Hash;
 } EFI_HASH_OUTPUT;

Description

These prototypes describe the expected hash output values from the Hash function of the
EFI_HASH_PROTOCOL.

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER Message or Hash,HashAlgorithm i s NULL or

MessageSize is 0. MessageSize is not an integer multiple of

block size.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this

driver. Includes HashAlgorithm being passed as a null error.

EFI_UNSUPPORTED Extend is TRUE and the algorithm doesn’t support extending the

hash.
UEFI Forum, Inc. March 2019 2104

UEFI Specification, Version 2.8 Secure Technologies
Related Definitions

None

37.1.2.1 EFI Hash Algorithms

The following table gives the EFI_GUID for standard hash algorithms and the corresponding ASN.1 OID
(Object Identifier):

Note: Use of the following algorithms with EFI_HASH_PROTOCOL is deprecated.

• EFI_HASH_ALGORITHM_SHA1_GUID

• EFI_HASH_ALGORITHM_SHA224_GUID

• EFI_HASH_ALGORITHM_SHA256_GUID

• EFI_HASH_ALGORITHM_SHA384_GUID

• EFI_HASH_ALGORITHM_SHA512_GUID

• EFI_HASH_ALGORTIHM_MD5_GUID

Table 28. EFI Hash Algorithms

Note: For the EFI_HASH_ALGORITHM_SHA1_NOPAD_GUID and the
EFI_HASH_ALGORITHM_SHA256_NOPAD_GUID, the following apply:

• The EFI_HASH_PROTOCOL.Hash() function does not perform padding of message data
for these algorithms. Hence, MessageSize shall always be an integer multiple of the
HashAlgorithm block size, and the final supplied Message in a sequence of invocations
shall contain caller-provided padding. This will ensure that the final Hash output will be the
correct hash of the provided message(s).

• The result of a Hash() call for one of these algorithms when the caller does not supply
message data whose length is an integer multiple of the algorithm’s block size is undefined.

• The EFI_HASH_OUTPUT options for these two algorithms shall be EFI_SHA1_HASH and
EFI_SHA256_HASH, respectively.

Algorithm EFI_GUID OID

SHA-1 (No
padding done by
implementation)

#define
EFI_HASH_ALGORITHM_SHA1_NOPAD_GU
ID {0x24c5dc2f, 0x53e2, 0x40ca,
{0x9e, 0xd6, 0xa5, 0xd9, 0xa4,
0x9f, 0x46, 0x3b}}

id-sha1 OBJECT IDENTIFIER
::= { iso(1) identified-
organization(3) oiw(14)
secsig(3) algorithms(2) 26
}

SHA-256 (No
padding done by
implementation)

#define
EFI_HASH_ALGORITHM_SHA256_NOPAD_
GUID {0x8628752a, 0x6cb7,
0x4814,
{0x96, 0xfc, 0x24, 0xa8, 0x15,
0xac, 0x22, 0x26}}

id-sha256 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2) country (16)
us (840) organization (1)
gov (101) csor (3)
nistalgorithm (4) hashalgs
(2) 1}
UEFI Forum, Inc. March 2019 2105

UEFI Specification, Version 2.8 Secure Technologies
• Callers using these algorithms may consult the aforementioned Secure Hash Standard for
details on how to perform proper padding.

37.2 Hash2 Protocols

37.2.1 EFI Hash2 Service Binding Protocol

EFI_HASH2_SERVICE_BINDING_PROTOCOL

Summary

The EFI Hash2 Service Binding Protocol is used to locate EFI_HASH2_PROTOCOL hashing services
support provided by a driver and create and destroy instances of the EFI_HASH2_PROTOCOL Protocol so
that a multiple drivers can use the underlying hashing services.

The EFI Service Binding Protocol that is defined in Section 2.5.8 defines the generic Service Binding
Protocol functions. This section discusses the details that are specific to the EFI Hash Protocol.

GUID

#define EFI_HASH2_SERVICE_BINDING_PROTOCOL_GUID \

{0xda836f8d, 0x217f, 0x4ca0, 0x99, 0xc2, 0x1c, \

0xa4, 0xe1, 0x60, 0x77, 0xea}

Description

An application (or driver) that requires hashing services can use one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI_HASH2_SERVICE_BINDING_PROTOCOL.

After a successful call to the EFI_HASH2_SERVICE_BINDING_PROTOCOL member
CreateChild()function, the child instance of EFI_HASH2_PROTOCOL Protocol driver instance is ready
for use. The instance of EFI_HASH2_PROTOCOL must be obtained by performing HandleProtocol()
against the handle returned by CreateChild(). Use of other methods, such as LocateHandle() is
not supported.

Once obtained, the driver may use the EFI_HASH2_PROTOCOL instance for any number of non-
overlapping hash operations. Overlapping hash operations require an additional call to
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()for a new instance.

Before a driver or application using the instance terminates execution, every successful call to the

EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()function must be matched with a

call to the EFI_HASH_SERVICE_BINDING_PROTOCOL.DestroyChild() function.
UEFI Forum, Inc. March 2019 2106

UEFI Specification, Version 2.8 Secure Technologies
37.2.2 EFI Hash2 Protocol

EFI_HASH2_PROTOCOL

Summary

This protocol describes hashing functions for which the algorithm-required message padding and
finalization are performed by the supporting driver. In previous versions of the specification, the
algorithms supported by EFI_HASH2_PROTOCOL were also available for use with EFI_HASH_PROTOCOL
but this usage has been deprecated.

GUID

#define EFI_HASH2_PROTOCOL_GUID \

 {

 0x55b1d734, 0xc5e1, 0x49db, 0x96, 0x47, 0xb1, 0x6a, \

 0xfb, 0xe, 0x30, 0x5b}

Protocol Interface Structure

typedef _EFI_HASH2_PROTOCOL {

 EFI_HASH2_GET_HASH_SIZE GetHashSize;

 EFI_HASH2_HASH Hash;

 EFI_HASH2_HASH_INIT HashInit;

 EFI_HASH2_HASH_UPDATE HashUpdate;

 EFI_HASH2_HASH_FINAL HashFinal;
} EFI_HASH2_PROTOCOL;

Parameters

GetHashSize Return the result size of a specific type of resulting hash.
Hash Create a final non-extendable hash for a single message block

in a single call.
HashInit Initializes an extendable multi-part hash calculation
HashUpdate Continues a hash in progress by supplying the first or next

sequential portion of the message text
HashFinal Finalizes a hash in progress by padding as required by

algorithm and returning the hash output.

Description

This protocol allows creating a hash of an arbitrary message digest using one or more hash algorithms.
The GetHashSize() function returns the expected size of the hash for a supported algorithm and an
error if that algorithm is not supported. The Hash() function creates a final, non-extendable, hash of a
single message block using the specified algorithm. The three functions HashInit(), HashUpdate(),
HashFinal(), generates the hash of a multi-part message, with input composed of one or more
message pieces.

For a specific handle representing an instance of EFI_HASH2_PROTOCOL, if Hash() is called after a call
to HashInit() and prior to the matching call to HashFinal(), the multi-part hash started by
UEFI Forum, Inc. March 2019 2107

UEFI Specification, Version 2.8 Secure Technologies
HashInit() will be canceled and calls to HashUpdate() or HashFinal() will return an error status
unless proceeded by a new call to HashInit().

Note: Algorithms EFI_HASH_ALGORITHM_SHA1_NOPAD and
EFI_HASH_ALGORITHM_SHA256_NOPAD_GUID are not compatible with
EFI_HASH2_PROTOCOL and will return EFI_UNSUPPORTED if used with any
EFI_HASH2_PROTOCOL function.

Related Definitions

None

Note: The following hash function invocations will produce identical hash results for all supported
EFI_HASH2_PROTOCOL algorithms. The data in quotes is the message.

Table 29. Identical hash results

Hash(“ABCDEF”) HashInit() HashInit ()

HashUpdate(“ABCDEF”) HashUpdate (“ABC”)

HashFinal() HashUpdate (“DE”)

HashUpdate (“F”)

HashFinal ()
UEFI Forum, Inc. March 2019 2108

UEFI Specification, Version 2.8 Secure Technologies
Figure 66. Hash workflow

START

Single
Message

Block?

Hash()

HashInit()

HashUpdate()

HashFinal()

More
Message
Blocks?

RESULT

Single Block Multiple Blocks
UEFI Forum, Inc. March 2019 2109

UEFI Specification, Version 2.8 Secure Technologies
EFI_HASH2_PROTOCOL.GetHashSize()

Summary

Returns the size of the hash which results from a specific algorithm.

Prototype

EFI_STATUS

EFIAPI

GetHashSize(

 IN CONST EFI_HASH2_PROTOCOL *This,

 IN CONST EFI_GUID *HashAlgorithm,

 OUT UINTN *HashSize
);

Parameters

This Points to this instance of EFI_HASH2_PROTOCOL.
HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.

See Section 37.2.3
HashSize Holds the returned size of the algorithm’s hash.

Description

This function returns the size of the hash result buffer which will be produced by the specified algorithm.

Related Definitions

None

Status Codes Returned

EFI_HASH2_PROTOCOL.Hash()

Summary

Creates a hash for a single message text. The hash is not extendable. The output is final with any
algorithm-required padding added by the function.

EFI_SUCCESS Hash size returned successfully.

EFI_INVALID_PARAMETER This or HashSize is NULL

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by

this driver or, HashAlgorithm is null.
UEFI Forum, Inc. March 2019 2110

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

Hash(

 IN CONST EFI_HASH2_PROTOCOL *This,

 IN CONST EFI_GUID *HashAlgorithm,

 IN CONST UINT8 *Message,

 IN UINTN MessageSize,

 IN OUT EFI_HASH2_OUTPUT *Hash
);

Parameters

This Points to this instance of EFI_HASH2_PROTOCOL.
HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.

See Table 30.
Message Points to the start of the message.
MessageSize The size of Message, in bytes.
Hash On input, points to a caller-allocated buffer of the size

returned by GetHashSize() for the specified HashAlgorithm.
On output, the buffer holds the resulting hash computed from
the message.

Description

This function creates the hash of specified single block message text based on the specified algorithm
HashAlgorithm and copies the result to the caller-provided buffer Hash. The resulting hash cannot be
extended. All padding required by HashAlgorithm is added by the implementation.

Related Definitions

EFI_HASH2_OUTPUT

Status Codes Returned

EFI_HASH2_PROTOCOL.HashInit()

Summary

This function must be called to initialize a digest calculation to be subsequently performed using the
EFI_HASH2_PROTOCOL functions HashUpdate() and HashFinal().

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER This, or Hash is NULL..

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this

driver or HashAlgorithm is Null.

EFI_OUT_OF_RESOURCES Some resource required by the function is not available or

MessageSize is greater than platform maximum.
UEFI Forum, Inc. March 2019 2111

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

HashInit(

 IN CONST EFI_HASH2_PROTOCOL *This,

 IN CONST EFI_GUID *HashAlgorithm,
);

Parameters

This Points to instance of EFI_HASH2_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Table 30

Description

This function

Related Definitions

Status Codes Returned

EFI_HASH2_PROTOCOL.HashUpdate()

Summary

Updates the hash of a computation in progress by adding a message text.

EFI_SUCCESS Initialized successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this

function or HashAlgorithm is Null.

EFI_OUT_OF_RESOURCES Process failed due to lack of required resource.

EFI_ALREADY_STARTED This function is called when the operation in progress is still in processing

Hash(), or HashInit() is already called before and not

terminated by HashFinal() yet on the same instance.
UEFI Forum, Inc. March 2019 2112

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

HashUpdate(

 IN CONST EFI_HASH2_PROTOCOL *This,

 IN CONST UINT8 *Message,

 IN UINTN MessageSize
);

Parameters

This Points to instance of EFI_HASH2_PROTOCOL.
Message Points to the start of the message.
MessageSize The size of Message, in bytes.

Description

This function extends the hash of ongoing hash operation with the supplied message text. This function
should be called one or more times with portions of the total message text to be hashed.. A zero-length
message input will return EFI_SUCCESS and has no impacts on the ongoing hash instance.

Related Definitions

Status Codes Returned

EFI_HASH2_PROTOCOL.HashFinal()

Summary

Finalizes a hash operation in progress and returns calculation result. The output is final with any
necessary padding added by the function. The hash may not be further updated or extended after
HashFinal().

EFI_SUCCESS Digest in progress updated successfully.

EFI_INVALID_PARAMETER This or Hash is NULL.

EFI_OUT_OF_RESOURCES Some resource required by the function is not available or

MessageSize is greater than platform maximum.

EFI_NOT_READY This call was not preceded by a valid call to HashInit(), or the

operation in progress was terminated by a call to Hash() or
HashFinal()on the same instance.
UEFI Forum, Inc. March 2019 2113

UEFI Specification, Version 2.8 Secure Technologies
Prototype

EFI_STATUS

EFIAPI

HashFinal(

 IN CONST EFI_HASH2_PROTOCOL *This,

 IN OUT EFI_HASH2_OUTPUT *Hash
);

Parameters

This Points to instance of EFI_HASH2_PROTOCOL.
Hash On input, points to a caller-allocated buffer of the size

returned by GetHashSize() for the specified HashAlgorithm
specified in preceding HashInit(). On output, the buffer
holds the resulting hash computed from the message.

Description

This function finalizes the hash of a hash operation in progress. The resulting final hash cannot be
extended.

Related Definitions

EFI_HASH2_OUTPUT

Status Codes Returned

Table 30. Algorithms that may be used with EFI_HASH2_PROTOCOL

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER This or Hash is NULL

EFI_NOT_READY This call was not preceded by a valid call to HashInit()and at least

one call to HashUpdate(), or the operation in progress was

canceled by a call to Hash()on the same instance.

EFI_GUID OID

SHA-1 #define
EFI_HASH_ALGORITHM_SHA1_GUID
{0x2ae9d80f, 0x3fb2, 0x4095,
{ 0xb7, 0xb1, 0xe9, 0x31,
0x57, 0xb9, 0x46, 0xb6}}

id-sha1 OBJECT IDENTIFIER
::= { iso(1) identified-
organization(3) oiw(14)
secsig(3) algorithms(2)
26
}

UEFI Forum, Inc. March 2019 2114

UEFI Specification, Version 2.8 Secure Technologies
SHA-224 #define
EFI_HASH_ALGORITHM_SHA224_GUI D
{ 0x8df01a06, 0x9bd5,
0x4bf7, { 0xb0, 0x21, 0xdb,
0x4f, 0xd9, 0xcc, 0xf4, 0x5b
} }

SHA-256 #define
EFI_HASH_ALGORITHM_SHA256_GUI D
{ 0x51aa59de, 0xfdf2,
0x4ea3, { 0xbc, 0x63, 0x87,
0x5f, 0xb7, 0x84, 0x2e, 0xe9
} }

id-sha256 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov
(101)
csor (3) nistalgorithm
(4) hashalgs (2) 1}

SHA-384 #define
EFI_HASH_ALGORITHM_SHA384_GUI D
{ 0xefa96432, 0xde33,
0x4dd2, { 0xae, 0xe6, 0x32,
0x8c, 0x33, 0xdf, 0x77, 0x7a
} }

id-sha384 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov (101)
csor (3) nistalgorithm
(4) hashalgs (2) 2}

SHA-512 #define
EFI_HASH_ALGORITHM_SHA512_GUI D
{ 0xcaa4381e, 0x750c,
0x4770, { 0xb8, 0x70, 0x7a,
0x23, 0xb4, 0xe4, 0x21, 0x30
} }

id-sha512 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov
(101)
csor (3) nistalgorithm
(4) hashalgs (2) 3}

MD5 #define
EFI_HASH_ALGORTIHM_MD5_GUID {
0xaf7c79c, 0x65b5, 0x4319, {
0xb0, 0xae, 0x44, 0xec, 0x48,
0x4e, 0x4a, 0xd7 } }

id-md5 OBJECT IDENTIFIER
::= {
iso (1) member-body (2) us
(840) rsadsi (113549)
digestAlgorithm (2) 5}

EFI_GUID OID
UEFI Forum, Inc. March 2019 2115

UEFI Specification, Version 2.8 Secure Technologies
Note: SHA-1 and MD5 are included for backwards compatibility. New driver implementations are
encouraged to consider stronger algorithms.

37.2.3 Other Code Definitions

EFI_HASH2_OUTPUT

Summary

Data structure which holds the result of the hash operation from EFI_HASH2_PROTOCOL hash
operations.

Prototype

typedef UINT8 EFI_MD5_HASH2[16];

typedef UINT8 EFI_SHA1_HASH2[20];

typedef UINT8 EFI_SHA224_HASH2[28];

typedef UINT8 EFI_SHA256_HASH2[32];

typedef UINT8 EFI_SHA384_HASH2[48];

typedef UINT8 EFI_SHA512_HASH2[64];

typedef union _EFI_HASH2_OUTPUT {

 EFI_MD5_HASH2 Md5Hash;

 EFI_SHA1_HASH2 Sha1Hash;

 EFI_SHA224_HASH2 Sha224Hash;

 EFI_SHA256_HASH2 Sha256Hash;

 EFI_SHA384_HASH2 Sha384Hash;

 EFI_SHA512_HASH2 Sha512Hash;
 } EFI_HASH2_OUTPUT;

Description

These prototypes describe the expected hash output values from the hashing functions of the
EFI_HASH2_PROTOCOL.

Related Definitions

None

37.3 Key Management Service

EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL

Summary

The Key Management Service (KMS) protocol provides services to generate, store, retrieve, and manage
cryptographic keys. The intention is to specify a simple generic protocol that could be used for many
implementations.

The management keys have a simple construct – they consist of key identifier and key data, both of
variable size.
UEFI Forum, Inc. March 2019 2116

UEFI Specification, Version 2.8 Secure Technologies
A driver implementing the protocol may need to provide basic key service that consists of a key store and
cryptographic key generation capability. It may connect to an external key server over the network, or to
a Hardware Security Module (HSM) attached to the system it runs on, or anything else that is capable of
providing the key management service.

Authentication and access control is not addressed by this protocol. It is assumed it is addressed at the
system level and done by the driver implementing the protocol, if applicable to the implementation.

GUID

#define EFI_KMS_PROTOCOL_GUID \

 {0xEC3A978D,0x7C4E, 0x48FA,\

 {0x9A,0xBE,0x6A,0xD9,0x1C,0xC8,0xF8,0x11}}

Protocol Interface Structure

#define EFI_KMS_DATA_TYPE_NONE 0

#define EFI_KMS_DATA_TYPE_BINARY 1

#define EFI_KMS_DATA_TYPE_ASCII 2

#define EFI_KMS_DATA_TYPE_UNICODE 4

#define EFI_KMS_DATA_TYPE_UTF8 8

Where appropriate, EFI_KMS_DATA_TYPE values may be combined using a bitwise ‘OR’ operation to
indicate support for multiple data types.
UEFI Forum, Inc. March 2019 2117

UEFI Specification, Version 2.8 Secure Technologies
typedef struct _EFI_KMS_SERVICE_PROTOCOL {

 EFI_KMS_GET_SERVICE_STATUS GetServiceStatus;

 EFI_KMS_REGISTER_CLIENT RegisterClient;

 EFI_KMS_CREATE_KEY CreateKey;

 EFI_KMS_GET_KEY GetKey;

 EFI_KMS_ADD_KEY AddKey;

 EFI_KMS_DELETE_KEY DeleteKey;

 EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes;

 EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes;

 EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes;

 EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes;

 UINT32 ProtocolVersion;

 EFI_GUID ServiceId;

 CHAR16 *ServiceName;

 UINT32 ServiceVersion;

 BOOLEAN ServiceAvailable;

 BOOLEAN ClientIdSupported;

 BOOLEAN ClientIdRequired;

 UINT16 ClientIdMaxSize;

 UINT8 ClientNameStringTypes;

 BOOLEAN ClientNameRequired;

 UINT16 ClientNameMaxCount;

 BOOLEAN ClientDataSupported;

 UINTN ClientDataMaxSize;

 BOOLEAN KeyIdVariableLenSupported;

 UINTN KeyIdMaxSize;

 UINTN KeyFormatsCount;

 EFI_GUID *KeyFormats;

 BOOLEAN KeyAttributesSupported;

 UINT8 KeyAttributeIdStringTypes;

 UINT16 KeyAttributeIdMaxCount;

 UINTN KeyAttributesCount;

 EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;

} EFI_KMS_PROTOCOL;

Parameters

GetServiceStatus Get the current status of the key management service. If the
implementation has not yet connected to the KMS, then a call
to this function will initiate a connection. This is the only
function that is valid for use prior to the service being marked
available.

RegisterClient Register a specific client with the KMS.
CreateKey Request the generation of a new key and retrieve it.
GetKey Retrieve an existing key.
UEFI Forum, Inc. March 2019 2118

UEFI Specification, Version 2.8 Secure Technologies
AddKey Add a local key to the KMS database. If there is an existing key
with this key identifier in the KMS database, it will be replaced
with the new key.

DeleteKey Delete an existing key from the KMS database.
AddKeyAttributes Add attributes to an existing key in the KMS database.
GetKeyAttributes Get attributes for an existing key in the KMS database.
DeleteKeyAttributesDelete attributes for an existing key in the KMS database.
GetKeyByAttributesGet existing key(s) with the specified attributes.
ProtocolVersion The version of this EFI_KMS_PROTOCOL structure. This must be

set to 0x00020040 for the initial version of this protocol.
ServiceId Optional GUID used to identify a specific KMS. This GUID may

be supplied by the provider, by the implementation, or may
be null. If it is null, then the ServiceName must not be null.

ServiceName Optional pointer to a unicode string which may be used to
identify the KMS or provide other information about the
supplier.

ServiceVersion Optional 32-bit value which may be used to indicate the
version of the KMS provided by the supplier.

ServiceAvailable TRUE if and only if the service is active and available for use.
To avoid unnecessary delays in POST, this protocol may be
installed without connecting to the service. In this case, the
first call to the GetServiceStatus() function will cause the
implementation to connect to the supported service and mark
it as available. The capabilities of this service as defined in the
remainder of this protocol are not guaranteed to be valid until
the service has been marked available.
FALSE otherwise.

ClientIdSupported TRUE if and only if the service supports client identifiers. Client
identifiers may be used for auditing, access control or any
other purpose specific to the implementation.
FALSE otherwise.

ClientIdRequired TRUE if and only if the service requires a client identifier in
order to process key requests.
FALSE otherwise.

ClientIdMaxSize The maximum size in bytes for the client identifier.
ClientNameStringTypes

The client name string type(s) supported by the KMS service.
If client names are not supported, this field will be set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it will be set to the
inclusive ‘OR’ of all client name formats supported. Client
names may be used for auditing, access control or any other
purpose specific to the implementation.

ClientNameRequiredTRUE if and only if the KMS service requires a client name to
be supplied to the service.
FALSE otherwise.
UEFI Forum, Inc. March 2019 2119

UEFI Specification, Version 2.8 Secure Technologies
ClientNameMaxCountThe maximum number of characters allowed for the client
name.

ClientDataSupported

TRUE if and only if the service supports arbitrary client data
requests. The use of client data requires the caller to have
specific knowledge of the individual KMS service and should
be used only if absolutely necessary.
FALSE otherwise.

ClientDataMaxSize The maximum size in bytes for the client data. If the maximum
data size is not specified by the KMS or it is not known, then
this field must be filled with all ones.

KeyIdVariableLenSupported

TRUE if variable length key identifiers are
supported. 
FALSE if a fixed length key identifier is
supported.

KeyIdMaxLen If KeyIdVariableLenSupported is TRUE, this is the
maximum supported key identifier length in bytes.
Otherwise this is the fixed length of key
identifier supported. Key ids shorter than the
fixed length will be padded on the right with
blanks.

KeyFormatsCount The number of key format/size GUIDs returned in the
KeyFormats field.

KeyFormats A pointer to an array of EFI_GUID values which specify key
formats/sizes supported by this KMS. Each format/size pair
will be specified by a separate EFI_GUID. At least one key
format/size must be supported. All formats/sizes with the
same hashing algorithm must be contiguous in the array, and
for each hashing algorithm, the key sizes must be in ascending
order. See “Related Definitions” for GUIDs which
identify supported key formats/sizes.

‘This list of GUIDs supported by the KMS is not
required to be exhaustive, and the KMS may provide
support for additional key formats/sizes. Users may
request key information using an arbitrary GUID,
but any GUID not recognized by the implementation
or not supported by the KMS will return an error
code of EFI_UNSUPPORTED.

KeyAttributesSupported

TRUE if key attributes are supported. 
FALSE if key attributes are not supported.

KeyAttributeIdStringTypes
The key attribute identifier string type(s) supported by the
KMS service. If key attributes are not supported, this field will
be set to EFI_KMS_DATA_TYPE_NONE. Otherwise, it will be set
to the inclusive ‘OR’ of all key attribute identifier string types
UEFI Forum, Inc. March 2019 2120

UEFI Specification, Version 2.8 Secure Technologies
supported. EFI_KMS_DATA_TYPE_BINARY is not valid for this
field.

KeyAttributeIdMaxCount

The maximum number of characters allowed for the client
name.

KeyAttributesCountThe number of predefined KeyAttributes structures
returned in the KeyAttributes parameter. If the KMS does
not support predefined key attributes, or if it does not provide
a method to obtain predefined key attributes data, then this
field must be zero.

KeyAttributes A pointer to an array of KeyAttributes structures which
contains the predefined attributes supported by this KMS.
Each structure must contain a valid key attribute identifier and
should provide any other information as appropriate for the
attribute, including a default value if one exists. This variable
must be set to NULL if the KeyAttributesCount variable is
zero. It must point to a valid buffer if the
KeyAttributesCount variable is non-zero.
This list of predefined attributes is not required to be
exhaustive, and the KMS may provide additional predefined
attributes not enumerated in this list. The implementation
does not distinguish between predefined and used defined
attributes, and therefore, predefined attributes not
enumerated will still be processed to the KMS.

Related Definitions

Functions defined for this protocol typically require the caller to provide information about the client, the
keys to be processed, and/or attributes of the keys to be processed. Four structures,
EFI_KMS_CLIENT_INFO, EFI_KMS_KEY_DESCRIPTOR, EFI_KMS_DYNAMIC_ATTRIBUTE, and
EFI_KMS_KEY_ATTRIBUTE define the information to be passed to these functions.

typedef struct {

 UINT16 ClientIdSize;

 VOID *ClientId;

 UINT8 ClientNameType;

 UINT8 ClientNameCount;

 VOID *ClientName;
} EFI_KMS_CLIENT_INFO;

ClientIdSize The size in bytes for the client identifier.
ClientId Pointer to a valid client identifier.
ClientNameType The client name string type used by this client. The string type

set here must be one of the string types reported in the
ClientNameStringTypes field of the KMS protocol. If the
KMS does not support client names, this field should be set to
EFI_KMS_DATA_TYPE_NONE.
UEFI Forum, Inc. March 2019 2121

UEFI Specification, Version 2.8 Secure Technologies
ClientNameCount The size in characters for the client name. This field will be
ignored if ClientNameStringType is set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it must contain
number of characters contained in the ClientName field.

ClientName Pointer to a client name. This field will be ignored if
ClientNameStringType is set to EFI_KMS_DATA_TYPE_NONE.
Otherwise, it must point to a valid string of the specified type.

The key formats recognized by the KMS protocol are defined by an EFI_GUID which
specifies a (key-algorithm, key-size) pair. The names of these GUIDs are in the format
EFI_KMS_KEY_(key-algorithm)_(key-size)_GUID, where the key-size is expressed in
bits. The key formats recognized fall into three categories, generic (no algorithm), hash
algorithms, and encrypted algorithms.

Generic Key Data:

The following GUIDs define formats that contain generic key data of a specific size in bits, but which
is not associated with any specific key algorithm(s).
UEFI Forum, Inc. March 2019 2122

UEFI Specification, Version 2.8 Secure Technologies
#define EFI_KMS_FORMAT_GENERIC_128_GUID \

 {0xec8a3d69,0x6ddf,0x4108,\

 {0x94,0x76,0x73,0x37,0xfc,0x52,0x21,0x36}}

#define EFI_KMS_FORMAT_GENERIC_160_GUID \

 {0xa3b3e6f8,0xefca,0x4bc1,\

 {0x88,0xfb,0xcb,0x87,0x33,0x9b,0x25,0x79}}

#define EFI_KMS_FORMAT_GENERIC_256_GUID \

 {0x70f64793,0xc323,0x4261,\

 {0xac,0x2c,0xd8,0x76,0xf2,0x7c,0x53,0x45}}

#define EFI_KMS_FORMAT_GENERIC_512_GUID \

 {0x978fe043,0xd7af,0x422e,\

 {0x8a,0x92,0x2b,0x48,0xe4,0x63,0xbd,0xe6}}

#define EFI_KMS_FORMAT_GENERIC_1024_GUID \

 {0x43be0b44,0x874b,0x4ead,\

 {0xb0,0x9c,0x24,0x1a,0x4f,0xbd,0x7e,0xb3}}

#define EFI_KMS_FORMAT_GENERIC_2048_GUID \

 {0x40093f23,0x630c,0x4626,\

 {0x9c,0x48,0x40,0x37,0x3b,0x19,0xcb,0xbe}}

#define EFI_KMS_FORMAT_GENERIC_3072_GUID \

 {0xb9237513,0x6c44,0x4411,\

 {0xa9,0x90,0x21,0xe5,0x56,0xe0,0x5a,0xde}}

#define EFI_KMS_FORMAT_GENERIC_DYNAMIC_GUID \

 {0x2156e996, 0x66de, 0x4b27, \

 {0x9c, 0xc9, 0xb0, 0x9f, 0xac, 0x4d, 0x2, 0xbe}}

The EFI_KMS_FORMAT_GENERIC_DYNAMIC_GUID is defined for the key data with a size not defined by
a certain key format GUID. The key value specified by this GUID is in format of structure
EFI_KMS_FORMAT_GENERIC_DYNAMIC.

typedef struct {

 UINT32 KeySize;

 UINT8 KeyData[1];

} EFI_KMS_FORMAT_GENERIC_DYNAMIC;

KeySize Length in bytes of the KeyData.

KeyData The data of the key.

Hash Algorithm Key Data:

These GUIDS define key data formats that contain data generated by basic hash algorithms with no
cryptographic properties.
UEFI Forum, Inc. March 2019 2123

UEFI Specification, Version 2.8 Secure Technologies
#define EFI_KMS_FORMAT_MD2_128_GUID \

 {0x78be11c4,0xee44,0x4a22,\

 {0x9f,0x05,0x03,0x85,0x2e,0xc5,0xc9,0x78}}

#define EFI_KMS_FORMAT_MDC2_128_GUID \

 {0xf7ad60f8,0xefa8,0x44a3,\

 {0x91,0x13,0x23,0x1f,0x39,0x9e,0xb4,0xc7}}

#define EFI_KMS_FORMAT_MD4_128_GUID \

 {0xd1c17aa1,0xcac5,0x400f,0xbe,\

 {0x17,0xe2,0xa2,0xae,0x06,0x67,0x7c}}

#define EFI_KMS_FORMAT_MDC4_128_GUID \

 {0x3fa4f847,0xd8eb,0x4df4,\

 {0xbd,0x49,0x10,0x3a,0x0a,0x84,0x7b,0xbc}}

#define EFI_KMS_FORMAT_MD5_128_GUID \

 {0xdcbc3662,0x9cda,0x4b52,\

 {0xa0,0x4c,0x82,0xeb,0x1d,0x23,0x48,0xc7}}

#define EFI_KMS_FORMAT_MD5SHA_128_GUID \

 {0x1c178237,0x6897,0x459e,\

 {0x9d,0x36,0x67,0xce,0x8e,0xf9,0x4f,0x76}}

#define EFI_KMS_FORMAT_SHA1_160_GUID \

 {0x453c5e5a,0x482d,0x43f0,\

 {0x87,0xc9,0x59,0x41,0xf3,0xa3,0x8a,0xc2}}

#define EFI_KMS_FORMAT_SHA256_256_GUID \

 {0x6bb4f5cd,0x8022,0x448d,\

 {0xbc,0x6d,0x77,0x1b,0xae,0x93,0x5f,0xc6}}

#define EFI_KMS_FORMAT_SHA512 512_GUID \

 {0x2f240e12,0xe14d,0x475c,\

 {0x83,0xb0,0xef,0xff,0x22,0xd7,0x7b,0xe7}}

Encryption Algorithm Key Data:

These GUIDs define key data formats that contain data generated by cryptographic key algorithms.
There may or may not be a separate data hashing algorithm associated with the key algorithm.
UEFI Forum, Inc. March 2019 2124

UEFI Specification, Version 2.8 Secure Technologies
#define EFI_KMS_FORMAT_AESXTS_128_GUID \

 {0x4776e33f,0xdb47,0x479a,\

 {0xa2,0x5f,0xa1,0xcd,0x0a,0xfa,0xb3,0x8b}}

#define EFI_KMS_FORMAT_AESXTS_256_GUID \

 {0xdc7e8613,0xc4bb,0x4db0,\

 {0x84,0x62,0x13,0x51,0x13,0x57,0xab,0xe2}}

#define EFI_KMS_FORMAT_AESCBC_128_GUID \

 {0xa0e8ee6a,0x0e92,0x44d4,\

 {0x86,0x1b,0x0e,0xaa,0x4a,0xca,0x44,0xa2}}

#define EFI_KMS_FORMAT_AESCBC_256_GUID \

 {0xd7e69789,0x1f68,0x45e8,\

 {0x96,0xef,0x3b,0x64,0x07,0xa5,0xb2,0xdc}}

#define EFI_KMS_FORMAT_RSASHA1_1024_GUID \

 {0x56417bed,0x6bbe,0x4882,\

 {0x86,0xa0,0x3a,0xe8,0xbb,0x17,0xf8,0xf9}}

#define EFI_KMS_FORMAT_RSASHA1_2048_GUID \

 {0xf66447d4,0x75a6,0x463e,\

 {0xa8,0x19,0x07,0x7f,0x2d,0xda,0x05,0xe9}}

#define EFI_KMS_FORMAT_RSASHA256_2048_GUID \

 {0xa477af13,0x877d,0x4060,

 {0xba,0xa1,0x25,0xd1,0xbe,0xa0,0x8a,0xd3}}

#define EFI_KMS_FORMAT_RSASHA256_3072_GUID \

 {0x4e1356c2,0xeed,0x463f,\

 {0x81,0x47,0x99,0x33,0xab 0xdb,0xc7,0xd5}}

The encryption algorithms defined above have the following properties

Table 31. Encryption algorithm properties.

EFI_KMS_FORMAT Encryption Description Key Data Size Hash
Function

AESXTS_128 Symmetric encryption using
XTS-AES 128 bit keys

Key data is a concatenation of two
fields of equal size for a total size of
256 bits

N/A

AESXTS_256 Symmetric encryption using
block cipher XTS-AES 256 bit
keys

Key data is a concatenation of two
fields of equal size for a total size of
512 bits

N/A

AESCBC_128 Symmetric encryption using
block cipher AES-CBC 128 bit
keys

128 bits N/A
UEFI Forum, Inc. March 2019 2125

UEFI Specification, Version 2.8 Secure Technologies
typedef struct {

 UINT8 KeyIdentifierSize;

 VOID *KeyIdentifier;

 EFI_GUID KeyFormat;

 VOID *KeyValue;

 EFI_STATUS KeyStatus;

} EFI_KMS_KEY_DESCRIPTOR;

KeyIdentifierSize The size of the KeyIdentifier field in bytes. This field is
limited to the range 0 to 255.

KeyIdentifier Pointer to an array of KeyIdentifierType elements.
KeyFormat An EFI_GUID which specifies the algorithm and key value size

for this key.
KeyValue Pointer to a key value for a key specified by the KeyFormat

field. A NULL value for this field indicates that no key is
available.

KeyStatus Specifies the results of KMS operations performed with this
descriptor. This field is used to indicate the status of
individual operations when a KMS function is called with
multiple EFI_KMS_KEY_DESCRIPTOR structures. KeyStatus
codes returned for the individual key requests are:

AESCBC_256 Symmetric encryption using
block cipher AES-CBC 256 bit
keys

256 bits N/A

RSASHA1_1024 Asymmetric encryption using
block cipher RSA 1024 bit keys

1024 bits SHA1

RSASHA1_2048 Asymmetric encryption using
block cipher RSA 2048 bit keys

2048 bits SHA1

RSASHA256_2048 Asymmetric encryption using
block cipher RSA 2048 bit keys

2048 bits SHA256

RSASHA256_3072 Asymmetric encryption using
block cipher RSA 3072 bit keys

3072 bits SHA256
UEFI Forum, Inc. March 2019 2126

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

#define EFI_KMS_ATTRIBUTE_TYPE_NONE 0x00

#define EFI_KMS_ATTRIBUTE_TYPE_INTEGER 0x01

#define EFI_KMS_ATTRIBUTE_TYPE_LONG_INTEGER 0x02

#define EFI_KMS_ATTRIBUTE_TYPE_BIG_INTEGER 0x03

#define EFI_KMS_ATTRIBUTE_TYPE_ENUMERATION 0x04

#define EFI_KMS_ATTRIBUTE_TYPE_BOOLEAN 0x05

#define EFI_KMS_ATTRIBUTE_TYPE_BYTE_STRING 0x06

#define EFI_KMS_ATTRIBUTE_TYPE_TEXT_STRING 0x07

#define EFI_KMS_ATTRIBUTE_TYPE_DATE_TIME 0x08

#define EFI_KMS_ATTRIBUTE_TYPE_INTERVAL 0x09

#define EFI_KMS_ATTRIBUTE_TYPE_STRUCTURE 0x0A

#define EFI_KMS_ATTRIBUTE_TYPE_DYNAMIC 0x0B

typedef struct {

 UINT32 FieldCount;

 EFI_KMS_DYNAMIC_FIELD Field[1];
} EFI_KMS_DYNAMIC_ATTRIBUTE;

FieldCount The number of members in the
EFI_KMS_DYNAMIC_ATTRIBUTE structure.

Field An array of EFI_KMS_DYNAMIC_FIELD structures.

EFI_SUCCESS Successfully processed this key.

EFI_WARN_STALE_DATA Successfully processed this key, however, the key’s parameters exceed
internal policies/limits and should be replaced.

EFI_COMPROMISED_DATA Successfully processed this key, but the key may have been
compromised and must be replaced.

EFI_UNSUPPORTED Key format is not supported by the service.

EFI_OUT_OF_RESOURCES Could not allocate resources for the key processing.

EFI_TIMEOUT Timed out waiting for device or key server.

EFI_DEVICE_ERROR Device or key server error.

EFI_INVALID_PARAMETER KeyFormat is invalid.

EFI_NOT_FOUND The key does not exist on the KMS.
UEFI Forum, Inc. March 2019 2127

UEFI Specification, Version 2.8 Secure Technologies
typedef struct {

 UINT16 Tag;

 UINT16 Type;

 UINT32 Length;

 UINT8 KeyAttributeData[1];
} EFI_KMS_DYNAMIC_FIELD;

Tag Part of a tag-type-length triplet that identifies the
KeyAttributeData formatting. The definition of the value is
outside the scope of this standard and may be defined by the
KMS.

Type Part of a tag-type-length triplet that identifies the
KeyAttributeData formatting. The definition of the value is
outside the scope of this standard and may be defined by the
KMS.

Length Length in bytes of the KeyAttributeData.
KeyAttributeData An array of bytes to hold the attribute data associated with

the KeyAttributeIdentifier.

typedef struct {

 UINT8 KeyAttributeIdentifierType;

 UINT8 KeyAttributeIdentifierCount;

 VOID *KeyAttributeIdentifier;

 UINT16 KeyAttributeInstance;

 UINT16 KeyAttributeType;

 UINT16 KeyAttributeValueSize;

 VOID *KeyAttributeValue;

 EFI_STATUS KeyAttributeStatus;
} EFI_KMS_KEY_ATTRIBUTE;

KeyAttributeIdentifierType 
The data type used for the KeyAttributeIdentifier field.
Values for this field are defined by the EFI_KMS_DATA_TYPE
constants, except that EFI_KMS_DATA_TYPE_BINARY is not
valid for this field.

KeyAttributeIdentifierCount 
The length of the KeyAttributeIdentifier field in units
defined by KeyAttributeIdentifierType field. This field is
limited to the range 0 to 255.

KeyAttributeIdentifier 
Pointer to an array of KeyAttributeIdentifierType
elements. For string types, there must not be a null-
termination element at the end of the array.
UEFI Forum, Inc. March 2019 2128

UEFI Specification, Version 2.8 Secure Technologies
KeyAttributeInstanceThe instance number of this attribute. If there is only one
instance, the value is set to one. If this value is set to 0xFFFF
(all binary 1’s) then this field should be ignored if an output or
treated as a wild card matching any value if it is an input. If the
attribute is stored with this field, it will match any attribute
request regardless of the setting of the field in the request. If
set to 0xFFFF in the request, it will match any attribute with
the same KeyAttributeIdentifier.

KeyAttributeType The data type of the KeyAttributeValue (e.g. struct, bool,
etc.). See the list of KeyAttributeType definitions.

KeyAttributeValueSize

The size in bytes of the KeyAttribute field. A value of zero
for this field indicates that no key attribute value is available.

KeyAttributeValue Pointer to a key attribute value for the attribute specified by
the KeyAttributeIdentifier field. If the
KeyAttributeValueSize field is zero, then this field must be
NULL.

KeyAttributeStatusSpecifies the results of KMS operations performed with this
attribute. This field is used to indicate the status of individual
operations when a KMS function is called with multiple
EFI_KMS_KEY_ATTRIBUTE structures. KeyAttributeStatus
codes returned for the individual key attribute requests are:

Status Codes Returned

Description

The EFI_KMS_SERVICE_PROTOCOL defines a UEFI protocol that can be used by UEFI drivers and
applications to access cryptographic keys associated with their operation that are stored and possibly
managed by a remote key management service (KMS). For example, a storage device driver may require
a set of one or more keys to enable access to regions on the storage devices that it manages.

The protocol can be used to request the generation of new keys from the KMS, to register locally
generated keys with the KMS, to retrieve existing keys from the KMS, and to delete obsolete keys from

EFI_SUCCESS Successfully processed this request.

EFI_WARN_STALE_DATA Successfully processed this request, however, the key’s parameters
exceed internal policies/limits and should be replaced.

EFI_COMPROMISED_DATA Successfully processed this request, but the key may have been
compromised and must be replaced.

EFI_UNSUPPORTED Key attribute format is not supported by the service.

EFI_OUT_OF_RESOURCES Could not allocate resources for the request processing.

EFI_TIMEOUT Timed out waiting for device or key server.

EFI_DEVICE_ERROR Device or key server error.

EFI_INVALID_PARAMETER A field in the EFI_KMS_KEY_ATTRIBUTE structure is invalid.

EFI_NOT_FOUND The key attribute does not exist on the KMS.
UEFI Forum, Inc. March 2019 2129

UEFI Specification, Version 2.8 Secure Technologies
the KMS. It also allows the device driver to manage attributes associated with individual keys on the KMS,
and to retrieve keys based on those attributes.

A platform implementing this protocol may use internal or external key servers to provide the
functionality required by this protocol. For external servers, the protocol implementation is expected to
supply and maintain the connection parameters required to connect and authenticate to the remote
server. The connection may be made during the initial installation of the protocol, or it may be delayed
until the first GetServiceStatus() request is received.

Each client using the KMS protocol may identify itself to the protocol implementation using a
EFI_KMS_CLIENT_INFO structure. If the KMS supported by this protocol requires the client to provide a
client identifier, then this structure must be provided on all function calls.

While this protocol is intended to abstract the functions associated with storing and managing keys
so that the protocol user does not have to be aware of the specific KMS providing the service, it can also
be used by callers which must interact directly with a specific KMS. For these users, the protocol manages
the connection to the KMS while the user controls the operational interface via a client data pass thru
function.

The EFI_KMS_SERVICE_PROTOCOL provides the capability for the caller to pass arbitrary data to
the KMS or to receive such data back from the KMS via parameters on most functions. The use of such
data is at the discretion of the caller, but it should only be used sparingly as it reduces the interoperability
of the caller’s software.

EFI_KMS_PROTOCOL.GetServiceStatus()

Summary

Get the current status of the key management service.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_GET_SERVICE_STATUS) (

 IN EFI_KMS_PROTOCOL *This

);

Parameters

This Pointer to the EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL
instance.

Description

The GetServiceStatus() function allows the user to query the current status of the KMS and
should be called before attempting any operations to the KMS. If the protocol has not been marked as
available, then the user must call this function to attempt to initiate the connection to the KMS as it may
have been deferred to the first user by the system firmware.
UEFI Forum, Inc. March 2019 2130

UEFI Specification, Version 2.8 Secure Technologies
If the connection to the KMS has not yet been established by the system firmware, then this
function will attempt to establish the connection, update the protocol structure content as appropriate,
and mark the service as available.

Status Codes Returned

EFI_KMS_PROTOCOL.RegisterClient()

Summary

Register client information with the supported KMS.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_REGISTER_CLIENT) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL
);

Parameters

This Pointer to the EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL
instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data

specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it

EFI_SUCCESS The KMS is ready for use.

EFI_NOT_READY No connection to the KMS is available.

EFI_NO_MAPPING No valid connection configuration exists for the KMS.

EFI_NO_RESPONSE No response was received from the KMS.

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.

EFI_INVALID_PARAMETER This is NULL.
UEFI Forum, Inc. March 2019 2131

UEFI Specification, Version 2.8 Secure Technologies
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The RegisterClient() function registers client information with the KMS using a
EFI_KMS_CLIENT_INFO structure.

There are two methods of handling client information. The caller may supply a client identifier in
the EFI_KMS_CLIENT_INFO structure prior to making the call along with an optional name string. The
client identifier will be passed on to the KMS if it supports client identifiers. If the KMS accepts the client
id, then the EFI_KMS_CLIENT_INFO structure will be returned to the caller unchanged. If the KMS does
not accept the client id, it may simply reject the request, or it may supply an alternate identifier of its
own,

The caller may also request a client identifier from the KMS by passing NULL values in the
EFI_KMS_CLIENT_INFO structure. If the KMS supports this action, it will generate the identifier and
return it in the structure. Otherwise, the implementation may generate a unique identifier, returning it in
the structure, or it may indicate that the function is unsupported.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional.
UEFI Forum, Inc. March 2019 2132

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_KMS_PROTOCOL.CreateKey()

Summary

Request that the KMS generate one or more new keys and associate them with key identifiers. The
key value(s) is returned to the caller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_CREATE_KEY) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN OUT UINT16 *KeyDescriptorCount,

 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL
);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyDescriptorCount Pointer to a count of the number of key descriptors to be

processed by this operation. On return, this number will be
updated with the number of key descriptors successfully
processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be generated.
On input, the KeyIdentifierSize and the KeyIdentifier
may specify an identifier to be used for the key, but this is not
required. The KeyFormat field must specify a key format GUID
reported as supported by the KeyFormats field of the
EFI_KMS_PROTOCOL. The value for this field in the first key
descriptor will be considered the default value for subsequent

EFI_SUCCESS The client information has been accepted by the KMS.

EFI_NOT_READY No connection to the KMS is available.

EFI_NO_RESPONSE There was no response from the device or the key server.

EFI_ACCESS_DENIED Access was denied by the device or the key server.

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.

EFI_OUT_OF_RESOURCES Required resources were not available to perform the function.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The KMS does not support the use of client identifiers.
UEFI Forum, Inc. March 2019 2133

UEFI Specification, Version 2.8 Secure Technologies
key descriptors requested in this operation if those key
descriptors have a NULL GUID in the key format field.
On output, the KeyIdentifierSize and KeyIdentifier
fields will specify an identifier for the key which will be either
the original identifier if one was provided, or an identifier
generated either by the KMS or the KMS protocol
implementation. The KeyFormat field will be updated with the
GUID used to generate the key if it was a NULL GUID, and the
KeyValue field will contain a pointer to memory containing
the key value for the generated key. Memory for both the
KeyIdentifier and the KeyValue fields will be allocated with
the BOOT_SERVICES_DATA type and must be freed by the
caller when it is no longer needed. Also, the KeyStatus field
must reflect the result of the request relative to that key.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the returned
value for *ClientData must be NULL and should be ignored
by the caller. The KMS protocol consumer is responsible for
freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the
function or by the implementation for output back to the
caller.

Description

The CreateKey() method requests the generation of one or more new keys, and key
identifier and key values are returned to the caller. The support of this function is optional
as some key servers do not provide a key generation capability.

The Client parameter identifies the caller to the key management service. This identifier
may be used for auditing or access control. This parameter is optional unless the KMS
requires a client identifier in order to perform the requested action.
UEFI Forum, Inc. March 2019 2134

UEFI Specification, Version 2.8 Secure Technologies
The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
algorithm, size, and attributes for the requested keys. Any number of keys may be
requested in a single operation, regardless of whether the KMS supports multiple key
definitions in a single request or not. The KMS protocol implementation is responsible for
generating the appropriate requests (single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to
the KMS. The use of these parameters is optional.

Status Codes Returned

The CreateKey() function will return a status which indicates the overall status of the
request. Note that this may be different from the status reported for individual key
requests.

EFI_KMS_PROTOCOL.GetKey()

Summary

Retrieve an existing key.

EFI_SUCCESS Successfully generated and retrieved all requested keys.

EFI_UNSUPPORTED This function is not supported by the KMS.
 --OR--
One (or more) of the key requests submitted is not supported by the
KMS. Check individual key request(s) to see which ones may have been
processed.

EFI_OUT_OF_RESOURCES Required resources were not available for the operation.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either no id was provided or an invalid id
was provided

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS. Check
individual key request(s) to see which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures could not

be processed properly. KeyDescriptorCount contains the

number of structures which were successfully processed. Individual
structures will reflect the status of the processing for that structure.
UEFI Forum, Inc. March 2019 2135

UEFI Specification, Version 2.8 Secure Technologies
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_GET_KEY) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN OUT UINT16 *KeyDescriptorCount,

 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyDescriptorCount Pointer to a count of the number of keys to be processed by

this operation. On return, this number will be updated with
number of keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be retrieved from the KMS. On
input, the KeyIdentifierSize and the KeyIdentifier must
specify an identifier to be used to retrieve a specific key. All
other fields in the descriptor should be NULL. On output, the
KeyIdentifierSize and KeyIdentifier fields will be
unchanged, while the KeyFormat and KeyValue fields will be
updated values associated with this key identifier. Memory for
the KeyValue field will be allocated with the
BOOT_SERVICES_DATA type and must be freed by the caller
when it is no longer needed. Also, the KeyStatus field will
reflect the result of the request relative to the individual key
descriptor.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
UEFI Forum, Inc. March 2019 2136

UEFI Specification, Version 2.8 Secure Technologies
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The GetKey() function retrieves one or more existing keys from the KMS and returns the key
values to the caller. This function must be supported by every KMS protocol instance.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the
identifier(s) to be used to retrieve the key values, which will be returned in the KeyFormat and
KeyValue fields of each EFI_KMS_KEY_DESCRIPTOR structure. Any number of keys may be requested
in a single operation, regardless of whether the KMS supports multiple key definitions in a single request
or not. The KMS protocol implementation is responsible for generating the appropriate requests (single/
multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional.

Status Codes Returned

The GetKey() function will return a status which indicates the overall status of the request. Note
that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully retrieved all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then the

available structures will be filled and KeyDescriptorCount will

be updated to indicate the number of keys which could not be
processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to see
which ones may have been processed.
UEFI Forum, Inc. March 2019 2137

UEFI Specification, Version 2.8 Secure Technologies
EFI_KMS_PROTOCOL.AddKey()

Summary

Add a new key.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_KMS_ADD_KEY) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN OUT UINT16 *KeyDescriptorCount,

 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyDescriptorCount Pointer to a count of the number of keys to be processed by

this operation. On normal returns, this number will be
updated with number of keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be added. On input, the KeyId field
for first key must contain valid identifier data to be used for
adding a key to the KMS. The values for these fields in this key
definition will be considered default values for subsequent
keys requested in this operation. A value of 0 in any
subsequent KeyId field will be replaced with the current
default value. The KeyFormat and KeyValue fields for each
key to be added must contain consistent values to be
associated with the given KeyId. On return, the KeyStatus
field will reflect the result of the operation for each key
request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures could not

be processed properly. KeyDescriptorCount contains the

number of structures which were successfully processed. Individual
structures will reflect the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2138

UEFI Specification, Version 2.8 Secure Technologies
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The AddKey() function registers a new key with the key management service. The support for
this method is optional, as not all key servers support importing keys from clients.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
identifier, key format and key data to be registered on the. Any number of keys may be registered in a
single operation, regardless of whether the KMS supports multiple key definitions in a single request or
not. The KMS protocol implementation is responsible for generating the appropriate requests (single/
multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional.

Status Codes Returned

The AddKey() function will return a status which indicates the overall status of the request. Note
that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully added all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.
UEFI Forum, Inc. March 2019 2139

UEFI Specification, Version 2.8 Secure Technologies
EFI_KMS_PROTOCOL.DeleteKey()

Summary

Delete an existing key from the KMS database.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_DELETE_KEY) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN OUT UINT16 *KeyDescriptorCount,

 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyDescriptorCount Pointer to a count of the number of keys to be processed by

this operation. On normal returns, this number will be
updated with number of keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be deleted. On input, the KeyId
field for first key must contain valid identifier data to be used
for adding a key to the KMS. The values for these fields in this

EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then the

available structures will be filled and KeyDescriptorCount will

be updated to indicate the number of keys which could not be
processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to see
which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures could not

be processed properly. KeyDescriptorCount contains the

number of structures which were successfully processed. Individual
structures will reflect the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2140

UEFI Specification, Version 2.8 Secure Technologies
key definition will be considered default values for
subsequent keys requested in this operation. A value of 0 in
any subsequent KeyId field will be replaced with the current
default value. The KeyFormat and KeyValue fields are
ignored, but should be 0. On return, the KeyStatus field will
reflect the result of the operation for each key request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The DeleteKey() function deregisters an existing key from the device or KMS. The support for this
method is optional, as not all key servers support deleting keys from clients.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
identifier(s) for the keys to be deleted. Any number of keys may be deleted in a single operation,
regardless of whether the KMS supports multiple key definitions in a single request or not. The KMS
protocol implementation is responsible for generating the appropriate requests (single/multiple) to the
KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional.
UEFI Forum, Inc. March 2019 2141

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

The DeleteKey() function will return a status which indicates the overall status of the request.
Note that this may be different from the status reported for individual key requests.

EFI_KMS_PROTOCOL.GetKeyAttributes()

Summary

Get one or more attributes associated with a specified key identifier. If none are found, the
returned attributes count contains a value of zero.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_GET_KEY_ATTRIBUTES) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN UINT8 *KeyIdentifierSize,

 IN CONST VOID *KeyIdentifier,

 IN OUT UINT16 *KeyAttributesCount,

 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL
);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.

EFI_SUCCESS Successfully deleted all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to see
which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures could

not be processed properly. KeyDescriptorCount contains the

number of structures which were successfully processed. Individual
structures will reflect the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2142

UEFI Specification, Version 2.8 Secure Technologies
KeyIdentifier Pointer to the key identifier associated with this key.
KeyAttributesCountPointer to the number of EFI_KMS_KEY_ATTRIBUTE

structures associated with the Key identifier. If none are
found, the count value is zero on return. On input this value
reflects the number of KeyAttributes that may be returned.
On output, the value reflects the number of completed
KeyAttributes structures found.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures
associated with the Key Identifier. On input, the fields in the
structure should be NULL. On output, the attribute fields will
have updated values for attributes associated with this key
identifier.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The GetKeyAttributes() function returns one or more attributes for a key.

The ClientIdentifierSize and ClientIdentifier parameters identify the caller to the key
management service. It may be used for auditing or access control. The use of this parameter is optional
unless the KMS requires it in order to perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose attributes
are to be returned by the key management service. They may be used to retrieve additional information
about a key, whose format is defined by the KeyAttribute. Attributes returned may be of the same or
different names.
UEFI Forum, Inc. March 2019 2143

UEFI Specification, Version 2.8 Secure Technologies
The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional unless the KMS requires it in order to perform the requested action.

Status Codes Returned

The GetKeyAttributes() function will return a status which indicates the overall status of the
request. Note that this may be different from the status reported for individual key attribute requests.

EFI_KMS_PROTOCOL.AddKeyAttributes()

Summary

Add one or more attributes to a key specified by a key identifier.

EFI_SUCCESS Successfully retrieved all key attributes.

EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple key attributes are associated with a single identifier, and

the KeyAttributes buffer does not contain enough structures

(KeyAttributesCount) to contain all the key attributes data,

then the available structures will be filled and

KeyAttributesCount will be updated to indicate the number

of key attributes which could not be processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute request(s)
(i.e., key attribute status for each) to see which ones may have been
processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,

KeyIdentifierSize is NULL , or KeyIdentifier is

NULL, or KeyAttributes is NULL, or

KeyAttributesSize is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found.

KeyAttributesCount contains zero. Individual structures will

reflect the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2144

UEFI Specification, Version 2.8 Secure Technologies
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_ADD_KEY_ATTRIBUTES) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN UINT *KeyIdentifierSize,

 IN CONST VOID *KeyIdentifier,

 IN OUT UINT16 *KeyAttributesCount,

 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.
KeyIdentifier Pointer to the key identifier associated with this key.
KeyAttributesCountPointer to the number of EFI_KMS_KEY_ATTRIBUTE

structures to associate with the Key. On normal returns, this
number will be updated with the number of key attributes
successfully processed.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE
structures providing the attribute information to associate
with the key. On input, the values for the fields in the structure
are completely filled in. On return the KeyAttributeStatus
field will reflect the result of the operation for each key
attribute request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL. Upon
return to the caller, *ClientData points to a block of data of
*ClientDataSize that was returned from the KMS. If the
UEFI Forum, Inc. March 2019 2145

UEFI Specification, Version 2.8 Secure Technologies
returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The AddKeyAttributes() function adds one or more key attributes. If this function is not
supported by a KMS protocol instance then it is assumed that there is an alternative means available for
attribute management in the KMS.

The Client parameters identify the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose attributes
are to be modified by the key management service

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be registered on the KMS. Any number of attributes may be registered in a single
operation, regardless of whether the KMS supports multiple key attribute definitions in a single request
or not. The KMS protocol implementation is responsible for generating the appropriate requests (single/
multiple) to the KMS. In certain error situations, the status of each attribute is updated indicating if that
attribute was successfully registered or not.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional unless the KMS requires it in order to perform the requested action.

Status Codes Returned

The AddKeyAttributes() function will return a status which indicates the overall status of the
request. Note that this may be different from the status reported for individual key attribute requests.
Status codes returned for AddKeyAttributes()are:

EFI_SUCCESS Successfully added all requested key attributes.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple keys attributes are associated with a single key identifier,

and the attributes buffer does not contain enough structures

(KeyAttributesCount) to contain all the data, then the

available structures will be filled and KeyAttributesCount will

be updated to indicate the number of key attributes which could not
be processed. The status of each key attribute is also updated
indicating success or failure for that attribute in case there are other
errors for those attributes that could be processed.
UEFI Forum, Inc. March 2019 2146

UEFI Specification, Version 2.8 Secure Technologies
EFI_KMS_PROTOCOL.DeleteKeyAttributes()

Summary

Delete attributes to a key specified by a key identifier.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_DELETE_KEY_ATTRIBUTES) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN UINT8 *KeyIdentifierSize,

 IN CONST VOID *KeyIdentifier,

 IN OUT UINT16 *KeyAttributesCount,

 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOI **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.
KeyIdentifier Pointer to the key identifier associated with this key.
KeyAttributesCountPointer to the number of EFI_KMS_KEY_ATTRIBUTE

structures associated with the Key. On input, the count value
is one or more. On normal returns, this number will be
updated with the number of key attributes successfully
processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute request(s)
(i.e., key attribute status for each) to see which ones may have been
processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,

KeyAttributesCount is NULL, or KeyAttributes is

NULL, or KeyIdentifierSize is NULL, or

KeyIdentifer is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found. On return the

KeyAttributesCount contains the number of attributes

processed. Individual structures will reflect the status of the
processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2147

UEFI Specification, Version 2.8 Secure Technologies
KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures
associated with the key. On input, the values for the fields in
the structure are completely filled in. On return the
KeyAttributeStatus field will reflect the result of the
operation for each key attribute request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS. If
the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The DeleteKeyAttributes() function removes key attributes for a key with the key
management service.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose attributes
are to be modified by the key management service

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be deleted on the KMS. Any number of attributes may be deleted in a single operation,
regardless of whether the KMS supports multiple key attribute definitions in a single request or not. The
KMS protocol implementation is responsible for generating the appropriate requests (single/multiple) to
the KMS. In certain error situations, the status of each attribute is updated indicating if that attribute was
successfully deleted or not.

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be deleted on the KMS. Any number of attributes may be deleted in a single operation,
UEFI Forum, Inc. March 2019 2148

UEFI Specification, Version 2.8 Secure Technologies
regardless of whether the KMS supports multiple key attribute definitions in a single request or not. The
KMS protocol implementation is responsible for generating the appropriate requests (single/multiple) to
the KMS. In certain error situations, the status of each attribute is updated indicating if that attribute was
successfully deleted or not.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional unless the KMS requires it in order to perform the requested action.

Status Codes Returned

The DeleteKeyAttributes() function will return a status which indicates the overall status of
the request. Note that this may be different from the status reported for individual key attribute
requests. Status codes returned for the method are:

EFI_KMS_PROTOCOL.GetKeyByAttributes()

Summary

Retrieve one or more key that has matched all of the specified key attributes.

EFI_SUCCESS Successfully deleted all requested key attributes.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute request(s)
(i.e., key attribute status for each) to see which ones may have been
processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyAttributesCount is NULL, or KeyAttributes is

NULL, or KeyIdentifierSize is NULL, or

KeyIdentifer is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found or the attribute could

not be found. On return the KeyAttributesCount contains

the number of attributes processed. Individual structures will reflect
the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2149

UEFI Specification, Version 2.8 Secure Technologies
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_KMS_GET_KEY_BY_ATTRIBUTES) (

 IN EFI_KMS_PROTOCOL *This,

 IN EFI_KMS_CLIENT_INFO *Client,

 IN UINTN *KeyAttributeCount,

 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,

 IN OUT UINTN *KeyDescriptorCount,

 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,

 IN OUT UINTN *ClientDataSize OPTIONAL,

 IN OUT VOID **ClientData OPTIONAL

);

Parameters

This Pointer to this EFI_KMS_PROTOCOL instance.
Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
KeyAttributeCount Pointer to a count of the number of key attribute structures

that must be matched for each returned key descriptor. On
input the count value is one or more. On normal returns, this
number will be updated with the number of key attributes
successfully processed.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structure
to search for. On input, the values for the fields in the
structure are completely filled in. On return the
KeyAttributeStatus field will reflect the result of the operation
for each key attribute request.

KeyDescriptorCount Pointer to a count of the number of key descriptors matched
by this operation. On entry, this number will be zero. On
return, this number will be updated to the number of key
descriptors successfully found.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys from the KMS having the
KeyAttribute(s) specified. On input, this pointer will be
NULL. On output, the array will contain an
EFI_KMS_KEY_DESCRIPTOR structure for each key meeting the
search criteria. Memory for the array and all KeyValue fields
will be allocated with the EfiBootServicesData type and
must be freed by the caller when it is no longer needed. Also,
the KeyStatus field of each descriptor will reflect the result of
the request relative to that key descriptor.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data
specified by the ClientData parameter. This parameter may
be NULL, in which case the ClientData parameter will be
ignored and no data will be transferred to or from the KMS. If
the parameter is not NULL, then ClientData must be a valid
pointer. If the value pointed to is 0, no data will be transferred
UEFI Forum, Inc. March 2019 2150

UEFI Specification, Version 2.8 Secure Technologies
to the KMS, but data may be returned by the KMS. For all non-
zero values *ClientData will be transferred to the KMS,
which may also return data to the caller. In all cases, the value
upon return to the caller will be the size of the data block
returned to the caller, which will be zero if no data is returned
from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if it
supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS. If
the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input
to the function or by the implementation for output back to
the caller.

Description

The GetKeyByAttributes() function returns the keys found by searches for matching key
attribute(s). This function must be supported by every KMS protocol instance that supports the use of key
attributes as indicated in the protocol’s KeyAttributesSupported field.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order to
perform the requested action.

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be searched for on the KMS. Any number of attributes may be searched for in a single
operation, regardless of whether the KMS supports multiple key attribute definitions in a single request
or not. The KMS protocol implementation is responsible for generating the appropriate requests (single/
multiple) to the KMS. In certain error situations, the status of each attribute is updated indicating if that
attribute was successfully found or not. If an attribute specifies a wildcard KeyAttributeInstance
value, then the provider returns all instances of the attribute.

The KeyDescriptorCount and KeyDescriptors parameters are used to return the
EFI_KMS_KEY_DESCRIPTOR structures for keys meeting the search criteria. Any number of keys may be
returned in a single operation, regardless of whether the KMS supports multiple key definitions in a single
request or not. The KMS protocol implementation is responsible for generating the appropriate requests
(single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block of
data to/from the KMS for uses such as auditing or access control. The KMS protocol implementation does
not alter this data block other than to package it for transmission to the KMS. The use of these
parameters is optional unless the KMS requires it in order to perform the requested action.
UEFI Forum, Inc. March 2019 2151

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

The GetKeyByAttributes() function will return a status which indicates the overall status of the
request. Note that this may be different from the status reported for individual keys.

37.4 PKCS7 Verify Protocol

EFI_PKCS7_VERIFY_PROTOCOL

Summary

The EFI_PKCS7_VERIFY_PROTOCOL may be used to verify data signed with PKCS#7 formatted
authentication. The PKCS#7 data to be verified must be binary DER encoded. Additional information on
the supported ASN.1 formatting is provided below.

Drivers that supply PKCS7 verification function should publish the
EFI_PKCS7_VERIFY_PROTOCOL. Drivers wishing to use the
EFI_PKCS7_VERIFY_PROTOCOL may get a reference with LocateProtocol().

EFI_SUCCESS Successfully retrieved all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple keys are associated with the attribute(s), and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then the

available structures will be filled and KeyDescriptorCount will

be updated to indicate the number of keys which could not be
processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a ClientId

is required by the server and either none or an invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute request(s)
(i.e., key attribute status for each) to see which ones may have been
processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or KeyDescriptors is

NULL or KeyAttributes is NULL, or

KeyAttributesCount is NULL.

EFI_NOT_FOUND One or more EFI_KMS_KEY_ATTRIBUTE structures could not

be processed properly. KeyAttributeCount contains the

number of structures which were successfully processed. Individual
structures will reflect the status of the processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
UEFI Forum, Inc. March 2019 2152

http://tools.ietf.org/html/rfc2315

UEFI Specification, Version 2.8 Secure Technologies
GUID

#define EFI_PKCS7_VERIFY_PROTOCOL_GUID \

{ 0x47889fb2, 0xd671, 0x4fab,\

 { 0xa0, 0xca, 0xdf, 0xe, 0x44,\ 0xdf, 0x70, 0xd6 }}

Protocol Interface Structure

typedef struct _EFI_PKCS7_VERIFY_PROTOCOL {

 EFI_PKCS7_VERIFY_BUFFER VerifyBuffer;

 EFI_PKCS7_VERIFY_SIGNATURE VerifySignature;
} EFI_PKCS7_VERIFY_PROTOCOL;

Parameters

VerifyBuffer Examine a DER-encoded PKCS7-signed memory buffer with
signature containing embedded data content, or buffer with
detached signature and separate data content buffer, and
verify using supplied signature lists.

VerifySignature Examine a DER-encoded PKCS7-signed memory buffer with
signature and, using caller-supplied hash value for signed
data, verify using supplied signature lists.

Description

The EFI_PKCS7_VERIFY_PROTOCOL is used to verify data signed using PKCS7 structure. PKCS7 is a
general-purpose cryptographic standard (see references). The PKCS7 data to be verified must be ASN.1
(DER) encoded. Implementation must support SHA256 as digest algorithm with RSA digest encryption.
Support of other hash algorithms is optional. See Table 32.

Table 32. Details of Supported Signature Format.

Signature Buffer Format Details

Encoding Binary DER

ASN.1 root of Embedded Signed Data ContentInfo with SignedData content type

ASN.1 root of Detached Signature SignedData or

ContentInfo with SignedData content type

Embedded Data Type Typically ‘Data’ (1.2.840.113549.1.7.1) or other defined OID type
(however caller should not depend upon specialized OID processing
during PKCS validation.)

Digest (Hash) Algorithm

(VerifyBuffer function)

Support of SHA-256 (2.16.840.1.101.3.4.2.1) is required, other
algorithms are optional

Digest Encryption RSA (1.2.840.113549.1.1.1)

Certificate validity dates See TimeStampDb description

Signature authenticatedAttributes Ignored by function

Timestamping See TimeStampDb description
UEFI Forum, Inc. March 2019 2153

UEFI Specification, Version 2.8 Secure Technologies
References

PKCS7 is defined by RFC2315. For more information see “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading “RFC2315 (defines PKCS7)”.

EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer()

Summary

This function processes a buffer containing binary DER-encoded PKCS7 signature. The signed data
content may be embedded within the buffer or separated. Function verifies the signature of the content
is valid and signing certificate was not revoked and is contained within a list of trusted signers.

Prototype

typedef

EFI_STATUS

(EFIAPI *VerifyBuffer)(

 IN EFI_PKCS7_VERIFY_PROTOCOL *This,

 IN VOID *SignedData,

 IN UINTN SignedDataSize,

 IN VOID *InData OPTIONAL,

 IN UINTN InDataSize

 IN EFI_SIGNATURE_LIST **AllowedDb,

 IN EFI_SIGNATURE_LIST **RevokedDb OPTIONAL,

 IN EFI_SIGNATURE_LIST **TimeStampDb OPTIONAL,

 OUT VOID *Content OPTIONAL,

 IN OUT UINTN *ContentSize
);

Parameters

This Pointer to EFI_PKCS7_VERIFY_PROTOCOL instance.
SignedData Points to buffer containing ASN.1 DER-encoded PKCS

signature.
SignedDataSize The size of SignedData buffer in bytes.
InData In case of detached signature, Indata points to buffer

containing the raw message data previously signed and to be
verified by function. In case of SignedData containing
embedded data, InData must be NULL.

InDataSize When InData is used, the size of InData buffer in bytes.
When InData is NULL, this parameter must be 0.

AllowedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. The
EFI_SIGNATURE_LIST structures contain lists of X.509
certificates of approved signers. See Chapter 27 for definition
of EFI_SIGNATURE_LIST. Function recognizes signer
certificates of type EFI_CERT_X509_GUID. Any hash certificate
in AllowedDb list is ignored by this function. Function returns
UEFI Forum, Inc. March 2019 2154

UEFI Specification, Version 2.8 Secure Technologies
success if signer of the buffer is within this list (and not within
RevokedDb). This parameter is required.

RevokedDb Optional pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. List of
X.509 certificates of revoked signers and revoked file hashes.
Except as noted in description of TimeStampDb, signature
verification will always fail if the signer of the file or the hash
of the data component of the buffer is in RevokedDb list. This
list is optional and caller may pass Null or pointer to NULL if
not required.

TimeStampDb Optional pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. This
parameter can be used to pass a list of X.509 certificates of
trusted time stamp signers. This list is optional and caller may
pass Null or pointer to NULL if not required.

Content On input, points to an optional caller-allocated buffer into
which the function will copy the content portion of the file
after verification succeeds. This parameter is optional and if
NULL, no copy of content from file is performed.

ContentSize On input, points to the size in bytes of the optional buffer
Content previously allocated by caller. On output, if the
verification succeeds, the value referenced by ContentSize
will contain the actual size of the content from signed file. If
ContentSize indicates the caller-allocated buffer is too small
to contain content, an error is returned, and ContentSize will
be updated with the required size. This parameter must be 0 if
Content is Null.

Description

This function processes the buffer SignedData for PCKS7 verification. The data that was signed using
PKCS is referred to as the ‘Message’. In the process of creating a signature of the message, a SHA256 or
other hash of the message bytes, called the ‘Message Digest’, is encrypted using a private key held in
secret by the signer. The encrypted hash and the X.509 public key certificate of the signer are formatted
according to the ASN.1 PKCS#7 Schema (See References). For the buffer type with the embedded data,
the ASN.1 syntax is also used to wrap the data and combine the message data with the signature
structure.

The SignedData buffer must be ASN.1 DER-encoded format with structure according to the subset
defined in the introduction to this protocol. Both embedded content and detached signature formats are
supported. In case of embedded content, SignedData contains both the PKCS7 signature structure and
the message content that was signed. In the case of detached signature, SignedData contains only the
signature data and InData is used to supply the data to be verified. To pass verification the X.509 public
certificate of the signer of the file must be found in AllowedDb and not be present in RevokedDb.
Additionally if RevokedDb contains a specific Hash signature that matches the hash calculated for the
content, the file will also fail verification. The message content will be copied to the caller-supplied buffer
Content (when present) with ContentSize updated to reflect the total size in bytes of the extracted
content.
UEFI Forum, Inc. March 2019 2155

UEFI Specification, Version 2.8 Secure Technologies
The VerifyBuffer() function performs several steps. First, the buffer containing the user-provided
signature is parsed, the content is located and a hash calculated, and the PKCS7 signature of that hash is
verified by decrypting the hash calculated at time of signing. Match of current hash with decrypted hash
provides indication the structure contained in buffer has not been modified since signing. Next the
protocol function attempts to match the signing certificate included within the signed data again the
members of an (optional) list of caller-provided revoked certificates (RevokedDb). The hash of the data is
also compared against any hash items contained in RevokedDb list. Next the signing certificate is
matched against the caller-provided list of trusted signatures. If the signature is valid, the certificate or
hash are not in the revoked list, and the certificate is in the trusted list, the file passes verification.

When TimeStampDb list is present this information modifies the processing of revoked certificates
found in both AllowedDb and RevokedDb. When PCKS7 signings that are time-stamped by trusted
signer in TimeStampDb list, and which time-stamping occurred prior to the time of certificate revocation
noted in certificate in RevokedDb list, the signing will be allowed and return EFI_SUCCESS.
TimeStampDb parameter is optional and may be NULL or a pointer to NULL when not used. Except in the
processing of certificates found in both AllowedDb and RevokedDb, TimeStampDb is not used and
time-stamping is not otherwise required for signings verified by certificate only in AllowedDb.

Note: This method is intended to be suitable to implement Secure Boot image validation, and as such the
contents of AllowedDb, RevokedDb, and TimeStampDb must also conform with the requirements of
Authorization Process, bullet item 3 (UEFI Image Validation Succeeded).

The verification function can handle both embedded data or detached signature formats. In case of
embedded data, the function will optionally extract the original signed data and supply back to caller in
caller-supplied buffer. For a detached signature the caller must provide the original message data in
buffer pointed to by InData. For consistency, when both InData and Content are provided, the
function will copy contents of InData to Content.

In case where the ContentSize indicated by caller is too small to contain the entire content extracted
from the file, EFI_BUFFER_TOO_SMALL error is returned, and ContentSize is updated to reflect the
required size.

Note: When signing certificate is matched to AllowedDb or RevokedDb lists, a match can occur against
an entry in the list at any level of the chain of X.509 certificates present in the PCKS certificate list. This
supports signing with a certificate that chains to one of the certificates in the AllowedDb or RevokedDb
lists.

Related Definitions

None
UEFI Forum, Inc. March 2019 2156

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature()

Summary

This function processes a buffer containing binary DER-encoded detached PKCS7 signature. The hash of
the signed data content is calculated and passed by the caller. Function verifies the signature of the
content is valid and signing certificate was not revoked and is contained within a list of trusted signers.

Note: the current UEFI specification allows for a variety of hashes. In order to be secure, the users of this
protocol should loop over each hash to see if the binary signature is authorized.

EFI_SUCCESS Content signature was verified against hash of content, the signer’s

certificate was not found in RevokedDb, and was found in

AllowedDb or if in signer is found in both AllowedDb and

RevokedDb, the signing was allowed by reference to

TimeStampDb as described above, and no hash matching content

hash was found in RevokedDb.

EFI_SECURITY_VIOLATION The SignedData buffer was correctly formatted but signer was in

RevokedDb or not in AllowedDb. Also returned if matching

content hash found in RevokedDb.

EFI_COMPROMISED_DATA Calculated hash differs from signed hash.

EFI_INVALID_PARAMETER SIgnedData is NULL or SIgnedDataSize is zero.

AllowedDb is NULL.

EFI_INVALID_PARAMETER Content is not NULL and ContentSize is NULL.

EFI_ABORTED Unsupported or invalid format in TImeStampDb, RevokedDb or

AllowedDb list contents was detected.

EFI_NOT_FOUND Content not found because InData is NULL and no content embedded

in SIgnedData.

EFI_UNSUPPORTED The SignedData buffer was not correctly formatted for processing

by the function.

EFI_UNSUPPORTED Signed data embedded in SIgnedData but InData is not NULL.

EFI_BUFFER_TOO_SMALL The size of buffer indicated by ContentSize is too small to hold the

content. ContentSize updated to required size.
UEFI Forum, Inc. March 2019 2157

UEFI Specification, Version 2.8 Secure Technologies
Prototype

typedef

EFI_STATUS

(EFIAPI *VerifySignature)(

 IN EFI_PKCS7_VERIFY_PROTOCOL *This,

 IN VOID *Signature,

 IN UINTN SignatureSize,

 IN VOID *InHash,

 IN UINTN InHashSize

 IN EFI_SIGNATURE_LIST **AllowedDb,

 IN EFI_SIGNATURE_LIST **RevokedDb OPTIONAL,

 IN EFI_SIGNATURE_LIST **TimeStampDb OPTIONAL,
);

Parameters

This Pointer to EFI_PKCS7_VERIFY_PROTOCOL instance.
Signature Points to buffer containing ASN.1 DER-encoded PKCS

detached signature.
SignatureSize The size of Signature buffer in bytes.
InHash InHash points to buffer containing the caller calculated hash

of the data. This parameter may not be NULL.
InHashSize The size in bytes of InHash buffer.
AllowedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST

structures. The list is terminated by a null pointer. The
EFI_SIGNATURE_LIST structures contain lists of X.509
certificates of approved signers. See Chapter 27 for definition
of EFI_SIGNATURE_LIST. Function recognizes signer
certificates of type EFI_CERT_X509_GUID. Any hash certificate
in AllowedDb list is ignored by this function. Function returns
success if signer of the buffer is within this list (and not within
RevokedDb). This parameter is required.

RevokedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. List of
X.509 certificates of revoked signers and revoked file hashes.
Signature verification will always fail if the signer of the file or
the hash of the data component of the buffer is in RevokedDb
list. This parameter is optional and caller may pass Null if not
required.

TimeStampDb Optional pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. This
parameter can be used to pass a list of X.509 certificates of
trusted time stamp counter-signers.
UEFI Forum, Inc. March 2019 2158

UEFI Specification, Version 2.8 Secure Technologies
Description

This function processes the buffer Signature for PCKS7 verification using hash of the data calculated
and pass by caller in the InHash buffer. The data that was signed using PKCS is referred to as the
‘Message’. In the process of creating a signature of the message, a hash of the message bytes, called the
‘Message Digest’, is encrypted using a private key held in secret by the signer. The encrypted hash and
the X.509 public key certificate of the signer are formatted according to the ASN.1 PKCS#7 Schema (See
References). Any data embedded within the PKCS structure is ignored by the function. This function does
not support extraction of signature from executable file formats. The address of the PKCS Signature block
must be located and passed by the called.

The hash size passed in InHashSize must match the size of the signed hash embedded within the PKCS
signature structure or an error is returned.

The SignedData buffer must be ASN.1 DER-encoded format with structure according to the subset
defined in the introduction to this protocol. Both embedded content and detached signature formats are
supported however embedded data is ignored. To pass verification the X.509 public certificate of the
signer of the file must be found in AllowedDb and not be present in RevokedDb. Additionally, if
RevokedDb contains a specific Hash signature that matches the hash calculated for the content, the file
will also fail verification.

When TimeStampDb list is present this information modifies the processing of revoked certificates
found in both AllowedDb and RevokedDb. When PCKS7 signings that are time-stanped by trusted
signer in TimeStampDb list, and which time-stamping occurred prior to the time of certificate revocation
noted in certificate in RevokedDb list, the signing will be allowed and return EFI_SUCCESS.
TimeStampDb parameter is optional and may be NULL or a pointer to NULL when not used. Except in the
processing of certificates found in both AllowedDb and RevokedDb, TimeStampDb is not used and
time-stamping is not otherwise required for signings verified by certificate only in AllowedDb.

The VerifySignature() function performs several steps. First, the buffer containing the user-
provided signature is parsed, (any embedded content is ignored), and the PKCS7 signature of hash data is
verified by decrypting the hash calculated at time of signing. Match of caller provided hash with
decrypted hash provides indication the signed data has not been modified since signing. Next the
protocol function attempts to match the signing certificate included within the signed data again the
members of an (optional) list of caller-provided revoked certificates (RevokedDb). The hash of the data is
also compared against any hash items contained in RevokedDb list. Next the signing certificate is
matched against the caller-provided list of trusted signatures. If the signature is valid, the certificate or
hash are not in the revoked list, and the certificate is in the trusted list, the file passes verification.

Note:When a signing certificate is matched to AllowedDb or RevokedDb lists, a match can occur
against an entry in the list at any level of the chain of X.509 certificates present in the PCKS
certificate list. This supports signing with a certificate that chains to one of the certificates in
the AllowedDb or RevokedDb lists.

Note:Because this function uses hashes and the specification contains a variety of hash choices, you
should be aware that the check against the RevokedDb list will improperly succeed if the
signature is revoked using a different hash algorithm. For this reason, you should either cycle
through all UEFI supported hashes to see if one is forbidden, or rely on a single hash choice
UEFI Forum, Inc. March 2019 2159

UEFI Specification, Version 2.8 Secure Technologies
only if the UEFI signature authority only signs and revokes with a single hash (at time of
writing, this hash choice is SHA256).

Related Definitions

None

Status Codes Returned

37.5 Random Number Generator Protocol

This section defines the Random Number Generator (RNG) protocol. This protocol is used to provide
random numbers for use in applications, or entropy for seeding other random number generators.
Consumers of the protocol can ensure that drivers implementing the protocol produce RNG values in a
well-known manner.

When a Deterministic Random Bit Generator (DRBG) is used on the output of a (raw) entropy source, its
security level must be at least 256 bits.

EFI_RNG_PROTOCOL

Summary

This protocol provides standard RNG functions. It can be used to provide random bits for use in

applications, or entropy for seeding other random number generators.

EFI_SUCCESS Signed hash was verified against caller-provided hash of content, the

signer’s certificate was not found in RevokedDb, and was found in

AllowedDb or if in signer is found in both AllowedDb and

RevokedDb, the signing was allowed by reference to

TimeStampDb as described above, and no hash matching content

hash was found in RevokedDb.

EFI_SECURITY_VIOLATION The SignedData buffer was correctly formatted but signer was in

RevokedDb or not in AllowedDb. Also returned if matching

content hash found in RevokedDb.

EFI_COMPROMISED_DATA Caller provided hash differs from signed hash. Or, caller and encrypted
hash are different sizes.

EFI_INVALID_PARAMETER Signature is NULL or SignatureSize is zero. InHash is

NULL or InhashSize is zero. AllowedDb is NULL.

EFI_ABORTED Unsupported or invalid format in TimeStampDb, RevokedDb or

AllowedDb list contents was detected.

EFI_UNSUPPORTED The Signature buffer was not correctly formatted for processing by

the function.
UEFI Forum, Inc. March 2019 2160

UEFI Specification, Version 2.8 Secure Technologies
GUID

#define EFI_RNG_PROTOCOL_GUID \

{ 0x3152bca5, 0xeade, 0x433d,\

 {0x86, 0x2e, 0xc0, 0x1c, 0xdc, 0x29, 0x1f, 0x44}}

Protocol Interface Structure

typedef struct _EFI_RNG_PROTOCOL {

 EFI_RNG_GET_INFO GetInfo

 EFI_RNG_GET_RNG GetRNG;
} EFI_RNG_PROTOCOL;

Parameters

GetInfo Returns information about the random number generation
implementation.

GetRNG Returns the next set of random numbers.

Description

This protocol allows retrieval of RNG values from an UEFI driver. The GetInfo service returns
information about the RNG algorithms the driver supports. The GetRNG service creates a RNG value
using an (optionally specified) RNG algorithm.

EFI_RNG_PROTOCOL.GetInfo

Summary

Returns information about the random number generation implementation.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_RNG_GET_INFO) (

 IN EFI_RNG_PROTOCOL *This,

 IN OUT UINTN *RNGAlgorithmListSize,

 OUT EFI_RNG_ALGORITHM *RNGAlgorithmList
);

Parameters

This A pointer to the EFI_RNG_PROTOCOL instance.
RNGAlgorithmListSizeOn input, the size in bytes of RNGAlgorithmList. On

output with a return code of EFI_SUCCESS, the size in bytes of
the data returned in RNGAlgorithmList.
On output with a return code of EFI_BUFFER_TOO_SMALL, the
size of RNGAlgorithmList required to obtain the list.

RNGAlgorithmList A caller-allocated memory buffer filled by the driver with one
EFI_RNG_ALGORITHM element for each supported RNG
algorithm. The list must not change across multiple calls to
UEFI Forum, Inc. March 2019 2161

http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf

UEFI Specification, Version 2.8 Secure Technologies
the same driver. The first algorithm in the list is the default
algorithm for the driver.

Description

This function returns information about supported RNG algorithms.

A driver implementing the RNG protocol need not support more than one RNG algorithm, but shall
support a minimum of one RNG algorithm.

Related Definitions

typedef EFI_GUID EFI_RNG_ALGORITHM;

Status Codes Returned

EFI_RNG_PROTOCOL.GetRNG

Summary

Produces and returns an RNG value using either the default or specified RNG algorithm.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_RNG_GET_RNG) (

 IN EFI_RNG_PROTOCOL *This,

 IN EFI_RNG_ALGORITHM *RNGAlgorithm, OPTIONAL

 IN UINTN RNGValueLength,

 OUT UINT8 *RNGValue
);

Parameters

This A pointer to the EFI_RNG_PROTOCOL instance.
RNGAlgorithm A pointer to the EFI_RNG_ALGORITHM that identifies the RNG

algorithm to use. May be NULL in which case the function will
use its default RNG algorithm.

RNGValueLength The length in bytes of the memory buffer pointed to by
RNGValue. The driver shall return exactly this number of
bytes.

EFI_SUCCESS The RNG algorithm list was returned successfully.

EFI_UNSUPPORTED The service is not supported by this driver.

EFI_DEVICE_ERROR The list of algorithms could not be retrieved due to a hardware or firmware
error.

EFI_BUFFER_TOO_SMALL The buffer RNGAlgorithmList is too small to hold the result.
UEFI Forum, Inc. March 2019 2162

UEFI Specification, Version 2.8 Secure Technologies
RNGValue A caller-allocated memory buffer filled by the driver with the
resulting RNG value.

Description

This function fills the RNGValue buffer with random bytes from the specified RNG
algorithm. The driver must not reuse random bytes across calls to this function. It is the
caller’s responsibility to allocate the RNGValue buffer.

Status Codes Returned

37.5.1 EFI RNG Algorithm Definitions

Summary

This sub-section provides EFI_GUID values for a selection of EFI_RNG_PROTOCOL algorithms. The
algorithms listed are optional, not meant to be exhaustive and may be augmented by vendors or other
industry standards.

The “raw” algorithm, when supported, is intended to provide entropy directly from the source, without it
going through some deterministic random bit generator.

EFI_SUCCESS The RNG value was returned successfully.

EFI_UNSUPPORTED The algorithm specified by RNGAlgorithm is not supported by this driver.

EFI_DEVICE_ERROR An RNG value could not be retrieved due to a hardware or firmware error.

EFI_NOT_READY There is not enough random data available to satisfy the length requested by
RNGValueLength.

EFI_INVALID_PARAMETER RNGValue is null or RNGValueLength is zero.
UEFI Forum, Inc. March 2019 2163

UEFI Specification, Version 2.8 Secure Technologies
Prototype

#define EFI_RNG_ALGORITHM_SP800_90_HASH_256_GUID \

 {0xa7af67cb, 0x603b, 0x4d42,\

 {0xba, 0x21, 0x70, 0xbf, 0xb6, 0x29, 0x3f, 0x96}}

#define EFI_RNG_ALGORITHM_SP800_90_HMAC_256_GUID \

 {0xc5149b43, 0xae85, 0x4f53,\

 {0x99, 0x82, 0xb9, 0x43, 0x35, 0xd3, 0xa9, 0xe7}}

#define EFI_RNG_ALGORITHM_SP800_90_CTR_256_GUID \

 {0x44f0de6e, 0x4d8c, 0x4045, \

 {0xa8, 0xc7, 0x4d, 0xd1, 0x68, 0x85, 0x6b, 0x9e}}

#define EFI_RNG_ALGORITHM_X9_31_3DES_GUID \

 {0x63c4785a, 0xca34, 0x4012,\

 {0xa3, 0xc8, 0x0b, 0x6a, 0x32, 0x4f, 0x55, 0x46}}

#define EFI_RNG_ALGORITHM_X9_31_AES_GUID \

 {0xacd03321, 0x777e, 0x4d3d,\

 {0xb1, 0xc8, 0x20, 0xcf, 0xd8, 0x88, 0x20, 0xc9}}

#define EFI_RNG_ALGORITHM_RAW \

 {0xe43176d7, 0xb6e8, 0x4827,\

 {0xb7, 0x84, 0x7f, 0xfd, 0xc4, 0xb6, 0x85, 0x61}}

37.5.2 RNG References

NIST SP 800-90, “Recommendation for Random Number Generation Using Deterministic Random Bit
Generators,” March 2007. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “Recommendation for Random Number Generation Using Deterministic Random Bit
Generators”.

NIST, “Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key
Triple DES and AES Algorithms,” January 2005. See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “Recommended Random Number Generator Based on ANSI X9.31”.

37.6 
Smart Card Reader and Smart Card Edge Protocols

The UEFI Smart Card Reader Protocol provides an abstraction for device to provide smart card
reader support. This protocol is very close to Part 5 of PC/SC workgroup specifications and provides an
API to applications willing to communicate with a smart card or a smart card reader.
UEFI Forum, Inc. March 2019 2164

UEFI Specification, Version 2.8 Secure Technologies
37.6.1 Smart Card Reader Protocol

EFI_SMART_CARD_READER_PROTOCOL Summary
Smart card aware application invokes this protocol to get access to an inserted smart card in the

reader or to the reader itself.

GUID

#define EFI_SMART_CARD_READER_PROTOCOL_GUID \

 {0x2a4d1adf, 0x21dc, 0x4b81,\

 {0xa4, 0x2f, 0x8b, 0x8e, 0xe2, 0x38, 0x00, 0x60}}

Protocol Interface Structure

typedef struct _EFI_SMART_CARD_READER_PROTOCOL {

 EFI_SMART_CARD_READER_CONNECT SCardConnect;

 EFI_SMART_CARD_READER_DISCONNECT SCardDisconnect;

 EFI_SMART_CARD_READER_STATUS SCardStatus;

 EFI_SMART_CARD_READER_TRANSMIT SCardTransmit;

 EFI_SMART_CARD_READER_CONTROL SCardControl;

 EFI_SMART_CARD_READER_GET_ATTRIB SCardGetAttrib;
} EFI_SMART_CARD_READER_PROTOCOL;

Members

SCardConnect Requests a connection to the smart card or smart card reader.
SCardDisconnect Closes the previously open connection.
SCardStatus Provides informations on smart card status and reader name.
SCardTransmit Exchanges data with smart card or smart card reader.
SCardControl Gives direct control to the smart card reader.
SCardGetAttrib Retrieves reader characteristics.

Description

This protocol allows UEFI applications to communicate and get/set all necessary information to the
smart card reader.

Overview

This document aims at defining a standard way for UEFI applications to use a smart card. The key
points are:

• Provide an API as close as possible to Part 5 of the existing PC/SC interface. See “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “PC/SC Workgroup
Specifications”.

• Remove any unnecessary complexity of PC/SC implementation in a classic OS:

— Assume no connection sharing
— No resource manager
— Reduced set of APIs
UEFI Forum, Inc. March 2019 2165

UEFI Specification, Version 2.8 Secure Technologies
Note that this document only focuses on PC/SC Part 5 (access to smart card/smart card reader
from an application). Abstracting the smart card (Parts 6/9) is not the scope of this document.

Main differences with existing PC/SC implementation on Linux/MacOS/Windows:

• There is no resource manager, driver exposes Part 5 instead of Part 3

• It is not possible to share a smart card between UEFI applications/drivers

• Reader enumeration is different:

— On classic PC/SC, SCardListReaders is used
— In UEFI, reader list is available via OpenProtocol/ScardStatus calls

EFI_SMART_CARD_READER_PROTOCOL.SCardConnect()

Summary

 This function requests connection to the smart card or the reader, using the appropriate reset type
and protocol.

Prototype

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_CONNECT) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 IN UINT32 AccessMode,

 IN UINT32 CardAction,

 IN UINT32 PreferredProtocols,

 OUT UINT32 *ActiveProtocol
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 AccessMode See “related definitions” below.
 CardAction SCARD_CA_NORESET, SCARD_CA_COLDRESET or

SCARD_CA_WARMRESET.
 PreferredProtocols Bitmask of acceptable protocols. See “related definitions”

below.
 ActiveProtocol A flag that indicates the active protocol. See “related

definitions” below.
UEFI Forum, Inc. March 2019 2166

UEFI Specification, Version 2.8 Secure Technologies
Related Definitions

//

// Codes for access mode

//

#define SCARD_AM_READER 0x0001 // Exclusive access to reader

#define SCARD_AM_CARD 0x0002 // Exclusive access to card

//

// Codes for card action

//

#define SCARD_CA_NORESET 0x0000 // Don’t reset card

#define SCARD_CA_COLDRESET 0x0001 // Perform a cold reset

#define SCARD_CA_WARMRESET 0x0002 // Perform a warm reset

#define SCARD_CA_UNPOWER 0x0003 // Power off the card

#define SCARD_CA_EJECT 0x0004 // Eject the card

//

// Protocol types

//

#define SCARD_PROTOCOL_UNDEFINED 0x0000

#define SCARD_PROTOCOL_T0 0x0001

#define SCARD_PROTOCOL_T1 0x0002

#define SCARD_PROTOCOL_RAW 0x0004

Description

The SCardConnect function requests access to the smart card or the reader. Upon success, it is
then possible to call SCardTransmit.

If AccessMode is set to SCARD_AM_READER, PreferredProtocols must be set to
SCARD_PROTOCOL_UNDEFINED and CardAction to SCARD_CA_NORESET else function fails with
EFI_INVALID_PARAMETER.
UEFI Forum, Inc. March 2019 2167

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect()

Summary

 This function releases a connection previously taken by SCardConnect.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_DISCONNECT) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 IN UINT32 CardAction
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 CardAction See “related definitions” for CardAction in SCardConnect
description.

Description

The SCardDisconnect function releases the lock previously taken by SCardConnect. In case
the smart card has been removed before this call, this function returns EFI_SUCCESS. If there is no
previous call to SCardConnect, this function returns EFI_SUCCESS.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER AccessMode is not valid.

EFI_INVALID_PARAMETER CardAction is not valid.

EFI_INVALID_PARAMETER Invalid combination of AccessMode/CardAction/

PreferredProtocols.

EFI_NOT_READY A smart card is inserted but failed to return an ATR.

EFI_UNSUPPORTED PreferredProtocols does not contain an available protocol to use.

EFI_NO_MEDIA AccessMode is set to SCARD_AM_CARD but there is no smart card

inserted.

EFI_ACCESS_DENIED Access is already locked by a previous SCardConnect call.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2168

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_READER_PROTOCOL.SCardStatus()

Summary

 This function retrieves some basic information about the smart card and reader.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_STATUS) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 OUT CHAR16 *ReaderName OPTIONAL,

 IN OUT UINTN *ReaderNameLength OPTIONAL,

 OUT UINT32 *State OPTIONAL,

 OUT UINT32 *CardProtocol OPTIONAL,

 OUT UINT8 *Atr OPTIONAL,

 IN OUT UINTN *AtrLength OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 ReaderName A pointer to a NULL terminated string that will contain the
reader name.

 ReaderNameLength On input, a pointer to the variable that holds the maximal size,
in bytes,of ReaderName.
On output, the required size, in bytes, for ReaderName.

 State Current state of the smart card reader. See “related
definitions” below.

 CardProtocol Current protocol used to communicate with the smart card.
See “related definitions” in SCardConnect.

 Atr A pointer to retrieve the ATR of the smart card.
 AtrLength On input, a pointer to hold the maximum size, in bytes, of Atr

(usually 33).
On output, the required size, in bytes, for the smart card ATR.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER CardAction value is unknown.

EFI_UNSUPPORTED Reader does not support Eject card feature (disconnect was not
performed).

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2169

UEFI Specification, Version 2.8 Secure Technologies
Related Definitions

//

// Codes for state type

//

#define SCARD_UNKNOWN 0x0000 /* state is unknown */

#define SCARD_ABSENT 0x0001 /* Card is absent */

#define SCARD_INACTIVE 0x0002 /* Card is present and not powered*/

#define SCARD_ACTIVE 0x0003 /* Card is present and powered */

 Description

The SCardStatus function retrieves basic reader and card information.

If ReaderName, State, CardProtocol or Atr is NULL, the function does not fail but does not fill
in such variables.

If EFI_SUCCESS is not returned, ReaderName and Atr contents shall not be considered as valid.

Status Codes Returned

EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()

Summary

 This function sends a command to the card or reader and returns its response.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER ReaderName is not NULL but ReaderNameLength is NULL

EFI_INVALID_PARAMETER Atr is not NULL but AtrLength is NULL

EFI_BUFFER_TOO_SMALL ReaderNameLength is not big enough to hold the reader name.

ReaderNameLength has been updated to the required value.

EFI_BUFFER_TOO_SMALL AtrLength is not big enough to hold the ATR.

AtrLength has been updated to the required value.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2170

UEFI Specification, Version 2.8 Secure Technologies
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_TRANSMIT) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 IN UINT8 *CAPDU,

 IN UINTN CAPDULength,

 OUT UINT8 *RAPDU,

 IN OUT UINTN *RAPDULength
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 CAPDU A pointer to a byte array that contains the Command APDU to
send to the smart card or reader.

 CAPDULength Command APDU size, in bytes.
 RAPDU A pointer to a byte array that will contain the Response APDU.
 RAPDULength On input, the maximum size, in bytes, of the Response APDU.

On output, the size, in bytes, of the Response APDU.

Description

This function sends a command to the card or reader and returns its response. The protocol to use
to communicate with the smart card has been selected through SCardConnect call.

In case RAPDULength indicates a buffer too small to hold the response APDU, the function fails
with EFI_BUFFER_TOO_SMALL.
UEFI Forum, Inc. March 2019 2171

UEFI Specification, Version 2.8 Secure Technologies
Note: the caller has to call previously SCardConnect to make sure the reader/card is not already
accessed by another application or driver.

Status Codes Returned

EFI_SMART_CARD_READER_PROTOCOL.SCardControl()

Summary

 This function provides direct access to the reader.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_CONTROL) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 IN UINT32 ControlCode,

 IN UINT8 *InBuffer OPTIONAL,

 IN UINTN InBufferLength OPTIONAL,

 OUT UINT8 *OutBuffer OPTIONAL,

 IN OUT UINTN *OutBufferLength OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 ControlCode The control code for the operation to perform.
See “related definitions” below.

 InBuffer A pointer to the input parameters.
 InBufferLength Size, in bytes, of input parameters.
 OutBuffer A pointer to the output parameters.
 OutBufferLength On input, maximal size, in bytes, to store output parameters.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER CAPDU is NULL or CAPDULength is 0.

EFI_BUFFER_TOO_SMALL RAPDULength is not big enough to hold the response APDU.

RAPDULength has been updated to the required value..

EFI_NO_MEDIA There is no card in the reader.

EFI_NOT_READY Card is not powered.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_ACCESS_DENIED A communication with the reader/card is already pending.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2172

UEFI Specification, Version 2.8 Secure Technologies
On output, the size, in bytes, of output parameters.

Description

This function gives direct control to send commands to the driver or the reader.

The ControlCode to use is vendor dependant; the only standard code defined is the one to get
PC/SC part 10 features. See “related definitions” below.

InBuffer and Outbuffer may be NULL when ControlCode operation does not require them.
UEFI Forum, Inc. March 2019 2173

UEFI Specification, Version 2.8 Secure Technologies
Note: the caller has to call previously SCardConnect to make sure the reader/card is not already
accessed by another application or driver.

Related Definitions

//

// Macro to generate a ControlCode & PC/SC part 10 control code

//

#define SCARD_CTL_CODE(code) (0x42000000 + (code))

#define CM_IOCTL_GET_FEATURE_REQUEST SCARD_CTL_CODE(3400)

Status Codes Returned

EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()

Summary

 This function retrieves a reader or smart card attribute.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_GET_ATTRIB) (

 IN EFI_SMART_CARD_READER_PROTOCOL *This,

 IN UINT32 Attrib,

 OUT UINT8 *OutBuffer,

 IN OUT UINTN *OutBufferLength
);

Parameters

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER ControlCode requires input parameters but:

• InBuffer is NULL or InBufferLenth is NULL –or-

• InBuffer is not NULL but InBufferLenth is less than

EFI_INVALID_PARAMETER OutBuffer is not NULL but OutBufferLength is NULL

EFI_UNSUPPORTED ControlCode is not supported.

EFI_BUFFER_TOO_SMALL OutBufferLength is not big enough to hold the output parameters.

OutBufferLength has been updated to the required value.

EFI_NO_MEDIA There is no card in the reader and the control code specified requires one.

EFI_NOT_READY ControlCode requires a powered card to operate.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_ACCESS_DENIED A communication with the reader/card is already pending.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2174

UEFI Specification, Version 2.8 Secure Technologies
 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 Attrib Identifier for the attribute to retrieve.
See “related definitions” below. Note that all attributes might
not be implemented.

 OutBuffer A pointer to a buffer that will contain attribute data.
 OutBufferLength On input, maximal size, in bytes, to store attribute data.

On output, the size, in bytes, of attribute data.

Related Definitions

Possibly supported attrib values are listed in the PC/SC Specification, Part 3. See Section Q for
document access.

Description

The SCardGetAttrib function retrieves an attribute from the reader driver.

Status Codes Returned

37.6.2 Smart Card Edge Protocol

The Smart Card Edge Protocol provides an abstraction for device to provide Smart Card support.

EFI_SMART_CARD_EDGE_PROTOCOL

Summary

Smart Card aware application invokes this protocol to get access to an inserted Smart Card in the
reader.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER OutBuffer is NULL or OutBufferLength is 0.

EFI_BUFFER_TOO_SMALL OutBufferLength is not big enough to hold the output parameters.

OutBufferLength has been updated to the required value.

EFI_UNSUPPORTED Attrib is not supported.

EFI_NO_MEDIA There is no card in the reader and Attrib value requires one.

EFI_NOT_READY Attrib requires a powered card to operate.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
UEFI Forum, Inc. March 2019 2175

UEFI Specification, Version 2.8 Secure Technologies
GUID

#define EFI_SMART_CARD_EDGE_PROTOCOL_GUID \

{ 0xd317f29b, 0xa325, 0x4712,\

 { 0x9b, 0xf1, 0xc6, 0x19, 0x54, 0xdc, 0x19, 0x8c } }

Protocol Interface Structure

typedef struct _EFI_SMART_CARD_EDGE_PROTOCOL {

 EFI_SMART_CARD_EDGE_GET_CONTEXT GetContext;

 EFI_SMART_CARD_EDGE_CONNECT Connect;

 EFI_SMART_CARD_EDGE_DISCONNECT Disconnect;

 EFI_SMART_CARD_EDGE_GET_CSN GetCsn;

 EFI_SMART_CARD_EDGE_GET_READER_NAME GetReaderName;

 EFI_SMART_CARD_EDGE_VERIFY_PIN VerifyPin;

 EFI_SMART_CARD_EDGE_GET_PIN_REMAINING GetPinRemaining;

 EFI_SMART_CARD_EDGE_GET_DATA GetData;

 EFI_SMART_CARD_EDGE_GET_CREDENTIAL GetCredential;

 EFI_SMART_CARD_EDGE_SIGN_DATA SignData;

 EFI_SMART_CARD_EDGE_DECRYPT_DATA DecryptData;

 EFI_SMART_CARD_EDGE_BUILD_DH_AGREEMENT BuildDHAgreement;
} EFI_SMART_CARD_EDGE_PROTOCOL;

Members
GetContext Request the driver contex.
Connect Request a connection to the Smart Card.
Disconnect Close a previously open connection.
GetCSN Get Card Serial Number.
GetReaderName Get name of Smart Card reader used.
VerifyPin Verify Smart Card PIN.
GetPinRemaining Get number of remaining PIN tries.
GetData Get specific data.
GetCredential Get credentials the Smart Card holds.
SignData Sign a data.
DecryptData Decrypt a data.
BuildDHAgreement Construct a DH (Diffie Hellman) agreement for key derivation.

Description

This protocol allows UEFI applications to interface with a Smart Card during boot process for
authentication or data signing / decryption, especially if the application has to make use of PKI.

Overview

This document aims at defining a standard way for UEFI applications to use a Smart Card in PKI
(Public Key Infrastructure) context. The key points are:

• Each Smart Card or set of Smart Card have specific behavior.
UEFI Forum, Inc. March 2019 2176

UEFI Specification, Version 2.8 Secure Technologies
• Smart Card applications often interface with PKCS #11 API or other cryptographic interface like
CNG.

• During boot process not all the possibility of a cryptographic interface, like PKCS #11, are
useful, for example it is neither the moment to perform Smart Card administration or Smart
Card provisioning nor to process debit or credit operation with Smart Card.

Consequently this protocol focused on those points:

• Offering standard access to Smart Card functionalities that:

— Authenticate User
— Sign data
— Decrypt data
— Get certificates

• With an API that is enough close with PKCS#11 API that it could be considered as a brick to
build a “tiny PKCS#11”.

• An implementation of the protocol can be dedicated to a specific Smart Card or a specific set of
Smart Card.

• An implementation of the protocol shall poll for Smart Card reader attachment and removal.

• An implementation of the protocol shall poll for Smart Card insertion and removal. On
insertion the protocol shall check if it supports this Smart Card.

Typically an implementation of this protocol will lean on a Smart Card reader protocol
(EFI_SMART_CARD_READER_PROTOCOL).

EFI_SMART_CARD_EDGE_PROTOCOL.GetContext()

Summary

 This function retrieves the context driver.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CONTEXT) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 OUT UINTN *NumberAidSupported,

 IN OUT UINTN *AidTableSize OPTIONAL,

 OUT SMART_CARD_AID *AidTable OPTIONAL,

 OUT UINTN *NumberSCPresent,

 IN OUT UINTN *CsnTableSize OPTIONAL,

 OUT SMART_CARD_CSN *CsnTable OPTIONAL,

 OUT UINT32 *VersionScEdgeProtocol OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
 EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
UEFI Forum, Inc. March 2019 2177

UEFI Specification, Version 2.8 Secure Technologies
 EFI_SMART_CARD_EDGE_PROTOCOL description.
 NumberAidSupported

Number of AIDs this protocol supports.
 AidTableSize On input, number of items allocated for the AID table.

On output, number of items returned by protocol.
 AidTable Table of the AIDs supported by the protocol.
 NumberSCPresent Number of currently present Smart Cards that are supported

by protocol.
 CsnTableSize On input, the number of items the buffer CSN table can

contain.
On output, the number of items returned by the protocol.

 CsnTable Table of the CSN of the Smart Card present and supported by
protocol.

 VersionScEdgeProtocol
EFI_SMART_CARD_EDGE_PROTOCOL version.

Related Definitions

//

// Maximum size for a Smart Card AID (Application IDentifier)

//

#define SCARD_AID_MAXSIZE 0x0010

//

// Size of CSN (Card Serial Number)

//

#define SCARD_CSN_SIZE 0x0010

//

//Current specification version 1.00

//

#define SMART_CARD_EDGE_PROTOCOL_VERSION_1 0x00000100

// Parameters type definition

//

typedef UINT8 SMART_CARD_AID[SCARD_AID_MAXSIZE];

typedef UINT8 SMART_CARD_CSN[SCARD_CSN_SIZE];

Description

The GetContext function returns the context of the protocol, the application identifiers
supported by the protocol and the number and the CSN unique identifier of Smart Cards that are present
and supported by protocol.

If AidTableSize, AidTable, CsnTableSize, CsnTable or VersionProtocol is NULL, the
function does not fail but does not fill in such variables.

In case AidTableSize indicates a buffer too small to hold all the protocol AID table, only the first
AidTableSize items of the table are returned in AidTable.
UEFI Forum, Inc. March 2019 2178

UEFI Specification, Version 2.8 Secure Technologies
In case CsnTableSize indicates a buffer too small to hold the entire table of Smart Card CSN
present, only the first CsnTableSize items of the table are returned in CsnTable.

VersionScEdgeProtocol returns the version of the EFI_SMART_CARD_EDGE_PROTOCOL this
driver uses. For this protocol specification value is SMART_CARD_EDGE_PROTOCOL_VERSION_1.

In case of Smart Card removal the internal CSN list is immediately updated, even if a connection is
opened with that Smart Card.

Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL. Connect()

Summary

 This function establish a connection with a Smart Card the protocol support.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_CONNECT) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 OUT EFI_HANDLE *SCardHandle,

 IN UINT8 *ScardCsn OPTIONAL,

 OUT UINT8 *ScardAid OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 ScardCsn CSN of the Smart Card the connection has to be established.
 ScardAid AID of the Smart Card the connection has been established.

Description

The Connect function establishes a connection with a Smart Card.

In case of success the SCardHandle can be used.

If the ScardCsn is NULL the connection is established with the first Smart Card the protocol finds
in its table of Smart Card present and supported. Else it establish context with the Smart Card whose CSN
given by ScardCsn.

If ScardAid is not NULL the function returns the Smart Card AID the protocol supports.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER NumberSCPresent Is NULL.
UEFI Forum, Inc. March 2019 2179

UEFI Specification, Version 2.8 Secure Technologies
After a successful connect the SCardHandle will remain existing even in case Smart Card removed
from Smart Card reader, but all function invoking this SCardHandle will fail. SCardHandle is released
only on Disconnect.

Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect()

Summary

 This function releases a connection previously established by Connect.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_DISCONNECT) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection to release.

Description

The Disconnect function releases the connection previously established by a Connect. In case
the Smart Card or the Smart Card reader has been removed before this call, this function returns
EFI_SUCCESS.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER SCardHandle is NULL.

EFI_NO_MEDIA No Smart Card supported by protocol is present, Smart Card with CSN

ScardCsn or Reader has been removed. A Disconnect should be

performed.
UEFI Forum, Inc. March 2019 2180

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn

Summary

 This function returns the Smart Card serial number.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CSN) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 OUT UINT8 Csn[SCARD_CSN_SIZE]
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 Csn The Card Serial number, 16 bytes array.

Description

The GetCsn function returns the 16 bytes Smart Card Serial number.

Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName

Summary

 This function returns the name of the Smart Card reader used for this connection.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2181

UEFI Specification, Version 2.8 Secure Technologies
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_READER_NAME) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN OUT UINTN *ReaderNameLength,

 OUT CHAR16 *ReaderName OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 ReaderNameLength On input, a pointer to the variable that holds the maximal size,

in bytes, of ReaderName.
On output, the required size, in bytes, for ReaderName.

 ReaderName A pointer to a NULL terminated string that will contain the
reader name.

Description

The GetReaderName function returns the name of the Smart Card reader used for this
connection.

Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin()

Summary

 This function authenticates a Smart Card user by presenting a PIN code.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER ReaderNameLength is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2182

UEFI Specification, Version 2.8 Secure Technologies
Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_VERIFY_PIN) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN INT32 PinSize,

 IN UINT8 *PinCode,

 OUT BOOLEAN *PinResult,

 OUT UINT32 *RemainingAttempts OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 PinSize PIN code buffer size.
 PinCode PIN code to present to the Smart Card.
 PinResult Result of PIN code presentation to the Smart Card.

TRUE when Smart Card founds the PIN code correct.
 RemainingAttemptsNumber of attempts still possible.

Description

The VerifyPin function presents a PIN code to the Smart Card.

If Smart Card found the PIN code correct the user is considered authenticated to current
application, and the function returns TRUE.

Negative or null PinSize value rejected if PinCode is not NULL

A NULL PinCode buffer means the application didn’t know the PIN, in that case:

• If PinSize value is negative the caller only wants to know if the current chain of the elements
Smart Card Edge protocol, Smart Card Reader protocol and Smart Card Reader supports the
Secure Pin Entry PCSC V2 functionality.

• If PinSize value is positive or null the caller ask to perform the verify PIN using the Secure PIN
Entry functionality.

In PinCode buffer, the PIN value is always given in plaintext, in case of secure messaging the
SMART_CARD_EDGE_PROTOCOL will be in charge of all intermediate treatments to build the correct
Smart Card APDU.
UEFI Forum, Inc. March 2019 2183

UEFI Specification, Version 2.8 Secure Technologies

h
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining()

Summary

 This function gives the remaining number of attempts for PIN code presentation.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_PIN_REMAINING) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 OUT UINT32 *RemainingAttempts
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 RemainingAttemptsNumber of attempts still possible.

Description

The number of attempts to present a correct PIN is limited and depends on Smart Card and on PIN.

This function will retrieve the number of remaining possible attempts.

EFI_SUCCESS The requested command completed successfully.

EFI_UNSUPPORTED Pinsize < 0 and Secure PIN Entry functionality not supported.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER Bad value for PinSize: value not supported by Smart Card or, negative wit

PinCode not null.

EFI_INVALID_PARAMETER PinResult is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2184

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.GetData()

Summary

 This function returns a specific data from Smart Card.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_DATA) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN EFI_GUID *DataId,

 IN OUT UINTN *DataSize,

 OUT VOID *Data OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 DataId The type identifier of the data to get.
 DataSize On input, in bytes, the size of Data. On output, in bytes, the

size of buffer required to store the specified data.
 Data The data buffer in which the data is returned. The type of the

data buffer is associated with the DataId. Ignored if
*DataSize is 0.

Description

This function returns a data from Smart Card. The function is generic for any kind of data, but driver
and application must share an EFI_GUID that identify the data.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER RemainingAttempts is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2185

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials()

Summary

 This function retrieve credentials store into the Smart Card.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CREDENTIAL) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN OUT UINTN *CredentialSize,

 OUT UINT8 *CredentialList OPTIONAL
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.
 CredentialSize On input, in bytes, the size of buffer to store the list of

credential. On output, in bytes, the size of buffer required to
store the entire list of credentials.

 CredentialList List of credentials stored into the Smart Card. A list of TLV
(Tag Length Value) elements organized in containers array.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER DataId is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER Data is NULL, and *DataSize is not zero.

EFI_NOT_FOUND DataId unknown for this driver.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified data and the required size is

returned in DataSize.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2186

UEFI Specification, Version 2.8 Secure Technologies
Related Definitions

//Type of data elements in credentials list

#define SC_EDGE_TAG_HEADER 0x0000 \

 // value of tag field for header,

 // the number of containers

#define SC_EDGE_TAG_CERT 0x0001 // value of tag field for certificate

#define SC_EDGE_TAG_KEY_ID 0x0002 // value of tag field for key index

 // associated with certificate

#define SC_EDGE_TAG_KEY_TYPE 0x0003 // value of tag field for key type

#define SC_EDGE_TAG_KEY_SIZE 0x0004 // value of tag field for key size

//Length of L fields of TLV items

#define SC_EDGE_L_SIZE_HEADER 1 // size of L field for header

#define SC_EDGE_L_SIZE_CERT 2 // size of L field for certificate (big
endian)

#define SC_EDGE_L_SIZE_KEY_ID 1 // size of L field for key index

#define SC_EDGE_L_SIZE_KEY_TYPE 1 // size of L field for key type

#define SC_EDGE_L_SIZE_KEY_SIZE 2 // size of L field for key size (big endian)

//Some TLV items have a fixed value for L field

#define SC_EDGE_L_VALUE_HEADER 1 // value of L field for header

#define SC_EDGE_L_VALUE_KEY_ID 1 // value of L field for key index

#define SC_EDGE_L_VALUE_KEY_TYPE 1 // value of L field for key type

#define SC_EDGE_L_VALUE_KEY_SIZE 2 // value of L field for key size

//Possible values for key type

#define SC_EDGE_RSA_EXCHANGE 0x01 //RSA decryption

#define SC_EDGE_RSA_SIGNATURE 0x02 //RSA signature

#define SC_EDGE_ECDSA_256 0x03 //ECDSA signature

#define SC_EDGE_ECDSA_384 0x04 //ECDSA signature

#define SC_EDGE_ECDSA_521 0x05 //ECDSA signature

#define SC_EDGE_ECDH_256 0x06 //ECDH agreement

#define SC_EDGE_ECDH_384 0x07 //ECDH agreement

#define SC_EDGE_ECDH_521 0x08 //ECDH agreement

Description

The function returns a series of items in TLV (Tag Length Value) format.

First TLV item is the header item that gives the number of following containers (0x00, 0x01, Nb
containers).

All these containers are a series of 4 TLV items:

• The certificate item (0x01, certificate size, certificate)

• The Key identifier item (0x02, 0x01, key index)

• The key type item (0x03, 0x01, key type)
UEFI Forum, Inc. March 2019 2187

UEFI Specification, Version 2.8 Secure Technologies
• The key size item (0x04, 0x02, key size), key size in number of bits.

Numeric multi-bytes values are on big endian format, most significant byte first:

• The L field value for certificate (2 bytes)

• The L field value for key size (2 bytes)

• The value field for key size (2 bytes)

Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.SignData()

Summary

 This function signs an already hashed data with a Smart Card private key.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_SIGN_DATA) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN UINTN KeyId,

 IN UINTN KeyType,

 IN EFI_GUID *HashAlgorithm,

 IN EFI_GUID *PaddingMethod,

 IN UINT8 *HashedData,

 OUT UINT8 *SignatureData
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER CredentialSize is NULL.

EFI_INVALID_PARAMETER CredentialList is NULL, if CredentialSize is not zero.

EFI_BUFFER_TOO_SMALL The size of CredentialList is too small for the specified data and the

required size is returned in CredentialSize.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2188

UEFI Specification, Version 2.8 Secure Technologies
 KeyId Identifier of the key container, retrieved in a key index item of
credentials.

 KeyType The key type, retrieved in a key type item of credentials.
 HashAlgorithm Hash algorithm used to hash the, one of:

• EFI_HASH_ALGORITHM_SHA1_GUID
• EFI_HASH_ALGORITHM_SHA256_GUID
• EFI_HASH_ALGORITHM_SHA384_GUID
• EFI_HASH_ALGORITHM_SHA512_GUID

 PaddingMethod Padding method used jointly with hash algorithm, one of:
• EFI_PADDING_RSASSA_PKCS1V1P5_GUID
• EFI_PADDING_RSASSA_PSS_GUID

 HashedData Hash of the data to sign. Size is function of the
HashAlgorithm.

 SignatureData Resulting signature with private key KeyId. Size is function of
the KeyType and key size retrieved in the associated key size
item of credentials.

Related Definitions

//

// Padding methods GUIDs for signature

//

//

// RSASSA- PKCS#1-V1.5 padding method, for signature

//

#define EFI_PADDING_RSASSA_PKCS1V1P5_GUID \

{0x9317ec24,0x7cb0,0x4d0e,\

{0x8b,0x32,0x2e,0xd9,0x20,0x9c,0xd8,0xaf}}

//

// RSASSA-PSS padding method, for signature

//

#define EFI_PADDING_RSASSA_PSS_GUID \

{0x7b2349e0,0x522d,0x4f8e,\

{0xb9,0x27,0x69,0xd9,0x7c,0x9e,0x79,0x5f}}

Description

This function signs data, actually it is the hash of these data that is given to the function.

SignatureData buffer shall be big enough for signature. Signature size is function key size and
key type.
UEFI Forum, Inc. March 2019 2189

UEFI Specification, Version 2.8 Secure Technologies
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData()

Summary

 This function decrypts data with a PKI/RSA Smart Card private key.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_DECRYPT_DATA) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN UINTN KeyId,

 IN EFI_GUID *HashAlgorithm,

 IN EFI_GUID *PaddingMethod,

 IN UINTN EncryptedSize,

 IN UINT8 *EncryptedData,

 IN OUT UINTN *PlaintextSize,

 OUT UINT8 *PlaintextData
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid.

EFI_INVALID_PARAMETER KeyType is not valid or not corresponding to KeyId.

EFI_INVALID_PARAMETER HashAlgorithm is NULL.

EFI_INVALID_PARAMETER HashAlgorithm is not valid.

EFI_INVALID_PARAMETER PaddingMethod is NULL.

EFI_INVALID_PARAMETER PaddingMethod is not valid.

EFI_INVALID_PARAMETER HashedData is NULL.

EFI_INVALID_PARAMETER SignatureData is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2190

UEFI Specification, Version 2.8 Secure Technologies
 KeyId Identifier of the key container, retrieved in a key index item of
credentials.

 HashAlgorithm Hash algorithm used to hash the, one of:
• EFI_HASH_ALGORITHM_SHA1_GUID

• EFI_HASH_ALGORITHM_SHA256_GUID

• EFI_HASH_ALGORITHM_SHA384_GUID

• EFI_HASH_ALGORITHM_SHA512_GUID

 PaddingMethod Padding method used jointly with hash algorithm, one of:
• EFI_PADDING_NONE_GUID

• EFI_PADDING_RSAES_PKCS1V1P5_GUID

• EFI_PADDING_RSAES_OAEP_GUID

 EncryptedSize Size of data to decrypt
 EncryptedData Data to decrypt
 PlaintextSize On input, in bytes, the size of buffer to store the decrypted

data. On output, in bytes, the size of buffer required to store
the decrypted data.

 PlaintextData Buffer for decrypted data, padding removed.
UEFI Forum, Inc. March 2019 2191

UEFI Specification, Version 2.8 Secure Technologies
Related Definitions

//

// Padding methods GUIDs for decryption

//

//

// No padding, for decryption

//

#define EFI_PADDING_NONE_GUID \

{0x3629ddb1,0x228c,0x452e,\

{0xb6,0x16,0x09,0xed,0x31,0x6a,0x97,0x00}}

//

// RSAES-PKCS#1-V1.5 padding, for decryption

//

#define EFI_PADDING_RSAES_PKCS1V1P5_GUID \

{0xe1c1d0a9,0x40b1,0x4632,\

{0xbd,0xcc,0xd9,0xd6,0xe5,0x29,0x56,0x31}}

//

// RSAES-OAEP padding, for decryption

//

#define EFI_PADDING_RSAES_OAEP_GUID \

{0xc1e63ac4,0xd0cf,0x4ce6,\

{0x83,0x5b,0xee,0xd0,0xe6,0xa8,0xa4,0x5b}}

Description

The function decrypts some PKI / RSA encrypted data with private key securely stored into the
Smart Card.

The KeyId must reference a key of type SC_EDGE_RSA_EXCHANGE.
UEFI Forum, Inc. March 2019 2192

UEFI Specification, Version 2.8 Secure Technologies

NGE.

is
Status Codes Returned

EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement()

Summary

 This function performs a secret Diffie Hellman agreement calculation that would be used to derive
a symmetric encryption / decryption key.

Prototype

 typedef

 EFI_STATUS

 (EFIAPI *EFI_SMART_CARD_EDGE_BUILD_DH_AGREEMENT) (

 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,

 IN EFI_HANDLE SCardHandle,

 IN UINTN KeyId,

 IN UINT8 *dataQx,

 IN UINT8 *dataQy,

 OUT UINT8 *DHAgreement
);

Parameters

 This Indicates a pointer to the calling context. Type
EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid or associated key not of type SC_EDGE_RSA_EXCHA

EFI_INVALID_PARAMETER HashAlgorithm is NULL.

EFI_INVALID_PARAMETER HashAlgorithm is not valid.

EFI_INVALID_PARAMETER PaddingMethod is NULL.

EFI_INVALID_PARAMETER PaddingMethod is not valid.

EFI_INVALID_PARAMETER EncryptedSize is 0.

EFI_INVALID_PARAMETER EncryptedData is NULL.

EFI_INVALID_PARAMETER PlaintextSize is NULL.

EFI_INVALID_PARAMETER PlaintextData is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_BUFFER_TOO_SMALL PlaintextSize is too small for the plaintext data and the required size

returned in PlaintextSize.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2193

UEFI Specification, Version 2.8 Secure Technologies
 SCardHandle Handle on Smart Card connection.
 KeyId Identifier of the key container, retrieved in a key index item of

credentials.
 dataQx Public key x coordinate. Size is the same as key size for KeyId.

Stored in big endian format.
 dataQy Public key y coordinate. Size is the same as key size for KeyId.

Stored in big endian format.
 DHAgreement Buffer for DH agreement computed. Size must be bigger or

equal to key size for KeyId.

Description

The function compute a DH agreement that should be diversified to generate a symmetric key to
proceed encryption or decryption.

The application and the Smart Card shall agree on the diversification process.

The KeyId must reference a key of one of the types: SC_EDGE_ECDH_256, SC_EDGE_ECDH_384
or SC_EDGE_ECDH_521.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid.

EFI_INVALID_PARAMETER dataQx is NULL.

EFI_INVALID_PARAMETER dataQy is NULL.

EFI_INVALID_PARAMETER DHAgreement is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been removed. A

Disconnect should be performed.
UEFI Forum, Inc. March 2019 2194

UEFI Specification, Version 2.8
38 - Miscellaneous Protocols

38.1 EFI Timestamp Protocol

EFI_TIMESTAMP_PROTOCOL

Summary

The Timestamp protocol provides a platform independent interface for retrieving a high resolution
timestamp counter.

GUID
#define EFI_TIMESTAMP_PROTOCOL_GUID \ 

{ 0xafbfde41, 0x2e6e, 0x4262,\

 { 0xba, 0x65, 0x62, 0xb9, 0x23, 0x6e, 0x54, 0x95 }}

Protocol Interface Structure

typedef struct _ EFI_TIMESTAMP_PROTOCOL {
TIMESTAMP_GET GetTimestamp;

TIMESTAMP_GET_PROPERTIES GetProperties;
} EFI_TIMESTAMP_PROTOCOL;

EFI_TIMESTAMP_PROTOCOL.GetTimestamp()

Summary

Retrieves the current timestamp counter value.

Prototype

typedef

UINT64

(EFIAPI *TIMESTAMP_GET) (

VOID

);

Description

Retrieves the current value of a 64-bit free running timestamp counter.

The counter shall count up in proportion to the amount of time that has passed. The counter value will
always roll over to zero. The properties of the counter can be retrieved from GetProperties().

The caller should be prepared for the function to return the same value twice across successive calls. The
counter value will not go backwards other than when wrapping, as defined by EndValue in
GetProperties().

The frequency of the returned timestamp counter value must remain constant. Power management
operations that affect clocking must not change the returned counter frequency. The quantization of
counter value updates may vary as long as the value reflecting time passed remains consistent.
UEFI Forum, Inc. March 2019 2195

UEFI Specification, Version 2.8 Miscellaneous Protocols
Return Value

The current value of the free running timestamp counter.

EFI_TIMESTAMP_PROTOCOL.GetProperties ()

Summary

Obtains timestamp counter properties including frequency and value limits.

Prototype

typedef

EFI_STATUS

(EFIAPI *TIMESTAMP_GET_PROPERTIES) (

 OUT EFI_TIMESTAMP_PROPERTIES *Properties
);

Parameters

Properties

The properties of the timestamp counter. See "Related Definitions" below.

Description

Retrieves the timestamp counter properties structure.

Related Definitions

typedef struct {
 UINT64 Frequency;

 UINT64 EndValue;
 } EFI_TIMESTAMP_PROPERTIES;

Frequency The frequency of the timestamp counter in Hz.
EndValue The value that the timestamp counter ends with immediately

before it rolls over. For example, a 64-bit free running counter
would have an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit
free running counter would have an EndValue of 0xFFFFFF.
UEFI Forum, Inc. March 2019 2196

UEFI Specification, Version 2.8 Miscellaneous Protocols
Status Codes Returned

38.2 Reset Notification Protocol

EFI_RESET_NOTIFICATION_PROTOCOL

Summary

This protocol provides services to register for a notification when ResetSystem is called.

GUID

#define EFI_RESET_NOTIFICATION_PROTOCOL_GUID \

{ 0x9da34ae0, 0xeaf9, 0x4bbf, \

{ 0x8e, 0xc3, 0xfd, 0x60, 0x22, 0x6c, 0x44, 0xbe } }

Protocol Interface Structure

typedef struct _EFI_RESET_NOTIFICATION_PROTOCOL {

EFI_REGISTER_RESET_NOTIFY RegisterResetNotify;

EFI_UNREGISTER_RESET_NOTIFY UnRegisterResetNotify;

 } EFI_RESET_NOTIFICATION_PROTOCOL;

Parameters

RegisterResetNotify

Register a notification function to be called when ResetSystem() is called.

UnRegisterResetNotify

Removes a reset notification function that has been previously registered with
RegisterResetNotify().

EFI_RESET_NOTIFICATION_PROTOCOL.RegisterResetNotify()

Summary

Register a notification function to be called when ResetSystem() is called.

EFI_SUCCESS The properties were successfully retrieved.

EFI_DEVICE_ERROR An error occurred trying to retrieve the properties of the

timestamp counter subsystem. Properties is not updated.

EFI_INVALID_PARAMETER Properties is NULL.
UEFI Forum, Inc. March 2019 2197

UEFI Specification, Version 2.8 Miscellaneous Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REGISTER_RESET_NOTIFY) (

IN EFI_RESET_NOTIFICATION_PROTOCOL *This,

IN EFI_RESET_SYSTEM *ResetFunction,

);

Parameters

This

A pointer to the EFI_RESET_NOTIFICATION_PROTOCOL instance.

ResetFunction

Points to the function to be called when a ResetSystem() is executed.

Description

The RegisterResetNotify()function registers a notification function that is called when
ResetSystem()is called and prior to completing the reset of the platform.

The registered functions must not perform a platform reset themselves. These notifications are intended
only for the notification of components which may need some special-purpose maintenance prior to the
platform resetting.

The list of registered reset notification functions are processed if ResetSystem()is called before
ExitBootServices(). The list of registered reset notification functions is ignored if
ResetSystem()is called after ExitBootServices().

Status Codes Returned

EFI_RESET_NOTIFICATION_PROTOCOL.UnregisterResetNotify()

Summary

Unregister a notification function.

EFI_SUCCESS The reset notification function was
successfully registered.

EFI_INVALID_PARAMETER ResetFunction is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources available to
register the reset notification function.

EFI_ALREADY_STARTED The reset notification function specified by
ResetFunction has already been registered.
UEFI Forum, Inc. March 2019 2198

UEFI Specification, Version 2.8 Miscellaneous Protocols
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_UNREGISTER_RESET_NOTIFY) (

IN EFI_RESET_NOTIFICATION_PROTOCOL*This,

IN EFI_RESET_SYSTEM *ResetFunction

);

Parameters

This

A pointer to the EFI_RESET_NOTIFICATION_PROTOCOL instance.

ResetFunction

The pointer to the ResetFunction being unregistered.

Description

The UnregisterResetNotify() function removes the previously registered notification
using RegisterResetNotify().

Status Codes Returned

EFI_SUCCESS The reset notification
function was unregistered.

EFI_INVALID_PARAMETER ResetFunction is NULL.

EFI_INVALID_PARAMETER The reset notification function specified by
ResetFunction was not previously registered
using RegisterResetNotify().
UEFI Forum, Inc. March 2019 2199

UEFI Specification, Version 2.8
Appendix A - GUID and Time Formats

All EFI GUIDs (Globally Unique Identifiers) have the format described in RFC 4122 and comply with the
referenced algorithms for generating GUIDs. It should also be noted that TimeLow, TimeMid,
TimeHighAndVersion fields in the EFI are encoded as little endian.The following table defines the format
of an EFI GUID (128 bits).

Table 33. EFI GUID Format

This appendix for GUID defines a 60-bit timestamp format that is used to generate the GUID. All EFI time
information is stored in 64-bit structures that contain the following format: The timestamp is a 60-bit
value containing a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of
Gregorian reform to the Christian calendar). This time value will not roll over until the year 3400 AD. It is
assumed that a future version of the EFI specification can deal with the year-3400 issue by extending this
format if necessary.

This specification also defines a standard text representation of the GUID. This format is also sometimes
called the “registry format”. It consists of 36 characters, as follows:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

The pairs aa – pp are two characters in the range ‘0’-‘9’, ‘a’-‘f’ or ‘A’-F’, with each pair representing a
single byte hexadecimal value.

The following table describes the relationship between the text representation and a 16-byte buffer, the
structure defined in Table 33 and the EFI_GUID structure.

Table 34. Text representation relationships


Mnemonic

Byte
Offset

Byte
Length


Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with the
variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be based on
any IEEE 802 address obtained from a network card. If no
network card exists in the system, a cryptographic-quality
random number can be used.

String Offset In Buffer Relationship To Table 33 Relationship To EFI_GUID

aa 3 TimeLow[24:31] Data1[24:31]

bb 2 TimeLow[16:23] Data1[16:23]

cc 1 TimeLow[8:15] Data1[8:15]
UEFI Forum, Inc. March 2019 2200

UEFI Specification, Version 2.8
dd 0 TimeLow[0:7] Data1[0:7]

ee 5 TimeMid[8:15] Data2[8:15]

ff 4 TimeMid[0:7] Data2[0:7]

gg 7 TimeHighAndVersion[8:15] Data3[8:15]

hh 6 TimeHighAndVersion[0:7] Data3[0:7]

ii 8 ClockSeqHighAndReserved[0:7] Data4[0:7]

jj 9 ClockSeqLow[0:7] Data4[8:15]

kk 10 Node[0:7] Data4[16:23]

ll 11 Node[8:15] Data4[24:31]

mm 12 Node[16:23] Data4[32:39]

nn 13 Node[24:31] Data4[40:47]

oo 14 Node[32:39] Data4[48:55]

pp 15 Node[40:47] Data4[56:63]
UEFI Forum, Inc. March 2019 2201

UEFI Specification, Version 2.8
Appendix B - Console

The EFI console was designed to allow input from a wide variety of devices. This appendix provides
examples of the mapping of keyboard input from various types of devices to EFI scan codes. While
representative of common console devices in use today, it is not intended to be a comprehensive list. EFI
application programmers can use this table to identify the EFI Scan Code generated by a specific key
press. The description of the example device input data that generates a EFI Scan Code may be useful to
EFI driver writers, as well as showing the limitations on which EFI Scan codes can be generated by
different types of console input devices.

The EFI console was designed so that it could map to common console devices. This appendix explains
how an EFI console could map to a VGA with PC AT 101/102, PC ANSI, or ANSI X3.64 consoles.

B.1 EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

Table 35 and Table 36 give examples of how input from a set of common input devices is mapped to EFI
scan codes. Terminals and terminal emulators generally report function and editing keys as escape or
control sequences. These sequences are formed by a control character followed by one or more
additional graphic characters that indicate what the sequence means. ANSI X3.64 terminals generally
require an ANSI parser to determine how to interpret a sequence and how to determine that the
sequence is complete. These terminals can generate sequences using either 8-bit controls or 7-bit control
sequences. Older terminal types, such as the VT100+ have a simpler set of sequences that can be
interpreted using simple case statements. These terminals usually generate only 7-bit data, and 7-bit
control sequences.

In the tables below, the CSI character is the 8-bit control character 0x9B, and is equivalent to the 7-bit
control sequence "ESC [" (the 0x1B control ESC followed by the left bracket character 0x5B). The
sequences are shown with spaces for readability, but do not contain the space character.

The VT100+ column represents a common class of terminal emulation that is a superset of the Digital
Equipment Corporation (DEC) VT100 terminal. This includes VT-UTF8 (Hyperterm) and PC_ANSI terminal
types. The ANSI X3.64 column shows the sequences generated by the DEC VT200 through VT500
terminals, which are an ANSI X3.64 / ISO 6429 compliant.

The USB HID and AT 101/102 columns show the scan codes generated by two common directly attached
keyboards. These keyboards are generally used in combination with a VGA text display to form a "VGA
Console".

In the table below, the cells with N/A contained in them are simply intended to reflect that the key may
be defined for that terminal or keyboard, but there is no industry standard or consistent mapping for the
key. Some input devices might not implement all of these keys.

Table 35. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL


EFI Scan Code


Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+ 
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard Scan
Codes
UEFI Forum, Inc. March 2019 2202

UEFI Specification, Version 2.8
Table 36. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

0x00 Null scan code N/A N/A 0x00 N/A

0x01 UP ARROW CSI A ESC [A 0x52 0xe0, 0x48

0x02 DOWN ARROW CSI B ESC [B 0x51 0xe0, 0x50

0x03 RIGHT ARROW CSI C ESC [C 0x4F 0xe0, 0x4d

0x04 LEFT ARROW CSI D ESC [D 0x50 0xe0, 0x4b

0x05 Home CSI 1 ~ ESC h 0x4A 0xe0, 0x47

0x06 End CSI 4 ~ ESC k 0x4D 0xe0, 0x4f

0x07 Insert CSI 2 ~ ESC + 0x49 0xe0, 0x52

0x08 Delete CSI 3 ~ ESC - 0x4C 0xe0, 0x53

0x09 Page Up CSI 5 ~ ESC ? 0x4B 0xe0, 0x49

0x0a Page Down CSI 6 ~ ESC / 0x4E 0xe0, 0x51

0x0b Function 1 CSI 1 1 ~ ESC 1 0x3A 0x3b

0x0c Function 2 CSI 1 2 ~ ESC 2 0x3B 0x3c

0x0d Function 3 CSI 1 3 ~ ESC 3 0x3C 0x3d

0x0e Function 4 CSI 1 4 ~ ESC 4 0x3D 0x3e

0x0f Function 5 CSI 1 5 ~ ESC 5 0x3E 0x3f

0x10 Function 6 CSI 1 7 ~ ESC 6 0x3F 0x40

0x11 Function 7 CSI 1 8 ~ ESC 7 0x40 0x41

0x12 Function 8 CSI 1 9 ~ ESC 8 0x41 0x42

0x13 Function 9 CSI 2 0 ~ ESC 9 0x42 0x43

0x14 Function 10 CSI 2 1 ~ ESC 0 0x43 0x44

0x17 Escape ESC ESC 0x29 0x01


EFI Scan Code


Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+ 
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard Scan
Codes

0x15 Function 11 CSI 2 3 ~ ESC ! 0x44 0x57

0x16 Function 12 CSI 2 4 ~ ESC @ 0x45 0x58

0x48 Pause N/A N/A 0x48 0xe1, 0x1d,
0x45

0x68 Function 13 CSI 2 5 ~ N/A 0x68 N/A

0x69 Function 14 CSI 2 6 ~ N/A 0x69 N/A

0x6A Function 15 CSI 2 7 ~ N/A 0x6A N/A

0x6B Function 16 CSI 2 8 ~ N/A 0x6B N/A

0x6C Function 17 CSI 2 9 ~ N/A 0x6C N/A

0x6D Function 18 CSI 3 0 ~ N/A 0x6D N/A
UEFI Forum, Inc. March 2019 2203

UEFI Specification, Version 2.8
B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

Table 37 defines how the programmatic methods of the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL could
be implemented as PC ANSI or ANSI X3.64 terminals. Detailed descriptions of PC ANSI and ANSI X3.64
escape sequences are as follows. The same type of operations can be supported via a PC AT type INT 10h
interface.

Table 37. Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL

0x6E Function 19 CSI 3 1 ~ N/A 0x6E N/A

0x6F Function 20 CSI 3 2 ~ N/A 0x6F N/A

0x70 Function 21 N/A N/A 0x70 N/A

0x71 Function 22 N/A N/A 0x71 N/A

0x72 Function 23 N/A N/A 0x72 N/A

0x73 Function 24 N/A N/A 0x73 N/A

0x7F Mute N/A N/A 0x7F N/A

0x80 Volume Up N/A N/A 0x80 N/A

0x81 Volume Down N/A N/A 0x81 N/A

0x100 Brightness Up N/A N/A N/A N/A

0x101 Brightness Down N/A N/A N/A N/A

0x102 Suspend N/A N/A N/A N/A

0x103 Hibernate N/A N/A N/A N/A

0x104 Toggle Display N/A N/A N/A N/A

0x105 Recovery N/A N/A N/A N/A

0x106 Eject N/A N/A N/A N/A

0x8000-0xFFFF OEM Reserved N/A N/A N/A N/A

PC ANSI
Codes

ANSI X3.64
Codes


Description

ESC [2 J CSI 2 J Clear Display Screen.

ESC [0 m CSI 0 m Normal Text.

ESC [1 m CSI 1 m Bright Text.

ESC [7 m CSI 7 m Reversed Text.

ESC [30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.


EFI Scan Code


Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+ 
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard Scan
Codes
UEFI Forum, Inc. March 2019 2204

UEFI Specification, Version 2.8
ESC [31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

ESC [35 m CSI 35 m Magenta foreground, compliant with ISO Standard 6429.

ESC [36 m CSI 36 m Cyan foreground, compliant with ISO Standard 6429.

ESC [37 m CSI 37 m White foreground, compliant with ISO Standard 6429.

ESC [40 m CSI 40 m Black background, compliant with ISO Standard 6429.

ESC [41 m CSI 41 m Red background, compliant with ISO Standard 6429.

ESC [42 m CSI 42 m Green background, compliant with ISO Standard 6429.

ESC [43 m CSI 43 m Yellow background, compliant with ISO Standard 6429.

ESC [44 m CSI 44 m Blue background, compliant with ISO Standard 6429.

ESC [45 m CSI 45 m Magenta background, compliant with ISO Standard 6429.

ESC [46 m CSI 46 m Cyan background, compliant with ISO Standard 6429.

ESC [47 m CSI 47 m White background, compliant with ISO Standard 6429.

ESC [= 3 h CSI = 3 h Set Mode 80x25 color.

ESC [row;col H CSI row;col H Set cursor position to row;col. Row and col are strings of ASCII digits.

PC ANSI
Codes

ANSI X3.64
Codes


Description
UEFI Forum, Inc. March 2019 2205

UEFI Specification, Version 2.8
Appendix C - Device Path Examples

This appendix presents an example EFI Device Path and explains its relationship to the ACPI name space.
An example system design is presented along with its corresponding ACPI name space. These physical
examples are mapped back to EFI Device Paths.

C.1 Example Computer System

Figure 67 represents a hypothetical computer system architecture that will be used to discuss the
construction of EFI Device Paths. The system consists of a memory controller that connects directly to the
processors’ front side bus. The memory controller is only part of a larger chipset, and it connects to a root
PCI host bridge chip, and a secondary root PCI host bridge chip. The secondary PCI host bridge chip
produces a PCI bus that contains a PCI to PCI bridge. The root PCI host bridge produces a PCI bus, and also
contains USB, ATA66, and AC ’97 controllers. The root PCI host bridge also contains an LPC bus that is
used to connect a SIO (Super IO) device. The SIO contains a PC-AT-compatible floppy disk controller, and
other PC-AT-compatible devices like a keyboard controller.

Figure 67. Example Computer System

The remainder of this appendix describes how to construct a device path for three example devices from
the system in Figure 67. The following is a list of the examples used:

• Legacy floppy

• IDE Disk

• Secondary root PCI bus with PCI to PCI bridge

OM13179

CPU CPU

AGP PDRAM

PCI 33MHz

LPC

PCI Slots

3

P
C

I S
lo

ts

PCI Slots

2

1FDC
KBD
GPIO
Serial

Parallel
Mouse

IR

SIO

USB ATA66 AC'97

Memory
Controller Secondary

PCI Host
Bridge

Root PCI
Host

Bridge

Memory
Controller

PCI to PCI
Bridge
UEFI Forum, Inc. March 2019 2206

UEFI Specification, Version 2.8
Figure 68 is a partial ACPI name space for the system in Figure 67. Figure 68 is based on Figure 5-3 in the
Advanced Configuration and Power Interface Specification.

Figure 68. Partial ACPI Name Space for Example System

C.2 Legacy Floppy

The legacy floppy controller is contained in the SIO chip that is connected root PCI bus host bridge chip.
The root PCI host bridge chip produces PCI bus 0, and other resources that appear directly to the
processors in the system.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space. PCI0 is a
child of _SB and it represents the root PCI host bridge. The SIO appears to the system to be a set of ISA
devices, so it is represented as a child of PCI0 with the name ISA0. The floppy controller is represented by
FLPY as a child of the ISA0 bus.

The EFI Device Path for the legacy floppy is defined in Table 38. It would contain entries for the following
things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0

• PCI to ISA Bridge. PCI Device Path with device and function of the PCI to ISA bridge. ACPI name
space _SB\PCI0\ISA0

• Floppy Plug and Play ID. ACPI Device Path _HID PNP0303, _UID 0. ACPI name space
_SB\PCI0\ISA0\FLPY

• End Device Path

OM13180

Root of ACPI Name Space

_ SB - System Bus Tree

PCI0 - Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

IDE0 - IDE Device

_ADR - PCI Device #, Function #

 PRIM - Primary IDE Channel

_ADR - Primary 0, Secondary 1

 MAST - Master IDE Device
2

_ADR - Master 0, Slave 1

ISA0 - ISA Bridge

_HID & _UID - ACPI Device ID and Unique ID
_ADR - PCI Device #, Function #

FLPY - Legacy Floppy

_HID - Address of Floppy

PCI0 - Secondary Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

1

3

KEY...

Device Object

Data Object

Example Platform
Reference1
UEFI Forum, Inc. March 2019 2207

UEFI Specification, Version 2.8
Table 38. Legacy Floppy Device Path

C.3 IDE Disk

The IDE Disk controller is a PCI device that is contained in a function of the root PCI host bridge. The root
PCI host bridge is a multi function device and has a separate function for chipset registers, USB, and IDE.
The disk connected to the IDE ATA bus is defined as being on the primary or secondary ATA bus, and of
being the master or slave device on that bus.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space. PCI0 is a
child of _SB and it represents the root PCI host bridge. The IDE controller appears to the system to be a
PCI device with some legacy properties, so it is represented as a child of PCI0 with the name IDE0. PRIM is
a child of IDE0 and it represents the primary ATA bus of the IDE controller. MAST is a child of PRIM and it
represents that this device is the ATA master device on this primary ATA bus.

The EFI Device Path for the PCI IDE controller is defined in Table 39. It would contain entries for the
following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0

• PCI IDE controller. PCI Device Path with device and function of the IDE controller. ACPI name
space _SB\PCI0\IDE0

Byte
Offset

Byte
Length


Data


Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function

11 1 0x10 PCI Device

12 1 0x02 Generic Device Path Header – Type ACPI Device Path

13 1 0x01 Sub type – ACPI Device Path

14 2 0x0C Length

16 4 0x41D0,
0x0303

_HID PNP0303

1A 4 0x0000 _UID

1E 1 0xFF Generic Device Path Header – Type End Device Path

1F 1 0xFF Sub type – End Device Path

20 2 0x04 Length
UEFI Forum, Inc. March 2019 2208

UEFI Specification, Version 2.8
• ATA Address. ATA Messaging Device Path for Primary bus and Master device. ACPI name space
_SB\PCI0\IDE0\PRIM\MAST

• End Device Path

Table 39. IDE Disk Device Path

C.4 Secondary Root PCI Bus with PCI to PCI Bridge

The secondary PCI host bridge materializes a second set of PCI buses into the system. The PCI buses on
the secondary PCI host bridge are totally independent of the PCI buses on the root PCI host bridge. The
only relationship between the two is they must be configured to not consume the same resources. The
primary PCI bus of the secondary PCI host bridge also contains a PCI to PCI bridge. There is some arbitrary
PCI device plugged in behind the PCI to PCI bridge in a PCI slot.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space. PCI1 is a
child of _SB and it represents the secondary PCI host bridge. The PCI to PCI bridge and the device plugged
into the slot on its primary bus are not described in the ACPI name space. These devices can be fully
configured by following the applicable PCI specification.

The EFI Device Path for the secondary root PCI bridge with a PCI to PCI bridge is defined in Table 40. It
would contain entries for the following things:

Byte
Offset

Byte
Length


Data


Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x01 PCI Function

11 1 0x10 PCI Device

12 1 0x03 Generic Device Path Header – Messaging Device Path

13 1 0x01 Sub type – ATAPI Device Path

14 2 0x06 Length

16 1 0x00 Primary =0, Secondary = 1

17 1 0x00 Master = 0, Slave = 1

18 2 0x0000 LUN

1A 1 0xFF Generic Device Path Header – Type End Device Path

1B 1 0xFF Sub type – End Device Path

1C 2 0x04 Length
UEFI Forum, Inc. March 2019 2209

UEFI Specification, Version 2.8
• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 1. ACPI name space _SB\PCI1

• PCI to PCI Bridge. PCI Device Path with device and function of the PCI Bridge. ACPI name space
_SB\PCI1, PCI to PCI bridges are defined by PCI specification and not ACPI.

• PCI Device. PCI Device Path with the device and function of the PCI device. ACPI name space
_SB\PCI1, PCI devices are defined by PCI specification and not ACPI.

• End Device Path.

Table 40. Secondary Root PCI Bus with PCI to PCI Bridge Device Path

C.5 ACPI Terms

Names in the ACPI name space that start with an underscore (“_”) are reserved by the ACPI specification
and have architectural meaning. All ACPI names in the name space are four characters in length. The
following four ACPI names are used in this specification.

_ADR. The Address on a bus that has standard enumeration. An example would be PCI, where the
enumeration method is described in the PCI Local Bus specification.

_CRS. The current resource setting of a device. A _CRS is required for devices that are not enumerated in
a standard fashion. _CRS is how ACPI converts nonstandard devices into Plug and Play devices.

Byte
Offset

Byte
Length


Data


Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is encoded in
the low order bytes. The compression method is described in the ACPI
Specification.

8 4 0x0001 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function for PCI to PCI bridge

11 1 0x0c PCI Device for PCI to PCI bridge

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type PCI Device Path

14 2 0x08 Length

16 1 0x00 PCI Function for PCI Device

17 1 0x00 PCI Device for PCI Device

18 1 0xFF Generic Device Path Header – Type End Device Path

19 1 0xFF Sub type – End Device Path

1A 2 0x04 Length
UEFI Forum, Inc. March 2019 2210

UEFI Specification, Version 2.8
_HID. Represents a device’s Plug and Play hardware ID, stored as a 32-bit compressed EISA ID. _HID
objects are optional in ACPI. However, a _HID object must be used to describe any device that will be
enumerated by the ACPI driver in the OS. This is how ACPI deals with non–Plug and Play devices.

_UID. Is a serial number style ID that does not change across reboots. If a system contains more than one
device that reports the same _HID, each device must have a unique _UID. The _UID only needs to be
unique for device that have the exact same _HID value.

C.6 EFI Device Path as a Name Space

Figure 69 shows the EFI Device Path for the example system represented as a name space. The Device
Path can be represented as a name space, but EFI does support manipulating the Device Path as a name
space. You can only access Device Path information by locating the DEVICE_PATH_INTERFACE from a
handle. Not all the nodes in a Device Path will have a handle.

Figure 69. EFI Device Path Displayed As a Name Space
UEFI Forum, Inc. March 2019 2211

UEFI Specification, Version 2.8
Appendix D - Status Codes

EFI interfaces return an EFI_STATUS code. Table 42, Table 43, and Table 44 list these codes for success,
errors, and warnings, respectively. The range of status codes that have the highest bit set and the next to
highest bit clear are reserved for use by EFI. The range of status codes that have both the highest bit set
and the next to highest bit set are reserved for use by OEMs. Success and warning codes have their
highest bit clear, so all success and warning codes have positive values. The range of status codes that
have both the highest bit clear and the next to highest bit clear are reserved for use by EFI. The range of
status code that have the highest bit clear and the next to highest bit set are reserved for use by OEMs.
Table 41 lists the status code ranges described above.

Table 41. EFI_STATUS Code Ranges

Table 42. EFI_STATUS Success Codes (High Bit Clear)

Table 43. EFI_STATUS Error Codes (High Bit Set)

Supported
32-bit Range

Supported 64-bit
Architecture Ranges


Description

0x00000000-
0x1fffffff

0x0000000000000000-
0x1fffffffffffffff

Warning codes reserved for use by UEFI main specification.

0x20000000-
0x3fffffff

0x2000000000000000-
0x3fffffffffffffff

Warning codes reserved for use by the Platform Initialization
Architecture Specification.

0x40000000-
0x7fffffff

0x4000000000000000-
0x7fffffffffffffff

Warning codes reserved for OEM usage.

0x80000000-
0x9fffffff

0x8000000000000000-
0x9fffffffffffffff

Error codes reserved for use by UEFI main spec.

0xa0000000-
0xbfffffff

0xa000000000000000-
0xbfffffffffffffff

Error codes reserved for use by the Platform Initialization
Architecture Specification.

0xc0000000-
0xffffffff

0xc000000000000000-
0xcfffffffffffffff

Error codes reserved for OEM usage.

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.
UEFI Forum, Inc. March 2019 2212

UEFI Specification, Version 2.8
EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data. The
required buffer size is returned in the appropriate parameter
when this error occurs.

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing the
operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_END_OF_MEDIA 28 Beginning or end of media was reached

EFI_END_OF_FILE 31 The end of the file was reached.

EFI_INVALID_LANGUAGE 32 The language specified was invalid.

EFI_COMPROMISED_DATA 33 The security status of the data is unknown or compromised and
the data must be updated or replaced to restore a valid security
status.

EFI_IP_ADDRESS_CONFLICT 34 There is an address conflict address allocation

EFI_HTTP_ERROR 35 A HTTP error occurred during the network operation.

Mnemonic Value Description
UEFI Forum, Inc. March 2019 2213

UEFI Specification, Version 2.8
Table 44. EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKNOWN_GLYPH 1 The string contained one or more characters that the device
could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not flushed
properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was truncated to
the buffer size.

EFI_WARN_STALE_DATA 5 The data has not been updated within the timeframe set by local
policy for this type of data.

EFI_WARN_FILE_SYSTEM 6 The resulting buffer contains UEFI-compliant file system.

EFI_WARN_RESET_REQUIRED 7 The operation will be processed across a system reset.
UEFI Forum, Inc. March 2019 2214

UEFI Specification, Version 2.8
Appendix E - Universal Network Driver Interfaces

E.1 Introduction

This appendix defines the 32/64-bit H/W and S/W Universal Network Driver Interfaces (UNDIs). These
interfaces provide one method for writing a network driver; other implementations are possible.

E.1.1 Definitions

Table 45. Definitions

Term Definition

BC BaseCode
The PXE BaseCode, included as a core protocol in EFI, is comprised of a simple network stack (UDP/IP)
and a few common network protocols (DHCP, Bootserver Discovery, TFTP) that are useful for remote
booting machines.

LOM LAN On Motherboard
This is a network device that is built onto the motherboard (or baseboard) of the machine.

NBP Network Bootstrap Program
This is the first program that is downloaded into a machine that has selected a PXE capable device for
remote boot services.
A typical NBP examines the machine it is running on to try to determine if the machine is capable of
running the next layer (OS or application). If the machine is not capable of running the next layer, control
is returned to the EFI boot manager and the next boot device is selected. If the machine is capable, the
next layer is downloaded and control can then be passed to the downloaded program.
Though most NBPs are OS loaders, NBPs can be written to be standalone applications such as
diagnostics, backup/restore, remote management agents, browsers, etc.

NIC Network Interface Card
Technically, this is a network device that is inserted into a bus on the motherboard or in an expansion
board. For the purposes of this document, the term NIC will be used in a generic sense, meaning any
device that enables a network connection (including LOMs and network devices on external busses (USB,
1394, etc.)).

ROM Read-Only Memory
When used in this specification, ROM refers to a nonvolatile memory storage device on a NIC.
UEFI Forum, Inc. March 2019 2215

UEFI Specification, Version 2.8
E.1.2 Referenced Specifications

When implementing PXE services, protocols, ROMs or drivers, it is a good idea to understand the related
network protocols and BIOS specifications. Table 46 below includes all of the specifications referenced in
this document.

Table 46. Referenced Specifications

PXE Preboot Execution Environment
The complete PXE specification covers three areas; the client, the network and the server.
Client
• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the OS.

Network
• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor specific” tags to DHCP to define PXE specific operation within DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

•

Server
• Bootserver: Responds to Bootserver discovery requests and serves up remote boot images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing network
infrastructure. proxyDHCP provides the additional DHCP information that is needed by PXE clients and
Bootservers without making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE SDK (software
development kit) have the ability to take plug-in modules (PIMs). These PIMs are used to change/
enhance the capabilities of the proxyDHCP and Bootservers.

UNDI Universal Network Device Interface
UNDI is an architectural interface to NICs. Traditionally NICs have had custom interfaces and custom
drivers (each NIC had a driver for each OS on each platform architecture). Two variations of UNDI are
defined in this specification: H/W UNDI and S/W UNDI. H/W UNDI is an architectural hardware interface
to a NIC. S/W UNDI is a software implementation of the H/W UNDI.

Acronym Protocol/Specification

ARP Address Resolution Protocol – Required reading for those implementing the PXE Base Code Protocol.

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Address Resolution

Protocol”.

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification. See “Links to UEFI-Related

Documents” (http://uefi.org/uefi) under the heading “Assigned Numbers”.

BIOS Basic Input/Output System – Contact your BIOS manufacturer for reference and programming
manuals.

Term Definition
UEFI Forum, Inc. March 2019 2216

UEFI Specification, Version 2.8
BOOTP Bootstrap Protocol –

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Bootstrap Protocol
(BOOTP)”.

These references are included for backward compatibility. BC protocol supports DHCP and BOOTP:
• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “BOOTP

Clarifications and Extensions”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Bootstrap Protocol
(BOOTP) Interoperation Between DHCP and BOOTP”.

Required reading for those implementing the PXE Base Code Protocol BC protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Index of RFC
(IETF)”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP Reconfigure
Extension”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP for Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Interoperations

between DHCP and BOOTP”.
Required reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

EFI Extensible Firmware Interface

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel Developer
Centers”.

Required reading for those implementing NBPs, OS loaders and preboot applications for machines with
the EFI preboot environment.

ICMP Internet Control Message Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ICMP for Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ICMP for Ipv6”.

Required reading for those implementing the BC protocol.

IETF Internet Engineering Task Force

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Internet
Engineering Task Force (IETF)”.

This is a good starting point for obtaining electronic copies of Internet standards, drafts, and RFCs.

IGMP Internet Group Management Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Internet Group
Management Protocol”.

Required reading for those implementing the PXE Base Code Protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Ipv6”.

Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.
Required reading for those implementing the PXE Base Code Protocol.

Acronym Protocol/Specification
UEFI Forum, Inc. March 2019 2217

http://www.ietf.org/rfc/rfc0791.txt

UEFI Specification, Version 2.8
E.1.3 OS Network Stacks

This is a simplified overview of three OS network stacks that contain three types of network drivers:
Custom, S/W UNDI and H/W UNDI. Figure 70 depicts an application bound to an OS protocol stack, which
is in turn bound to a protocol driver that is bound to three NICs. Table 47 below gives a brief list of pros
and cons about each type of driver implementation.

PCI Peripheral Component Interface

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Peripheral
Component Interface (PCI)”.

Source for PCI specifications. Required reading for those implementing S/W or H/W UNDI on a PCI NIC
or LOM.

PnP Plug-and-Play – http://www.phoenix.com/en/support/white+papers-specs/

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Plug and Play”.

Source for PnP specifications.

PXE Preboot eXecution Environment
16-bit PXE v2.1:

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Preboot eXecution
Environment (PXE)”.

Required reading.

RFC Request For Comments –

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Request for
Comments”.

TCP Transmission Control Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TCPv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TCPv6”.

Required reading for those implementing the PXE Base Code Protocol .

TFTP Trivial File Transfer Protocol
TFTP

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP Protocol”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP Option
Extension”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP Blocksize
Option”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP Timeout
Interval and Transfer Size Options”.

Required reading for those implementing the PXE Base Code Protocol.

UDP User Datagram Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “UDP over IPv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “UDP over IPv6”.

Required reading for those implementing the PXE Base Code Protocol.

WfM Wired for Management

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Wired for
Management”.

Recommended reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

Acronym Protocol/Specification
UEFI Forum, Inc. March 2019 2218

http://www.phoenix.com/en/support/white+papers-specs/

UEFI Specification, Version 2.8
Figure 70. Network Stacks with Three Classes of Drivers

Table 47. Driver Types: Pros and Cons

Driver Pro Con

Custom • Can be very fast and efficient. NIC
vendor tunes driver to OS &
device.

• OS vendor does not have to write
NIC driver.

• New driver for each OS/architecture must be maintained
by NIC vendor.

• OS vendor must trust code supplied by third-party.

• OS vendor cannot test all possible driver/NIC versions.

• Driver must be installed before NIC can be used.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

S/W UNDI • S/W UNDI driver is simpler than a
Custom driver. Easier to test
outside of the OS environment.

• OS vendor can tune the universal
protocol driver for best OS
performance.

• NIC vendor only has to write one
driver per processor architecture.

• Slightly slower than Custom or H/W UNDI because of extra
call layer between protocol stack and NIC.

• S/W UNDI driver must be loaded before NIC can be used.

• OS vendor has to write the universal driver.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

H/W UNDI • H/W UNDI provides a common
architectural interface to all
network devices.

• OS vendor controls all security
and performance issues in
network stack.

• NIC vendor does not have to
write any drivers.

• NIC can be used without an OS or
driver installed (preboot
management).

• OS vendor has to write the universal driver (this might also
be a Pro, depending on your point of view).

OM13182

Application - 1

OS Protocol Stack

Custom

NIC
Specific
Protocol

Driver

NIC Specific
Protocol Driver

Application - 2

OS Protocol Stack

S/W UNDI

OS Universal Protocol Driver

Application - 3

OS Protocol Stack

H/W UNDI

OS Universal Protocol Driver

NIC - 2
Vend - B

NIC - 3
Vend - B

NIC - 1
Vendor - A

NIC - 5
Vend - D

NIC - 6
Vend - D

NIC - 4
Vendor - C

H/W UNDI
NIC - 9

Vendor - F

H/W UNDI
NIC - 8

Vendor - F

H/W UNDI
NIC - 7

Vendor - E
UEFI Forum, Inc. March 2019 2219

UEFI Specification, Version 2.8
E.2 Overview

There are three major design changes between this specification and the 16-bit UNDI in version 2.1 of the
PXE Specification:

• A new architectural hardware interface has been added.

• All UNDI commands use the same command format.

• BC is no longer part of the UNDI ROM.

E.2.1 32/64-bit UNDI Interface

The !PXE structures are used locate and identify the type of 32/64-bit UNDI interface (H/W or S/W), as
shown in Figure 71. These structures are normally only used by the system BIOS and universal network
drivers.

Figure 71. !PXE Structures for H/W and S/W UNDI

The !PXE structures used for H/W and S/W UNDIs are similar but not identical. The difference in the
format is tied directly to the differences required by the implementation. The !PXE structures for 32/64-
bit UNDI are not compatible with the !PXE structure for 16-bit UNDI.

The !PXE structure for H/W UNDI is built into the NIC hardware. The first nine fields (from offsets 0x00 to
0x0F) are implemented as read-only memory (or ports). The last three fields (from Len to Len + 0x0F) are
implemented as read/write memory (or ports). The optional reserved field at 0x10 is not defined in this
specification and may be used for vendor data.

The !PXE structure for S/W UNDI can be loaded into system memory from one of three places; ROM on a
NIC, system nonvolatile storage, or external storage. Since there are no direct memory or I/O ports
available in the S/W UNDI !PXE structure, an indirect callable entry point is provided. S/W UNDI
developers are free to make their internal designs as simple or complex as they desire, as long as all of
the UNDI commands in this specification are implemented.

Descriptions of the fields in the !PXE structures is given in Table 48.

OM13183

!PXE
H/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature
Len Fudge Rev IFcnt

Major Minor reserved

Implementation

Status

Command

CDBaddr

Len
Len +
0x04
Len +
0x08
Len +
0x0C

!PXE
S/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature
Len Fudge Rev IFcnt

Major Minor IFcntExt Reserved

Implementation

Entry Point

reserved #bus

BusTypes(s)

0x10

0x14

0x18

0x1C

0x10 reserved

0x20 More BusTypes(s)

 Major Minor IFcntExt Reserved
UEFI Forum, Inc. March 2019 2220

UEFI Specification, Version 2.8
Table 48. !PXE Structure Field Definitions

Identifier Value Description

Signature “!PXE” !PXE structure signature. This field is used to locate an UNDI hardware or software
interface in system memory (or I/O) space. ‘!’ is in the first (lowest address) byte, ‘P’ is
in the second byte, ‘X’ in the third and ‘E’ in the last. This field must be aligned on a 16-
byte boundary (the last address byte must be zero).

Len Varies Number of !PXE structure bytes to checksum.
When computing the checksum of this structure the Len field MUST be used as the
number of bytes to checksum. The !PXE structure checksum is computed by adding all
of the bytes in the structure, starting with the first byte of the structure Signature: '!'.
If the 8-bit sum of all of the unsigned bytes in this structure is not zero, this is not a
valid !PXE structure.

Fudge Varies This field is used to make the 8-bit checksum of this structure equal zero.

Rev 0x03 Revision of this structure.

IFcnt Varies This field reports the number (minus one) of physical external network connections
that are controlled by this !PXE interface. (If there is one network connector, this field
is zero. If there are two network connectors, this field is one.)
For !PXE structure revision 0x03 or higher, in addition to this field, the value in IFcntExt
field must be left-shifted by 8-bits and ORed with IFcnt to get the 16-bit value for the
total number (minus one) of physical external network connections that are controlled
by this !PXE interface.

Major Varies UNDI command interface. Minor revision number.
0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The callback
interface defined in the UNDI Start command is required.
0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The callback
interface defined in the UNDI Start command is required

Minor Varies UNDI command interface. Minor revision number.
0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The callback
interface defined in the UNDI Start command is required.
0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The callback
interface defined in the UNDI Start command is required.

IFcntExt Varies If the !PXE structure revision 0x02 or earlier, this field is reserved and must be set to
zero.
If the !PXE structure revision 0x03 or higher, this field reports the upper 8-bits of the
number of physical external network connections that is controlled by this !PXE
interface.

reserved 0x00 This field is reserved and must be set to zero.

Implementation Varies Identifies type of UNDI
UEFI Forum, Inc. March 2019 2221

UEFI Specification, Version 2.8
(S/W or H/W, 32 bit or 64 bit) and what features have been implemented. The
implementation bits are defined below. Undefined bits must be set to zero by UNDI
implementers. Applications/drivers must not rely on the contents of undefined bits
(they may change later revisions).
Bit 0x00: Command completion interrupts supported (1) or not supported (0)
Bit 0x01: Packet received interrupts supported (1) or not supported (0)
Bit 0x02: Transmit complete interrupts supported (1) or not supported (0)
Bit 0x03: Software interrupt supported (1) or not supported (0)
Bit 0x04: Filtered multicast receives supported (1) or not supported (0)
Bit 0x05: Broadcast receives supported (1) or not supported (0)
Bit 0x06: Promiscuous receives supported (1) or not supported (0)
Bit 0x07: Promiscuous multicast receives supported (1) or not supported (0)
Bit 0x08: Station MAC address settable (1) or not settable (0)
Bit 0x09: Statistics supported (1) or not supported (0)
Bit 0x0A,0x0B: NvData not available (0), read only (1), sparse write supported (2), bulk
write supported (3)
Bit 0x0C: Multiple frames per command supported (1) or not supported (0)
Bit 0x0D: Command queuing supported (1) or not supported (0)
Bit 0x0E: Command linking supported (1) or not supported (0)
Bit 0x0F: Packet fragmenting supported (1) or not supported (0)
Bit 0x10: Device can address 64 bits (1) or only 32 bits (0)
Bit 0x1E: S/W UNDI: Entry point is virtual address (1) or unsigned offset from start of
!PXE structure (0).
Bit 0x1F: Interface type: H/W UNDI (1) or S/W UNDI (0)

H/W UNDI Fields

Reserved Varies This field is optional and may be used for OEM & vendor unique data. If this field is
present its length must be a multiple of 16 bytes and must be included in the !PXE
structure checksum. This field, if present, will always start on a 16-byte boundary.
Note: The size/contents of the !PXE structure may change in future revisions of this
specification. Do not rely on OEM & vendor data starting at the same offset from the
beginning of the !PXE structure. It is recommended that the OEM & vendor data
include a signature that drivers/applications can search for.

Status Varies UNDI operation, command and interrupt status flags.
This is a read-only port. Undefined status bits must be set to zero. Reading this port
does NOT clear the status.
Bit 0x00: Command completion interrupt pending (1) or not pending (0)
Bit 0x01: Packet received interrupt pending (1) or not pending (0)
Bit 0x02: Transmit complete interrupt pending (1) or not pending (0)
Bit 0x03: Software interrupt pending (1) or not pending (0)
Bit 0x04: Command completion interrupts enabled (1) or disabled (0)
Bit 0x05: Packet receive interrupts enabled (1) or disabled (0)
Bit 0x06: Transmit complete interrupts enabled (1) or disabled (0)
Bit 0x07: Software interrupts enabled (1) or disabled (0)
Bit 0x08: Unicast receive enabled (1) or disabled (0)
Bit 0x09: Filtered multicast receive enabled (1) or disabled (0)
Bit 0x0A: Broadcast receive enabled (1) or disabled (0)
Bit 0x0B: Promiscuous receive enabled (1) or disabled (0)
Bit 0x0C: Promiscuous multicast receive enabled (1) or disabled (0)
Bit 0x1D: Command failed (1) or command succeeded (0)
Bits 0x1F:0x1E: UNDI state: Stopped (0), Started (1), Initialized (2), Busy (3)

Identifier Value Description
UEFI Forum, Inc. March 2019 2222

UEFI Specification, Version 2.8
E.2.1.1 Issuing UNDI Commands

How commands are written and status is checked varies a little depending on the type of UNDI (H/W or
S/W) implementation being used. The command flowchart shown in Figure 72 is a high-level diagram on
how commands are written to both H/W and S/W UNDI.

Command Varies Use to execute commands, clear interrupt status and enable/disable receive levels.
This is a read/write port. Read reflects the last write.
Bit 0x00: Clear command completion interrupt (1) or NOP (0)
Bit 0x01: Clear packet received interrupt (1) or NOP (0)
Bit 0x02: Clear transmit complete interrupt (1) or NOP (0)
Bit 0x03: Clear software interrupt (1) or NOP (0)
Bit 0x04: Command completion interrupt enable (1) or disable (0)
Bit 0x05: Packet receive interrupt enable (1) or disable (0)
Bit 0x06: Transmit complete interrupt enable (1) or disable (0)
Bit 0x07: Software interrupt enable (1) or disable (0). Setting this bit to (1) also
generates a software interrupt.
Bit 0x08: Unicast receive enable (1) or disable (0)
Bit 0x09: Filtered multicast receive enable (1) or disable (0)
Bit 0x0A: Broadcast receive enable (1) or disable (0)
Bit 0x0B: Promiscuous receive enable (1) or disable (0)
Bit 0x0C: Promiscuous multicast receive enable (1) or disable (0)
Bit 0x1F: Operation type: Clear interrupt and/or filter (0), Issue command (1)

CDBaddr Varies Write the physical address of a CDB to this port. (Done with one 64-bit or two 32-bit
writes, depending on processor architecture.) When done, use one 32-bit write to the
command port to send this address into the command queue. Unused upper address
bits must be set to zero.

S/W UNDI Fields

EntryPoint Varies S/W UNDI API entry point address. This is either a virtual address or an offset from the
start of the !PXE structure. Protocol drivers will push the 64-bit virtual address of a
CDB on the stack and then call the UNDI API entry point. When control is returned to
the protocol driver, the protocol driver must remove the address of the CDB from the
stack.

reserved Zero Reserved for future use.

BusTypeCnt Varies This field is the count of 4-byte BusType entries in the next field.

BusType Varies This field defines the type of bus S/W UNDI is written to support:
“PCIR,” “PCCR,” “USBR” or “1394.” This field is formatted like the Signature field. If the
S/W UNDI supports more than one BusType there will be more than one BusType
identifier in this field.

Identifier Value Description
UEFI Forum, Inc. March 2019 2223

UEFI Specification, Version 2.8
Figure 72. Issuing UNDI Commands

E.2.2 UNDI Command Format

The format of the CDB is the same for all UNDI commands. Figure 73 shows the structure of the CDB.
Some of the commands do not use or always require the use of all of the fields in the CDB. When fields
are not used they must be initialized to zero or the UNDI will return an error. The StatCode and StatFlags
fields must always be initialized to zero or the UNDI will return an error. All reserved fields (and bit fields)
must be initialized to zero or the UNDI will return an error.

Basically, the rule is: Do it right, or don’t do it at all.

OM13184

Step 1
Fill in CDB(s). Commands may
be linked if supported by UNDI.

Step 2 (H/W UNDI)
Write physical address of first
CDB to CDBaddr register.

Step 3 (H/W UNDI)
Initiate command execution
(write to UNDI Command port)

Step 4 (H/W UNDI)
Wait for completion status. Can
be polled in separate thread of
interrupt driven, if supported by
UNDI.

Step 2 (S/W UNDI)
Push virtual address of first CDB
onto CPU stack.

Step 3 (S/W UNDI)
Initiate command execution (Call
S/W UNDI API entry point).

Step 4 (S/W UNDI)
Wait for completion status. Some
S/W UNDI implementations can
be polled or interrupt driven,
others will not return until
command execution completes.

CDB

Step 5
Issue more commands.
UEFI Forum, Inc. March 2019 2224

UEFI Specification, Version 2.8
Figure 73. UNDI Command Descriptor Block (CDB)

Descriptions of the CDB fields are given in Table 49.

Table 49. UNDI CDB Field Definitions

Identifier Description

OpCode Operation Code (Function Number, Command Code, etc.)
This field is used to identify the command being sent to the UNDI. The meanings of some of the
bits in the OpFlags and StatFlags fields, and the format of the CPB and DB structures depends on
the value in the OpCode field. Commands sent with an OpCode value that is not defined in this
specification will not be executed and will return a StatCode of
PXE_STATCODE_INVALID_CDB.

OpFlags Operation Flags
This bit field is used to enable/disable different features in a specific command operation. It is
also used to change the format/contents of the CPB and DB structures. Commands sent with
reserved bits set in the OpFlags field will not be executed and will return a StatCode of
PXE_STATCODE_INVALID_CDB.

CPBsize Command Parameter Block Size
This field should be set to a number that is equal to the number of bytes that will be read from
CPB structure during command execution. Setting this field to a number that is too small will
cause the command to not be executed and a StatCode of PXE_STATCODE_INVALID_CDB
will be returned.
The contents of the CPB structure will not be modified.

DBsize Data Block Size
This field should be set to a number that is equal to the number of bytes that will be written into
the DB structure during command execution. Setting this field to a number that is smaller than
required will cause an error. It may be zero in some cases where the information is not needed.

CPBaddr Command Parameter Block Address
For H/W UNDI, this field must be the physical address of the CPB structure. For S/W UNDI, this
field must be the virtual address of the CPB structure. If the operation does not have/use a CPB,
this field must be initialized to PXE_CPBADDR_NOT_USED. Setting up this field incorrectly will
cause command execution to fail and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

OM13185

CDB
Command Descriptor Block

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

OpCode OpFlags

CPBaddr

DBaddr
0x10

0x14

0x18

0x1C

CPBsize DBsize

StatCode StatFlags

IFnum Control
UEFI Forum, Inc. March 2019 2225

UEFI Specification, Version 2.8
E.3 UNDI C Definitions

The definitions in this section are used to aid in the portability and readability of the example 32/64-bit S/
W UNDI source code and the rest of this specification.

E.3.1 Portability Macros

These macros are used for storage and communication portability.

E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER

This macro is used to control conditional compilation in the S/W UNDI source code. One of these
definitions needs to be uncommented in a common PXE header file.

//#define PXE_INTEL_ORDER 1 // little-endian

//#define PXE_NETWORK_ORDER 1 // big-endian

DBaddr Data Block Address
For H/W UNDI, this field must be the physical address of the DB structure. For S/W UNDI, this
field must be the virtual address of the DB structure. If the operation does not have/use a CPB,
this field must be initialized to PXE_DBADDR_NOT_USED. Setting up this field incorrectly will
cause command execution to fail and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

StatCode Status Code
This field is used to report the type of command completion: success or failure (and the type of
failure). This field must be initialized to zero before the command is issued. The contents of this
field is not valid until the PXE_STATFLAGS_COMMAND_COMPLETE status flag is set. If this field
is not initialized to PXE_STATCODE_INITIALIZE the UNDI command will not execute and a
StatCode of PXE_STATCODE_INVALID_CDB will be returned.

StatFlags Status Flags
This bit field is used to report command completion and identify the format, if any, of the DB
structure. This field must be initialized to zero before the command is issued. Until the command
state changes to error or complete, all other CDB fields must not be changed. If this field is not
initialized to PXE_STATFLAGS_INITIALIZE the UNDI command will not execute and a
StatCode of PXE_STATCODE_INVALID_CDB will be returned.
Bits 0x0F & 0x0E: Command state: Not started (0), Queued (1), Error (2), Complete (3).

IFnum Interface Number
This field is used to identify which network adapter (S/W UNDI) or network connector (H/W
UNDI) this command is being sent to. If an invalid interface number is given, the command will
not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be returned.

Control Process Control
This bit field is used to control command UNDI inter-command processing. Setting control bits
that are not supported by the UNDI will cause the command execution to fail with a StatCode of
PXE_STATCODE_INVALID_CDB.
Bit 0x00: Another CDB follows this one (1) or this is the last or only CDB in the list (0).
Bit 0x01: Queue command if busy (1), fail if busy (0).

Identifier Description
UEFI Forum, Inc. March 2019 2226

UEFI Specification, Version 2.8
E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT

This macro is used to control conditional compilation in the PXE source code. One of these definitions
must to be uncommented in the common PXE header file.

//#define PXE_UINT64_SUPPORT 1 // UINT64 supported

//#define PXE_NO_UINT64_SUPPORT 1 // UINT64 not supported

E.3.1.3 PXE_BUSTYPE

Used to convert a 4-character ASCII identifier to a 32-bit unsigned integer.

#if PXE_INTEL_ORDER

#define PXE_BUSTYPE(a,b,c,d) \

((((PXE_UINT32)(d) & 0xFF) << 24) | \

(((PXE_UINT32)(c) & 0xFF) << 16) | \

(((PXE_UINT32)(b) & 0xFF) << 8) | \

((PXE_UINT32)(a) & 0xFF))

#else

#define PXE_BUSTYPE(a,b,c,d) \

((((PXE_UINT32)(a) & 0xFF) << 24) | \

(((PXE_UINT32)(b) & 0xFF) << 16) | \

(((PXE_UINT32)(c) & 0xFF) << 8) | \

((PXE_UINT32)(f) & 0xFF))

#endif

//***

// UNDI ROM ID and device ID signature

//***

#define PXE_BUSTYPE_PXE PXE_BUSTYPE('!', 'P', 'X', 'E')

//***

// BUS ROM ID signatures

//***

#define PXE_BUSTYPE_PCI PXE_BUSTYPE('P', 'C', 'I', 'R')

#define PXE_BUSTYPE_PC_CARD PXE_BUSTYPE('P', 'C', 'C', 'R')

#define PXE_BUSTYPE_USB PXE_BUSTYPE('U', 'S', 'B', 'R')

#define PXE_BUSTYPE_1394 PXE_BUSTYPE('1', '3', '9', '4')

E.3.1.4 PXE_SWAP_UINT16

This macro swaps bytes in a 16-bit word.

#ifdef PXE_INTEL_ORDER

#define PXE_SWAP_UINT16(n) \

((((PXE_UINT16)(n) & 0x00FF) << 8) | \

(((PXE_UINT16)(n) & 0xFF00) >> 8))

#else

#define PXE_SWAP_UINT16(n) (n)

#endif
UEFI Forum, Inc. March 2019 2227

UEFI Specification, Version 2.8
E.3.1.5 PXE_SWAP_UINT32

This macro swaps bytes in a 32-bit word.

#ifdef PXE_INTEL_ORDER

#define PXE_SWAP_UINT32(n) \

((((PXE_UINT32)(n) & 0x000000FF) << 24) | \

(((PXE_UINT32)(n) & 0x0000FF00) << 8) | \

(((PXE_UINT32)(n) & 0x00FF0000) >> 8) | \

(((PXE_UINT32)(n) & 0xFF000000) >> 24)

#else

#define PXE_SWAP_UINT32(n) (n)

#endif

E.3.1.6 PXE_SWAP_UINT64

This macro swaps bytes in a 64-bit word for compilers that support 64-bit words.

#if PXE_UINT64_SUPPORT != 0

#ifdef PXE_INTEL_ORDER

#define PXE_SWAP_UINT64(n) \

((((PXE_UINT64)(n) & 0x00000000000000FF) << 56) | \

(((PXE_UINT64)(n) & 0x000000000000FF00) << 40) | \

(((PXE_UINT64)(n) & 0x0000000000FF0000) << 24) | \

(((PXE_UINT64)(n) & 0x00000000FF000000) << 8) | \

(((PXE_UINT64)(n) & 0x000000FF00000000) >> 8) | \

(((PXE_UINT64)(n) & 0x0000FF0000000000) >> 24) | \

(((PXE_UINT64)(n) & 0x00FF000000000000) >> 40) | \

(((PXE_UINT64)(n) & 0xFF00000000000000) >> 56)

#else

#define PXE_SWAP_UINT64(n) (n)

#endif

#endif // PXE_UINT64_SUPPORT

This macro swaps bytes in a 64-bit word, in place, for compilers that do not support 64-bit words. This
version of the 64-bit swap macro cannot be used in expressions.

#if PXE_NO_UINT64_SUPPORT != 0

#if PXE_INTEL_ORDER

#define PXE_SWAP_UINT64(n) \

{ \

PXE_UINT32 tmp = (PXE_UINT64)(n)[1]; \

(PXE_UINT64)(n)[1] = PXE_SWAP_UINT32((PXE_UINT64)(n)[0]); \

(PXE_UINT64)(n)[0] = PXE_SWAP_UINT32(tmp); \

}

#else

#define PXE_SWAP_UINT64(n) (n)

#endif

#endif // PXE_NO_UINT64_SUPPORT
UEFI Forum, Inc. March 2019 2228

UEFI Specification, Version 2.8
E.3.2 Miscellaneous Macros

E.3.2.1 Miscellaneous
#define PXE_CPBSIZE_NOT_USED 0 // zero

#define PXE_DBSIZE_NOT_USED 0 // zero

#define PXE_CPBADDR_NOT_USED (PXE_UINT64)0 // zero

#define PXE_DBADDR_NOT_USED (PXE_UINT64)0 // zero

E.3.3 Portability Types

The examples given below are just that, examples. The actual typedef instructions used in a new
implementation may vary depending on the compiler and processor architecture.

The storage sizes defined in this section are critical for PXE module inter-operation. All of the portability
typedefs define little endian (Intel® format) storage. The least significant byte is stored in the lowest
memory address and the most significant byte is stored in the highest memory address, as shown in
Figure 74.

Figure 74. Storage Types

E.3.3.1 PXE_CONST

The const type does not allocate storage. This type is a modifier that is used to help the compiler optimize
parameters that do not change across function calls.

#define PXE_CONST const

E.3.3.2 PXE_VOLATILE

The volatile type does not allocate storage. This type is a modifier that is used to help the compiler deal
with variables that can be changed by external procedures or hardware events.

#define PXE_VOLATILE volatile

E.3.3.3 PXE_VOID

The void type does not allocate storage. This type is used only to prototype functions that do not return
any information and/or do not take any parameters.

typedef void PXE_VOID;

OM13186

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

UINT8 UINT16 UINT32 UINT64

LSB MSB
UEFI Forum, Inc. March 2019 2229

UEFI Specification, Version 2.8
E.3.3.4 PXE_UINT8

Unsigned 8-bit integer.

typedef unsigned char PXE_UINT8;

E.3.3.5 PXE_UINT16

Unsigned 16-bit integer.

typedef unsigned short PXE_UINT16;

E.3.3.6 PXE_UINT32

Unsigned 32-bit integer.

typedef unsigned PXE_UINT32;

E.3.3.7 PXE_UINT64

Unsigned 64-bit integer.

#if PXE_UINT64_SUPPORT != 0

typedef unsigned long PXE_UINT64;

#endif // PXE_UINT64_SUPPORT

If a 64-bit integer type is not available in the compiler being used, use this definition:

#if PXE_NO_UINT64_SUPPORT != 0

typedef PXE_UINT32 PXE_UINT64[2];

#endif // PXE_NO_UINT64_SUPPORT

E.3.3.8 PXE_UINTN

Unsigned integer that is the default word size used by the compiler. This needs to be at least a 32-bit
unsigned integer.

typedef unsigned PXE_UINTN;

E.3.4 Simple Types

The PXE simple types are defined using one of the portability types from the previous section.

E.3.4.1 PXE_BOOL

Boolean (true/false) data type. For PXE zero is always false and nonzero is always true.

typedef PXE_UINT8 PXE_BOOL;

#define PXE_FALSE 0 // zero

#define PXE_TRUE (!PXE_FALSE)

E.3.4.2 PXE_OPCODE

UNDI OpCode (command) descriptions are given in the next chapter. There are no BC OpCodes, BC
protocol functions are discussed later in this document.
UEFI Forum, Inc. March 2019 2230

UEFI Specification, Version 2.8
typedef PXE_UINT16 PXE_OPCODE;

// Return UNDI operational state.

#define PXE_OPCODE_GET_STATE 0x0000

// Change UNDI operational state from Stopped to Started.

#define PXE_OPCODE_START 0x0001

// Change UNDI operational state from Started to Stopped.

#define PXE_OPCODE_STOP 0x0002

// Get UNDI initialization information.

#define PXE_OPCODE_GET_INIT_INFO 0x0003

// Get NIC configuration information.

#define PXE_OPCODE_GET_CONFIG_INFO 0x0004

// Changed UNDI operational state from Started to Initialized.

#define PXE_OPCODE_INITIALIZE 0x0005

// Reinitialize the NIC H/W.

#define PXE_OPCODE_RESET 0x0006

// Change the UNDI operational state from Initialized to Started.

#define PXE_OPCODE_SHUTDOWN 0x0007

// Read & change state of external interrupt enables.

#define PXE_OPCODE_INTERRUPT_ENABLES 0x0008

// Read & change state of packet receive filters.

#define PXE_OPCODE_RECEIVE_FILTERS 0x0009

// Read & change station MAC address.

#define PXE_OPCODE_STATION_ADDRESS 0x000A

// Read traffic statistics.

#define PXE_OPCODE_STATISTICS 0x000B

// Convert multicast IP address to multicast MAC address.

#define PXE_OPCODE_MCAST_IP_TO_MAC 0x000C

// Read or change nonvolatile storage on the NIC.

#define PXE_OPCODE_NVDATA 0x000D

// Get & clear interrupt status.
UEFI Forum, Inc. March 2019 2231

UEFI Specification, Version 2.8
#define PXE_OPCODE_GET_STATUS 0x000E

// Fill media header in packet for transmit.

#define PXE_OPCODE_FILL_HEADER 0x000F

// Transmit packet(s).

#define PXE_OPCODE_TRANSMIT 0x0010

// Receive packet.

#define PXE_OPCODE_RECEIVE 0x0011

// Last valid PXE UNDI OpCode number.

#define PXE_OPCODE_LAST_VALID 0x0011
UEFI Forum, Inc. March 2019 2232

UEFI Specification, Version 2.8
E.3.4.3 PXE_OPFLAGS
typedef PXE_UINT16 PXE_OPFLAGS;

#define PXE_OPFLAGS_NOT_USED 0x0000

//***

// UNDI Get State

//***

// No OpFlags

//***

// UNDI Start

//***

// No OpFlags

//***

// UNDI Stop

//***

// No OpFlags

//***

// UNDI Get Init Info

//***

// No Opflags

//***

// UNDI Get Config Info

//***

// No Opflags

//***

// UNDI Initialize

//***

#define PXE_OPFLAGS_INITIALIZE_CABLE_DETECT_MASK 0x0001

#define PXE_OPFLAGS_INITIALIZE_DETECT_CABLE 0x0000

#define PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE 0x0001

//***

// UNDI Reset

//***
UEFI Forum, Inc. March 2019 2233

UEFI Specification, Version 2.8
#define PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS 0x0001

#define PXE_OPFLAGS_RESET_DISABLE_FILTERS 0x0002

//***

// UNDI Shutdown

//***

// No OpFlags

//***

// UNDI Interrupt Enables

//***

// Select whether to enable or disable external interrupt
// signals. Setting both enable and disable will return 
// PXE_STATCODE_INVALID_OPFLAGS.

#define PXE_OPFLAGS_INTERRUPT_OPMASK 0xC000

#define PXE_OPFLAGS_INTERRUPT_ENABLE 0x8000

#define PXE_OPFLAGS_INTERRUPT_DISABLE 0x4000

#define PXE_OPFLAGS_INTERRUPT_READ 0x0000

// Enable receive interrupts. An external interrupt will be 
// generated after a complete non-error packet has been received.

#define PXE_OPFLAGS_INTERRUPT_RECEIVE 0x0001

// Enable transmit interrupts. An external interrupt will be 
// generated after a complete non-error packet has been 
// transmitted.

#define PXE_OPFLAGS_INTERRUPT_TRANSMIT 0x0002

// Enable command interrupts. An external interrupt will be 
// generated when command execution stops.

#define PXE_OPFLAGS_INTERRUPT_COMMAND 0x0004

// Generate software interrupt. Setting this bit generates an 
// external interrupt, if it is supported by the hardware.

#define PXE_OPFLAGS_INTERRUPT_SOFTWARE 0x0008

//***

// UNDI Receive Filters

//***
UEFI Forum, Inc. March 2019 2234

UEFI Specification, Version 2.8
// Select whether to enable or disable receive filters.
// Setting both enable and disable will return 
// PXE_STATCODE_INVALID_OPCODE.

#define PXE_OPFLAGS_RECEIVE_FILTER_OPMASK 0xC000

#define PXE_OPFLAGS_RECEIVE_FILTER_ENABLE 0x8000

#define PXE_OPFLAGS_RECEIVE_FILTER_DISABLE 0x4000

#define PXE_OPFLAGS_RECEIVE_FILTER_READ 0x0000

// To reset the contents of the multicast MAC address filter 
// list, set this OpFlag:

#define PXE_OPFLAGS_RECEIVE_FILTERS_RESET_MCAST_LIST 0x2000

// Enable unicast packet receiving. Packets sent to the 
// current station MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// Enable broadcast packet receiving. Packets sent to the 
// broadcast MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// Enable filtered multicast packet receiving. Packets sent to 
// any of the multicast MAC addresses in the multicast MAC 
UEFI Forum, Inc. March 2019 2235

UEFI Specification, Version 2.8
// address filter list will be received. If the filter list is 
// empty, no multicast

#define PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// Enable promiscuous packet receiving. All packets will be 
// received.

#define PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// Enable promiscuous multicast packet receiving. All multicast 
// packets will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***

// UNDI Station Address

//***

#define PXE_OPFLAGS_STATION_ADDRESS_READ 0x0000

#define PXE_OPFLAGS_STATION_ADDRESS_WRITE 0x0000

#define PXE_OPFLAGS_STATION_ADDRESS_RESET 0x0001

//***

// UNDI Statistics

//***

#define PXE_OPFLAGS_STATISTICS_READ 0x0000

#define PXE_OPFLAGS_STATISTICS_RESET 0x0001

//***

// UNDI MCast IP to MAC

//***

// Identify the type of IP address in the CPB.

#define PXE_OPFLAGS_MCAST_IP_TO_MAC_OPMASK 0x0003

#define PXE_OPFLAGS_MCAST_IPV4_TO_MAC 0x0000

#define PXE_OPFLAGS_MCAST_IPV6_TO_MAC 0x0001

//***

// UNDI NvData

//***

// Select the type of nonvolatile data operation.

#define PXE_OPFLAGS_NVDATA_OPMASK 0x0001
UEFI Forum, Inc. March 2019 2236

UEFI Specification, Version 2.8
#define PXE_OPFLAGS_NVDATA_READ 0x0000

#define PXE_OPFLAGS_NVDATA_WRITE 0x0001

//***

// UNDI Get Status

//***

// Return current interrupt status. This will also clear any 
// interrupts that are currently set. This can be used in a 
// polling routine. The interrupt flags are still set and 
// cleared even when the interrupts are disabled.

#define PXE_OPFLAGS_GET_INTERRUPT_STATUS 0x0001

// Return list of transmitted buffers for recycling. Transmit 
// buffers must not be changed or unallocated until they have 
// recycled. After issuing a transmit command, wait for a 
// transmit complete interrupt. When a transmit complete 
// interrupt is received, read the transmitted buffers. Do not 
// plan on getting one buffer per interrupt. Some NICs and UNDIs 
// may transmit multiple buffers per interrupt.

#define PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS 0x0002

// Return current media status.

#define PXE_OPFLAGS_GET_MEDIA_STATUS 0x0004

//***

// UNDI Fill Header

//***

#define PXE_OPFLAGS_FILL_HEADER_OPMASK 0x0001

#define PXE_OPFLAGS_FILL_HEADER_FRAGMENTED 0x0001

#define PXE_OPFLAGS_FILL_HEADER_WHOLE 0x0000

//***

// UNDI Transmit

//***

// S/W UNDI only. Return after the packet has been transmitted. 
// A transmit complete interrupt will still be generated and the 
UEFI Forum, Inc. March 2019 2237

UEFI Specification, Version 2.8
// transmit buffer will have to be recycled.

#define PXE_OPFLAGS_SWUNDI_TRANSMIT_OPMASK 0x0001

#define PXE_OPFLAGS_TRANSMIT_BLOCK 0x0001

#define PXE_OPFLAGS_TRANSMIT_DONT_BLOCK 0x0000

#define PXE_OPFLAGS_TRANSMIT_OPMASK 0x0002

#define PXE_OPFLAGS_TRANSMIT_FRAGMENTED 0x0002

#define PXE_OPFLAGS_TRANSMIT_WHOLE 0x0000

//***

// UNDI Receive

//***

// No OpFlags

E.3.4.4 PXE_STATFLAGS

typedef PXE_UINT16 PXE_STATFLAGS;

#define PXE_STATFLAGS_INITIALIZE 0x0000

//***

// Common StatFlags that can be returned by all commands.

//***

// The COMMAND_COMPLETE and COMMAND_FAILED status flags must be
// implemented by all UNDIs. COMMAND_QUEUED is only needed by 
// UNDIs that support command queuing.

#define PXE_STATFLAGS_STATUS_MASK 0xC000

#define PXE_STATFLAGS_COMMAND_COMPLETE 0xC000

#define PXE_STATFLAGS_COMMAND_FAILED 0x8000

#define PXE_STATFLAGS_COMMAND_QUEUED 0x4000

//***

// UNDI Get State

//***

#define PXE_STATFLAGS_GET_STATE_MASK 0x0003

#define PXE_STATFLAGS_GET_STATE_INITIALIZED 0x0002

#define PXE_STATFLAGS_GET_STATE_STARTED 0x0001

#define PXE_STATFLAGS_GET_STATE_STOPPED 0x0000

//***

// UNDI Start

//***
UEFI Forum, Inc. March 2019 2238

UEFI Specification, Version 2.8
// No additional StatFlags

//***

// UNDI Get Init Info

//***

#define PXE_STATFLAGS_CABLE_DETECT_MASK 0x0001

#define PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED 0x0000

#define PXE_STATFLAGS_CABLE_DETECT_SUPPORTED 0x0001

#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_MASK 0x0002

#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_NOT_SUPPORTED 0x0000

#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED 0x0002

//***

// UNDI Initialize

//***

#define PXE_STATFLAGS_INITIALIZED_NO_MEDIA 0x0001

//***

// UNDI Reset

//***

#define PXE_STATFLAGS_RESET_NO_MEDIA 0x0001

//***

// UNDI Shutdown

//***

// No additional StatFlags

//***

// UNDI Interrupt Enables

//***

// If set, receive interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_RECEIVE 0x0001

// If set, transmit interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_TRANSMIT 0x0002

// If set, command interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_COMMAND 0x0004

//***

// UNDI Receive Filters
UEFI Forum, Inc. March 2019 2239

UEFI Specification, Version 2.8
//***

// If set, unicast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// If set, broadcast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// If set, multicast packets that match up with the multicast 
// address filter list will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// If set, all packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// If set, all multicast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***

// UNDI Station Address

//***

// No additional StatFlags

//***

// UNDI Statistics

//***

// No additional StatFlags

//***

// UNDI MCast IP to MAC

//***

// No additional StatFlags

//***

// UNDI NvData

//***

// No additional StatFlags

//***

// UNDI Get Status

//***

// Use to determine if an interrupt has occurred.
UEFI Forum, Inc. March 2019 2240

UEFI Specification, Version 2.8
#define PXE_STATFLAGS_GET_STATUS_INTERRUPT_MASK 0x000F

#define PXE_STATFLAGS_GET_STATUS_NO_INTERRUPTS 0x0000

// If set, at least one receive interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_RECEIVE 0x0001

// If set, at least one transmit interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_TRANSMIT 0x0002

// If set, at least one command interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_COMMAND 0x0004

// If set, at least one software interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_SOFTWARE 0x0008

// This flag is set if the transmitted buffer queue is empty. 
// This flag will be set if all transmitted buffer addresses 
// get written into the DB.

#define PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY 0x0010

// This flag is set if no transmitted buffer addresses were 
// written into the DB. (This could be because DBsize was 
// too small.)

#define PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN 0x0020

// This flag is set if there is no media detected

#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA 0x0040

//***

// UNDI Fill Header

//***

// No additional StatFlags

//***

// UNDI Transmit

//***

// No additional StatFlags.

//***

// UNDI Receive

//***

// No additional StatFlags.
UEFI Forum, Inc. March 2019 2241

UEFI Specification, Version 2.8
E.3.4.5 PXE_STATCODE
typedef PXE_UINT16 PXE_STATCODE;

#define PXE_STATCODE_INITIALIZE 0x0000

//***
// Common StatCodes returned by all UNDI commands, UNDI protocol 
UEFI Forum, Inc. March 2019 2242

UEFI Specification, Version 2.8
// functions and BC protocol functions.
//***

#define PXE_STATCODE_SUCCESS 0x0000

#define PXE_STATCODE_INVALID_CDB 0x0001

#define PXE_STATCODE_INVALID_CPB 0x0002

#define PXE_STATCODE_BUSY 0x0003

#define PXE_STATCODE_QUEUE_FULL 0x0004

#define PXE_STATCODE_ALREADY_STARTED 0x0005

#define PXE_STATCODE_NOT_STARTED 0x0006

#define PXE_STATCODE_NOT_SHUTDOWN 0x0007

#define PXE_STATCODE_ALREADY_INITIALIZED 0x0008

#define PXE_STATCODE_NOT_INITIALIZED 0x0009

#define PXE_STATCODE_DEVICE_FAILURE 0x000A

#define PXE_STATCODE_NVDATA_FAILURE 0x000B

#define PXE_STATCODE_UNSUPPORTED 0x000C

#define PXE_STATCODE_BUFFER_FULL 0x000D

#define PXE_STATCODE_INVALID_PARAMETER 0x000E

#define PXE_STATCODE_INVALID_UNDI 0x000F

#define PXE_STATCODE_IPV4_NOT_SUPPORTED 0x0010

#define PXE_STATCODE_IPV6_NOT_SUPPORTED 0x0011

#define PXE_STATCODE_NOT_ENOUGH_MEMORY 0x0012

#define PXE_STATCODE_NO_DATA 0x0013

E.3.4.6 PXE_IFNUM
typedef PXE_UINT16 PXE_IFNUM;

// This interface number must be passed to the S/W UNDI Start 
// command.

#define PXE_IFNUM_START 0x0000

// This interface number is returned by the S/W UNDI Get State 
// and Start commands if information in the CDB, CPB or DB is

// invalid.

#define PXE_IFNUM_INVALID 0x0000

E.3.4.7 PXE_CONTROL
typedef PXE_UINT16 PXE_CONTROL;

// Setting this flag directs the UNDI to queue this command for 
// later execution if the UNDI is busy and it supports command 
// queuing. If queuing is not supported, a 
UEFI Forum, Inc. March 2019 2243

UEFI Specification, Version 2.8
// PXE_STATCODE_INVALID_CONTROL error is returned. If the queue 
// is full, a PXE_STATCODE_CDB_QUEUE_FULL error is returned.

#define PXE_CONTROL_QUEUE_IF_BUSY 0x0002

// These two bit values are used to determine if there are more 
// UNDI CDB structures following this one. If the link bit is 
// set, there must be a CDB structure following this one. 
// Execution will start on the next CDB structure as soon as this 
// one completes successfully. If an error is generated by this 
// command, execution will stop.

#define PXE_CONTROL_LINK 0x0001

#define PXE_CONTROL_LAST_CDB_IN_LIST 0x0000

E.3.4.8 PXE_FRAME_TYPE
typedef PXE_UINT8 PXE_FRAME_TYPE;

#define PXE_FRAME_TYPE_NONE 0x00

#define PXE_FRAME_TYPE_UNICAST 0x01

#define PXE_FRAME_TYPE_BROADCAST 0x02

#define PXE_FRAME_TYPE_FILTERED_MULTICAST 0x03

#define PXE_FRAME_TYPE_PROMISCUOUS 0x04

#define PXE_FRAME_TYPE_PROMISCUOUS_MULTICAST 0x05

E.3.4.9 PXE_IPV4

This storage type is always big endian, not little endian.

typedef PXE_UINT32 PXE_IPV4;

E.3.4.10 PXE_IPV6

This storage type is always big endian, not little endian.

typedef struct s_PXE_IPV6 {

 PXE_UINT32 num[4];
} PXE_IPV6;

E.3.4.11 PXE_MAC_ADDR

This storage type is always big endian, not little endian.
UEFI Forum, Inc. March 2019 2244

UEFI Specification, Version 2.8
typedef struct {

 PXE_UINT8 num[32];
} PXE_MAC_ADDR;

E.3.4.12 PXE_IFTYPE

The interface type is returned by the Get Initialization Information command and is used by the BC DHCP
protocol function. This field is also used for the low order 8-bits of the H/W type field in ARP packets. The
high order 8-bits of the H/W type field in ARP packets will always be set to 0x00 by the BC.

typedef PXE_UINT8 PXE_IFTYPE;

// This information is from the ARP section of RFC 3232.

// 1 Ethernet (10Mb)

// 2 Experimental Ethernet (3Mb)

// 3 Amateur Radio AX.25

// 4 Proteon ProNET Token Ring

// 5 Chaos

// 6 IEEE 802 Networks

// 7 ARCNET

// 8 Hyperchannel

// 9 Lanstar

// 10 Autonet Short Address

// 11 LocalTalk

// 12 LocalNet (IBM PCNet or SYTEK LocalNET)

// 13 Ultra link

// 14 SMDS

// 15 Frame Relay

// 16 Asynchronous Transmission Mode (ATM)

// 17 HDLC

// 18 Fibre Channel

// 19 Asynchronous Transmission Mode (ATM)

// 20 Serial Line

// 21 Asynchronous Transmission Mode (ATM)

#define PXE_IFTYPE_ETHERNET 0x01

#define PXE_IFTYPE_TOKENRING 0x04

#define PXE_IFTYPE_FIBRE_CHANNEL 0x12

E.3.4.13 PXE_MEDIA_PROTOCOL

Protocol type. This will be copied into the media header without doing byte swapping. Protocol type
numbers can be obtained from the assigned numbers RFC 3232.
UEFI Forum, Inc. March 2019 2245

ftp://ftp.isi.edu/in-notes/rfc1521.txt

UEFI Specification, Version 2.8
typedef UINT16 PXE_MEDIA_PROTOCOL;

E.3.5 Compound Types

All PXE structures must be byte packed.

E.3.5.1 PXE_HW_UNDI

This section defines the C structures and #defines for the !PXE H/W UNDI interface.
UEFI Forum, Inc. March 2019 2246

http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc791.html

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_hw_undi {

 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE

 PXE_UINT8 Len; // sizeof(PXE_HW_UNDI)

 PXE_UINT8 Fudge; // makes 8-bit cksum equal zero

 PXE_UINT8 Rev; // PXE_ROMID_REV

 PXE_UINT8 IFcnt; // physical connector count

 lower byte

 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER

 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER

 PXE_UINT8 IFcntExt; // physical connector count
 upper byte

 PXE_UINT8 reserved; // zero, not used

 PXE_UINT32 Implementation; // implementation flags

} PXE_HW_UNDI;

#pragma pack()

// Status port bit definitions

// UNDI operation state

#define PXE_HWSTAT_STATE_MASK 0xC0000000

#define PXE_HWSTAT_BUSY 0xC0000000

#define PXE_HWSTAT_INITIALIZED 0x80000000

#define PXE_HWSTAT_STARTED 0x40000000

#define PXE_HWSTAT_STOPPED 0x00000000

// If set, last command failed

#define PXE_HWSTAT_COMMAND_FAILED 0x20000000

// If set, identifies enabled receive filters

#define PXE_HWSTAT_PROMISCUOUS_MULTICAST_RX_ENABLED 0x00001000

#define PXE_HWSTAT_PROMISCUOUS_RX_ENABLED 0x00000800

#define PXE_HWSTAT_BROADCAST_RX_ENABLED 0x00000400

#define PXE_HWSTAT_MULTICAST_RX_ENABLED 0x00000200

#define PXE_HWSTAT_UNICAST_RX_ENABLED 0x00000100

// If set, identifies enabled external interrupts

#define PXE_HWSTAT_SOFTWARE_INT_ENABLED 0x00000080

#define PXE_HWSTAT_TX_COMPLETE_INT_ENABLED 0x00000040

#define PXE_HWSTAT_PACKET_RX_INT_ENABLED 0x00000020

#define PXE_HWSTAT_CMD_COMPLETE_INT_ENABLED 0x00000010

// If set, identifies pending interrupts
UEFI Forum, Inc. March 2019 2247

http://www.opengroup.org/pubs/catalog/c914.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://acpi.info/index.html
http://www.ietf.org/rfc/rfc0826.txt
http://www.acpi.info/spec.htm
http://www.ietf.org/rfc/rfc1700.txt
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0951.txt

UEFI Specification, Version 2.8
#define PXE_HWSTAT_SOFTWARE_INT_PENDING 0x00000008

#define PXE_HWSTAT_TX_COMPLETE_INT_PENDING 0x00000004

#define PXE_HWSTAT_PACKET_RX_INT_PENDING 0x00000002

#define PXE_HWSTAT_CMD_COMPLETE_INT_PENDING 0x00000001

// Command port definitions

// If set, CDB identified in CDBaddr port is given to UNDI.

// If not set, other bits in this word will be processed.

#define PXE_HWCMD_ISSUE_COMMAND 0x80000000

#define PXE_HWCMD_INTS_AND_FILTS 0x00000000

// Use these to enable/disable receive filters.

#define PXE_HWCMD_PROMISCUOUS_MULTICAST_RX_ENABLE 0x00001000

#define PXE_HWCMD_PROMISCUOUS_RX_ENABLE 0x00000800

#define PXE_HWCMD_BROADCAST_RX_ENABLE 0x00000400

#define PXE_HWCMD_MULTICAST_RX_ENABLE 0x00000200

#define PXE_HWCMD_UNICAST_RX_ENABLE 0x00000100

// Use these to enable/disable external interrupts

#define PXE_HWCMD_SOFTWARE_INT_ENABLE 0x00000080

#define PXE_HWCMD_TX_COMPLETE_INT_ENABLE 0x00000040

#define PXE_HWCMD_PACKET_RX_INT_ENABLE 0x00000020

#define PXE_HWCMD_CMD_COMPLETE_INT_ENABLE 0x00000010

// Use these to clear pending external interrupts

#define PXE_HWCMD_CLEAR_SOFTWARE_INT 0x00000008

#define PXE_HWCMD_CLEAR_TX_COMPLETE_INT 0x00000004

#define PXE_HWCMD_CLEAR_PACKET_RX_INT 0x00000002

#define PXE_HWCMD_CLEAR_CMD_COMPLETE_INT 0x00000001

E.3.5.2 PXE_SW_UNDI

This section defines the C structures and #defines for the !PXE S/W UNDI interface.
UEFI Forum, Inc. March 2019 2248

http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.microsoft.com/hwdev/tech/pnp/
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi
http://developer.intel.com/design/servers/desguide/hdgv3.htm
http://www.intel.com/design/pentium4/manuals/
http://t13.org/project/d1386r5a.pdf
http://developer.intel.com/design/itanium/index.htm

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_sw_undi {

 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_SW_UNDI)

 PXE_UINT8 Fudge; // makes 8-bit cksum zero

 PXE_UINT8 Rev; // PXE_ROMID_REV

 PXE_UINT8 IFcnt; // physical connector count
 lower byte

 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER

 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER

 PXE_UINT8 IFcntExt; // physical connector count
 upper byte

 PXE_UINT8 reserved1; // zero, not used

 PXE_UINT32 Implementation; // Implementation flags

 PXE_UINT64 EntryPoint; // API entry point

 PXE_UINT8 reserved2[3]; // zero, not used

 PXE_UINT8 BusCnt; // number of bustypes supported

 PXE_UINT32 BusType[1]; // list of supported bustypes
} PXE_SW_UNDI;

#pragma pack()

E.3.5.3 PXE_UNDI

PXE_UNDI combines both the H/W and S/W UNDI types into one typedef and has #defines for common
fields in both H/W and S/W UNDI types.

#pragma pack(1)

typedef union u_pxe_undi {

 PXE_HW_UNDI hw;

 PXE_SW_UNDI sw;

} PXE_UNDI;

#pragma pack()

// Signature of !PXE structure

#define PXE_ROMID_SIGNATURE PXE_BUSTYPE ('!', 'P', 'X', 'E')

// !PXE structure format revision)

// See “Links to UEFI-Related Documents” (http://uefi.org/uefi)
// under the heading “UDP over IPv6”.

#define PXE_ROMID_REV 0x02

// UNDI command interface revision. These are the values that 
// get sent in option 94 (Client Network Interface Identifier) in 
// the DHCP Discover and PXE Boot Server Request packets.

// See “Links to UEFI-Related Documents” (http://uefi.org/uefi)
UEFI Forum, Inc. March 2019 2249

http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://www.1394ta.org/Technology/Specifications/specifications.htm

UEFI Specification, Version 2.8
// under the heading “IETF Organization”.

#define PXE_ROMID_MAJORVER 0x03

#define PXE_ROMID_MINORVER 0x01

// Implementation flags

#define PXE_ROMID_IMP_HW_UNDI 0x80000000

#define PXE_ROMID_IMP_SW_VIRT_ADDR 0x40000000

#define PXE_ROMID_IMP_64BIT_DEVICE 0x00010000

#define PXE_ROMID_IMP_FRAG_SUPPORTED 0x00008000

#define PXE_ROMID_IMP_CMD_LINK_SUPPORTED 0x00004000

#define PXE_ROMID_IMP_CMD_QUEUE_SUPPORTED 0x00002000

#define PXE_ROMID_IMP_MULTI_FRAME_SUPPORTED 0x00001000

#define PXE_ROMID_IMP_NVDATA_SUPPORT_MASK 0x00000C00

#define PXE_ROMID_IMP_NVDATA_BULK_WRITABLE 0x00000C00

#define PXE_ROMID_IMP_NVDATA_SPARSE_WRITABLE 0x00000800

#define PXE_ROMID_IMP_NVDATA_READ_ONLY 0x00000400

#define PXE_ROMID_IMP_NVDATA_NOT_AVAILABLE 0x00000000

#define PXE_ROMID_IMP_STATISTICS_SUPPORTED 0x00000200

#define PXE_ROMID_IMP_STATION_ADDR_SETTABLE 0x00000100

#define PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED 0x00000080

#define PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED 0x00000040

#define PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED 0x00000020

#define PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED 0x00000010

#define PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED 0x00000008

#define PXE_ROMID_IMP_TX_COMPLETE_INT_SUPPORTED 0x00000004

#define PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED 0x00000002

#define PXE_ROMID_IMP_CMD_COMPLETE_INT_SUPPORTED 0x00000001

E.3.5.4 PXE_CDB

PXE UNDI command descriptor block.
UEFI Forum, Inc. March 2019 2250

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_cdb {

 PXE_OPCODE OpCode;

 PXE_OPFLAGS OpFlags;

 PXE_UINT16 CPBsize;

 PXE_UINT16 DBsize;

 PXE_UINT64 CPBaddr;

 PXE_UINT64 DBaddr;

 PXE_STATCODE StatCode;

 PXE_STATFLAGS StatFlags;

 PXE_UINT16 IFnum;

 PXE_CONTROL Control;
} PXE_CDB;

#pragma pack()

If the UNDI driver enables hardware VLAN support, UNDI driver could use IFnum to identify the real NICs
and VLAN created virtual NICs.

E.3.5.5 PXE_IP_ADDR

This storage type is always big endian, not little endian.

#pragma pack(1)

typedef union u_pxe_ip_addr {

 PXE_IPV6 IPv6;

 PXE_IPV4 IPv4;
} PXE_IP_ADDR;

#pragma pack()

E.3.5.6 PXE_DEVICE

This typedef is used to identify the network device that is being used by the UNDI. This information is
returned by the Get Config Info command.
UEFI Forum, Inc. March 2019 2251

http://www.phoenix.com/en/support/white+papers-specs/

UEFI Specification, Version 2.8
#pragma pack(1)

typedef union pxe_device {

 // PCI and PC Card NICs are both identified using bus, device

 // and function numbers. For PC Card, this may require PC

 // Card services to be loaded in the BIOS or preboot

 // environment.

 struct {

 // See S/W UNDI ROMID structure definition for PCI and

 // PCC BusType definitions.

 PXE_UINT32 BusType;

 // Bus, device & function numbers that locate this device.

 PXE_UINT16 Bus;

 PXE_UINT8 Device;

 PXE_UINT8 Function;
 } PCI, PCC;

} PXE_DEVICE;

#pragma pack()

E.4 UNDI Commands

All 32/64-bit UNDI commands use the same basic command format, the CDB (Command Descriptor
Block). CDB fields that are not used by a particular command must be initialized to zero by the
application/driver that is issuing the command. (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “DMTF BIOS specifications”.)

All UNDI implementations must set the command completion status
(PXE_STATFLAGS_COMMAND_COMPLETE) after command execution completes. Applications and drivers
must not alter or rely on the contents of any of the CDB, CPB or DB fields until the command completion
status is set.

All commands return status codes for invalid CDB contents and, if used, invalid CPB contents. Commands
with invalid parameters will not execute. Fix the error and submit the command again.

Figure 75 describes the different UNDI states (Stopped, Started and Initialized), shows the transitions
between the states and which UNDI commands are valid in each state.
UEFI Forum, Inc. March 2019 2252

UEFI Specification, Version 2.8

Figure 75. UNDI States, Transitions & Valid Commands

Note: All memory addresses including the CDB address, CPB address, and the DB address submitted to
the S/W UNDI by the protocol drivers must be processor-based addresses. All memory addresses
submitted to the H/W UNDI must be device based addresses.

Note: Additional requirements for S/W UNDI implementations: Processor register contents must be
unchanged by S/W UNDI command execution (The application/driver does not have to save
processor registers when calling S/W UNDI). Processor arithmetic flags are undefined
(application/driver must save processor arithmetic flags if needed). Application/driver must
remove CDB address from stack after control returns from S/W UNDI.

Note: Additional requirements for 32-bit network devices: All addresses given to the S/W UNDI must be
32-bit addresses. Any address that exceeds 32 bits (4 GiB) will result in a return of one of the
following status codes: PXE_STATCODE_INVALID_PARAMETER,
PXE_STATCODE_INVALID_CDB or PXE_STATCODE_INVALID_CPB.

When executing linked commands, command execution will stop at the end of the CDB list (when the
PXE_CONTROL_LINK bit is not set) or when a command returns an error status code.
UEFI Forum, Inc. March 2019 2253

UEFI Specification, Version 2.8
Note: Buffers requested via the MemoryRequired field in s_pxe_db_get_init_info
(seeAppendix E.4.5.5) will be allocated via PCI_IO.AllocateBuffer(). However, the buffers
passed to various UNDI commands are not guaranteed to be allocated via AllocateBuffer().

Note: Calls to Map_Mem() of type TO_AND_FROM_DEVICE must only be used for common DMA
buffers. Such buffers must be requested via the MemoryRequired field in
s_pxe_db_get_init_info and provided through the Initialize command

E.4.1 Command Linking and Queuing

When linking commands, the CDBs must be stored consecutively in system memory without any gaps in
between. Do not set the Link bit in the last CDB in the list. As shown in Figure 76, the Link bit must be set
in all other CDBs in the list.

Figure 76. Linked CDBs

When the H/W UNDI is executing commands, the State bits in the Status field in the !PXE structure will be
set to Busy (3).

When H/W or S/W UNDI is executing commands and a new command is issued, a StatCode of
PXE_STATCODE_BUSY and a StatFlag of PXE_STATFLAG_COMMAND_FAILURE is set in the CDB. For
linked commands, only the first CDB will be set to Busy, all other CDBs will be unchanged. When a linked
command fails, execution on the list stops. Commands after the failing command will not be run.

As shown in Figure 77, when queuing commands, only the first CDB needs to have the Queue Control flag
set. If queuing is supported and the UNDI is busy and there is room in the command queue, the command
(or list of commands) will be queued.

OM13188

Linked CDBs
0x00

0x1F
0x20

0x3F

Set Link bit.

0x40

0x5F

Set Link bit.

Do not set
Link bit.

CDB

CDB

CDB
UEFI Forum, Inc. March 2019 2254

UEFI Specification, Version 2.8
Figure 77. Queued CDBs

When a command is queued a StatFlag of PXE_STATFLAG_COMMAND_QUEUED is set (if linked commands
are queued only the StatFlag of the first CDB gets set). This signals that the command was added to the
queue. Commands in the queue will be run on a first-in, first-out, basis. When a command fails, the next
command in the queue is run. When a linked command in the queue fails, execution on the list stops. The
next command, or list of commands, that was added to the command queue will be run.

E.4.2 Get State

This command is used to determine the operational state of the UNDI. An UNDI has three possible
operational states:

• Stopped. A stopped UNDI is free for the taking. When all interface numbers (IFnum) for a
particular S/W UNDI are stopped, that S/W UNDI image can be relocated or removed. A
stopped UNDI will accept Get State and Start commands.

• Started. A started UNDI is in use. A started UNDI will accept Get State, Stop, Get Init Info, and
Initialize commands.

• Initialized. An initialized UNDI is in used. An initialized UNDI will accept all commands except:
Start, Stop, and Initialize.

Drivers and applications must not start using UNDIs that have been placed into the Started or Initialized
states by another driver or application.

3.0 and 3.1 S/W UNDI: No callbacks are performed by this UNDI command.

OM13189

Queued CDBs
0x00

0x1F
0x20

0x3F

Set Queue bit.
Set Link bit.

0x40

0x5F

Set Queue bit.
Set Link bit.

Set Queue bit.
Set Link bit.

CDB

CDB

CDB
UEFI Forum, Inc. March 2019 2255

http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://www.phoenix.com/en/support/white+papers-specs/

UEFI Specification, Version 2.8
E.4.2.1 Issuing the Command

To issue a Get State command, create a CDB and fill it in as shown in the table below:

E.4.2.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.2.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

If the command completes successfully, use PXE_STATFLAGS_GET_STATE_MASK to check the state of
the UNDI.

CDB Field How to initialize the CDB structure for a Get State command

OpCode PXE_OPCODE_GET_STATE

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags contain operational state.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued. All other fields are unchanged.

INITIALIZE Command has not been executed or queued.

StatCode Reason

SUCCESS Command completed successfully. StatFlags contain operational state.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

StatFlags Reason

STOPPED The UNDI is stopped.
UEFI Forum, Inc. March 2019 2256

UEFI Specification, Version 2.8
E.4.3 Start

This command is used to change the UNDI operational state from stopped to started. No other
operational checks are made by this command. Protocol driver makes this call for each network interface
supported by the UNDI with a set of call back routines and a unique identifier to identify the particular
interface. UNDI does not interpret the unique identifier in any way except that it is a 64-bit value and it
will pass it back to the protocol driver as a parameter to all the call back routines for any particular
interface. If this is a S/W UNDI, the callback functions Delay(), Virt2Phys(), Map_Mem(), UnMap_Mem(),
and Sync_Mem() functions will not be called by this command.

E.4.3.1 Issuing the Command

To issue a Start command for H/W UNDI, create a CDB and fill it in as shows in the table below:

To issue a Start command for S/W UNDI, create a CDB and fill it in as shows in the table below:

STARTED The UNDI is started, but not initialized.

INITIALIZED The UNDI is initialized.

CDB Field How to initialize the CDB structure for a H/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

CDB Field How to initialize the CDB structure for a S/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize sizeof(PXE_CPB_START)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_START structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed
UEFI Forum, Inc. March 2019 2257

http://developer.intel.com/design/itanium

UEFI Specification, Version 2.8
E.4.3.2 Preparing the CPB

For the 3.1 S/W UNDI Start command, the CPB structure shown below must be filled in and the CDB must
be set to sizeof(struct s_pxe_cpb_start_31).
UEFI Forum, Inc. March 2019 2258

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_cpb_start_31 {

 UINT64 Delay;

 //

 // Address of the Delay() callback service.

 // This field cannot be set to zero.

 //

 // VOID

 // Delay(

 // IN UINT64 UniqueId,

 // IN UINT64 Microseconds);

 //

 // UNDI will never request a delay smaller than 10 microseconds

 // and will always request delays in increments of 10

 // microseconds. The Delay() callback routine must delay

 // between n and n + 10 microseconds before returning control

 // to the UNDI.

 //

 UINT64 Block;

 //

 // Address of the Block() callback service.

 // This field cannot be set to zero.

 //

 // VOID

 // Block(

 // IN UINT64 UniqueId,

 // IN UINT32 Enable);

 //

 // UNDI may need to block multithreaded/multiprocessor access

 // to critical code sections when programming or accessing the

 // network device. When UNDI needs a block, it will call the

 // Block()callback service with Enable set to a non-zero value.

 // When UNDI no longer needs the block, it will call Block()

 // with Enable set to zero.

 //

 UINT64 Virt2Phys;

 //

 // Convert a virtual address to a physical address.

 // This field can be set to zero if virtual and physical

 // addresses are identical.

 //

 // VOID

 // Virt2Phys(

 // IN UINT64 UniqueId,

 // IN UINT64 Virtual,
UEFI Forum, Inc. March 2019 2259

UEFI Specification, Version 2.8
 // OUT UINT64 PhysicalPtr);

 //

 // UNDI will pass in a virtual address and a pointer to storage

 // for a physical address. The Virt2Phys() service converts

 // the virtual address to a physical address and stores the

 // resulting physical address in the supplied buffer. If no

 // conversion is needed, the virtual address must be copied

 // into the supplied physical address buffer.

 //

 UINT64 Mem_IO;

 //

 // Read/Write network device memory and/or I/O register space.

 // This field cannot be set to zero.

 //

 // VOID

 // Mem_IO(

 // IN UINT64 UniqueId,

 // IN UINT8 AccessType,

 // IN UINT8 Length,

 // IN UINT64 Port,

 // IN OUT UINT64 BufferPtr);

 //

 // UNDI uses the Mem_IO() service to access the network device

 // memory and/or I/O registers. The AccessType is one of the

 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of

 // this section. The Length is 1, 2, 4 or 8. The Port number

 // is relative to the base memory or I/O address space for this

 // device.BufferPtr points to the data to be written to the

 // Port or will contain the data that is read from the Port.

 //

 UINT64 Map_Mem;

 //

 // Map virtual memory address for DMA.

 // This field can be set to zero if there is no mapping

 // service.

 //

 // VOID

 // Map_Mem(

 // IN UINT64 UniqueId,

 // IN UINT64 Virtual,

 // IN UINT32 Size,

 // IN UINT32 Direction,

 // OUT UINT64 PhysicalPtr);

 //

 // When UNDI needs to perform a DMA transfer it will request a
UEFI Forum, Inc. March 2019 2260

UEFI Specification, Version 2.8
 // virtual-to-physical mapping using the Map_Mem() service. The

 // Virtual parameter contains the virtual address to be mapped.

 // The minimum Size of the virtual memory buffer to be mapped.

 // Direction is one of the TO_DEVICE, FROM_DEVICE or

 // TO_AND_FROM_DEVICE constants defined at the end of this

 // section.PhysicalPtr contains the mapped physical address or

 // a copy of the Virtual address if no mapping is required.

 //

 UINT64 UnMap_Mem;

 //

 // Un-map previously mapped virtual memory address.

 // This field can be set to zero only if the Map_Mem() service

 // is also set to zero.

 //

 // VOID

 // UnMap_Mem(

 // IN UINT64 UniqueId,

 // IN UINT64 Virtual,

 // IN UINT32 Size,

 // IN UINT32 Direction,

 // IN UINT64 PhysicalPtr);

 //

 // When UNDI is done with the mapped memory, it will use the

 // UnMap_Mem() service to release the mapped memory.

 //

 UINT64 Sync_Mem;

 //

 // Synchronise mapped memory.

 // This field can be set to zero only if the Map_Mem() service

 // is also set to zero.

 //

 // VOID

 // Sync_Mem(

 // IN UINT64 UniqueId,

 // IN UINT64 Virtual,

 // IN UINT32 Size,

 // IN UINT32 Direction,

 // IN UINT64 PhysicalPtr);

 //

 // When the virtual and physical buffers need to be

 // synchronized, UNDI will call the Sync_Mem() service.

 //

 UINT64 UniqueId;

 //
UEFI Forum, Inc. March 2019 2261

UEFI Specification, Version 2.8
 // UNDI will pass this value to each of the callback services.

 // A unique ID number should be generated for each instance of

 // the UNDI driver that will be using these callback services.

 //

} PXE_CPB_START_31;

#pragma pack()

For the 3.0 S/W UNDI Start command, the CPB structure shown below must be filled in and the CDB must
be set to sizeof(struct s_pxe_cpb_start_30).
UEFI Forum, Inc. March 2019 2262

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_cpb_start_30 {

 UINT64 Delay;

 //

 // Address of the Delay() callback service.

 // This field cannot be set to zero.

 //

 // VOID

 // Delay(

 // IN UINT64 Microseconds);

 //

 // UNDI will never request a delay smaller than 10 microseconds

 // and will always request delays in increments of 10.

 // microseconds The Delay() callback routine must delay between

 // n and n + 10 microseconds before returning control to the

 // UNDI.

 //

 UINT64 Block;

 //

 // Address of the Block() callback service.

 // This field cannot be set to zero.

 //

 // VOID

 // Block(

 // IN UINT32 Enable);

 //

 // UNDI may need to block multithreaded/multiprocessor access

 // to critical code sections when programming or accessing the

 // network device. When UNDI needs a block, it will call the

 // Block()callback service with Enable set to a non-zero value.

 // When UNDI no longer needs the block, it will call Block()

 // with Enable set to zero.

 //

 UINT64 Virt2Phys;

 //

 // Convert a virtual address to a physical address.

 // This field can be set to zero if virtual and physical

 // addresses are identical.

 //

 // VOID

 // Virt2Phys(

 // IN UINT64 Virtual,

 // OUT UINT64 PhysicalPtr);

 //

 // UNDI will pass in a virtual address and a pointer to storage
UEFI Forum, Inc. March 2019 2263

UEFI Specification, Version 2.8
 // for a physical address. The Virt2Phys() service converts

 // the virtual address to a physical address and stores the

 // resulting physical address in the supplied buffer. If no

 // conversion is needed, the virtual address must be copied

 // into the supplied physical address buffer.

 //

 UINT64 Mem_IO;

 //

 // Read/Write network device memory and/or I/O register space.

 // This field cannot be set to zero.

 //

 // VOID

 // Mem_IO(

 // IN UINT8 AccessType,

 // IN UINT8 Length,

 // IN UINT64 Port,

 // IN OUT UINT64 BufferPtr);

 //

 // UNDI uses the Mem_IO() service to access the network device

 // memory and/or I/O registers. The AccessType is one of the

 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of

 // this section. The Length is 1, 2, 4 or 8. The Port number

 // is relative to the base memory or I/O address space for this

 // device.BufferPtr points to the data to be written to the

 // Port or will contain the data that is read from the Port.

 //

} PXE_CPB_START_30;

#pragma pack()

#define TO_AND_FROM_DEVICE 0

// Provides both read and write access to system memory by both

// the processor and a bus master. The buffer is coherent from

// both the processor's and the bus master's point of view.

#define FROM_DEVICE 1

// Provides a write operation to system memory by a bus master.

#define TO_DEVICE 2

// Provides a read operation from system memory by a bus master.

E.4.3.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

StatFlags Reason
UEFI Forum, Inc. March 2019 2264

UEFI Specification, Version 2.8
E.4.3.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.4 Stop

This command is used to change the UNDI operational state from started to stopped.

E.4.4.1 Issuing the Command

To issue a Stop command, create a CDB and fill it in as shows in the table below:

COMMAND_COMPLETE Command completed successfully. UNDI is now started.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now started.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

ALREADY_STARTED The UNDI is already started.

CDB Field How to initialize the CDB structure for a Stop command

OpCode PXE_OPCODE_STOP

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed
UEFI Forum, Inc. March 2019 2265

UEFI Specification, Version 2.8
E.4.4.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.4.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.5 Get Init Info

This command is used to retrieve initialization information that is needed by drivers and applications to
initialized UNDI.

E.4.5.1 Issuing the Command

To issue a Get Init Info command, create a CDB and fill it in as shows in the table below:

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now stopped.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has not been executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now stopped.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_SHUTDOWN The UNDI is initialized and must be shutdown before it can be stopped.

CDB Field How to initialize the CDB structure for a Get Init Info command

OpCode PXE_OPCODE_GET_INIT_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_INIT_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_INIT_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).
UEFI Forum, Inc. March 2019 2266

UEFI Specification, Version 2.8
E.4.5.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.5.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.5.4 StatFlags

To determine if cable detection is supported by this UNDI/NIC, use these macros with the value returned
in the CDB.StatFlags field:

PXE_STATFLAGS_CABLE_DETECT_MASK

PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED

PXE_STATFLAGS_CABLE_DETECT_SUPPORTED

PXE_STATFLAGS_GET_STATUS_NO_MEDIA_MASK

PXE_STATFLAGS_GET_STATUS_NO_MEDIA_NOT_SUPPORTED

PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED

E.4.5.5 DB
#pragma pack(1)

typedef struct s_pxe_db_get_init_info {

 // Minimum length of locked memory buffer that must be given to

 // the Initialize command. Giving UNDI more memory will 
 // generally give better performance.

 // If MemoryRequired is zero, the UNDI does not need and will

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB can be used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB can be used.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.
UEFI Forum, Inc. March 2019 2267

UEFI Specification, Version 2.8
 // not use system memory to receive and transmit packets.

 PXE_UINT32 MemoryRequired;

 // Maximum frame data length for Tx/Rx excluding the media 
 // header.

 //

 PXE_UINT32 FrameDataLen;

 // Supported link speeds are in units of mega bits. Common 
 // ethernet values are 10, 100 and 1000. Unused LinkSpeeds[] 
 // entries are zero filled.

 PXE_UINT32 LinkSpeeds[4];

 // Number of nonvolatile storage items.

 PXE_UINT32 NvCount;

 // Width of nonvolatile storage item in bytes. 0, 1, 2 or 4

 PXE_UINT16 NvWidth;

 // Media header length. This is the typical media header

 // length for this UNDI. This information is needed when 
 // allocating receive and transmit buffers.

 PXE_UINT16 MediaHeaderLen;

 // Number of bytes in the NIC hardware (MAC) address.

 PXE_UINT16 HWaddrLen;

 // Maximum number of multicast MAC addresses in the multicast

 // MAC address filter list.

 PXE_UINT16 MCastFilterCnt;

 // Default number and size of transmit and receive buffers that 
 // will be allocated by the UNDI. If MemoryRequired is 
 // nonzero, this allocation will come out of the memory buffer 
 // given to the Initialize command. If MemoryRequired is zero, 
 // this allocation will come out of memory on the NIC.

 PXE_UINT16 TxBufCnt;

 PXE_UINT16 TxBufSize;

 PXE_UINT16 RxBufCnt;

 PXE_UINT16 RxBufSize;
UEFI Forum, Inc. March 2019 2268

UEFI Specification, Version 2.8
 // Hardware interface types defined in the Assigned Numbers RFC

 // and used in DHCP and ARP packets.

 // See the PXE_IFTYPE typedef and PXE_IFTYPE_xxx macros.

 PXE_UINT8 IFtype;

 // Supported duplex options. This can be one or a combination

 // of more than one constants defined as PXE_DUPLEX_xxxxx

 // below. This value indicates the ability of UNDI to

 // change/control the duplex modes of the NIC.

 PXE_UINT8 SupportedDuplexModes;

 // Supported loopback options. This field can be one or a

 // combination of more than one constants defined as

 // PXE_LOOPBACK_xxxxx #defines below. This value indicates

 // the ability of UNDI to change/control the loopback modes

 // of the NIC

 PXE_UINT8 SupportedLoopBackModes;

} PXE_DB_GET_INIT_INFO;

#pragma pack()

#define PXE_MAX_TXRX_UNIT_ETHER 1500

#define PXE_HWADDR_LEN_ETHER 0x0006

#define PXE_DUPLEX_DEFAULT 0

#define PXE_DUPLEX_ENABLE_FULL_SUPPORTED 1

#define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2

#define PXE_LOOPBACK_INTERNAL_SUPPORTED 1

#define PXE_LOOPBACK_EXTERNAL_SUPPORTED 2

E.4.6 Get Config Info

This command is used to retrieve configuration information about the NIC being controlled by the UNDI.

E.4.6.1 Issuing the Command

To issue a Get Config Info command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get Config Info command

OpCode PXE_OPCODE_GET_CONFIG_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_CONFIG_INFO)
UEFI Forum, Inc. March 2019 2269

UEFI Specification, Version 2.8
E.4.6.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_CONFIG_INFO structure

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

CDB Field How to initialize the CDB structure for a Get Config Info command
UEFI Forum, Inc. March 2019 2270

UEFI Specification, Version 2.8
E.4.6.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.6.4 DB
#pragma pack(1)

typedef struct s_pxe_pci_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.

 // For PCI bus devices, this field is set to PXE_BUSTYPE_PCI.

 PXE_UINT32 BusType;

 // This identifies the PCI network device that this UNDI 
 // interface is bound to.

 PXE_UINT16 Bus;

 PXE_UINT8 Device;

 PXE_UINT8 Function;

 // This is a copy of the PCI configuration space for this

 // network device.

 union {

 PXE_UINT8 Byte[256];

 PXE_UINT16 Word[128];

 PXE_UINT32 Dword[64];

 } Config;

} PXE_PCI_CONFIG_INFO;

#pragma pack()

#pragma pack(1)

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB has been written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.
UEFI Forum, Inc. March 2019 2271

UEFI Specification, Version 2.8
typedef struct s_pxe_pcc_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.

 // For PCC bus devices, this field is set to PXE_BUSTYPE_PCC.

 PXE_UINT32 BusType;

 // This identifies the PCC network device that this UNDI 
 // interface is bound to.

 PXE_UINT16 Bus;

 PXE_UINT8 Device;

 PXE_UINT8 Function;

 // This is a copy of the PCC configuration space for this

 // network device.

 union {

 PXE_UINT8 Byte[256];

 PXE_UINT16 Word[128];

 PXE_UINT32 Dword[64];

} Config;

} PXE_PCC_CONFIG_INFO;

#pragma pack()

#pragma pack(1)

typedef union u_pxe_db_get_config_info {

 PXE_PCI_CONFIG_INFO pci;

 PXE_PCC_CONFIG_INFO pcc;

} PXE_DB_GET_CONFIG_INFO;

#pragma pack()

E.4.7 Initialize

This command resets the network adapter and initializes UNDI using the parameters supplied in the CPB.
The Initialize command must be issued before the network adapter can be setup to transmit and receive
packets. This command will not enable the receive unit or external interrupts.

Once the memory requirements of the UNDI are obtained by using the Get Init Info command, a block of
kernel (nonswappable) memory may need to be allocated by the protocol driver. The address of this
kernel memory must be passed to UNDI using the Initialize command CPB. This memory is used for
transmit and receive buffers and internal processing.

Initializing the network device will take up to four seconds for most network devices and in some
extreme cases (usually poor cables) up to twenty seconds. Control will not be returned to the caller and
the COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.
UEFI Forum, Inc. March 2019 2272

UEFI Specification, Version 2.8
E.4.7.1 Issuing the Command

To issue an Initialize command, create a CDB and fill it in as shows in the table below:

E.4.7.2 OpFlags

Cable detection can be enabled or disabled by setting one of the following OpFlags:

PXE_OPFLAGS_INITIALIZE_CABLE_DETECT

PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE

E.4.7.3 Preparing the CPB

If the MemoryRequired field returned in the PXE_DB_GET_INIT_INFO structure is zero, the Initialize
command does not need to be given a memory buffer or even a CPB structure. If the MemoryRequired
field is nonzero, the Initialize command does need a memory buffer.

#pragma pack(1)

typedef struct s_pxe_cpb_initialize {

 // Address of first (lowest) byte of the memory buffer. 
 // This buffer must be in contiguous physical memory and cannot 
 // be swapped out. The UNDI will be using this for transmit 
 // and receive buffering. This address must be a processor- 
 // based address for S/W UNDI and a device-based address for 
 // H/W UNDI.

 PXE_UINT64 MemoryAddr;

 // MemoryLength must be greater than or equal to MemoryRequired

 // returned by the Get Init Info command.

 PXE_UINT32 MemoryLength;

 // Desired link speed in Mbit/sec. Common ethernet values are 
 // 10, 100 and 1000. Setting a value of zero will auto-detect 

CDB Field How to initialize the CDB structure for an Initialize command

OpCode PXE_OPCODE_INITIALIZE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_INITIALIZE)

DBsize sizeof(PXE_DB_INITIALIZE)

CPBaddr Address of a PXE_CPB_INITIALIZE structure.

Dbaddr Address of a PXE_DB_INITIALIZE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
UEFI Forum, Inc. March 2019 2273

UEFI Specification, Version 2.8
 // and/or use the default link speed (operation depends on 
 // UNDI/NIC functionality).

 PXE_UINT32 LinkSpeed;

 // Suggested number and size of receive and transmit buffers to
 // allocate. If MemoryAddr and MemoryLength are nonzero, this
 // allocation comes out of the supplied memory buffer. If 
 // MemoryAddr and MemoryLength are zero, this allocation comes 
 // out of memory on the NIC.

 // If these fields are set to zero, the UNDI will allocate 
 // buffer counts and sizes as it sees fit.

 PXE_UINT16 TxBufCnt;

 PXE_UINT16 TxBufSize;

 PXE_UINT16 RxBufCnt;

 PXE_UINT16 RxBufSize;

 // The following configuration parameters are optional and must 
 // be zero to use the default values.

 // The possible values for these parameters are defined below.

 PXE_UINT8 DuplexMode;

 PXE_UINT8 LoopBackMode;

} PXE_CPB_INITIALIZE;

#pragma pack()

#define PXE_DUPLEX_AUTO_DETECT 0x00

#define PXE_FORCE_FULL_DUPLEX 0x01

#define PXE_FORCE_HALF_DUPLEX 0x02

#define PXE_LOOPBACK_NORMAL 0

#define PXE_LOOPBACK_INTERNAL 1

#define PXE_LOOPBACK_EXTERNAL 2

E.4.7.4 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device is now
initialized. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.
UEFI Forum, Inc. March 2019 2274

UEFI Specification, Version 2.8
E.4.7.5 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.7.6 StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media StatFlag
is set, the UNDI and network device are still initialized.

PXE_STATFLAGS_INITIALIZED_NO_MEDIA

E.4.7.7 Before Using the DB
#pragma pack(1)

typedef struct s_pxe_db_initialize {

 // Actual amount of memory used from the supplied memory 
 // buffer. This may be less that the amount of memory 
 // supplied and may be zero if the UNDI and network device 
 // do not use external memory buffers. Memory used by the 
 // UNDI and network device is allocated from the lowest
 // memory buffer address.

 PXE_UINT32 MemoryUsed;

 // Actual number and size of receive and transmit buffers that 
 // were allocated.

 PXE_UINT16 TxBufCnt;

 PXE_UINT16 TxBufSize;

 PXE_UINT16 RxBufCnt;

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device is now initialized.
DB has been written. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

ALREADY_INITIALIZED The UNDI is already initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage could not be read.

StatFlags Reason
UEFI Forum, Inc. March 2019 2275

UEFI Specification, Version 2.8
 PXE_UINT16 RxBufSize

} PXE_DB_INITIALIZE;

#pragma pack()

E.4.8 Reset

This command resets the network adapter and reinitializes the UNDI with the same parameters provided
in the Initialize command. The transmit and receive queues are emptied and any pending interrupts are
cleared. Depending on the state of the OpFlags, the receive filters and external interrupt enables may
also be reset.

Resetting the network device may take up to four seconds and in some extreme cases (usually poor
cables) up to twenty seconds. Control will not be returned to the caller and the COMMAND_COMPLETE
status flag will not be set until the NIC is ready to transmit.

E.4.8.1 Issuing the Command

To issue a Reset command, create a CDB and fill it in as shows in the table below:

E.4.8.2 OpFlags

Normally the settings of the receive filters and external interrupt enables are unchanged by the Reset
command. These two OpFlags will alter the operation of the Reset command.

PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS

PXE_OPFLAGS_RESET_DISABLE_FILTERS

E.4.8.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

CDB Field How to initialize the CDB structure for a Reset command

OpCode PXE_OPCODE_RESET

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device have been reset.
Check StatFlags.
UEFI Forum, Inc. March 2019 2276

UEFI Specification, Version 2.8
E.4.8.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.8.5 StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media StatFlag
is set, the UNDI and network device are still reset.

PXE_STATFLAGS_RESET_NO_MEDIA

E.4.9 Shutdown

The Shutdown command resets the network adapter and leaves it in a safe state for another driver to
initialize. Any pending transmits or receives are lost. Receive filters and external interrupt enables are
reset (disabled). The memory buffer assigned in the Initialize command can be released or reassigned.

Once UNDI has been shutdown, it can then be stopped or initialized again. The Shutdown command
changes the UNDI operational state from initialized to started.

E.4.9.1 Issuing the Command

To issue a Shutdown command, create a CDB and fill it in as shown in the table below:

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage is not valid.

CDB Field How to initialize the CDB structure for a Shutdown command

OpCode PXE_OPCODE_SHUTDOWN

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED
UEFI Forum, Inc. March 2019 2277

UEFI Specification, Version 2.8
E.4.9.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.9.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.10 Interrupt Enables

The Interrupt Enables command can be used to read and/or change the current external interrupt enable
settings. Disabling an external interrupt enable prevents an external (hardware) interrupt from being
signaled by the network device, internally the interrupt events can still be polled by using the Get Status
command.

E.4.10.1 Issuing the Command

To issue an Interrupt Enables command, create a CDB and fill it in as shows in the table below:

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device are shutdown.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device are shutdown.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for an Interrupt Enables command

OpCode PXE_OPCODE_INTERRUPT_ENABLES

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED
UEFI Forum, Inc. March 2019 2278

UEFI Specification, Version 2.8
E.4.10.2 OpFlags

To read the current external interrupt enables settings set CDB.OpFlags to:

PXE_OPFLAGS_INTERRUPT_READ

To enable or disable external interrupts set one of these OpFlags:

PXE_OPFLAGS_INTERRUPT_DISABLE

PXE_OPFLAGS_INTERRUPT_ENABLE

When enabling or disabling interrupt settings, the following additional OpFlag bits are used to specify
which types of external interrupts are to be enabled or disabled:

PXE_OPFLAGS_INTERRUPT_RECEIVE

PXE_OPFLAGS_INTERRUPT_TRANSMIT

PXE_OPFLAGS_INTERRUPT_COMMAND

PXE_OPFLAGS_INTERRUPT_SOFTWARE

Setting PXE_OPFLAGS_INTERRUPT_SOFTWARE does not enable an external interrupt type, it generates
an external interrupt.

E.4.10.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.10.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason
UEFI Forum, Inc. March 2019 2279

UEFI Specification, Version 2.8
E.4.10.5 StatFlags

If the command was successful, the CDB.StatFlags field reports which external interrupt enable types
are currently set. Possible CDB.StatFlags bit settings are:

• PXE_STATFLAGS_INTERRUPT_RECEIVE

• PXE_STATFLAGS_INTERRUPT_TRANSMIT

• PXE_STATFLAGS_INTERRUPT_COMMAND

The bits set in CDB.StatFlags may be different than those that were requested in CDB.OpFlags. For
example: If transmit and receive share an external interrupt line, setting either the transmit or receive
interrupt will always enable both transmit and receive interrupts. In this case both transmit and receive
interrupts will be reported in CDB.StatFlags. Always expect to get more than you ask for!

E.4.11 Receive Filters

This command is used to read and change receive filters and, if supported, read and change the multicast
MAC address filter list. Control will not be returned to the caller and the COMMAND_COMPLETE status flag
will not be set until the NIC is ready to receive.

E.4.11.1 Issuing the Command

To issue a Receive Filters command, create a CDB and fill it in as shows in the table below:

SUCCESS Command completed successfully. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a Receive Filters command

OpCode PXE_OPCODE_RECEIVE_FILTERS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE_FILTERS)

DBsize sizeof(PXE_DB_RECEIVE_FILTERS)

CPBaddr Address of PXE_CPB_RECEIVE_FILTERS structure.

DBaddr Address of PXE_DB_RECEIVE_FILTERS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
UEFI Forum, Inc. March 2019 2280

UEFI Specification, Version 2.8
E.4.11.2 OpFlags

To read the current receive filter settings set the CDB.OpFlags field to:

• PXE_OPFLAGS_RECEIVE_FILTER_READ

To change the current receive filter settings set one of these OpFlag bits:

• PXE_OPFLAGS_RECEIVE_FILTER_ENABLE

• PXE_OPFLAGS_RECEIVE_FILTER_DISABLE

When changing the receive filter settings, at least one of the OpFlag bits in this list must be selected:

• PXE_OPFLAGS_RECEIVE_FILTER_UNICAST

• PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST

To clear the contents of the multicast MAC address filter list, set this OpFlag:

• PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST

E.4.11.3 Preparing the CPB

The receive filter CPB is used to change the contents multicast MAC address filter list. To leave the
multicast MAC address filter list unchanged, set the CDB.CPBsize field to PXE_CPBSIZE_NOT_USED
and CDB.CPBaddr to PXE_CPBADDR_NOT_USED.

To change the multicast MAC address filter list, set CDB.CPBsize to the size, in bytes, of the multicast
MAC address filter list and set CDB.CPBaddr to the address of the first entry in the multicast MAC
address filter list.

typedef struct s_pxe_cpb_receive_filters {

 // List of multicast MAC addresses. This list, if present,

 // will replace the existing multicast MAC address filter list.

 PXE_MAC_ADDR MCastList[n];

} PXE_CPB_RECEIVE_FILTERS;

E.4.11.4 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.
UEFI Forum, Inc. March 2019 2281

UEFI Specification, Version 2.8
E.4.11.5 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.11.6 StatFlags

The receive filter settings in CDB.StatFlags are:

• PXE_STATFLAGS_RECEIVE_FILTER_UNICAST

• PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST

Unsupported receive filter settings in OpFlags are promoted to the next more liberal receive filter setting.
For example: If broadcast or filtered multicast are requested and are not supported by the network
device, but promiscuous is; the promiscuous status flag will be set.

E.4.11.7 DB

The DB is used to read the current multicast MAC address filter list. The CDB.DBsize and CDB.DBaddr
fields can be set to PXE_DBSIZE_NOT_USED and PXE_DBADDR_NOT_USED if the multicast MAC address
filter list does not need to be read. When reading the multicast MAC address filter list extra entries in the
DB will be filled with zero.

typedef struct s_pxe_db_receive_filters {

 // Filtered multicast MAC address list.

 PXE_MAC_ADDR MCastList[n];

} PXE_DB_RECEIVE_FILTERS;

E.4.12 Station Address

This command is used to get current station and broadcast MAC addresses and, if supported, to change
the current station MAC address.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
UEFI Forum, Inc. March 2019 2282

UEFI Specification, Version 2.8
E.4.12.1 Issuing the Command

To issue a Station Address command, create a CDB and fill it in as shows in the table below:

E.4.12.2 OpFlags

To read current station and broadcast MAC addresses set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_READ

To change the current station to the address given in the CPB set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_WRITE

To reset the current station address back to the power on default, set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_RESET

E.4.12.3 Preparing the CPB

To change the current station MAC address the CDB.CPBsize and CDB.CPBaddr fields must be set.

typedef struct s_pxe_cpb_station_address {

 // If supplied and supported, the current station MAC address

 // will be changed.

 PXE_MAC_ADDR StationAddr;

} PXE_CPB_STATION_ADDRESS;

E.4.12.4 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

CDB Field How to initialize the CDB structure for a Station Address command

OpCode PXE_OPCODE_STATION_ADDRESS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_STATION_ADDRESS)

DBsize sizeof(PXE_DB_STATION_ADDRESS)

CPBaddr Address of PXE_CPB_STATION_ADDRESS structure.

DBaddr Address of PXE_DB_STATION_ADDRESS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason
UEFI Forum, Inc. March 2019 2283

UEFI Specification, Version 2.8
E.4.12.5 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.12.6 Before Using the DB

The DB is used to read the current station, broadcast and permanent station MAC addresses. The
CDB.DBsize and CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and
PXE_DBADDR_NOT_USED if these addresses do not need to be read.

typedef struct s_pxe_db_station_address {

 // Current station MAC address.

 PXE_MAC_ADDR StationAddr;

 // Station broadcast MAC address.

 PXE_MAC_ADDR BroadcastAddr;

 // Permanent station MAC address.

 PXE_MAC_ADDR PermanentAddr;

} PXE_DB_STATION_ADDRESS;

E.4.13 Statistics

This command is used to read and clear the NIC traffic statistics. Before using this command check to see
if statistics is supported in the !PXE.Implementation flags.

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED The requested operation is not supported.
UEFI Forum, Inc. March 2019 2284

UEFI Specification, Version 2.8
E.4.13.1 Issuing the Command

To issue a Statistics command, create a CDB and fill it in as shown in the table below:

E.4.13.2 OpFlags

To read the current statistics counters set the OpFlags field to:

PXE_OPFLAGS_STATISTICS_READ

To reset the current statistics counters set the OpFlags field to:

PXE_OPFLAGS_STATISTICS_RESET

E.4.13.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,the command has not
been executed by the UNDI.

E.4.13.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

CDB Field How to initialize the CDB structure for a Statistics command

OpCode PXE_OPCODE_STATISTICS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_STATISTICS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_STATISTICS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.
UEFI Forum, Inc. March 2019 2285

UEFI Specification, Version 2.8
E.4.13.5 DB

Unsupported statistics counters will be zero filled by UNDI.

typedef struct s_pxe_db_statistics {

 // Bit field identifying what statistic data is collected by

 // the UNDI/NIC.

 // If bit 0x00 is set, Data[0x00] is collected.

 // If bit 0x01 is set, Data[0x01] is collected.

 // If bit 0x20 is set, Data[0x20] is collected.

 // If bit 0x21 is set, Data[0x21] is collected.

 // Etc.

 PXE_UINT64 Supported;

 // Statistic data.

 PXE_UINT64 Data[64];

} PXE_DB_STATISTICS;

// Total number of frames received. Includes frames with errors 
// and dropped frames.

#define PXE_STATISTICS_RX_TOTAL_FRAMES 0x00

// Number of valid frames received and copied into receive 
// buffers.

#define PXE_STATISTICS_RX_GOOD_FRAMES 0x01

// Number of frames below the minimum length for the media. 
// This would be <64 for ethernet.

#define PXE_STATISTICS_RX_UNDERSIZE_FRAMES 0x02

// Number of frames longer than the maximum length for the 
// media. This would be >1500 for ethernet.

#define PXE_STATISTICS_RX_OVERSIZE_FRAMES 0x03

// Valid frames that were dropped because receive buffers 
// were full.

#define PXE_STATISTICS_RX_DROPPED_FRAMES 0x04

// Number of valid unicast frames received and not dropped.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED This command is not supported.

StatCode Reason
UEFI Forum, Inc. March 2019 2286

UEFI Specification, Version 2.8
#define PXE_STATISTICS_RX_UNICAST_FRAMES 0x05

// Number of valid broadcast frames received and not dropped.

#define PXE_STATISTICS_RX_BROADCAST_FRAMES 0x06

// Number of valid mutlicast frames received and not dropped.

#define PXE_STATISTICS_RX_MULTICAST_FRAMES 0x07

// Number of frames w/ CRC or alignment errors.

#define PXE_STATISTICS_RX_CRC_ERROR_FRAMES 0x08

// Total number of bytes received. Includes frames with errors

// and dropped frames.

#define PXE_STATISTICS_RX_TOTAL_BYTES 0x09

// Transmit statistics.

#define PXE_STATISTICS_TX_TOTAL_FRAMES 0x0A

#define PXE_STATISTICS_TX_GOOD_FRAMES 0x0B

#define PXE_STATISTICS_TX_UNDERSIZE_FRAMES 0x0C

#define PXE_STATISTICS_TX_OVERSIZE_FRAMES 0x0D

#define PXE_STATISTICS_TX_DROPPED_FRAMES 0x0E

#define PXE_STATISTICS_TX_UNICAST_FRAMES 0x0F

#define PXE_STATISTICS_TX_BROADCAST_FRAMES 0x10

#define PXE_STATISTICS_TX_MULTICAST_FRAMES 0x11

#define PXE_STATISTICS_TX_CRC_ERROR_FRAMES 0x12

#define PXE_STATISTICS_TX_TOTAL_BYTES 0x13

// Number of collisions detection on this subnet.

#define PXE_STATISTICS_COLLISIONS 0x14

// Number of frames destined for unsupported protocol.

#define PXE_STATISTICS_UNSUPPORTED_PROTOCOL 0x15

// Number of valid frames received that were duplicated.

#define PXE_STATISTICS_RX_DUPLICATED_FRAMES 0x16

// Number of encrypted frames received that failed to decrypt.

#define PXE_STATISTICS_RX_DECRYPT_ERROR_FRAMES 0x17

// Number of frames that failed to transmit after exceeding the

// retry limit.

#define PXE_STATISTICS_TX_ERROR_FRAMES 0x18

// Number of frames transmitted successfully after more than one

// attempt.

#define PXE_STATISTICS_TX_RETRY_FRAMES 0x19
UEFI Forum, Inc. March 2019 2287

UEFI Specification, Version 2.8
E.4.14 MCast IP To MAC

Translate a multicast IPv4 or IPv6 address to a multicast MAC address.

E.4.14.1 Issuing the Command

To issue a MCast IP To MAC command, create a CDB and fill it in as shown in the table below:

E.4.14.2 OpFlags

To convert a multicast IP address to a multicast MAC address the UNDI needs to know the format of the
IP address. Set one of these OpFlags to identify the format of the IP addresses in the CPB:

PXE_OPFLAGS_MCAST_IPV4_TO_MAC

PXE_OPFLAGS_MCAST_IPV6_TO_MAC

E.4.14.3 Preparing the CPB

Fill in an array of one or more multicast IP addresses. Be sure to set the CDB.CPBsize and
CDB.CPBaddr fields accordingly.

typedef struct s_pxe_cpb_mcast_ip_to_mac {

 // Multicast IP address to be converted to multicast

 // MAC address.

 PXE_IP_ADDR IP[n];

} PXE_CPB_MCAST_IP_TO_MAC;

E.4.14.4 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

CDB Field How to initialize the CDB structure for a MCast IP To MAC command

OpCode PXE_OPCODE_MCAST_IP_TO_MAC

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_MCAST_IP_TO_MAC)

DBsize sizeof(PXE_DB_MCAST_IP_TO_MAC)

CPBaddr Address of PXE_CPB_MCAST_IP_TO_MAC structure.

Dbaddr Address of PXE_DB_MCAST_IP_TO_MAC structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.
UEFI Forum, Inc. March 2019 2288

UEFI Specification, Version 2.8
E.4.14.5 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.14.6 Before Using the DB

The DB is where the multicast MAC addresses will be written.

typedef struct s_pxe_db_mcast_ip_to_mac {

 // Multicast MAC address.

 PXE_MAC_ADDR MAC[n];

} PXE_DB_MCAST_IP_TO_MAC;

E.4.15 NvData

This command is used to read and write (if supported by NIC H/W) nonvolatile storage on the NIC.
Nonvolatile storage could be EEPROM, FLASH or battery backed RAM.

E.4.15.1 Issuing the Command

To issue a NvData command, create a CDB and fill it in as shown in the table below:

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a NvData command

OpCode PXE_OPCODE_NVDATA

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_NVDATA)

DBsize sizeof(PXE_DB_NVDATA)

CPBaddr Address of PXE_CPB_NVDATA structure.

Dbaddr Address of PXE_DB_NVDATA structure.

StatCode PXE_STATCODE_INITIALIZE
UEFI Forum, Inc. March 2019 2289

UEFI Specification, Version 2.8
E.4.15.2 Preparing the CPB

There are two types of nonvolatile data CPBs, one for sparse updates and one for bulk updates. Sparse
updates allow updating of single nonvolatile storage items. Bulk updates always update all nonvolatile
storage items. Check the !PXE.Implementation flags to see which type of nonvolatile update is
supported by this UNDI and network device.

If you do not need to update the nonvolatile storage set the CDB.CPBsize and CDB.CPBaddr fields to
PXE_CPBSIZE_NOT_USED and PXE_CPBADDR_NOT_USED.

E.4.15.2.1 Sparse NvData CPB

typedef struct s_pxe_cpb_nvdata_sparse {

 // NvData item list. Only items in this list will be updated.

 struct {

 // Nonvolatile storage address to be changed.

 PXE_UINT32 Addr;

 // Data item to write into above storage address.

 union {

 PXE_UINT8 Byte;

 PXE_UINT16 Word;

 PXE_UINT32 Dword;

 } Data;

 } Item[n];

} PXE_CPB_NVDATA_SPARSE;

E.4.15.2.2 Bulk NvData CPB

// When using bulk update, the size of the CPB structure must be

// the same size as the nonvolatile NIC storage.

typedef union u_pxe_cpb_nvdata_bulk {

 // Array of byte-wide data items.

 PXE_UINT8 Byte[n];

 // Array of word-wide data items.

 PXE_UINT16 Word[n];

 // Array of dword-wide data items.

 PXE_UINT32 Dword[n];

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
UEFI Forum, Inc. March 2019 2290

UEFI Specification, Version 2.8
} PXE_CPB_NVDATA_BULK;

E.4.15.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.15.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.15.4.1 DB

Check the width and number of nonvolatile storage items. This information is returned by the Get Init
Info command.

typedef struct s_pxe_db_nvdata {

 // Arrays of data items from nonvolatile storage.

 union {

 // Array of byte-wide data items.

 PXE_UINT8 Byte[n];

 // Array of word-wide data items.

 PXE_UINT16 Word[n];

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED Requested operation is unsupported.
UEFI Forum, Inc. March 2019 2291

UEFI Specification, Version 2.8
 // Array of dword-wide data items.

 PXE_UINT32 Dword[n];

 } Data;

} PXE_DB_NVDATA;

E.4.16 Get Status

This command returns the current interrupt status and/or the transmitted buffer addresses and the
current media status. If the current interrupt status is returned, pending interrupts will be acknowledged
by this command. Transmitted buffer addresses that are written to the DB are removed from the
transmitted buffer queue.

This command may be used in a polled fashion with external interrupts disabled.

E.4.16.1 Issuing the Command

To issue a Get Status command, create a CDB and fill it in as shown in the table below:

E.4.16.1.1 Setting OpFlags

Set one or a combination of the OpFlags below to return the interrupt status and/or the transmitted
buffer addresses and/or the media status.

PXE_OPFLAGS_GET_INTERRUPT_STATUS

PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS

PXE_OPFLAGS_GET_MEDIA_STATUS

E.4.16.2 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

CDB Field How to initialize the CDB structure for a Get Status command

OpCode PXE_OPCODE_GET_STATUS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize Sizeof(PXE_DB_GET_STATUS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_GET_STATUS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags and/or DB are updated.

COMMAND_FAILED Command failed. StatCode field contains error code.
UEFI Forum, Inc. March 2019 2292

UEFI Specification, Version 2.8
E.4.16.3 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.16.4 StatFlags

If the command completes successfully and the PXE_OPFLAGS_GET_INTERRUPT_STATUS OpFlag was
set in the CDB, the current interrupt status is returned in the CDB.StatFlags field and any pending
interrupts will have been cleared.

PXE_STATFLAGS_GET_STATUS_RECEIVE

PXE_STATFLAGS_GET_STATUS_TRANSMIT

PXE_STATFLAGS_GET_STATUS_COMMAND

PXE_STATFLAGS_GET_STATUS_SOFTWARE

The StatFlags above may not map directly to external interrupt signals. For example: Some NICs may
combine both the receive and transmit interrupts to one external interrupt line. When a receive and/or
transmit interrupt occurs, use the Get Status to determine which type(s) of interrupt(s) occurred.

This flag is set if the transmitted buffer queue is empty. This flag will be set if all transmitted buffer
addresses get written t into the DB.

PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY

This flag is set if no transmitted buffer addresses were written into the DB.

PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN

This flag is set if there is no media present.

PXE_STATFLAGS_GET_STATUS_NO_MEDIA

E.4.16.5 Using the DB

When reading the transmitted buffer addresses there should be room for at least one 64-bit address in
the DB. Once a complete transmitted buffer address is written into the DB, the address is removed from
the transmitted buffer queue. If the transmitted buffer queue is full, attempts to use the Transmit
command will fail.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. StatFlags and/or DB are updated.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
UEFI Forum, Inc. March 2019 2293

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_db_get_status {

 // Length of next receive frame (header + data). If this is 
 // zero, there is no next receive frame available.

 PXE_UINT32 RxFrameLen;

 // Reserved, set to zero.

 PXE_UINT32 reserved;

 // Addresses of transmitted buffers that need to be recycled.

 PXE_UINT64 xBuffer[n];

} PXE_DB_GET_STATUS;

#pragma pack()

E.4.17 Fill Header

This command is used to fill the media header(s) in transmit packet(s).

E.4.17.1 Issuing the Command

To issue a Fill Header command, create a CDB and fill it in as shown in the table below:

E.4.17.2 OpFlags

Select one of the OpFlags below so the UNDI knows what type of CPB is being used.

PXE_OPFLAGS_FILL_HEADER_WHOLE

PXE_OPFLAGS_FILL_HEADER_FRAGMENTED

CDB Field How to initialize the CDB structure for a Fill Header command

OpCode PXE_OPCODE_FILL_HEADER

OpFlags Set as needed.

CPBsize PXE_CPB_FILL_HEADER

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_FILL_HEADER structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
UEFI Forum, Inc. March 2019 2294

UEFI Specification, Version 2.8
E.4.17.3 Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple CPBs can
be packed together. The CDB.CPBsize field lets the UNDI know how many CPBs are packed together.

E.4.17.4 Nonfragmented Frame
#pragma pack(1)

typedef struct s_pxe_cpb_fill_header {

 // Source and destination MAC addresses. These will be copied 
 // into the media header without doing byte swapping.

 PXE_MAC_ADDR SrcAddr;

 PXE_MAC_ADDR DestAddr;

 // Address of first byte of media header. The first byte of 
 // packet data follows the last byte of the media header.

 PXE_UINT64 MediaHeader;

 // Length of packet data in bytes (not including the media 
 // header).

 PXE_UINT32 PacketLen;

 // Protocol type. This will be copied into the media header 
 // without doing byte swapping. Protocol type numbers can be 
 // obtained from the Assigned Numbers RFC 3232.

 PXE_UINT16 Protocol;

 // Length of the media header in bytes.

 PXE_UINT16 MediaHeaderLen;

} PXE_CPB_FILL_HEADER;

#pragma pack()

#define PXE_PROTOCOL_ETHERNET_IP 0x0800

#define PXE_PROTOCOL_ETHERNET_ARP 0x0806

E.4.17.5 Fragmented Frame
#pragma pack(1)

typedef struct s_pxe_cpb_fill_header_fragmented {

 // Source and destination MAC addresses. These will be copied 
 // into the media header without doing byte swapping.

 PXE_MAC_ADDR SrcAddr;

 PXE_MAC_ADDR DestAddr;

 // Length of packet data in bytes (not including the media 
 // header).

 PXE_UINT32 PacketLen;
UEFI Forum, Inc. March 2019 2295

UEFI Specification, Version 2.8
 // Protocol type. This will be copied into the media header 
 // without doing byte swapping. Protocol type numbers can be 
 // obtained from the Assigned Numbers RFC 3232.

 PXE_MEDIA_PROTOCOL Protocol;

 // Length of the media header in bytes.

 PXE_UINT16 MediaHeaderLen;

 // Number of packet fragment descriptors.

 PXE_UINT16 FragCnt;

 // Reserved, must be set to zero.

 PXE_UINT16 reserved;

 // Array of packet fragment descriptors. The first byte of the 
 // media header is the first byte of the first fragment.

 struct {

 // Address of this packet fragment.

 PXE_UINT64 FragAddr;

 // Length of this packet fragment.

 PXE_UINT32 FragLen;

 // Reserved, must be set to zero.

 PXE_UINT32 reserved;

 } FragDesc[n];

} PXE_CPB_FILL_HEADER_FRAGMENTED;

#pragma pack()

E.4.17.6 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frame is ready to transmit.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.
UEFI Forum, Inc. March 2019 2296

UEFI Specification, Version 2.8
E.4.17.7 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.18 Transmit

The Transmit command is used to place a packet into the transmit queue. The data buffers given to this
command are to be considered locked and the application or universal network driver loses the
ownership of those buffers and must not free or relocate them until the ownership returns.

When the packets are transmitted, a transmit complete interrupt is generated (if interrupts are disabled,
the transmit interrupt status is still set and can be checked using the Get Status command).

Some UNDI implementations and network adapters support transmitting multiple packets with one
transmit command. If this feature is supported, multiple transmit CPBs can be linked in one transmit
command.

Though all UNDIs support fragmented frames, the same cannot be said for all network devices or
protocols. If a fragmented frame CPB is given to UNDI and the network device does not support
fragmented frames (see !PXE.Implementation flags), the UNDI will have to copy the fragments into a
local buffer before transmitting.

E.4.18.1 Issuing the Command

To issue a Transmit command, create a CDB and fill it in as shown in the table below:

StatCode Reason

SUCCESS Command completed successfully. Frame is ready to transmit.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a Transmit command

OpCode PXE_OPCODE_TRANSMIT

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_TRANSMIT)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_TRANSMIT structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).
UEFI Forum, Inc. March 2019 2297

UEFI Specification, Version 2.8
E.4.18.2 OpFlags

Check the !PXE.Implementation flags to see if the network device support fragmented packets.
Select one of the OpFlags below so the UNDI knows what type of CPB is being used.

PXE_OPFLAGS_TRANSMIT_WHOLE

PXE_OPFLAGS_TRANSMIT_FRAGMENTED

In addition to selecting whether or not fragmented packets are being given, S/W UNDI needs to know if it
should block until the packets are transmitted. H/W UNDI cannot block, these two OpFlag settings have
no affect when used with H/W UNDI.

PXE_OPFLAGS_TRANSMIT_BLOCK

PXE_OPFLAGS_TRANSMIT_DONT_BLOCK

E.4.18.3 Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple CPBs can
be packed together. The CDB.CPBsize field lets the UNDI know how may frames are to be transmitted.

E.4.18.4 Nonfragmented Frame
#pragma pack(1)

typedef struct s_pxe_cpb_transmit {

 // Address of first byte of frame buffer. This is also the

 // first byte of the media header. This address must be a

 // processor-based address for S/W UNDI and a device-based

 // address for H/W UNDI.

 PXE_UINT64 FrameAddr;

 // Length of the data portion of the frame buffer in bytes. Do 
 // not include the length of the media header.

 PXE_UINT32 DataLen;

 // Length of the media header in bytes.

 PXE_UINT16 MediaheaderLen;

 // Reserved, must be zero.

 PXE_UINT16 reserved;

} PXE_CPB_TRANSMIT;

#pragma pack()

E.4.18.5 Fragmented Frame
#pragma pack(1)

typedef struct s_pxe_cpb_transmit_fragments {

Control Set as needed.
UEFI Forum, Inc. March 2019 2298

UEFI Specification, Version 2.8
 // Length of packet data in bytes (not including the media 
 // header).

 PXE_UINT32 FrameLen;

 // Length of the media header in bytes.

 PXE_UINT16 MediaheaderLen;

 // Number of packet fragment descriptors.

 PXE_UINT16 FragCnt;

 // Array of frame fragment descriptors. The first byte of the 
 // first fragment is also the first byte of the media header.

 struct {

// Address of this frame fragment. This address must be a 
// processor-based address for S/W UNDI and a device-based 
// address for H/W UNDI.

 PXE_UINT64 FragAddr;

 // Length of this frame fragment.

 PXE_UINT32 FragLen;

 // Reserved, must be set to zero.

 PXE_UINT32 reserved;

 } FragDesc[n];

} PXE_CPB_TRANSMIT_FRAGMENTS;

#pragma pack()

E.4.18.6 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.18.7 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Use the Get Status command to see when
frame buffers can be reused.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Use the Get Status command to see
when frame buffers can be reused.
UEFI Forum, Inc. March 2019 2299

UEFI Specification, Version 2.8
E.4.19 Receive

When the network adapter has received a frame, this command is used to copy the frame into driver/
application storage. Once a frame has been copied, it is removed from the receive queue.

E.4.19.1 Issuing the Command

To issue a Receive command, create a CDB and fill it in as shown in the table below:

E.4.19.2 Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple CPBs can
be packed together. For each complete received frame, a receive buffer large enough to contain the
entire unfragmented frame needs to be described in the CPB. Note that if a smaller than required buffer
is provided, only a portion of the packet is received into the buffer, and the remainder of the packet is
lost. Subsequent attempts to receive the same packet with a corrected (larger) buffer will be
unsuccessful, because the packet will have been flushed from the queue.

#pragma pack(1)
typedef struct s_pxe_cpb_receive {

 // Address of first byte of receive buffer. This is also the 
 // first byte of the frame header. This address must be a 

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

BUFFER_FULL Transmit buffer is full. Call Get Status command to empty buffer.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a Receive command

OpCode PXE_OPCODE_RECEIVE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE)

DBsize sizeof(PXE_DB_RECEIVE)

CPBaddr Address of a PXE_CPB_RECEIVE structure.

DBaddr Address of a PXE_DB_RECEIVE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
UEFI Forum, Inc. March 2019 2300

UEFI Specification, Version 2.8
 // processor-based address for S/W UNDI and a device-based 
 // address for H/W UNDI.

 PXE_UINT64 BufferAddr;

 // Length of receive buffer. This must be large enough to hold 
 // the received frame (media header + data). If the length of 
 // smaller than the received frame, data will be lost.

 PXE_UINT32 BufferLen;

 // Reserved, must be set to zero.

 PXE_UINT32 reserved;

} PXE_CPB_RECEIVE;

#pragma pack()

E.4.19.3 Waiting for the Command to Execute

Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to report
PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED, the command has not
been executed by the UNDI.

E.4.19.4 Checking Command Execution Results

After command execution completes, either successfully or not, the CDB.StatCode field contains the
result of the command execution.

E.4.19.5 Using the DB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple DBs can be
packed together.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frames received and DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Frames received and DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

NO_DATA Receive buffers are empty.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
UEFI Forum, Inc. March 2019 2301

UEFI Specification, Version 2.8
#pragma pack(1)

typedef struct s_pxe_db_receive {

 // Source and destination MAC addresses from media header.

 PXE_MAC_ADDR SrcAddr;

 PXE_MAC_ADDR DestAddr;

 // Length of received frame. May be larger than receive buffer 
 // size. The receive buffer will not be overwritten. This is 
 // how to tell if data was lost because the receive buffer was 
 // too small.

 PXE_UINT32 FrameLen;

 // Protocol type from media header.

 PXE_PROTOCOL Protocol;

 // Length of media header in received frame.

 PXE_UINT16 MediaHeaderLen;

 // Type of receive frame.

 PXE_FRAME_TYPE Type;

 // Reserved, must be zero.

 PXE_UINT8 reserved[7];

} PXE_DB_RECEIVE;

#pragma pack()

E.4.20 PXE 2.1 specification wire protocol clarifications

The Preboot Execution Environment (PXE) Version 2.1 specification was published in September 1999.
Since then, this specification has not been maintained or updated for a new version. For adapting the
IPv6 stack, the definition of an IPv6-based PXE process has been described in UEFI specification since
version 2.2. Other clarifications for the IPv4-based PXE process defined in the PXE 2.1 specification are
provided in this section.

E.4.20.1 Issue #1-time-outs

Where the PXE 2.1 specification reads:

DHCP Discover will be retried four times. The four timeouts are 4, 8, 16 and 32 seconds respectively.

If a DHCPOFFER is received without an Option #60 tag "PXEClient", DHCP Discover will be retried on the
4-and 8-second timeouts in an attempt to receive a PXE response.

Because of spanning tree algorithms in routers, the behavior should be as follows:

DHCP Discover will be retried four times. The four timeouts are 4, 8, 16 and 32 seconds respectively.
UEFI Forum, Inc. March 2019 2302

UEFI Specification, Version 2.8
This process could be iterated three times.

If a DHCPOFFER is received without an Option #60 tag "PXEClient", DHCP Discover will be retried on the
4-and 8-second timeouts in an attempt to receive a PXE response.

E.4.20.2 Issue #2 - siaddr/option 54 precedence

Where the PXE 2.1 specification reads:

Boot server IP address (Read from the DHCP option 54 (server identifier), if not found, use
the siaddr field.)

The behavior should be reversed, namely:

Ascertain the Boot server IP address from siaddr field. If not found, use the value in the DHCP option 54
(server identifier).

E.4.20.3 Issue #3 - PXE Vendor Options Existence

The PXE 2.1 specification is ambiguous about whether the following PXE Vendor Options need to be
provided in DHCP messages. These options are marked as “Required” in Table 2-1 “PXE DHCP Options
(Full List)”, but other parts of the specification state that these options may not be supplied in certain
condition.

This section clarifies the existence of these PXE Vendor Options:

1. PXE_DISCOVERY_CONTROL (Tag 6)

Where the PXE 2.1 specification reads:

-Required, Note #3

-If this tag is not supplied all bits assumed to be 0.

The behavior should be clarified as:

-This tag is not mandatory required. If not supplied, all bits are assumed to be 0.

2. PXE_BOOT_SERVERS (Tag 8)

Where the PXE 2.1 specification reads:

-Required for PXE client. Note #3

-PXE_DISCOVERY_CONTROL (Tag 6), bit 2 = If set, only use/accept servers in
PXE_BOOT_SERVERS.

The behavior should be clarified as:

-This tag is required only if bit 2 of PXE_DISCOVERY_CONTROL (Tag 6) is set.

3. PXE_BOOT_MENU (Tag 9)

Where the PXE 2.1 specification reads:

-Required, Note #4

-Note #4: These options define the information, if any, displayed by the client during a
network boot.

The behavior should be clarified as:

-This tag is required only if the PXE client wants to display boot menu information during a
network boot.
UEFI Forum, Inc. March 2019 2303

UEFI Specification, Version 2.8
4. PXE_CREDENTIAL_TYPES (Tag 12)

Where the PXE 2.1 specification reads:

-Required for security. Note #5

-This option is required for security requests and acknowledges between the client and the
server.

The behavior should be clarified as:

-This tag is not required if PXE client does not apply security requests.

5. PXE_BOOT_ITEM (Tag 71)

Where the PXE 2.1 specification reads:

-Required. Note #6

-If this tag is missing, type 0 and layer 0 is assumed.

The behavior should be clarified as:

-This tag is not mandatory required. If not supplied, type 0 and layer 0 is assumed.

6. Vendor Options (Tag 43)

The PXE 2.1 specification is not clear whether this option is required.

The behavior should be clarified as:

-Vendor Options (Tag 43) is required only if encapsulated PXE options need be supplied.
UEFI Forum, Inc. March 2019 2304

UEFI Specification, Version 2.8

UEFI Forum, Inc. March 2019 2305

Appendix F - Using the Simple Pointer Protocol

The Simple Pointer Protocol is intended to provide a simple mechanism for an application to interact with
the user with some type of pointer device. To keep this interface simple, many of the custom controls
that are typically present in an OS-present environment were left out. This includes the ability to adjust
the double-click speed and the ability to adjust the pointer speed. Instead, the recommendations for how
the Simple Pointer Protocol should be used are listed here.

X-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display, the
movement along the x-axis should move the pointer or cursor horizontally.

Y-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display, the
movement along the y-axis should move the pointer or cursor vertically.

Z-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display, and
the application that is using the Simple Pointer Protocol supports scrolling, then the movement along the
z-axis should scroll the output display.

Double Click Speed:

If two clicks of the same button on a pointer occur in less than 0.5 seconds, then a double-click event has
occurred. If a the same button is pressed with more than 0.5 seconds between clicks, then this is
interpreted as two single-click events.

Pointer Speed:

The Simple Pointer Protocol returns the movement of the pointer device along an axis in counts. The
Simple Pointer Protocol also contains a set of resolution fields that define the number of counts that will
be received for each millimeter of movement of the pointer device along an axis. From these two values,
the consumer of this protocol can determine the distance the pointer device has been moved in
millimeters along an axis. For most applications, movement of a pointer device will result in the
movement of a pointer on the screen. For each millimeter of motion by the pointer device in the x-axis,
the pointer on the screen will be moved 2 percent of the screen width. For each millimeter of motion by
the pointer device in the y-axis, the pointer on the screen will be moved 2 percent of the screen height.

UEFI Specification, Version 2.8
Appendix G - Using the EFI Extended SCSI Pass Thru Protocol

This appendix describes how an EFI utility might gain access to the EFI SCSI Pass Thru interfaces. The basic
concept is to use the EFI_BOOT_SERVICES.LocateHandle() boot service to retrieve the list of
handles that support the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. Each of these handles represents a
different SCSI channel present in the system. Each of these handles can then be used the retrieve the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface with the
EFI_BOOT_SERVICES.HandleProtocol() boot service. The
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface provides the services required to access any of the
SCSI devices attached to a SCSI channel. The services of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL are
then to loop through the Target IDs of all the SCSI devices on the SCSI channel.

#include “efi.h”
#include “efilib.h”

#include EFI_PROTOCOL_DEFINITION(ExtScsiPassThru)

EFI_GUID gEfiExtScsiPassThruProtocolGuid = EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID;

EFI_STATUS
UtilityEntryPoint(
 EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE SystemTable
)
{
 EFI_STATUS Status;
 UINTN NoHandles;
 EFI_HANDLE *HandleBuffer;
 UINTN Index;
 EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThruProtocol;

 //
 // Initialize EFI Library
 //
 InitializeLib (ImageHandle, SystemTable);

 //
 // Get list of handles that support the
 // EFI_EXT_SCSI_PASS_THRU_PROTOCOL
 //
 NoHandles = 0;
 HandleBuffer = NULL;
 Status = LibLocateHandle(
 ByProtocol,
 &gEfiExtScsiPassThruProtocolGuid,
 NULL,
 &NoHandles,
 &HandleBuffer
);

 if (EFI_ERROR(Status)) {
UEFI Forum, Inc. March 2019 2306

UEFI Specification, Version 2.8
 BS->Exit(ImageHandle,EFI_SUCCESS,0,NULL);
 }

 //
 // Loop through all the handles that support
 // EFI_EXT_SCSI_PASS_THRU
 //
 for (Index = 0; Index < NoHandles; Index++) {

 //
 // Get the EFI_EXT_SCSI_PASS_THRU_PROTOCOL Interface
 // on each handle
 //
 BS->HandleProtocol(
 HandleBuffer[Index],
 &gEfiExtScsiPassThruProtocolGuid,
 (VOID **)&ExtScsiPassThruProtocol
);

 if (!EFI_ERROR(Status)) {

 //
 // Use the EFI_EXT_SCSI_PASS_THRU Interface to
 // perform tests
 //
 Status = DoScsiTests(ScsiPassThruProtocol);
 }
 }
 return EFI_SUCCESS;
}

EFI_STATUS
DoScsiTests(
 EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThruProtocol
)

{
 EFI_STATUS Status;
 UINT32 Target;
 UINT64 Lun;
 EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET Packet;
 EFI_EVENT Event;

 //
 // Get first Target ID and LUN on the SCSI channel
 //
 Target = 0xffffffff;
 Lun = 0;
 Status = ExtScsiPassThruProtocol-> GetNextTargetLun(
 ExtScsiPassThruProtocol,
 &Target,
 &Lun
);

 //
UEFI Forum, Inc. March 2019 2307

UEFI Specification, Version 2.8
 // Loop through all the SCSI devices on the SCSI channel
 //
 while (!EFI_ERROR (Status)) {

 //
 // Blocking I/O example.
 // Fill in Packet before calling PassThru()
 //
 Status = ExtScsiPassThruProtocol->PassThru(
 ExtScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 NULL
);

 //
 // Non Blocking I/O
 // Fill in Packet and create Event before calling PassThru()
 //
 Status = ExtScsiPassThruProtocol->PassThru(
 ExtScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 &Event
);

 //
 // Get next Target ID and LUN on the SCSI channel
 //
 Status = ExtScsiPassThruProtocol-> GetNextTargetLun(
 ExtScsiPassThruProtocol,
 &Target,
 &Lun
);
 }

 return EFI_SUCCESS;
}

UEFI Forum, Inc. March 2019 2308

UEFI Specification, Version 2.8
Appendix H - Compression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Compress.c

Abstract:

 Compression routine. The compression algorithm is a mixture of
 LZ77 and Huffman Coding. LZ77 transforms the source data into a
 sequence of Original Characters and Pointers to repeated strings.
 This sequence is further divided into Blocks and Huffman codings
 are applied to each Block.

Revision History:
--*/

#include <string.h>
#include <stdlib.h>
#include "eficommon.h"

//
// Macro Definitions
//

typedef INT16 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define PERC_FLAG 0x8000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >> UINT8_BIT)

//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//

#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 4
UEFI Forum, Inc. March 2019 2309

UEFI Specification, Version 2.8
#define NT (CODE_BIT + 3)
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

//
// Function Prototypes
//

STATIC
VOID
PutDword(
 IN UINT32 Data
);

STATIC
EFI_STATUS
AllocateMemory (
);

STATIC
VOID
FreeMemory (
);

STATIC
VOID
InitSlide (
);

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
);

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
);

STATIC
VOID
Split (
 IN NODE Old
);

STATIC
UEFI Forum, Inc. March 2019 2310

UEFI Specification, Version 2.8
VOID
InsertNode (
);

STATIC
VOID
DeleteNode (
);

STATIC
VOID
GetNextMatch (
);

STATIC
EFI_STATUS
Encode (
);

STATIC
VOID
CountTFreq (
);

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
);

STATIC
VOID
WriteCLen (
);

STATIC
VOID
EncodeC (
 IN INT32 c
);

STATIC
VOID
EncodeP (
 IN UINT32 p
);

STATIC
VOID
SendBlock (
);

STATIC
UEFI Forum, Inc. March 2019 2311

UEFI Specification, Version 2.8
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
);

STATIC
VOID
HufEncodeStart (
);

STATIC
VOID
HufEncodeEnd (
);

STATIC
VOID
MakeCrcTable (
);

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
);

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
);

STATIC
VOID
InitPutBits (
);

STATIC
VOID
CountLen (
 IN INT32 i
);

STATIC
VOID
MakeLen (
 IN INT32 Root
);

STATIC
VOID
DownHeap (
UEFI Forum, Inc. March 2019 2312

UEFI Specification, Version 2.8
 IN INT32 i
);

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
);

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
);

//
// Global Variables
//

STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;

STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT], *mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;

STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC - 1],
 mCrcTable[UINT8_MAX + 1], mCFreq[2 * NC - 1], mCTable[4096], mCCode[NC],
 mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];

STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext = NULL;

//
// functions
//

EFI_STATUS
Compress (
 IN UINT8 *SrcBuffer,
 IN UINT32 SrcSize,
 IN UINT8 *DstBuffer,
 IN OUT UINT32 *DstSize
)
/*++

Routine Description:
UEFI Forum, Inc. March 2019 2313

UEFI Specification, Version 2.8
 The main compression routine.

Arguments:

 SrcBuffer - The buffer storing the source data
 SrcSize - The size of the source data
 DstBuffer - The buffer to store the compressed data
 DstSize - On input, the size of DstBuffer; On output,
 the size of the actual compressed data.

Returns:

 EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
 DstSize contains the size needed.
 EFI_SUCCESS - Compression is successful.

--*/
{
 EFI_STATUS Status = EFI_SUCCESS;

 //
 // Initializations
 //

 mBufSiz = 0;
 mBuf = NULL;
 mText = NULL;
 mLevel = NULL;
 mChildCount = NULL;
 mPosition = NULL;
 mParent = NULL;
 mPrev = NULL;
 mNext = NULL;

 mSrc = SrcBuffer;
 mSrcUpperLimit = mSrc + SrcSize;
 mDst = DstBuffer;
 mDstUpperLimit = mDst + *DstSize;

 PutDword(0L);
 PutDword(0L);

 MakeCrcTable ();

 mOrigSize = mCompSize = 0;
 mCrc = INIT_CRC;

 //
 // Compress it
 //

 Status = Encode();
 if (EFI_ERROR (Status)) {
 return EFI_OUT_OF_RESOURCES;
UEFI Forum, Inc. March 2019 2314

UEFI Specification, Version 2.8
 }

 //
 // Null terminate the compressed data
 //
 if (mDst < mDstUpperLimit) {
 *mDst++ = 0;
 }

 //
 // Fill in compressed size and original size
 //
 mDst = DstBuffer;
 PutDword(mCompSize+1);
 PutDword(mOrigSize);

 //
 // Return
 //

 if (mCompSize + 1 + 8 > *DstSize) {
 *DstSize = mCompSize + 1 + 8;
 return EFI_BUFFER_TOO_SMALL;
 } else {
 *DstSize = mCompSize + 1 + 8;
 return EFI_SUCCESS;
 }

}

STATIC
VOID
PutDword(
 IN UINT32 Data
)
/*++

Routine Description:

 Put a dword to output stream

Arguments:

 Data - the dword to put

Returns: (VOID)

--*/
{
 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
UEFI Forum, Inc. March 2019 2315

UEFI Specification, Version 2.8
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
 }
}

STATIC
EFI_STATUS
AllocateMemory ()
/*++

Routine Description:

 Allocate memory spaces for data structures used in compression process

Arguments: (VOID)

Returns:

 EFI_SUCCESS - Memory is allocated successfully
 EFI_OUT_OF_RESOURCES - Allocation fails

--*/
{
 UINT32 i;
 
 mText = malloc (WNDSIZ * 2 + MAXMATCH);
 for (i = 0; i < WNDSIZ * 2 + MAXMATCH; i ++) {
 mText[i] = 0;
 }
 mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mLevel));
 mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mChildCount));
 mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mPosition));
 mParent = malloc (WNDSIZ * 2 * sizeof(*mParent));
 mPrev = malloc (WNDSIZ * 2 * sizeof(*mPrev));
 mNext = malloc ((MAX_HASH_VAL + 1) * sizeof(*mNext));

 mBufSiz = 16 * 1024U;
 while ((mBuf = malloc(mBufSiz)) == NULL) {
 mBufSiz = (mBufSiz / 10U) * 9U;
 if (mBufSiz < 4 * 1024U) {
 return EFI_OUT_OF_RESOURCES;
 }
 }
 mBuf[0] = 0;

 return EFI_SUCCESS;
}

VOID
UEFI Forum, Inc. March 2019 2316

UEFI Specification, Version 2.8
FreeMemory ()
/*++

Routine Description:

 Called when compression is completed to free memory previously allocated.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 if (mText) {
 free (mText);
 }

 if (mLevel) {
 free (mLevel);
 }

 if (mChildCount) {
 free (mChildCount);
 }

 if (mPosition) {
 free (mPosition);
 }

 if (mParent) {
 free (mParent);
 }

 if (mPrev) {
 free (mPrev);
 }

 if (mNext) {
 free (mNext);
 }

 if (mBuf) {
 free (mBuf);
 }

 return;
}

STATIC
VOID
InitSlide ()
/*++

Routine Description:
UEFI Forum, Inc. March 2019 2317

UEFI Specification, Version 2.8
 Initialize String Info Log data structures

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE i;

 for (i = WNDSIZ; i <= WNDSIZ + UINT8_MAX; i++) {
 mLevel[i] = 1;
 mPosition[i] = NIL; /* sentinel */
 }
 for (i = WNDSIZ; i < WNDSIZ * 2; i++) {
 mParent[i] = NIL;
 }
 mAvail = 1;
 for (i = 1; i < WNDSIZ - 1; i++) {
 mNext[i] = (NODE)(i + 1);
 }

 mNext[WNDSIZ - 1] = NIL;
 for (i = WNDSIZ * 2; i <= MAX_HASH_VAL; i++) {
 mNext[i] = NIL;
 }
}

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
)
/*++

Routine Description:

 Find child node given the parent node and the edge character

Arguments:

 q - the parent node
 c - the edge character

Returns:

 The child node (NIL if not found)

--*/
{
 NODE r;

UEFI Forum, Inc. March 2019 2318

UEFI Specification, Version 2.8
 r = mNext[HASH(q, c)];
 mParent[NIL] = q; /* sentinel */
 while (mParent[r] != q) {
 r = mNext[r];
 }

 return r;
}

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
)
/*++

Routine Description:

 Create a new child for a given parent node.

Arguments:

 q - the parent node
 c - the edge character
 r - the child node

Returns: (VOID)

--*/
{
 NODE h, t;

 h = (NODE)HASH(q, c);
 t = mNext[h];
 mNext[h] = r;
 mNext[r] = t;
 mPrev[t] = r;
 mPrev[r] = h;
 mParent[r] = q;
 mChildCount[q]++;
}

STATIC
VOID
Split (
 NODE Old
)
/*++

Routine Description:

 Split a node.

UEFI Forum, Inc. March 2019 2319

UEFI Specification, Version 2.8
Arguments:

 Old - the node to split

Returns: (VOID)

--*/
{
 NODE New, t;

 New = mAvail;
 mAvail = mNext[New];
 mChildCount[New] = 0;
 t = mPrev[Old];
 mPrev[New] = t;
 mNext[t] = New;
 t = mNext[Old];
 mNext[New] = t;
 mPrev[t] = New;
 mParent[New] = mParent[Old];
 mLevel[New] = (UINT8)mMatchLen;
 mPosition[New] = mPos;
 MakeChild(New, mText[mMatchPos + mMatchLen], Old);
 MakeChild(New, mText[mPos + mMatchLen], mPos);
}

STATIC
VOID
InsertNode ()
/*++

Routine Description:

 Insert string info for current position into the String Info Log

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, j, t;
 UINT8 c, *t1, *t2;

 if (mMatchLen >= 4) {

 //
 // We have just got a long match, the target tree
 // can be located by MatchPos + 1. Traverse the tree
 // from bottom up to get to a proper starting point.
 // The usage of PERC_FLAG ensures proper node deletion
 // in DeleteNode() later.
 //

 mMatchLen--;
UEFI Forum, Inc. March 2019 2320

UEFI Specification, Version 2.8
 r = (INT16)((mMatchPos + 1) | WNDSIZ);
 while ((q = mParent[r]) == NIL) {
 r = mNext[r];
 }
 while (mLevel[q] >= mMatchLen) {
 r = q; q = mParent[q];
 }
 t = q;
 while (mPosition[t] < 0) {
 mPosition[t] = mPos;
 t = mParent[t];
 }
 if (t < WNDSIZ) {
 mPosition[t] = (NODE)(mPos | PERC_FLAG);
 }
 } else {

 //
 // Locate the target tree
 //

 q = (INT16)(mText[mPos] + WNDSIZ);
 c = mText[mPos + 1];
 if ((r = Child(q, c)) == NIL) {
 MakeChild(q, c, mPos);
 mMatchLen = 1;
 return;
 }
 mMatchLen = 2;
 }

 //
 // Traverse down the tree to find a match.
 // Update Position value along the route.
 // Node split or creation is involved.
 //

 for (; ;) {
 if (r >= WNDSIZ) {
 j = MAXMATCH;
 mMatchPos = r;
 } else {
 j = mLevel[r];
 mMatchPos = (NODE)(mPosition[r] & ~PERC_FLAG);
 }
 if (mMatchPos >= mPos) {
 mMatchPos -= WNDSIZ;
 }
 t1 = &mText[mPos + mMatchLen];
 t2 = &mText[mMatchPos + mMatchLen];
 while (mMatchLen < j) {
 if (*t1 != *t2) {
 Split(r);
 return;
 }
UEFI Forum, Inc. March 2019 2321

UEFI Specification, Version 2.8
 mMatchLen++;
 t1++;
 t2++;
 }
 if (mMatchLen >= MAXMATCH) {
 break;
 }
 mPosition[r] = mPos;
 q = r;
 if ((r = Child(q, *t1)) == NIL) {
 MakeChild(q, *t1, mPos);
 return;
 }
 mMatchLen++;
 }
 t = mPrev[r];
 mPrev[mPos] = t;
 mNext[t] = mPos;
 t = mNext[r];
 mNext[mPos] = t;
 mPrev[t] = mPos;
 mParent[mPos] = q;
 mParent[r] = NIL;

 //
 // Special usage of 'next'
 //
 mNext[r] = mPos;

}

STATIC
VOID
DeleteNode ()
/*++

Routine Description:

 Delete outdated string info. (The Usage of PERC_FLAG
 ensures a clean deletion)

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, s, t, u;

 if (mParent[mPos] == NIL) {
 return;
 }

 r = mPrev[mPos];
 s = mNext[mPos];
UEFI Forum, Inc. March 2019 2322

UEFI Specification, Version 2.8
 mNext[r] = s;
 mPrev[s] = r;
 r = mParent[mPos];
 mParent[mPos] = NIL;
 if (r >= WNDSIZ || --mChildCount[r] > 1) {
 return;
 }
 t = (NODE)(mPosition[r] & ~PERC_FLAG);
 if (t >= mPos) {
 t -= WNDSIZ;
 }
 s = t;
 q = mParent[r];
 while ((u = mPosition[q]) & PERC_FLAG) {
 u &= ~PERC_FLAG;
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ);
 q = mParent[q];
 }
 if (q < WNDSIZ) {
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ | PERC_FLAG);
 }
 s = Child(r, mText[t + mLevel[r]]);
 t = mPrev[s];
 u = mNext[s];
 mNext[t] = u;
 mPrev[u] = t;
 t = mPrev[r];
 mNext[t] = s;
 mPrev[s] = t;
 t = mNext[r];
 mPrev[t] = s;
 mNext[s] = t;
 mParent[s] = mParent[r];
 mParent[r] = NIL;
 mNext[r] = mAvail;
 mAvail = r;
}

STATIC
VOID
GetNextMatch ()
/*++
UEFI Forum, Inc. March 2019 2323

UEFI Specification, Version 2.8
Routine Description:

 Advance the current position (read in new data if needed).
 Delete outdated string info. Find a match string for current position.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 n;

 mRemainder--;
 if (++mPos == WNDSIZ * 2) {
 memmove(&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
 n = FreadCrc(&mText[WNDSIZ + MAXMATCH], WNDSIZ);
 mRemainder += n;
 mPos = WNDSIZ;
 }
 DeleteNode();
 InsertNode();
}

STATIC
EFI_STATUS
Encode ()
/*++

Routine Description:

 The main controlling routine for compression process.

Arguments: (VOID)

Returns:

 EFI_SUCCESS - The compression is successful
 EFI_OUT_0F_RESOURCES - Not enough memory for compression process

--*/
{
 EFI_STATUS Status;
 INT32 LastMatchLen;
 NODE LastMatchPos;

 Status = AllocateMemory();
 if (EFI_ERROR(Status)) {
 FreeMemory();
 return Status;
 }

 InitSlide();

 HufEncodeStart();
UEFI Forum, Inc. March 2019 2324

UEFI Specification, Version 2.8
 mRemainder = FreadCrc(&mText[WNDSIZ], WNDSIZ + MAXMATCH);

 mMatchLen = 0;
 mPos = WNDSIZ;
 InsertNode();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 while (mRemainder > 0) {
 LastMatchLen = mMatchLen;
 LastMatchPos = mMatchPos;
 GetNextMatch();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }

 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {

 //
 // Not enough benefits are gained by outputting a pointer,
 // so just output the original character
 //

 Output(mText[mPos - 1], 0);
 } else {

 //
 // Outputting a pointer is beneficial enough, do it.
 //

 Output(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));
 while (--LastMatchLen > 0) {
 GetNextMatch();
 }
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 }
 }

 HufEncodeEnd();
 FreeMemory();
 return EFI_SUCCESS;
}

STATIC
VOID
CountTFreq ()
/*++

Routine Description:

 Count the frequencies for the Extra Set
UEFI Forum, Inc. March 2019 2325

UEFI Specification, Version 2.8

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 for (i = 0; i < NT; i++) {
 mTFreq[i] = 0;
 }
 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 mTFreq[0] = (UINT16)(mTFreq[0] + Count);
 } else if (Count <= 18) {
 mTFreq[1]++;
 } else if (Count == 19) {
 mTFreq[0]++;
 mTFreq[1]++;
 } else {
 mTFreq[2]++;
 }
 } else {
 mTFreq[k + 2]++;
 }
 }
}

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
)
/*++

Routine Description:

 Outputs the code length array for the Extra Set or the Position Set.

Arguments:
UEFI Forum, Inc. March 2019 2326

UEFI Specification, Version 2.8
 n - the number of symbols
 nbit - the number of bits needed to represent 'n'
 Special - the special symbol that needs to be take care of

Returns: (VOID)

--*/
{
 INT32 i, k;

 while (n > 0 && mPTLen[n - 1] == 0) {
 n--;
 }
 PutBits(nbit, n);
 i = 0;
 while (i < n) {
 k = mPTLen[i++];
 if (k <= 6) {
 PutBits(3, k);
 } else {
 PutBits(k - 3, (1U << (k - 3)) - 2);
 }
 if (i == Special) {
 while (i < 6 && mPTLen[i] == 0) {
 i++;
 }
 PutBits(2, (i - 3) & 3);
 }
 }
}

STATIC
VOID
WriteCLen ()
/*++

Routine Description:

 Outputs the code length array for Char&Length Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 PutBits(CBIT, n);
 i = 0;
UEFI Forum, Inc. March 2019 2327

UEFI Specification, Version 2.8
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 for (k = 0; k < Count; k++) {
 PutBits(mPTLen[0], mPTCode[0]);
 }
 } else if (Count <= 18) {
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, Count - 3);
 } else if (Count == 19) {
 PutBits(mPTLen[0], mPTCode[0]);
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, 15);
 } else {
 PutBits(mPTLen[2], mPTCode[2]);
 PutBits(CBIT, Count - 20);
 }
 } else {
 PutBits(mPTLen[k + 2], mPTCode[k + 2]);
 }
 }
}

STATIC
VOID
EncodeC (
 IN INT32 c
)
{
 PutBits(mCLen[c], mCCode[c]);
}

STATIC
VOID
EncodeP (
 IN UINT32 p
)
{
 UINT32 c, q;

 c = 0;
 q = p;
 while (q) {
 q >>= 1;
 c++;
 }
 PutBits(mPTLen[c], mPTCode[c]);
 if (c > 1) {
 PutBits(c - 1, p & (0xFFFFU >> (17 - c)));
UEFI Forum, Inc. March 2019 2328

UEFI Specification, Version 2.8
 }
}

STATIC
VOID
SendBlock ()
/*++

Routine Description:

 Huffman code the block and output it.

Argument: (VOID)

Returns: (VOID)

--*/
{
 UINT32 i, k, Flags, Root, Pos, Size;
 Flags = 0;

 Root = MakeTree(NC, mCFreq, mCLen, mCCode);
 Size = mCFreq[Root];
 PutBits(16, Size);
 if (Root >= NC) {
 CountTFreq();
 Root = MakeTree(NT, mTFreq, mPTLen, mPTCode);
 if (Root >= NT) {
 WritePTLen(NT, TBIT, 3);
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, Root);
 }
 WriteCLen();
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, 0);
 PutBits(CBIT, 0);
 PutBits(CBIT, Root);
 }
 Root = MakeTree(NP, mPFreq, mPTLen, mPTCode);
 if (Root >= NP) {
 WritePTLen(NP, PBIT, -1);
 } else {
 PutBits(PBIT, 0);
 PutBits(PBIT, Root);
 }
 Pos = 0;
 for (i = 0; i < Size; i++) {
 if (i % UINT8_BIT == 0) {
 Flags = mBuf[Pos++];
 } else {
 Flags <<= 1;
 }
 if (Flags & (1U << (UINT8_BIT - 1))) {
UEFI Forum, Inc. March 2019 2329

UEFI Specification, Version 2.8
 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));
 k = mBuf[Pos++] << UINT8_BIT;
 k += mBuf[Pos++];
 EncodeP(k);
 } else {
 EncodeC(mBuf[Pos++]);
 }
 }
 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
}

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
)
/*++

Routine Description:

 Outputs an Original Character or a Pointer

Arguments:

 c - The original character or the 'String Length' element of a Pointer
 p - The 'Position' field of a Pointer

Returns: (VOID)

--*/
{
 STATIC UINT32 CPos;

 if ((mOutputMask >>= 1) == 0) {
 mOutputMask = 1U << (UINT8_BIT - 1);
 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
 SendBlock();
 mOutputPos = 0;
 }
 CPos = mOutputPos++;
 mBuf[CPos] = 0;
 }
 mBuf[mOutputPos++] = (UINT8) c;
 mCFreq[c]++;
 if (c >= (1U << UINT8_BIT)) {
 mBuf[CPos] |= mOutputMask;
 mBuf[mOutputPos++] = (UINT8)(p >> UINT8_BIT);
 mBuf[mOutputPos++] = (UINT8) p;
UEFI Forum, Inc. March 2019 2330

UEFI Specification, Version 2.8
 c = 0;
 while (p) {
 p >>= 1;
 c++;
 }
 mPFreq[c]++;
 }
}

STATIC
VOID
HufEncodeStart ()
{
 INT32 i;

 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
 mOutputPos = mOutputMask = 0;
 InitPutBits();
 return;
}

STATIC
VOID
HufEncodeEnd ()
{
 SendBlock();

 //
 // Flush remaining bits
 //
 PutBits(UINT8_BIT - 1, 0);

 return;
}

STATIC
VOID
MakeCrcTable ()
{
 UINT32 i, j, r;

 for (i = 0; i <= UINT8_MAX; i++) {
 r = i;
 for (j = 0; j < UINT8_BIT; j++) {
 if (r & 1) {
 r = (r >> 1) ^ CRCPOLY;
 } else {
 r >>= 1;
 }
UEFI Forum, Inc. March 2019 2331

UEFI Specification, Version 2.8
 }
 mCrcTable[i] = (UINT16)r;
 }
}

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
)
/*++

Routine Description:

 Outputs rightmost n bits of x

Arguments:

 n - the rightmost n bits of the data is used
 x - the data

Returns: (VOID)

--*/
{
 UINT8 Temp;

 if (n < mBitCount) {
 mSubBitBuf |= x << (mBitCount -= n);
 } else {

 Temp = (UINT8)(mSubBitBuf | (x >> (n -= mBitCount)));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 if (n < UINT8_BIT) {
 mSubBitBuf = x << (mBitCount = UINT8_BIT - n);
 } else {

 Temp = (UINT8)(x >> (n - UINT8_BIT));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - n);
 }
 }
}

STATIC
INT32
UEFI Forum, Inc. March 2019 2332

UEFI Specification, Version 2.8
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
)
/*++

Routine Description:

 Read in source data

Arguments:

 p - the buffer to hold the data
 n - number of bytes to read

Returns:

 number of bytes actually read

--*/
{
 INT32 i;

 for (i = 0; mSrc < mSrcUpperLimit && i < n; i++) {
 *p++ = *mSrc++;
 }
 n = i;

 p -= n;
 mOrigSize += n;
 while (--i >= 0) {
 UPDATE_CRC(*p++);
 }
 return n;
}

STATIC
VOID
InitPutBits ()
{
 mBitCount = UINT8_BIT;
 mSubBitBuf = 0;
}

STATIC
VOID
CountLen (
 IN INT32 i
)
/*++

Routine Description:

 Count the number of each code length for a Huffman tree.
UEFI Forum, Inc. March 2019 2333

UEFI Specification, Version 2.8

Arguments:

 i - the top node

Returns: (VOID)

--*/
{
 STATIC INT32 Depth = 0;

 if (i < mN) {
 mLenCnt[(Depth < 16) ? Depth : 16]++;
 } else {
 Depth++;
 CountLen(mLeft [i]);
 CountLen(mRight[i]);
 Depth--;
 }
}

STATIC
VOID
MakeLen (
 IN INT32 Root
)
/*++

Routine Description:

 Create code length array for a Huffman tree

Arguments:

 Root - the root of the tree

--*/
{
 INT32 i, k;
 UINT32 Cum;

 for (i = 0; i <= 16; i++) {
 mLenCnt[i] = 0;
 }
 CountLen(Root);

 //
 // Adjust the length count array so that
 // no code will be generated longer than the designated length
 //

 Cum = 0;
 for (i = 16; i > 0; i--) {
 Cum += mLenCnt[i] << (16 - i);
 }
UEFI Forum, Inc. March 2019 2334

UEFI Specification, Version 2.8
 while (Cum != (1U << 16)) {
 mLenCnt[16]--;
 for (i = 15; i > 0; i--) {
 if (mLenCnt[i] != 0) {
 mLenCnt[i]--;
 mLenCnt[i+1] += 2;
 break;
 }
 }
 Cum--;
 }
 for (i = 16; i > 0; i--) {
 k = mLenCnt[i];
 while (--k >= 0) {
 mLen[*mSortPtr++] = (UINT8)i;
 }
 }
}

STATIC
VOID
DownHeap (
 IN INT32 i
)
{
 INT32 j, k;

 //
 // priority queue: send i-th entry down heap
 //

 k = mHeap[i];
 while ((j = 2 * i) <= mHeapSize) {
 if (j < mHeapSize && mFreq[mHeap[j]] > mFreq[mHeap[j + 1]]) {
 j++;
 }
 if (mFreq[k] <= mFreq[mHeap[j]]) {
 break;
 }
 mHeap[i] = mHeap[j];
 i = j;
 }
 mHeap[i] = (INT16)k;
}

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
)
/*++

Routine Description:
UEFI Forum, Inc. March 2019 2335

UEFI Specification, Version 2.8
 Assign code to each symbol based on the code length array

Arguments:

 n - number of symbols
 Len - the code length array
 Code - stores codes for each symbol

Returns: (VOID)

--*/
{
 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;
 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + mLenCnt[i]) << 1);
 }
 for (i = 0; i < n; i++) {
 Code[i] = Start[Len[i]]++;
 }
}

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
)
/*++

Routine Description:

 Generates Huffman codes given a frequency distribution of symbols

Arguments:

 NParm - number of symbols
 FreqParm - frequency of each symbol
 LenParm - code length for each symbol
 CodeParm - code for each symbol

Returns:

 Root of the Huffman tree.

--*/
{
 INT32 i, j, k, Avail;

 //
UEFI Forum, Inc. March 2019 2336

UEFI Specification, Version 2.8
 // make tree, calculate len[], return root
 //

 mN = NParm;
 mFreq = FreqParm;
 mLen = LenParm;
 Avail = mN;
 mHeapSize = 0;
 mHeap[1] = 0;
 for (i = 0; i < mN; i++) {
 mLen[i] = 0;
 if (mFreq[i]) {
 mHeap[++mHeapSize] = (INT16)i;
 }
 }
 if (mHeapSize < 2) {
 CodeParm[mHeap[1]] = 0;
 return mHeap[1];
 }
 for (i = mHeapSize / 2; i >= 1; i--) {

 //
 // make priority queue
 //
 DownHeap(i);
 }
 mSortPtr = CodeParm;
 do {
 i = mHeap[1];
 if (i < mN) {
 *mSortPtr++ = (UINT16)i;
 }
 mHeap[1] = mHeap[mHeapSize--];
 DownHeap(1);
 j = mHeap[1];
 if (j < mN) {
 *mSortPtr++ = (UINT16)j;
 }
 k = Avail++;
 mFreq[k] = (UINT16)(mFreq[i] + mFreq[j]);
 mHeap[1] = (INT16)k;
 DownHeap(1);
 mLeft[k] = (UINT16)i;
 mRight[k] = (UINT16)j;
 } while (mHeapSize > 1);

 mSortPtr = CodeParm;
 MakeLen(k);
 MakeCode(NParm, LenParm, CodeParm);

 //
 // return root
 //
 return k;
}

UEFI Forum, Inc. March 2019 2337

UEFI Specification, Version 2.8
UEFI Forum, Inc. March 2019 2338

UEFI Specification, Version 2.8
Appendix I - Decompression Source Code

=/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Decompress.c

Abstract:

 Decompressor.

--*/

#include "EfiCommon.h"

#define BITBUFSIZ 16
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define THRESHOLD 3
#define CODE_BIT 16
#define UINT8_MAX 0xff
#define BAD_TABLE -1

//
// C: Char&Len Set; P: Position Set; T: exTra Set
//

#define NC (0xff + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define NT (CODE_BIT + 3)
#define PBIT 4
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

typedef struct {
 UINT8 *mSrcBase; //Starting address of compressed data
 UINT8 *mDstBase; //Starting address of decompressed data

 UINT16 mBytesRemain;
 UINT16 mBitCount;
 UINT16 mBitBuf;
 UINT16 mSubBitBuf;
UEFI Forum, Inc. March 2019 2339

UEFI Specification, Version 2.8
 UINT16 mBufSiz;
 UINT16 mBlockSize;
 UINT32 mDataIdx;
 UINT32 mCompSize;
 UINT32 mOrigSize;
 UINT32 mOutBuf;
 UINT32 mInBuf;

 UINT16 mBadTableFlag;

 UINT8 mBuffer[WNDSIZ];
 UINT16 mLeft[2 * NC - 1];
 UINT16 mRight[2 * NC - 1];
 UINT32 mBuf;
 UINT8 mCLen[NC];
 UINT8 mPTLen[NPT];
 UINT16 mCTable[4096];
 UINT16 mPTTable[256];
} SCRATCH_DATA;

//
// Function Prototypes
//

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
);

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
);

//
// Functions
//

EFI_STATUS
EFIAPI
GetInfo (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 OUT UINT32 *DstSize,
 OUT UINT32 *ScratchSize
)
/*++
UEFI Forum, Inc. March 2019 2340

UEFI Specification, Version 2.8
Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.GetInfo().

Arguments:

 This - Protocol instance pointer.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of source buffer
 DstSize - The size of destination buffer.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - The size of destination buffer and the size of scratch buffer are successful
retrieved.
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT8 *Src;

 *ScratchSize = sizeof (SCRATCH_DATA);

 Src = Source;
 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 *DstSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
 return EFI_SUCCESS;
}

EFI_STATUS
EFIAPI
Decompress (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 IN OUT VOID *Destination,
 IN UINT32 DstSize,
 IN OUT VOID *Scratch,
 IN UINT32 ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.Decompress().

Arguments:

 This - The protocol instance.
 Source - The source buffer containing the compressed data.
UEFI Forum, Inc. March 2019 2341

UEFI Specification, Version 2.8
 SrcSize - The size of the source buffer
 Destination - The destination buffer to store the decompressed data
 DstSize - The size of the destination buffer.
 Scratch - The buffer used internally by the decompress routine. This buffer is needed to
store intermediate data.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - Decompression is successful
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT32 Index;
 UINT16 Count;
 UINT32 CompSize;
 UINT32 OrigSize;
 UINT8 *Dst1;
 EFI_STATUS Status;
 SCRATCH_DATA *Sd;
 UINT8 *Src;
 UINT8 *Dst;

 Status = EFI_SUCCESS;
 Src = Source;
 Dst = Destination;
 Dst1 = Dst;

 if (ScratchSize < sizeof (SCRATCH_DATA)) {
 return EFI_INVALID_PARAMETER;
 }

 Sd = (SCRATCH_DATA *)Scratch;

 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24);
 OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);

 if (SrcSize < CompSize + 8) {
 return EFI_INVALID_PARAMETER;
 }

 Src = Src + 8;

 for (Index = 0; Index < sizeof(SCRATCH_DATA); Index++) {
 ((UINT8*)Sd)[Index] = 0;
 }

 Sd->mBytesRemain = (UINT16)(-1);
 Sd->mSrcBase = Src;
 Sd->mDstBase = Dst;
UEFI Forum, Inc. March 2019 2342

UEFI Specification, Version 2.8
 Sd->mCompSize = CompSize;
 Sd->mOrigSize = OrigSize;

 //
 // Fill the first two bytes
 //
 FillBuf(Sd, BITBUFSIZ);

 while (Sd->mOrigSize > 0) {

 Count = (UINT16) (WNDSIZ < Sd->mOrigSize? WNDSIZ: Sd->mOrigSize);
 Decode (Sd, Count);

 if (Sd->mBadTableFlag != 0) {
 //
 // Something wrong with the source
 //
 return EFI_INVALID_PARAMETER;
 }

 for (Index = 0; Index < Count; Index ++) {
 if (Dst1 < Dst + DstSize) {
 *Dst1++ = Sd->mBuffer[Index];
 } else {
 return EFI_INVALID_PARAMETER;
 }
 }

 Sd->mOrigSize -= Count;
 }

 if (Sd->mBadTableFlag != 0) {
 Status = EFI_INVALID_PARAMETER;
 } else {
 Status = EFI_SUCCESS;
 }

 return Status;
}

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source.

Arguments:
UEFI Forum, Inc. March 2019 2343

UEFI Specification, Version 2.8
 Sd - The global scratch data
 NumOfBit - The number of bits to shift and read.

Returns: (VOID)

--*/
{
 Sd->mBitBuf = (UINT16)(Sd->mBitBuf << NumOfBits);

 while (NumOfBits > Sd->mBitCount) {

 Sd->mBitBuf |= (UINT16)(Sd->mSubBitBuf <<
 (NumOfBits = (UINT16)(NumOfBits - Sd->mBitCount)));

 if (Sd->mCompSize > 0) {

 //
 // Get 1 byte into SubBitBuf
 //
 Sd->mCompSize --;
 Sd->mSubBitBuf = 0;
 Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf ++];
 Sd->mBitCount = 8;

 } else {

 Sd->mSubBitBuf = 0;
 Sd->mBitCount = 8;

 }
 }

 Sd->mBitCount = (UINT16)(Sd->mBitCount - NumOfBits);
 Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount;
}

STATIC
UINT16
GetBits(
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent
 NumOfBits of bits from source. Returns NumOfBits of bits that are
 popped out.

Arguments:

 Sd - The global scratch data.
 NumOfBits - The number of bits to pop and read.
UEFI Forum, Inc. March 2019 2344

UEFI Specification, Version 2.8
Returns:

 The bits that are popped out.

--*/
{
 UINT16 OutBits;

 OutBits = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - NumOfBits));

 FillBuf (Sd, NumOfBits);

 return OutBits;
}

STATIC
UINT16
MakeTable (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfChar,
 IN UINT8 *BitLen,
 IN UINT16 TableBits,
 OUT UINT16 *Table
)
/*++

Routine Description:

 Creates Huffman Code mapping table according to code length array.

Arguments:

 Sd - The global scratch data
 NumOfChar - Number of symbols in the symbol set
 BitLen - Code length array
 TableBits - The width of the mapping table
 Table - The table

Returns:

 0 - OK.
 BAD_TABLE - The table is corrupted.

--*/
{
 UINT16 Count[17];
 UINT16 Weight[17];
 UINT16 Start[18];
 UINT16 *p;
 UINT16 k;
 UINT16 i;
 UINT16 Len;
 UINT16 Char;
UEFI Forum, Inc. March 2019 2345

UEFI Specification, Version 2.8
 UINT16 JuBits;
 UINT16 Avail;
 UINT16 NextCode;
 UINT16 Mask;

 for (i = 1; i <= 16; i ++) {
 Count[i] = 0;
 }

 for (i = 0; i < NumOfChar; i++) {
 Count[BitLen[i]]++;
 }

 Start[1] = 0;

 for (i = 1; i <= 16; i ++) {
 Start[i + 1] = (UINT16)(Start[i] + (Count[i] << (16 - i)));
 }

 if (Start[17] != 0) {/*(1U << 16)*/
 return (UINT16)BAD_TABLE;
 }

 JuBits = (UINT16)(16 - TableBits);

 for (i = 1; i <= TableBits; i ++) {
 Start[i] >>= JuBits;
 Weight[i] = (UINT16)(1U << (TableBits - i));
 }

 while (i <= 16) {
 Weight[i++] = (UINT16)(1U << (16 - i));
 }

 i = (UINT16)(Start[TableBits + 1] >> JuBits);

 if (i != 0) {
 k = (UINT16)(1U << TableBits);
 while (i != k) {
 Table[i++] = 0;
 }
 }

 Avail = NumOfChar;
 Mask = (UINT16)(1U << (15 - TableBits));

 for (Char = 0; Char < NumOfChar; Char++) {

 Len = BitLen[Char];
 if (Len == 0) {
 continue;
 }

 NextCode = (UINT16)(Start[Len] + Weight[Len]);
UEFI Forum, Inc. March 2019 2346

UEFI Specification, Version 2.8
 if (Len <= TableBits) {

 for (i = Start[Len]; i < NextCode; i ++) {
 Table[i] = Char;
 }

 } else {

 k = Start[Len];
 p = &Table[k >> JuBits];
 i = (UINT16)(Len - TableBits);

 while (i != 0) {
 if (*p == 0) {
 Sd->mRight[Avail] = Sd->mLeft[Avail] = 0;
 *p = Avail ++;
 }

 if (k & Mask) {
 p = &Sd->mRight[*p];
 } else {
 p = &Sd->mLeft[*p];
 }

 k <<= 1;
 i --;
 }

 *p = Char;

 }

 Start[Len] = NextCode;
 }

 //
 // Succeeds
 //
 return 0;
}

STATIC
UINT16
DecodeP (
 IN SCRATCH_DATA *Sd
)
/*++

Routine description:

 Decodes a position value.

Arguments:
UEFI Forum, Inc. March 2019 2347

UEFI Specification, Version 2.8
 Sd - the global scratch data

Returns:

 The position value decoded.

--*/
{
 UINT16 Val;
 UINT16 Mask;

 Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];

 if (Val >= NP) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Sd->mBitBuf & Mask) {
 Val = Sd->mRight[Val];
 } else {
 Val = Sd->mLeft[Val];
 }

 Mask >>= 1;
 } while (Val >= NP);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[Val]);

 if (Val) {
 Val = (UINT16)((1U << (Val - 1)) + GetBits (Sd, (UINT16)(Val - 1)));
 }

 return Val;
}

STATIC
UINT16
ReadPTLen (
 IN SCRATCH_DATA *Sd,
 IN UINT16 nn,
 IN UINT16 nbit,
 IN UINT16 Special
)
/*++

Routine Description

 Reads code lengths for the Extra Set or the Position Set
UEFI Forum, Inc. March 2019 2348

UEFI Specification, Version 2.8
Arguments:

 Sd - The global scratch data
 nn - Number of symbols
 nbit - Number of bits needed to represent nn
 Special - The special symbol that needs to be taken care of

Returns:

 0 - OK.
 BAD_TABLE - Table is corrupted.

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits (Sd, nbit);

 if (n == 0) {
 c = GetBits (Sd, nbit);

 for (i = 0; i < 256; i ++) {
 Sd->mPTTable[i] = c;
 }

 for (i = 0; i < nn; i++) {
 Sd->mPTLen[i] = 0;
 }

 return 0;
 }

 i = 0;

 while (i < n) {

 c = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - 3));

 if (c == 7) {
 Mask = 1U << (BITBUFSIZ - 1 - 3);
 while (Mask & Sd->mBitBuf) {
 Mask >>= 1;
 c += 1;
 }
 }

 FillBuf (Sd, (UINT16)((c < 7) ? 3 : c - 3));

 Sd->mPTLen [i++] = (UINT8)c;

 if (i == Special) {
UEFI Forum, Inc. March 2019 2349

UEFI Specification, Version 2.8
 c = GetBits (Sd, 2);
 while ((INT16)(--c) >= 0) {
 Sd->mPTLen[i++] = 0;
 }
 }
 }

 while (i < nn) {
 Sd->mPTLen [i++] = 0;
 }

 return (MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable));
}

STATIC
VOID
ReadCLen (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Reads code lengths for Char&Len Set.

Arguments:

 Sd - the global scratch data

Returns: (VOID)

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits(Sd, CBIT);

 if (n == 0) {
 c = GetBits(Sd, CBIT);

 for (i = 0; i < NC; i ++) {
 Sd->mCLen[i] = 0;
 }

 for (i = 0; i < 4096; i ++) {
 Sd->mCTable[i] = c;
 }

 return;
 }
UEFI Forum, Inc. March 2019 2350

UEFI Specification, Version 2.8
 i = 0;
 while (i < n) {

 c = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
 if (c >= NT) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Mask & Sd->mBitBuf) {
 c = Sd->mRight [c];
 } else {
 c = Sd->mLeft [c];
 }

 Mask >>= 1;

 }while (c >= NT);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[c]);

 if (c <= 2) {

 if (c == 0) {
 c = 1;
 } else if (c == 1) {
 c = (UINT16)(GetBits (Sd, 4) + 3);
 } else if (c == 2) {
 c = (UINT16)(GetBits (Sd, CBIT) + 20);
 }

 while ((INT16)(--c) >= 0) {
 Sd->mCLen[i++] = 0;
 }

 } else {

 Sd->mCLen[i++] = (UINT8)(c - 2);

 }
 }

 while (i < NC) {
 Sd->mCLen[i++] = 0;
 }

 MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable);

 return;
}

UEFI Forum, Inc. March 2019 2351

UEFI Specification, Version 2.8
STATIC
UINT16
DecodeC (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Decode a character/length value.

Arguments:

 Sd - The global scratch data.

Returns:

 The value decoded.

--*/
{
 UINT16 j;
 UINT16 Mask;

 if (Sd->mBlockSize == 0) {

 //
 // Starting a new block
 //

 Sd->mBlockSize = GetBits(Sd, 16);
 Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3);
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }

 ReadCLen (Sd);

 Sd->mBadTableFlag = ReadPTLen (Sd, NP, PBIT, (UINT16)(-1));
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }
 }

 Sd->mBlockSize --;
 j = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)];

 if (j >= NC) {
 Mask = 1U << (BITBUFSIZ - 1 - 12);

 do {
 if (Sd->mBitBuf & Mask) {
 j = Sd->mRight[j];
 } else {
UEFI Forum, Inc. March 2019 2352

UEFI Specification, Version 2.8
 j = Sd->mLeft[j];
 }

 Mask >>= 1;
 } while (j >= NC);
 }

 //
 // Advance what we have read
 //
 FillBuf(Sd, Sd->mCLen[j]);

 return j;
}

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
)
 /*++

Routine Description:

 Decode NumOfBytes and put the resulting data at starting point of mBuffer.
 The buffer is circular.

Arguments:

 Sd - The global scratch data
 NumOfBytes - Number of bytes to decode

Returns: (VOID)

 --*/
{
 UINT16 di;
 UINT16 r;
 UINT16 c;

 r = 0;
 di = 0;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];

 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (r >= NumOfBytes) {
UEFI Forum, Inc. March 2019 2353

UEFI Specification, Version 2.8
 return;
 }
 Sd->mBytesRemain --;
 }

 for (;;) {
 c = DecodeC (Sd);
 if (Sd->mBadTableFlag != 0) {
 return;
 }

 if (c < 256) {

 //
 // Process an Original character
 //

 Sd->mBuffer[di++] = (UINT8)c;
 r ++;
 if (di >= WNDSIZ) {
 return;
 }

 } else {

 //
 // Process a Pointer
 //

 c = (UINT16)(c - (UINT8_MAX + 1 - THRESHOLD));
 Sd->mBytesRemain = c;

 Sd->mDataIdx = (r - DecodeP(Sd) - 1) & (WNDSIZ - 1); //Make circular

 di = r;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];
 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (di >= WNDSIZ) {
 return;
 }
 Sd->mBytesRemain --;
 }
 }
 }

 return;
}

UEFI Forum, Inc. March 2019 2354

UEFI Specification, Version 2.8
UEFI Forum, Inc. March 2019 2355

UEFI Specification, Version 2.8
Appendix J - EFI Byte Code Virtual Machine Opcode List

The following table lists the opcodes for EBC instructions. Note that opcodes only require 6 bits of the
opcode byte of EBC instructions. The other two bits are used for other encodings that are dependent on
the particular instruction.

Table 50. EBC Virtual Machine Opcode Summary

Opcode Description

0x00 BREAK [break code]

0x01 JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64

0x02 JMP8{cs|cc} Immed8

0x03 CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64

0x04 RET

0x05 CMP[32|64]eq R1, {@}R2 {Index16|Immed16}

0x06 CMP[32|64]lte R1, {@}R2 {Index16|Immed16}

0x07 CMP[32|64]gte R1, {@}R2 {Index16|Immed16}

0x08 CMP[32|64]ulte R1, {@}R2 {Index16|Immed16}

0x09 CMP[32|64]ugte R1, {@}R2 {Index16|Immed16}

0x0A NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x0B NEG[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0C ADD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0D SUB[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0E MUL[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0F MULU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x10 DIV[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x11 DIVU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x12 MOD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x13 MODU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x14 AND[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x15 OR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x16 XOR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x17 SHL[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x18 SHR[32|64] {@}R1,{@}R2 {Index16|Immed16}
UEFI Forum, Inc. March 2019 2356

UEFI Specification, Version 2.8
0x19 ASHR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1A EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x1B EXTNDW[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1C EXTNDD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1D MOVbw {@}R1 {Index16}, {@}R2 {Index16}

0x1E MOVww {@}R1 {Index16}, {@}R2 {Index16}

0x1F MOVdw {@}R1 {Index16}, {@}R2 {Index16}

0x20 MOVqw {@}R1 {Index16}, {@}R2 {Index16}

0x21 MOVbd {@}R1 {Index32}, {@}R2 {Index32}

0x22 MOVwd {@}R1 {Index32}, {@}R2 {Index32}

0x23 MOVdd {@}R1 {Index32}, {@}R2 {Index32}

0x24 MOVqd {@}R1 {Index32}, {@}R2 {Index32}

0x25 MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}

0x26 MOVsnd {@}R1 {Index32}, {@}R2 {Index32|Immed32}

0x27 Reserved

0x28 MOVqq {@}R1 {Index64}, {@}R2 {Index64}

0x29 LOADSP [Flags], R2

0x2A STORESP R1, [IP|Flags]

0x2B PUSH[32|64] {@}R1 {Index16|Immed16}

0x2C POP[32|64] {@}R1 {Index16|Immed16}

0x2D CMPI[32|64][w|d]eq {@}R1 {Index16}, Immed16|Immed32

0x2E CMPI[32|64][w|d]lte {@}R1 {Index16}, Immed16|Immed32

0x2F CMPI[32|64][w|d]gte {@}R1 {Index16}, Immed16|Immed32

0x30 CMPI[32|64][w|d]ulte {@}R1 {Index16}, Immed16|Immed32

0x31 CMPI[32|64][w|d]ugte {@}R1 {Index16}, Immed16|Immed32

0x32 MOVnw {@}R1 {Index16}, {@}R2 {Index16}

0x33 MOVnd {@}R1 {Index32}, {@}R2 {Index32}

0x34 Reserved

0x35 PUSHn {@}R1 {Index16|Immed16}

0x36 POPn {@}R1 {Index16|Immed16}

0x37 MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

0x38 MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

0x39 MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

Opcode Description
UEFI Forum, Inc. March 2019 2357

UEFI Specification, Version 2.8
0x3A Reserved

0x3B Reserved

0x3C Reserved

0x3D Reserved

0x3E Reserved

0x3F Reserved

Opcode Description
UEFI Forum, Inc. March 2019 2358

UEFI Specification, Version 2.8

UEFI Forum, Inc. March 2019 2359

Appendix K - Alphabetic Function Lists

This appendix was redacted in version 2.6.

UEFI Specification, Version 2.8
Appendix L - EFI 1.10 Protocol Changes and Deprecation List

L.1 Protocol and GUID Name Changes from EFI 1.10
This appendix lists the Protocol , GUID, and revision identifier name changes and the deprecated
protocols compared to the EFI Specification 1.10. The protocols listed are not Runtime, Reentrant or MP
Safe. Protocols are listed by EFI 1.10 name.

For protocols in the table whose TPL is not <= TPL_NOTIFY:

This function must be called at a TPL level less then or equal to %%%%.

%%%% is TPL_CALLBACK or TPL_APPLICATION. The <= is done via text.

Table 51. Protocol Name changes

EFI 1.10 Protocol Name UEFI Specification Protocol Name

EFI_LOADED_IMAGE EFI_LOADED_IMAGE_PROTOCOL

 TPL <= TPL_NOTIFY

New GUID name EFI_LOADED_IMAGE_PROTOCOL_GUID

EFI_DEVICE_PATH EFI_DEVICE_PATH_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_PATH_PROTOCOL_GUID

SIMPLE_INPUT_INTERFACE EFI_SIMPLE_INPUT_PROTOCOL

TPL <= TPL_APPLICATION

New GUID name EFI_SIMPLE_INPUT_PROTOCOL_GUID

SIMPLE_TEXT_OUTPUT_INTERFACE EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID

SERIAL_IO_INTERFACE EFI_SERIAL_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SERIAL_IO_PROTOCOL_GUID

EFI_LOAD_FILE_INTERFACE EFI_LOAD_FILE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_LOAD_FILE_PROTOCOL_GUID

EFI_FILE_IO_INTERFACE EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_FILE_SYSTEM_PROTOCOL_GUID

EFI_FILE EFI_FILE_PROTOCOL

TPL <= TPL_CALLBACK

New GUID name EFI_FILE_PROTOCOL_GUID

EFI_DISK_IO EFI_DISK_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_DISK_IO_PROTOCOL_GUID
UEFI Forum, Inc. March 2019 2360

UEFI Specification, Version 2.8
Table 52. Revision Identifier Name Changes

EFI_BLOCK_IO EFI_BLOCK_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_BLOCK_IO_PROTOCOL_GUID

UNICODE_COLLATION_INTERFACE EFI_UNICODE_COLLATION_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_UNICODE_COLLATION_PROTOCOL_GUID

EFI_SIMPLE_NETWORK EFI_SIMPLE_NETWORK_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_NETWORK_PROTOCOL_GUID

EFI_NETWORK_INTERFACE_IDENTIFIER
_INTERFACE

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID

EFI_PXE_BASE_CODE EFI_PXE_BASE_CODE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_PXE_BASE_CODE _PROTOCOL_GUID

EFI_PXE_BASE_CODE_CALLBACK EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID

EFI_DEVICE_IO_INTERFACE EFI_DEVICE_IO_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_IO_PROTOCOL_GUID

EFI 1.10 Revision Identifier Name UEFI Specification Revision Identifier Name

EFI_LOADED_IMAGE_INFORMATION_REVISION EFI_LOADED_IMAGE_PROTOCOL_REVISION

SERIAL_IO_INTERFACE_REVISION EFI_SERIAL_IO_PROTOCOL_REVISION

EFI_FILE_IO_INTERFACE_REVISION EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION

EFI_FILE_REVISION EFI_FILE_PROTOCOL_REVISION

EFI_DISK_IO_INTERFACE_REVISION EFI_DISK_IO_PROTOCOL_REVISION

EFI_BLOCK_IO_INTERFACE_REVISION EFI_BLOCK_IO_PROTOCOL_REVISION

EFI_SIMPLE_NETWORK_INTERFACE_REVISION EFI_SIMPLE_NETWORK_PROTOCOL_REVISION

EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE_RE
VISION

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_REVIS
ION

EFI_PXE_BASE_CODE_INTERFACE_REVISION EFI_PXE_BASE_CODE_PROTOCOL_REVISION

EFI_PXE_BASE_CODE_CALLBACK_INTERFACE
_REVISION

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL
_REVISION

EFI 1.10 Protocol Name UEFI Specification Protocol Name
UEFI Forum, Inc. March 2019 2361

UEFI Specification, Version 2.8
L.2 Deprecated Protocols
Device I/O Protocol – The support of the Device I/O Protocol (see EFI 1.1 Chapter 18) has been replaced
by the use of the PCI Root Bridge I/O protocols which are described in Section 14.2 of the UEFI
Specification. Note: certain “legacy” EFI applications such as some of the ones that reside in the EFI
Toolkit assume the presence of Device I/O.

 UGA I/O + UGA Draw Protocol – The support of the UGA * Protocols (see EFI 1.1 Section 10.7) have been
replaced by the use of the EFI Graphics Output Protocol described in Section 12 of the UEFI Specification.

USB Host Controller Protocol (version that existed for EFI 1.1) – The support of the USB Host Controller
Protocol (see EFI 1.1 Section 14.1) has been replaced by the use of a UEFI instance that covers both USB
1.1 and USB 2.0 support, and is described in Section 17 of the UEFI Specification. It replaces the pre-
existing protocol definition.

SCSI Passthru Protocol – The support of the SCSI Passthru Protocol (see EFI 1.1 Section 13.1) has been
replaced by the use of the Extended SCSI Passthru Protocol which is described in Chapter Section 15.7 of
the UEFI Specification.

BIS Protocol – Remains as an optional protocol.

Driver Configuration Protocol - the EFI_DRIVER_CONFIGURATION_PROTOCOL has been removed.
UEFI Forum, Inc. March 2019 2362

UEFI Specification, Version 2.8

UEFI Forum, Inc. March 2019 2363

Appendix M - Formats — 
Language Codes and Language Code Arrays

This appendix lists the formats for language codes and language code arrays.

M.1 Specifying individual language codes

The preferred representation of a language code is done via an RFC 4646 language code identifier*.

Table 53. Alias codes supported in addition to RFC 4646

An RFC 4646 language code is represented as a null-terminated ASCII string.

An RFC 4646 language string must be constructed according to the tag creation rules in section 2.3 of RFC
4646. For example, when constructing the primary language tag for a locale identifier, if a 2 character ISO
639-1 language code exists along with a 3 character ISO 639-2 language code, then the ISO 639-1
language code must be used. Further, if an ISO 639-1 tag does not exist, then the ISO 639-2/T
(Terminology) tag must be for the primary locale before an ISO 639-2/B (Bibliographic) tag may be used.
See RFC 4646 for a complete discussion of this topic.

To provide backwards compatibility with preexisting EFI 1.10 drivers, a UEFI platforms may support
deprecated protocols which represent languages in the ISO 639-2 format. This includes the following
protocols: UNICODE_COLLATION_INTERFACE, EFI_DRIVER_CONFIGURATION_PROTOCOL,

EFI_DRIVER_DIAGNOSTICS_PROTOCOL, and EFI_COMPONENT_NAME_PROTOCOL. The deprecated
LangCodes and Lang global variables may also be supported by a platform for backwards compatibility.

M.1.1 Specifying language code arrays:

Native RFC 4646 format array:

An array of RFC 4646 character codes is represented as a NULL terminated char8 array of RFC 4646
language code strings. Each of these strings is delimited by a semicolon (';') character. For example, an
array of US English and Traditional Chinese would be represented as the NULL-terminated string "en-
us;zh-Hant”.

RFC string Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht

UEFI Specification, Version 2.8
Appendix N - Common Platform Error Record

N.1 Introduction
This appendix describes the common platform error record format for representing platform hardware
errors.

N.2 Format
The general format of the common platform error record is illustrated in Figure 78. The record consists of
a header; followed by one or more section descriptors; and for each descriptor, an associated section
which may contain either error or informational data.

Figure 78. Error Record Format

N.2.1 Record Header
The record header includes information which uniquely identifies a hardware error record on a given
system. The contents of the record header are described in Table 54. The header is immediately followed
by an array of one or more section descriptors. Sections may be either error sections, which contain error
information retrieved from hardware, or they may be informational sections, which contain contextual
information relevant to the error. An error record must contain at least one section.

Record Header

Section Descriptor

Section Descriptor

Section Descriptor

Section

Section

Section
UEFI Forum, Inc. March 2019 2364

UEFI Specification, Version 2.8
Table 54. Error record header

Mnemonic Byte
Offset

Byte
Length

Description

Signature Start 0 4 ASCII 4-character array "CPER" (0x43,0x50,0x45,0x52). Identifies
this structure as a hardware error record.

Revision 4 2 This is a 2-byte field representing a major and minor version
number for the error record definition in BCD format. The
interpretation of the major and minor version number is as
follows:
Byte 0 – Minor (01): An increase in this revision indicates that
changes to the headers and sections are backward compatible with
software that use earlier revisions. Addition of new GUID types,
errata fixes or clarifications are covered by a bump up.
Byte 1 – Major (01): An increase in this revision indicates that
the changes are not backward compatible from a software
perspective.

Signature End 6 4 Must be 0xFFFFFFFF

Section Count 10 2 This field indicates the number of valid sections associated with
the record, corresponding to each of the following section
descriptors.

Error Severity 12 4 Indicates the severity of the error condition. The severity of the
error record corresponds to the most severe error section.
 0 - Recoverable (also called non-fatal uncorrected)
 1 - Fatal
 2 - Corrected
 3 - Informational
All other values are reserved.
Note that severity of "Informational" indicates that the record
could be safely ignored by error handling software.

Validation Bits 16 4 This field indicates the validity of the following fields:
Bit 0 – If 1, the PlatformID field contains valid information
Bit 1 – If 1, the TimeStamp field contains valid information
Bit2 – If 1, the PartitionID field contains valid information
Bits 3-31: Reserved, must be zero.

Record Length 20 4 Indicates the size of the actual error record, including the size of
the record header, all section descriptors, and section bodies. The
size may include extra buffer space to allow for the dynamic
addition of error sections descriptors and bodies.
UEFI Forum, Inc. March 2019 2365

UEFI Specification, Version 2.8
Timestamp 24 8 The timestamp correlates to the time when the error information
was collected by the system software and may not necessarily
represent the time of the error event. The timestamp contains the
local time in BCD format.
Byte 7 – Byte 0:
Byte 0: Seconds
Byte 1: Minutes
Byte 2: Hours
Byte 3:
Bit 0 – Timestamp is precise if this bit
is set and correlates to the time of the
error event.
Bit 7:1 – Reserved
Byte 4: Day
Byte 5: Month
Byte 6: Year
Byte 7: Century

Platform ID 32 16 This field uniquely identifies the platform with a GUID. The
platform’s SMBIOS UUID should be used to populate this field.
Error analysis software may use this value to uniquely identify a
platform.

Partition ID 48 16 If the platform has multiple software partitions, system software
may associate a GUID with the partition on which the error
occurred.

Creator ID 64 16 This field contains a GUID indicating the creator of the error
record. This value may be overwritten by subsequent owners of

the record.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2366

UEFI Specification, Version 2.8
Notification Type 80 16 This field holds a pre-assigned GUID value indicating the record
association with an error event notification type. The defined
types are:

CMC
{0x2DCE8BB1, 0xBDD7, 0x450e, {0xB9, 0xAD, 0x9C, 0xF4, 0xEB,
0xD4, 0xF8, 0x90}}

CPE
{0x4E292F96, 0xD843, 0x4a55, {0xA8, 0xC2, 0xD4, 0x81, 0xF2,
0x7E, 0xBE, 0xEE}}

MCE
{0xE8F56FFE, 0x919C, 0x4cc5, {0xBA, 0x88, 0x65, 0xAB, 0xE1,
0x49, 0x13, 0xBB}}

PCIe
{0xCF93C01F, 0x1A16, 0x4dfc, {0xB8, 0xBC, 0x9C, 0x4D, 0xAF,
0x67, 0xC1, 0x04}}

INIT
{0xCC5263E8, 0x9308, 0x454a, {0x89, 0xD0, 0x34, 0x0B, 0xD3,
0x9B, 0xC9, 0x8E}}

NMI
{0x5BAD89FF, 0xB7E6, 0x42c9, {0x81, 0x4A, 0xCF, 0x24, 0x85,
0xD6, 0xE9, 0x8A}}

Boot
{0x3D61A466, 0xAB40, 0x409a, {0xA6, 0x98, 0xF3, 0x62, 0xD4,
0x64, 0xB3, 0x8F}}

DMAr
{0x667DD791, 0xC6B3, 0x4c27, {0x8A, 0x6B, 0x0F, 0x8E,0x72,
0x2D, 0xEB, 0x41}}

Record ID 96 8 This value, when combined with the Creator ID, uniquely
identifies the error record across other error records on a given
system.

Flags 104 4 Flags field contains information that describes the error record.
See Table 2 for defined flags.

Persistence
Information

108 8 This field is produced and consumed by the creator of the error
record identified in the Creator ID field. The format of this field is
defined by the creator and it is out of scope of this specification.

Reserved 116 12 Reserved. Must be zero.

Section Descriptor 128 Nx72 An array of SectionCount descriptors for the associated sections.
The number of valid sections is equivalent to the SectionCount.
The buffer size of the record may include more space to
dynamically add additional Section Descriptors to the error
record.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2367

UEFI Specification, Version 2.8
Table 55 lists the flags that may be used to qualify an error record in the Error Record Header’s Flags field.

Table 55. Error Record Header Flags

N.2.1.1 Notification Type
A notification type identifies the mechanism by which an error event is reported to system

software. This information helps consumers of error information (e.g. management applications
or humans) by identifying the source of the error information. This allows, for instance, all CMC
error log entries to be filtered from an error event log.

Listed below are the standard notification types. Each standard notification type is identified by a GUID.
For error notification types that do not conform to one of the standard types, a platform-specific GUID
may be defined to identify the notification type.

• Machine Check Exception (MCE): {0xE8F56FFE, 0x919C, 0x4cc5, {0xBA, 0x88, 0x65, 0xAB, 0xE1,
0x49, 0x13, 0xBB}}

A Machine Check Exception is a processor-generated exception class interrupt used
to system software of the presence of a fatal or recoverable error condition.

• Corrected Machine Check (CMC): {0x2DCE8BB1, 0xBDD7, 0x450e, {0xB9, 0xAD, 0x9C,
0xF4,0xEB, 0xD4, 0xF8, 0x90}}

Corrected Machine Checks identify error conditions that have been corrected by
hardware or system firmware. CMCs are reported by the processor and may be
reported via interrupt or by polling error status registers.

• Corrected Platform Error (CPE): {0x4E292F96, 0xD843, 0x4a55, {0xA8, 0xC2, 0xD4, 0x81, 0xF2,
0x7E, 0xBE, 0xEE}}

Corrected Platform Errors identify corrected errors from the platform (i.e., external
memory controller, system bus, etc.). CPEs can be reported via interrupt or by polling
error status registers.

• Non-Maskable Interrupt (NMI): {0x5BAD89FF, 0xB7E6, 0x42c9, {0x81, 0x4A, 0xCF, 0x24, 0x85,
0xD6, 0xE9, 0x8A}}

Non-Maskable Interrupts are used on X64 platforms to report fatal or recoverable
platform error conditions. NMIs are reported via interrupt vector 2 on IA32 and X64
processor architecture platforms.

• PCI Express Error (PCIe): {0xCF93C01F, 0x1A16, 0x4dfc, {0xB8, 0xBC, 0x9C, 0x4D, 0xAF, 0x67,
0xC1, 0x04}}

Value Description

1 HW_ERROR_FLAGS_RECOVERED: Qualifies an error condition as one that has been recovered by system
software.

2 HW_ERROR_FLAGS_PREVERR: Qualifies an error condition as one that occurred during a previous session.
For instance, of the OS detects an error and determines that the system must be reset; it will save the
error record before stopping the system. Upon restarting the OS marks the error record with this flag to
know that the error is not live.

4 HW_ERROR_FLAGS_SIMULATED: Qualifies an error condition as one that was intentionally caused. This
allows system software to recognize errors that are injected as a means of validating or testing error
handling mechanisms.
UEFI Forum, Inc. March 2019 2368

UEFI Specification, Version 2.8
See the PCI Express standard v1.1 for details regarding PCI Express Error Reporting.
This notification type identifies errors that were reported to the system via an
interrupt on a PCI Express root port.

• INIT Record (INIT): {0xCC5263E8, 0x9308, 0x454a, {0x89, 0xD0, 0x34, 0x0B, 0xD3, 0x9B, 0xC9,
0x8E}}

IPF Platforms optionally implement a mechanism (switch or button on the chassis) by
which an operator may reset a system and have the system generate an INIT error
record. This error record is documented in the IPF SAL specification. System software
retrieves an INIT error record by querying the SAL for existing INIT records.

• BOOT Error Record (BOOT): {0x3D61A466, 0xAB40, 0x409a, {0xA6, 0x98, 0xF3, 0x62, 0xD4,
0x64, 0xB3, 0x8F}}

The BOOT Notification Type represents error conditions which are unhandled by
system software and which result in a system shutdown/reset. System software
retrieves a BOOT error record during boot by querying the platform for existing BOOT
records. As an example, consider an x64 platform which implements a service
processor. In some scenarios, the service processor may detect that the system is
either hung or is in such a state that it cannot safely proceed without risking data
corruption. In such a scenario the service processor may record some minimal error
information in its system event log (SEL) and unilaterally reset the machine without
notifying the OS or other system software. In such scenarios, system software is
unaware of the condition that caused the system reset. A BOOT error record would
contain information that describes the error condition that led to the reset so system
software can log the information and use it for health monitoring.

• DMA Remapping Error (DMAr): {0x667DD791, 0xC6B3, 0x4c27, {0x8A, 0x6B, 0x0F, 0x8E,

0x72, 0x2D, 0xEB, 0x41}}
The DMA Remapping Notification Type identifies fault conditions generated by the
DMAr unit when processing un-translated, translation and translated DMA requests.
The fault conditions are reported to the system using a message signaled interrupt.

• Synchronous External Abort (SEA): {0x9A78788A, 0xBBE8, 0x11E4, {0x80, 0x9E, 0x67, 0x61,
0x1E, 0x5D, 0x46, 0xB0}}

Synchronous External Aborts represent precise processor error conditions on ARM
systems (uncorrectable and/or recoverable) as described in D3.5 of the ARMv8 ARM
reference manual. This notification may be triggered by one of the following
scenarios: cache parity error, cache ECC error, external bus error, micro-architectural
error, data poisoning, and other platform errors.

• SError Interrupt (SEI): {0x5C284C81, 0xB0AE, 0x4E87, {0xA3, 0x22, 0xB0, 0x4C, 0x85, 0x62,
0x43, 0x23}}

SError Interrupts represent asynchronous imprecise (or possibly precise) processor
error conditions on ARM systems (corrected, uncorrectable, and recoverable) as
described in D3.5 of the ARM ARM reference manual. This notification may be
triggered by one of the following scenarios: cache parity error, cache ECC error,
external bus error, micro-architectural error, data poisoning, and other platform
errors.

• Platform Error Interrupt (PEI): {0x09A9D5AC, 0x5204, 0x4214, {0x96, 0xE5, 0x94, 0x99, 0x2E,
0x75, 0x2B, 0xCD}

Platform Error Interrupt represent asynchronous imprecise platform error conditions
on ARM systems that may be triggered by the following scenarios: system memory
UEFI Forum, Inc. March 2019 2369

UEFI Specification, Version 2.8
ECC error, ECC errors in system cache (e.g. shared high-level caches), vendor specific
chip errors, external platform errors.

N.2.2 Section Descriptor

Table 56. Section Descriptor

Mnemonic Byte
Offset

Byte
Length

Description

Section Offset 0 4 Offset in bytes of the section body from the base of the record
header.

Section Length 4 4 The length in bytes of the section body.

Revision 8 2 This is a 2-byte field representing a major and minor version
number for the error record definition in BCD format. The
interpretation of the major and minor version number is as
follows:
Byte 0 – Minor (00): An increase in this revision indicates that
changes to the headers and sections are backward compatible with
software that uses earlier revisions. Addition of new GUID types,
errata fixes or clarifications are covered by a bump up.
Byte 1 – Major (01): An increase in this revision indicates that
the changes are not backward compatible from a software
perspective

Validation Bits 10 1 This field indicates the validity of the following fields:
Bit 0 - If 1, the FRUId field contains valid information
Bit 1 - If 1, the FRUString field contains valid information
Bits 7:2 – Reserved, must be zero.

Reserved 11 1 Must be zero.
UEFI Forum, Inc. March 2019 2370

UEFI Specification, Version 2.8
Flags 12 4 Flag field contains information that describes the error section as
follows:
Bit 0 – Primary: If set, identifies the section as the section to be
associated with the error condition. This allows for FRU
determination and for error recovery operations. By identifying a
primary section, the consumer of an error record can determine
which section to focus on. It is not always possible to identify a
primary section so this flag should be taken as a hint.
Bit 1 – Containment Warning: If set, the error was not contained
within the processor or memory hierarchy and the error may have
propagated to persistent storage or network.
Bit 2 – Reset: If set, the component has been reset and must be
re-initialized or re-enabled by the operating system prior to use.
Bit 3 – Error threshold exceeded: If set, OS may choose to
discontinue use of this resource.
Bit 4 – Resource not accessible: If set, the resource could not be
queried for error information due to conflicts with other system
software or resources. Some fields of the section will be invalid.
Bit 5 – Latent error: If set this flag indicates that action has been
taken to ensure error containment (such a poisoning data), but
the error has not been fully corrected and the data has not been
consumed. System software may choose to take further
corrective action before the data is consumed.
Bit 6 - Propagated: If set this flag indicates the section is to be
associated with an error that has been propagated due to
hardware poisoning. This implies the error is a symptom of
another error. It is not always possible to ascertain whether this is
the case for an error, therefore if the flag is not set, it is unknown
whether the error was propagated. this helps determining FRU
when dealing with HW failures.
Bit 7 - Overflow: If set this flag indicates the firmware has
detected an overflow of buffers/queues that are used to
accumulate, collect, or report errors (e.g. the error status control
block exposed to the OS). When this occurs, some error records
may be lost.

Bit 8 through 31 – Reserved.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2371

UEFI Specification, Version 2.8
Section Type 16 16 This field holds a pre-assigned GUID value indicating that it is a
section of a particular error. The different error section types are
as defined below:
 Processor Generic
• {0x9876CCAD, 0x47B4, 0x4bdb, {0xB6, 0x5E, 0x16, 0xF1, 0x93,

0xC4, 0xF3, 0xDB}}

 Processor Specific
• IA32/X64:{0xDC3EA0B0, 0xA144, 0x4797, {0xB9, 0x5B, 0x53,

0xFA, 0x24, 0x2B, 0x6E, 0x1D}}

• IPF: {0xe429faf1, 0x3cb7, 0x11d4, {0xb, 0xca, 0x7, 0x00, 0x80,

0xc7, 0x3c, 0x88, 0x81}}1

• ARM: { 0xE19E3D16,0xBC11,0x11E4,{0x9C, 0xAA, 0xC2, 0x05,
0x1D, 0x5D, 0x46, 0xB0}}

NOTE: In addition to the types listed above, there may exist
vendor specific GUIDs that describe vendor specific section types.

Platform Memory
• {0xA5BC1114, 0x6F64, 0x4EDE, {0xB8, 0x63, 0x3E, 0x83, 0xED,

0x7C, 0x83, 0xB1}}

PCIe}}
• {0xD995E954, 0xBBC1, 0x430F, {0xAD, 0x91, 0xB4, 0x4D, 0xCB,

0x3C, 0x6F, 0x35}}

Firmware Error Record Reference
• {0x81212A96, 0x09ED, 0x4996, {0x94, 0x71, 0x8D, 0x72, 0x9C,

0x8E, 0x69, 0xED}}

PCI/PCI-X Bus
• {0xC5753963, 0x3B84, 0x4095, {0xBF, 0x78, 0xED, 0xDA, 0xD3,

0xF9, 0xC9, 0xDD}}

PCI Component/Device
• {0xEB5E4685, 0xCA66, 0x4769, {0xB6, 0xA2, 0x26, 0x06, 0x8B,

0x00, 0x13, 0x26}}

DMAr Generic
• {0x5B51FEF7, 0xC79D, 0x4434, {0x8F, 0x1B, 0xAA,

• 0x62, 0xDE, 0x3E, 0x2C, 0x64}}

Intel® VT for Directed I/O specific DMAr section
• {0x71761D37, 0x32B2, 0x45cd, {0xA7, 0xD0, 0xB0,

• 0xFE 0xDD, 0x93, 0xE8, 0xCF}}

IOMMU specific DMAr section
• {0x036F84E1, 0x7F37, 0x428c, {0xA7, 0x9E, 0x57,

• 0x5F, 0xDF, 0xAA, 0x84, 0xEC}}

FRU Id 32 16 GUID representing the FRU ID, if it exists, for the section reporting
the error. The default value is zero indicating an invalid FRU ID.
System software can use this to uniquely identify a physical device
for tracking purposes. Association of a GUID to a physical device is
done by the platform in an implementation-specific way (i.e., PCIe
Device can lock a GUID to a PCIe Device ID).

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2372

UEFI Specification, Version 2.8
N.2.3 Non-standard Section Body
Information that does not conform to one the standard formats (i.e., those defined in sections 2.4
through 2.9 of this document) may be recorded in the error record in a non-standard section. The type
(e.g. format) of a non-standard section is identified by the GUID populated in the Section Descriptor’s
Section Type field. This allows the information to be decoded by consumers if the format is externally
documented. Examples of information that might be placed in a non-standard section include the IPF raw
SAL error record, Error information recorded in implementation-specific PCI configuration space, and
IPMI error information recorded in an IPMI SEL.

N.2.4 Processor Error Sections
The processor error sections are divided into two different components as described below:

1. Processor Generic Error Section: This section holds information about processor errors in a
generic form and will be common across all processor architectures. An example or error
information provided is the generic information of cache, tlb, etc., errors.

2. Processor Specific Error Section: This section consists of error information, which is specific to a
processor architecture. In addition, certain processor architecture state at the time of error
may also be captured in this section. This section is unique to each processor architecture
(Itanium Processor Family, IA32/X64, ARM).

N.2.4.1 Generic Processor Error Section
The Generic Processor Error Section describes processor reported hardware errors for logical processors
in the system.

Section Type: {0x9876CCAD, 0x47B4, 0x4bdb, {0xB6, 0x5E, 0x16, 0xF1, 0x93, 0xC4, 0xF3, 0xDB}}

Section Severity 48 4 This field indicates the severity associated with the error section.
0 – Recoverable (also called non-fatal uncorrected)
1 – Fatal
2 – Corrected
3 – Informational
All other values are reserved.
Note that severity of "Informational" indicates that the section
contains extra information that can be safely ignored by error
handling software.

FRU Text 52 20 ASCII string identifying the FRU hardware.

1. For an IPF processor-specific error section, the GUID listed is the value from section B.2.3 of the
SAL specification. The format of the data for this section is same as the Processor Device Error Info
in the SAL specification.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2373

UEFI Specification, Version 2.8
Table 57. Processor Generic Error Section

Name Byte
Offset

Byte
Length

Description

Validation Bits 0 8 The validation bit mask indicates whether or not each of the following
fields is valid in this section.
Bit 0 – Processor Type Valid
Bit 1 – Processor ISA Valid
Bit 2 – Processor Error Type Valid
Bit 3 – Operation Valid
Bit 4 – Flags Valid
Bit 5 – Level Valid
Bit 6 – CPU Version Valid
Bit 7 – CPU Brand Info Valid
Bit 8 – CPU Id Valid
Bit 9 – Target Address Valid
Bit 10 – Requester Identifier Valid
Bit 11 – Responder Identifier Valid
Bit 12 – Instruction IP Valid
All other bits are reserved and must be zero.

Processor Type 8 1 Identifies the type of the processor architecture.
0: IA32/X64
1: IA64
2: ARM
All other values reserved.

Processor ISA 9 1 Identifies the type of the instruction set executing when the error
occurred:
0: IA32
1: IA64
2: X64
3: ARM A32/T32
4: ARM A64
All other values are reserved.

Processor Error
Type

10 1 Indicates the type of error that occurred:
0x00: Unknown
0x01: Cache Error
0x02: TLB Error
0x04: Bus Error
0x08: Micro-Architectural Error
All other values reserved.

Operation 11 1 Indicates the type of operation:
0: Unknown or generic
1: Data Read
2: Data Write
3: Instruction Execution
All other values reserved.
UEFI Forum, Inc. March 2019 2374

UEFI Specification, Version 2.8
Flags 12 1 Indicates additional information about the error:
Bit 0: Restartable – If 1, program execution can be restarted reliably
after the error.
Bit 1: Precise IP – If 1, the instruction IP captured is directly associated
with the error.
Bit 2: Overflow – If 1, a machine check overflow occurred (a second
error occurred while the results of a previous error were still in the
error reporting resources).
Bit 3: Corrected – If 1, the error was corrected by hardware and/or
firmware.
All other bits are reserved and must be zero.

Level 13 1 Level of the structure where the error occurred, with 0 being the
lowest level of cache.

Reserved 14 2 Must be zero.

CPU Version
Info

16 8 This field represents the CPU Version Information and returns Family,
Model, and stepping information (e.g. As provided by CPUID
instruction with EAX=1 input with output values from EAX on the IA32/
X64 processor or as provided by CPUID Register 3 register – Version
Information on IA64 processors).

On ARM processors, this field will be provided as:
Bits 127:64 - Reserved and must be zero
Bits 63:0 - MIDR_EL1 of the processor

CPU Brand
String

24 128 This field represents the null-terminated ASCII Processor Brand String
(e.g. As provided by the CPUID instruction with EAX=0x80000002 and
ECX=0x80000003 for IA32/X64 processors or the return from
PAL_BRAND_INFO for IA64 processors).

This field is optional for ARM processors.

Processor ID 152 8 This value uniquely identifies the logical processor (e.g. As
programmed into the local APIC ID register on IA32/X64 processors or
programmed into the LID register on IA64 processors).

On ARM processors, this field will be provided as programmed in the
architected MPIDR_EL1.

Target Address 160 8 Identifies the target address associated with the error.

Requestor
Identifier

168 8 Identifies the requestor associated with the error.

Responder
Identifier

176 8 Identifies the responder associated with the error.

Instruction IP 184 8 Identifies the instruction pointer when the error occurred.

Name Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2375

UEFI Specification, Version 2.8
N.2.4.2 IA32/X64 Processor Error Section
Type:{0xDC3EA0B0, 0xA144, 0x4797, {0xB9, 0x5B, 0x53, 0xFA, 0x24, 0x2B, 0x6E, 0x1D}}

Table 58. Processor Error Record

N.2.4.2.1 IA32/X64 Processor Error Information Structure

As described above, the processor error section contains a collection of structures called Processor Error
Information Structures that contain processor structure specific error information. This section details

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 The validation bit mask indicates each of the following field is valid
in this section:

Bit0 – LocalAPIC_ID Valid
Bit1 – CPUID Info Valid
Bits 2-7 – Number of Processor Error Information Structure
(PROC_ERR_INFO_NUM)
Bit 8– 13 Number of Processor Context Information Structure
(PROC_CONTEXT_INFO_NUM)
Bits 14-63 – Reserved

Local APIC_ID 8 8 This is the processor APIC ID programmed into the APIC ID
registers.

CPUID Info 16 48 This field represents the CPU ID structure of 48 bytes and returns
Model, Family, and stepping information as provided by the CPUID
instruction with EAX=1 input and output values from EAX, EBX, ECX,
and EDX null extended to 64-bits.

Processor Error Info 64 Nx64 This is a variable-length structure consisting of N different 64 byte
structures, each representing a single processor error information
structure. The value of N ranges from 0-63 and is as indicated by
PROC_ERR_INFO_NUM.

Processor Context 64+Nx64 NxX This is a variable size field providing the information for the
processor context state such as MC Bank MSRs and general
registers. The value of N ranges from 0-63 and is as indicated by
PROC_CONTEXT_INFO_NUM. Each processor context information
structure is padded with zeros if the size is not a multiple of 16
bytes.
UEFI Forum, Inc. March 2019 2376

UEFI Specification, Version 2.8
the layout of the Processor Error Information Structure and the detailed check information which is
contained within.

Table 59. IA32/X64 Processor Error Information Structure

IA32/X64 Cache Check Structure

Type:{0xA55701F5, 0xE3EF, 0x43de, {0xAC, 0x72, 0x24, 0x9B, 0x57, 0x3F, 0xAD, 0x2C}}

Table 60. IA32/X64 Cache Check Structure

Mnemonic Byte
Offset

Byte
Length

Description

Error Structure Type 0 16 This field holds a pre-assigned GUID indicating the type of
Processor Error Information structure. The following Processor
Error Information Structure Types have pre-defined GUID.
Cache Error Information (Cache Check)
TLB Error Information (TLB Check)
Bus Error Information (Bus Check)
Micro-architecture Specific Error Information (MS Check)

Validation Bits 16 8 Bit 0 – Check Info Valid
Bit 1 – Target Address Identifier Valid
Bit 2 – Requestor Identifier Valid
Bit 3 – Responder Identifier Valid
Bit 4 – Instruction Pointer Valid
Bits 5-63 – Reserved

Check Information 24 8 StructureErrorType specific error check structure.

Target Identifier 32 8 Identifies the target associated with the error.

Requestor Identifier 40 8 Identifies the requestor associated with the error.

Responder Identifier 48 8 Identifies the responder associated with the error.

Instruction Pointer 56 8 Identifies the instruction executing when the error occurred.

Field Name Bits Description

ValidationBits 15:0 Indicates which fields in the Cache Check structure are valid:
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable Valid
Bit 7– Overflow Valid
Bits 8 – 15 Reserved

TransactionType 17:16 Type of cache error:
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved
UEFI Forum, Inc. March 2019 2377

UEFI Specification, Version 2.8
IA32/X64 TLB Check Structure

Type:{0xFC06B535, 0x5E1F, 0x4562, {0x9F, 0x25, 0x0A, 0x3B, 0x9A, 0xDB, 0x63, 0xC3}}

Table 61. IA32/X64 TLB Check Structure

Operation 21:18 Type of cache operation that caused the error:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be
determined)
2 – generic write (type of instruction or data request cannot be
determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
7 – eviction
8 – snoop
All other values are reserved.

Level 24:22 Cache Level

Processor Context
Corrupt

25 This field indicates that the processor context might have been
corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

Precise IP 27 This field indicates that the instruction pointer pushed onto the
stack is directly associated with the error

Restartable IP 28 This field indicates that program execution can be restarted reliably
at the instruction pointer pushed onto the stack

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:30 Reserved

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable IP Valid
Bit 7 – Overflow Valid
Bit 8 – 15 Reserved

Field Name Bits Description
UEFI Forum, Inc. March 2019 2378

UEFI Specification, Version 2.8
Transaction Type 17:16 Type of TLB error
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of TLB access operation that caused the machine check:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be
determined)
2 – generic write (type of instruction or data request cannot be
determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
All other values are reserved.

Level 24:22 TLB Level

Processor Context
Corrupt

25 This field indicates that the processor context might have been
corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

PreciseIP 27 This field indicates that the instruction pointer pushed onto the
stack is directly associated with the error.

Restartable IP 28 This field indicates the program execution can be restarted reliably
at the instruction pointer pushed onto the stack.

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:30 Reserved

Field Name Bits Description
UEFI Forum, Inc. March 2019 2379

UEFI Specification, Version 2.8
IA32/X64 Bus Check Structure

Type:{0x1CF3F8B3, 0xC5B1, 0x49a2, {0xAA, 0x59, 0x5E, 0xEF, 0x92, 0xFF, 0xA6, 0x3C}}

Table 62. IA32/X64 Bus Check Structure

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable IP Valid
Bit 7 – Overflow Valid
Bit 8 – Participation Type Valid
Bit 9 – Time Out Valid
Bit 10 – Address Space Valid
Bit 11 – 15 Reserved

Transaction Type 17:16 Type of Bus error
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of bus access operation that caused the machine check:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be
determined)
2 – generic write (type of instruction or data request cannot be
determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
All other values are reserved.

Level 24:22 Indicate which level of the bus hierarchy the error occurred in.

Processor Context Corrupt 25 This field indicates that the processor context might have been
corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

PreciseIP 27 This field indicates that the instruction pointer pushed onto the
stack is directly associated with the error.

Restartable IP 28 This field indicates the program execution can be restarted
reliably at the instruction pointer pushed onto the stack.

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred
UEFI Forum, Inc. March 2019 2380

UEFI Specification, Version 2.8
IA32/X64 MS Check Field Description

Type: {0x48AB7F57, 0xDC34, 0x4f6c, {0xA7, 0xD3, 0xB0, 0xB5, 0xB0, 0xA7, 0x43, 0x14}}

Table 63. IA32/X64 MS Check Field Description

Participation Type 31:30 Type of Participation
0 – Local Processor originated request
1 – Local processor Responded to request
2 – Local processor Observed
3 - Generic

Time Out 32 This field indicates that the request timed out.

Address Space 34:33 0 – Memory Access
1 – Reserved
2 – I/O
3 – Other Transaction

63:35 Reserved

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Error Type Valid
Bit 1 – Processor Context Corrupt Valid
Bit 2 – Uncorrected Valid
Bit 3 – Precise IP Valid
Bit 4 – Restartable IP Valid
Bit 5 – Overflow Valid
Bit 6 – 15 Reserved

Error Type 18:16 Identifies the operation that caused the error:
0 – No Error
1 – Unclassified
2 – Microcode ROM Parity Error
3 – External Error
4 – FRC Error
5 – Internal Unclassified
All other value are processor specific.

Processor Context
Corrupt

19 This field indicates that the processor context might have been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 20 This field indicates whether the error was corrected or uncorrected:
0: Corrected
1: Uncorrected

Precise IP 21 This field indicates that the instruction pointer pushed onto the stack is
directly associated with the error.

Restartable IP 22 This field indicates the program execution can be restarted reliably at the
instruction pointer pushed onto the stack.

Overflow 23 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:24 Reserved

Field Name Bits Description
UEFI Forum, Inc. March 2019 2381

UEFI Specification, Version 2.8
N.2.4.2.2 IA32/X64 Processor Context Information Structure

As described above, the processor error section contains a collection of structures called Processor
Context Information that contain processor context state specific to the IA32/X64 processor architecture.
This section details the layout of the Processor Context Information Structure and the detailed processor
context type information.

Table 64. IA32/X64 Processor Context Information

Table 65 shows the register context type 2, 32-bit mode execution context.

Table 65. IA32 Register State

Mnemonic Byte
Offset

Byte
Length

Description

Register
Context Type

0 2 bytes Value indicating the type of processor context state being reported:
0 – Unclassified Data
1 – MSR Registers (Machine Check and other MSRs)
2 – 32-bit Mode Execution Context
3 – 64-bit Mode Execution Context
4 – FXSAVE Context
5 – 32-bit Mode Debug Registers (DR0-DR7)
6 – 64-bit Mode Debug Registers (DR0-DR7)
7 – Memory Mapped Registers
Others - Reserved

Register
Array Size

2 2 bytes Represents the total size of the array for the Data Type being reported in
bytes.

MSR Address 4 4 bytes This field contains the starting MSR address for the type 1 register context.

MM Register
Address

8 8 bytes This field contains the starting memory address for the type 7 register
context.

Register
Array

16 N bytes This field will provide the contents of the actual registers or raw data. The
number of Registers or size of the raw data reported is determined by (Array
Size / 8) or otherwise specified by the context structure type definition.

Offset Length Field

0 4 bytes EAX

4 4 bytes EBX

8 4 bytes ECX

12 4 bytes EDX

16 4 bytes ESI

20 4 bytes EDI

24 4 bytes EBP

28 4 bytes ESP

32 2 bytes CS

34 2 bytes DS

36 2 bytes SS

38 2 bytes ES
UEFI Forum, Inc. March 2019 2382

UEFI Specification, Version 2.8
Table 66 shows the register context type 3, 64-bit mode execution context.

Table 66. X64 Register State

40 2 bytes FS

42 2 bytes GS

44 4 bytes EFLAGS

48 4 bytes EIP

52 4 bytes CR0

56 4 bytes CR1

60 4 bytes CR2

64 4 bytes CR3

68 4 bytes CR4

72 8 bytes GDTR

80 8 bytes IDTR

88 2 bytes LDTR

90 2 bytes TR

Offset Length Field

0 8 bytes RAX

8 8 bytes RBX

16 8 bytes RCX

24 8 bytes RDX

32 8 bytes RSI

40 8 bytes RDI

48 8 bytes RBP

56 8 bytes RSP

64 8 bytes R8

72 8 bytes R9

80 8 bytes R10

88 8 bytes R11

96 8 bytes R12

104 8 bytes R13

112 8 bytes R14

120 8 bytes R15

128 2 bytes CS

130 2 bytes DS

132 2 bytes SS

134 2 bytes ES

136 2 bytes FS

Offset Length Field
UEFI Forum, Inc. March 2019 2383

UEFI Specification, Version 2.8
N.2.4.3 IA64 Processor Error Section
Refer to the Intel Itanium Processor Family System Abstraction Layer specification for finding the IA64
specific error section body definition.

N.2.4.4 ARM Processor Error Section
Type: {0xE19E3D16, 0xBC11, 0x11E4, {0x9C, 0xAA, 0xC2, 0x05, 0x1D, 0x5D, 0x46, 0xB0}}

The ARM Processor Error Section may contain multiple instances of error information structures
associated to a single error event. An error may propagate to other hardware components (e.g. poisoned
data) or cause subsequent errors, all of which may be captured in a single ARM processor error section.
The processor context information describes the observed state of the processor at the point of error
detection.

It is optional for vendors to capture processor context information. The specifics of capturing processor
context is vendor specific. Vendors must take care when handling errors that have originated whilst a
processor was executing in a secure exception level. In those cases providing processor context
information to non-secure agents could be unsafe and lead to security attacks.

Table 67. ARM Processor Error Section

138 2 bytes GS

140 4 bytes Reserved

144 8 bytes RFLAGS

152 8 bytes EIP

160 8 bytes CR0

168 8 bytes CR1

176 8 bytes CR2

184 8 bytes CR3

192 8 bytes CR4

200 8 bytes CR8

208 16 bytes GDTR

224 16 bytes IDTR

240 2 bytes LDTR

242 2 bytes TR

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bit 0 4 The validation bit mask indicates whether or not each of the
following fields is valid in this section.
Bit 0 – MPIDR Valid
Bit 1 – Error affinity level Valid
Bit 2 - Running State
Bit 3 – Vendor Specific Info Valid
All other bits are reserved and must be zero.

Offset Length Field
UEFI Forum, Inc. March 2019 2384

UEFI Specification, Version 2.8
 ERR_INFO_- NUM 4 2 ERR_INFO_NUM is the number of Processor Error Information
Structures (must be 1 or greater)

CONTEXT_-
INFO_NUM

6 2 CONTEXT_INFO_NUM is the number of Context Information
Structures

Section Length 8 4 This describes the total size of the ARM processor error section

Error affinity level 12 1 For errors that can be attributed to a specific affinity level, this field
defines the affinity level at which the error was produced, detected,
and/or consumed. This is a value between 0 and 3. All other values
(4-255) are reserved

For example, a vendor may choose to define affinity levels as
follows:
Level 0: errors that can be precisely attributed to a specific CPU
(e.g. due to a synchronous external abort)
Level 1: Cache parity and/or ECC errors detected at cache of affinity
level 1 (e.g. only attributed to higher level cache due to prefetching
and/or error propagation)

NOTE: Detailed meanings and groupings of affinity level are chip
and/or platform specific. The affinity level described here must be
consistent with the platform definitions used MPIDR.
For cache/TLB errors, the cache/TLB level is provided by the cache/
TLB error structure, which may differ from affinity level.

Reserved 13 3 Must be zero

MPIDR_EL1 16 8 This field is valid for “attributable errors” that can be attributed to a
specific CPU, cache, or cluster. This is the processor’s unique ID in
the system.

MIDR_EL1 24 8 This field provides identification information of the chip, including
an implementer code for the device and a device ID number

Running State 32 4 Bit 0 – Processor running. If this bit is set, “PSCI State” field must be
zero.
All other bits are reserved and must be zero.

PSCI State 36 4 This field provides PSCI state of the processor, as defined in ARM
PSCI document. This field is valid when bit 32 of “Running State”
field is zero.

Processor Error
Information
Structure

40 Nx32 This is a variable-length structure consisting of N different 32 byte
structures per Table 261, each representing a single processor error
information structure. The value of N ranges from 1-255 and is as
indicated by ERR_INFO_NUM field in this table.

Processor Context 40 + Nx32 MxP This is a variable size field consisting of M different P byte
structures providing the information for the processor context state
such as general purpose registers (GPRs) and special purpose
registers (SPRs) as defined in Table 266 or 267 (depending on the
context type). The value of M ranges from 0-65536 and is indicated
by the CONTEXT_INFO_NUM field in this table. Each processor
context information structure is padded with zeros if the size is not
a multiple of 16 bytes. The value of P is a variable length defined by
the processor context structure per Table 266 and 267.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2385

UEFI Specification, Version 2.8
N.2.4.4.1 ARM Processor Error Information

As described above, the processor error section contains a collection of Processor Error Information
structures that contain processor specific error information. This section details the layout of the
Processor Error Information structure and the detailed information which is contained within.

Table 68. ARM Processor Error Information Structure

Vendor Specific
Error Info

40 + Nx32
+ MxP

vendor
specific

This is an optional variable field provided by vendors that prefer to
provide additional details.

Mnemonic Byte
Offset

Byte
Length

Description

Version 0 1 0

(revision of this table)

Length 1 1 32

(length in bytes)

Validation Bit 2 2 The validation bit mask indicates whether or not each of the
following fields is valid in this section.
Bit 0 – Multiple Error (Error Count) Valid
Bit 1 – Flags Valid
Bit 2 – Error Information Valid
Bit 3 – Virtual Fault Address
Bit 4 – Physical Fault Address
All other bits are reserved and must be zero.

Type 4 1 Cache Error
TLB Error
Bus Error
Micro-architectural Error
All other values are reserved

Multiple Error (Error
Count)

5 2 This field indicates whether multiple errors have occurred. In the
case of multiple error with a valid count, this field will specify the
error count. The value of this field is defined as follows:
0: Single Error
1: Multiple Errors
2-65535: Error Count (if known)

Flags 7 1 This field indicates flags that describe the error attributes. The
value of this field is defined as follows:
Bit 0 – First error captured
Bit 1 – Last error captured
Bit 2 – Propagated
Bit 3 – Overflow
All other bits are reserved and must be zero

Note: Overflow bit indicates that firmware/hardware error buffers
had experience an overflow, and it is possible that some error
information has been lost.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2386

UEFI Specification, Version 2.8
Table 69 to Table 72, below, describe error information.

Table 69. ARM Cache Error Structure

Error Information 8 8 The error information structure is specific to each error type
(described in tables below)

Virtual Fault Address 16 8 If known, this field indicates a virtual fault address associated with
the error (e.g. when an error occurs in virtually indexed cache)

Physical Fault
Address

24 8 If known, this field indicates a physical fault address associated with
the error

Name Bits Description

Validation Bit 15:0 Indicates which fields in the Cache Check structure are valid:
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Corrected Valid
Bit 5 – Precise PC Valid
Bit 6 – Restartable PC Valid
All other bits are reserved and must be zero.

Transaction Type 17:16 Type of cache error:
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of cache operation that caused the error:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be determined)
2 – generic write (type of instruction or data request cannot be determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
7 – eviction
8 – snooping (the processor described in this record initiated a cache snoop that
resulted in an error)
9 – snooped (The processor described in this record raised a cache error caused
by another processor or device snooping into its cache)
10 – management
All other values are reserved.

Level 24:22 Cache level

Processor Context
Corrupt

25 This field indicates that the processor context might have been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Corrected 26 This field indicates whether the error was corrected or uncorrected:
1: Corrected
0: Uncorrected

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2387

UEFI Specification, Version 2.8
Table 70. ARM TLB Error Structure

Precise PC 27 This field indicates that the program counter that is directly associated with the
error

Restartable PC 28 This field indicates that program execution can be restarted reliably at the PC
associated with the error.

Reserved 63:29 Must be zero

Name Bits Description

Validation Bit 15:0 Indicates which fields in the TLB error structure are valid:
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Corrected Valid
Bit 5 – Precise PC Valid
Bit 6 – Restartable PC Valid
All other bits are reserved and must be zero.

Transaction Type 17:16 Type of TLB error:
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of TLB operation that caused the error:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be determined)
2 – generic write (type of instruction or data request cannot be determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
7 – local management operation (the processor described in this record initiated
a TLB management operation that resulted in an error)
8 – external management operation (the processor described in this record
raised a TLB error caused by another processor or device broadcasting TLB
operations)
All other values are reserved.

Level 24:22 TLB level

Processor Context
Corrupt

25 This field indicates that the processor context might have been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Corrected 26 This field indicates whether the error was corrected or uncorrected:
1: Corrected
0: Uncorrected

Precise PC 27 This field indicates that the program counter that is directly associated with the
error

Restartable PC 28 This field indicates that program execution can be restarted reliably at the PC
associated with the error.

Reserved 63:29 Must be zero.

Name Bits Description
UEFI Forum, Inc. March 2019 2388

UEFI Specification, Version 2.8
Table 71. ARM Bus Error Structure

Name Bits Description

Validation Bit 15:0 Indicates which fields in the Bus error structure are valid:
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Corrected Valid
Bit 5 – Precise PC Valid
Bit 6 – Restartable PC Valid
Bit 7 – Participation Type Valid
Bit 8 – Time Out Valid
Bit 9 – Address Space Valid
Bit 10 – Memory Attributes Valid
Bit 11 – Access Mode valid
All other bits are reserved and must be zero.

Transaction Type 17:16 Type of bus error:
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of bus operation that caused the error:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be determined)
2 – generic write (type of instruction or data request cannot be determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
All other values are reserved.

Level 24:22 Affinity level at which the bus error occurred

Processor Context
Corrupt

25 This field indicates that the processor context might have been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Corrected 26 This field indicates whether the error was corrected or uncorrected:
1: Corrected
0: Uncorrected

Precise PC 27 This field indicates that the program counter that is directly associated with the
error

Restartable PC 28 This field indicates that program execution can be restarted reliably at the PC
associated with the error.
UEFI Forum, Inc. March 2019 2389

UEFI Specification, Version 2.8
ARM Vendor Specific Micro-Architecture Error Structure

This is a vendor specific structure. Please refer to your hardware vendor documentation for the format of
this structure.

N.2.4.4.2 ARM Processor Context Information

As described above, the processor error section contains a collection of structures called Processor
Context Information. These provide processor context state specific to the ARM processor architecture.
This section details the layout of the Processor Error Context Information Header Structure (Table 72)
and the detailed processor context type information structures (Table 72 - Table 81).

Care must be taken when reporting context information structures. The amount of context reported
depends on the agent that is going to observe the data. The following are recommended guidelines:

1. If the error happens whilst the processor is in the secure world, EL3, Secure EL1 or secure EL0,
context information can contain sensitive data, and should not be exposed to unauthorized
parties.

2. If the error information is being provided to a software agent running at EL2, then the context
information should only include any registers visible in EL2, e.g. GPR, EL1 and EL2 registers.

Participation Type 30:29 Type of Participation
0 – Local Processor originated request
1 – Local processor Responded to request
2 – Local processor Observed
3 – Generic

 The usage of this field depends on the vendor, but the examples below provide
some guidance on how this field is to be used:
If bus error occurs on an LDR instruction, the local processor originated the
request.
If the bus error occurs due to a snoop operation, local processor responded to the
request
If a bus error occurs due to cache prefetching and an SEI was sent to a particular
CPU to notify this bus error has occurred, then the local processor only observed
the error.

Time Out 31 This field indicates that the request timed out.

Address Space 33:32 0 – External Memory Access (e.g. DDR)
1 – Internal Memory Access (e.g. internal chip ROM)
3 – Device Memory Access

Memory Access
Attributes

42:34 Memory attribute as described in the ARM ARM specification.

Access Mode 43 Indicates whether the access was a secure or normal bus request
0 – secure
1 - normal

Note: A platform may choose to hide some or all of the error information for
errors that are consumed/detected in the secure context.

Reserved 63:44 Must be zero.

Name Bits Description
UEFI Forum, Inc. March 2019 2390

UEFI Specification, Version 2.8
3. If the error information is being provided to a software agent running at EL1, then the context
information should only include any registers visible in EL1, e.g. GPR, EL1 and registers.

For context information on processor running in AArch64 mode, even though some registers are defined
as 4 bytes in length, following tables provide 8 bytes space to account for possible future expansion.

Table 72. ARM Processor Error Context Information Header Structure

Table 73. ARMv8 AArch32 GPRs (Type 0)

Name Byte Off-
set

Byte
Length

Description

Version 0 2 0

(revision of this table)

Register Context
Type

2 2 Value indicating the type of processor context state being reported:
0 – AArch32 GPRs (General Purpose Registers).
1 -- AArch32 EL1 context registers
2 -- AArch32 EL2 context registers
3 -- Aarch32 secure context registers
4 – AArch64 GPRs
5 -- AArch64 EL1 context registers
6 – Aarch64 EL2 context registers
7 -- AArch64 EL3 context registers
8 – Misc. System Register Structure
All other values are reserved.

Register Array Size 4 4 Represents the total size of the array for the Data Type being
reported in bytes.

Register Array 8 N This field will provide the contents of the actual registers or raw
data. The contents of the array depends on the Type, with the
structures described in Tables 266 – 274.

Byte
Offset

Byte
Length

Field

0 4 R0

4 4 R1

8 4 R2

12 4 R3

16 4 R4

20 4 R5

24 4 R6

28 4 R7

32 4 R8

36 4 R9

40 4 R10

44 4 R11

48 4 R12
UEFI Forum, Inc. March 2019 2391

UEFI Specification, Version 2.8
Table 74. ARM AArch32 EL1 Context System Registers (Type 1)

Table 75. ARM AArch32 EL2 Context System Registers (Type 2)

52 4 R13 (SP)

56 4 R14 (LR)

60 4 R15 (PC)

Byte
Offset

Byte
Length

Field

0 4 DFAR

4 4 DFSR

8 4 IFAR

12 4 ISR

16 4 MAIR0

20 4 MAIR1

24 4 MIDR

28 4 MPIDR

32 4 NMRR

36 4 PRRR

40 4 SCTLR (NS)

44 4 SPSR

48 4 SPSR_abt

52 4 SPSR_fiq

56 4 SPSR_irq

60 4 SPSR_svc

64 4 SPSR_und

68 4 TPIDRPRW

72 4 TPIDRURO

76 4 TPIDRURW

80 4 TTBCR

84 4 TTBR0

88 4 TTBR1

92 4 DACR

Byte
Offset

Byte
Length

Field

0 4 ELR_hyp

4 4 HAMAIR0

8 4 HAMAIR1

Byte
Offset

Byte
Length

Field
UEFI Forum, Inc. March 2019 2392

UEFI Specification, Version 2.8
Table 76. ARM AArch32 secure Context System Registers (Type 3)

Table 77. ARMv8 AArch64 GPRs (Type 4)

12 4 HCR

16 4 HCR2

20 4 HDFAR

24 4 HIFAR

28 4 HPFAR

32 4 HSR

36 4 HTCR

40 4 HTPIDR

44 4 HTTBR

48 4 SPSR_hyp

52 4 VTCR

56 4 VTTBR

60 4 DACR32_EL2

Byte
Offset

Byte
Length

Field

0 4 SCTLR (S)

4 4 SPSR_mon

Byte
Offset

Byte
Length

Field

0 8 X0

8 8 X1

16 8 X2

24 8 X3

32 8 X4

40 8 X5

48 8 X6

56 8 X7

64 8 X8

72 8 X9

80 8 X10

88 8 X11

96 8 X12

104 8 X13

Byte
Offset

Byte
Length

Field
UEFI Forum, Inc. March 2019 2393

UEFI Specification, Version 2.8
Table 78. ARM AArch64 EL1 Context System Registers (Type 5)

112 8 X14

120 8 X15

128 8 X16

136 8 X17

144 8 X18

152 8 X19

160 8 X20

168 8 X21

176 8 X22

184 8 X23

192 8 X24

200 8 X25

208 8 X26

216 8 X27

224 8 X28

232 8 X29

240 8 X30

248 8 SP

Byte
Offset

Byte
Length

Field

0 8 ELR_EL1

8 8 ESR_EL1

16 8 FAR_EL1

24 8 ISR_EL1

32 8 MAIR_EL1

40 8 MIDR_EL1

48 8 MPIDR_EL1

56 8 SCTLR_EL1

64 8 SP_EL0

72 8 SP_EL1

80 8 SPSR_EL1

88 8 TCR_EL1

96 8 TPIDR_EL0

104 8 TPIDR_EL1

112 8 TPIDRRO_EL0

120 8 TTBR0_EL1

Byte
Offset

Byte
Length

Field
UEFI Forum, Inc. March 2019 2394

UEFI Specification, Version 2.8
128 8 TTBR1_EL1

Byte
Offset

Byte
Length

Field
UEFI Forum, Inc. March 2019 2395

UEFI Specification, Version 2.8
Table 79. ARM AArch64 EL2 Context System Registers (Type 6)

Table 80. ARM AArch64 EL3 Context System Registers (Type 7)

The following structure (Table 275) describes additional AArch64/AArch32 miscellaneous system
registers captured from the perspective of the processor that took the hardware error exception. Each
register array entry will be per the following table. The number of register entries present in the register
array is based on the register array size (i.e. N/10).

Byte
Offset

Byte
Length

Field

0 8 ELR_EL2

8 8 ESR_EL2

16 8 FAR_EL2

24 8 HACR_EL2

32 8 HCR_EL2

40 8 HPFAR_EL2

48 8 MAIR_EL2

56 8 SCTLR_EL2

64 8 SP_EL2

72 8 SPSR_EL2

80 8 TCR_EL2

88 8 TPIDR_EL2

96 8 TTBR0_EL2

104 8 VTCR_EL2

112 8 VTTBR_EL2

Byte
Offset

Byte
Length

Field

0 8 ELR_EL3

8 8 ESR_EL3

16 8 FAR_EL3

24 8 MAIR_EL3

32 8 SCTLR_EL3

40 8 SP_EL3

48 8 SPSR_EL3

56 8 TCR_EL3

64 8 TPIDR_EL3

72 8 TTBR0_EL3
UEFI Forum, Inc. March 2019 2396

UEFI Specification, Version 2.8
Table 81. ARM Misc. Context System Register (Type 8) – Single Register Entry

Name Byte
Offset

Byte
Length

Description

MRS encoding 0 2 This field defines MRS instruction encoding.
Bit 0:2 -- Op2
Bit 3:6 – CRm
Bit 7:10 – CRn
Bit 11:13 – Op1
Bit 14 – O0

Value 2 8 Value read from system register
UEFI Forum, Inc. March 2019 2397

UEFI Specification, Version 2.8
N.2.5 Memory Error Section
Type: {0xA5BC1114, 0x6F64, 0x4EDE, {0xB8, 0x63, 0x3E, 0x83, 0xED, 0x7C, 0x83, 0xB1}}

Table 82. Memory Error Record

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicates which fields in the memory error record are valid.
Bit 0 – Error Status Valid
Bit 1 – Physical Address Valid
Bit 2 – Physical Address Mask Valid
Bit 3 – Node Valid
Bit 4 – Card Valid
Bit 5 – Module Valid
Bit 6 – Bank Valid (When Bank is addressed via group/address, refer to
Bit 19 and 20)
Bit 7 – Device Valid
Bit 8 – Row Valid
 1 - the Row field at Offset 42 contains row number (15:0)
 and row number (17:16) are 00b
 0 - the Row field at Offset 42 is not used, or is defined by

 Bit 18 (Extended Row Bit 16 and 17 Valid).
Bit 9 – Column Valid
Bit 10 – Bit Position Valid
Bit 11 – Platform Requestor Id Valid
Bit 12 – Platform Responder Id Valid
Bit 13 – Memory Platform Target Valid
Bit 14 – Memory Error Type Valid
Bit 15 - Rank Number Valid
Bit 16 - Card Handle Valid
Bit 17 - Module Handle Valid
Bit 18 - Extended Row Bit 16 and 17 Valid (refer to Byte Offset 42
 and 73 below)
 1 - the Row field at Offset 42 contains row number (15:0)
 and the Extended field at Offset 73 contains row number
 (17:16)
 0 - the Extended field at Offset 73 and the Row field at
 Offset 42 are not used, or the Rowfield at Offset 42 is
 defined by Bit 8 (Row Valid).
 When this bit is set to 1, Bit 8 (Row Valid) must be set
 to 0.
Bit 19 - Bank Group Valid
Bit 20 - Bank Address Valid
Bit 21 - Chip Identification Valid
Bit 22-63 Reserved

Error Status 8 8 Memory error status information. See section O for error status details.

Physical
Address

16 8 The physical address at which the memory error occurred.

Physical
Address Mask

24 8 Defines the valid address bits in the Physical Address field. The mask
specifies the granularity of the physical address which is dependent on
the hw/ implementation factors such as interleaving.
UEFI Forum, Inc. March 2019 2398

UEFI Specification, Version 2.8
Node 32 2 In a multi-node system, this value identifies the node containing the
memory in error.

Card 34 2 The card number of the memory error location.

Module 36 2 The module or rank number of the memory error location. (NODE, CARD,
and MODULE should provide the information necessary to identify the
failing FRU).

Bank 38 2 The bank number of the memory associated with the error.
When Bank is addressed via group/address
Bit 7:0 - Bank Address
Bit 15:8 - Bank Group

Device 40 2 The device number of the memory associated with the error.

Row 42 2 First 16 bits (15:0) of the row number of the memory error location. This
field is valid if either "Row Valid" or "Extended Row Bit 16 and 17"
Validation Bits at Offset 0 is set to 1..

Column 44 2 The column number of the memory error location.

Bit Position 46 2 The bit position at which the memory error occurred.

Requestor ID 48 8 Hardware address of the device that initiated the transaction that took
the error.

Responder ID 56 8 Hardware address of the device that responded to the transaction.

Target ID 64 8 Hardware address of the intended target of the transaction.

Memory Error
Type

72 1 Identifies the type of error that occurred:
0 – Unknown
1 – No error
2 – Single-bit ECC
3 – Multi-bit ECC
4 – Single-symbol ChipKill ECC
5 – Multi-symbol ChipKill ECC
6 – Master abort
7 – Target abort
8 – Parity Error
9 – Watchdog timeout
10 – Invalid address
11 – Mirror Broken
12 – Memory Sparing
13 - Scrub corrected error
14 - Scrub uncorrected error
15 - Physical Memory Map-out event
 All other values reserved.

Extended 73 1 Bit 0 - Bit 16 of the row number of the memory error location.
• This field is valid if "Extended Row Bit 16 and 17" Validation Bits at

Offset 0 is set to 1.

Bit 1 - Bit 17 of the row number of the memory error location.
• This field is valid if "Extended Row Bit 16 and 17" Validation Bits at

Offset 0 is set to 1.

Bit 4:2 - Reserved
Bit 7:5 - Chip Identification.

Rank Number 74 2 The Rank number of the memory error location.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2399

UEFI Specification, Version 2.8
N.2.6 Memory Error Section 2
Type: { 0x61EC04FC, 0x48E6, 0xD813, { 0x25, 0xC9, 0x8D, 0xAA, 0x44, 0x75, 0x0B, 0x12 } };

Table 83. Memory Error Record 2

Card Handle 76 2 If bit 16 in Validation Bits is 1, this field contains the SMBIOS handle for
the Type 16 Memory Array Structure that represents the memory card.

Module Handle 78 2 If bit 17 in Validation Bits is 1, this field contains the SMBIOS handle for
the Type 17 Memory Device Structure that represents the Memory
Module.

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicates which fields in the memory error record are valid.
Bit 0 – Error Status Valid 
Bit 1 – Physical Address Valid
Bit 2 – Physical Address Mask Valid
Bit 3 – Node Valid
Bit 4 – Card Valid
Bit 5 – Module Valid
Bit 6 – Bank Valid
(When Bank is addressed via group/address, refer to Bit 20 and 21)
Bit 7 – Device Valid
Bit 8 – Row Valid 
Bit 9 – Column Valid
Bit 10 - Rank Valid
Bit 11 – Bit Position Valid
Bit 12 – Chip Identification Valid
Bit 13 – Memory Error Type Valid
Bit 14 - Status Valid
Bit 15 – Requestor ID Valid
Bit 16 – Responder ID Valid
Bit 17 – Target ID Valid
Bit 18 - Card Handle Valid
Bit 19 - Module Handle Valid
Bit 20 – Bank Group Valid
Bit 21 – Bank Address Valid
Bit 22-63 Reserved

Error Status 8 8 Memory error status information. See section O for error status details.

Physical
Address

16 8 The physical address at which the memory error occurred.

Physical
Address Mask

24 8 Defines the valid address bits in the Physical Address field. The mask specifies
the granularity of the physical address which is dependent on the hardware
implementation factors such as interleaving.

Node 32 2 In a multi-node system, this value identifies the node containing the memory in
error.

Card 34 2 The card number of the memory error location.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2400

UEFI Specification, Version 2.8
Module 36 2 The module number of the memory error location. (NODE, CARD, and MODULE
should provide the information necessary to identify the failing FRU).

Bank 38 2 The bank number of the memory associated with the error.
When Bank is addressed via group/address (e.g., DDR4)
Bit 7:0 – Bank Address
Bit 15:8 – Bank Group

Device 40 4 The device number of the memory associated with the error.

Row 44 4 The row number of the memory error location.

Column 48 4 The column number of the memory error location.

Rank 52 4 The rank number of the memory error location.

Bit Position 56 4 The bit position at which the memory error occurred.

Chip
Identification

60 1 The Chip Identification. This is an encoded field used to address the die in 3DS
packages.

Memory Error
Type

61 1 Identifies the type of error that occurred:
0 – Unknown
1 – No error
2 – Single-bit ECC
3 – Multi-bit ECC
4 – Single-symbol ChipKill ECC
5 – Multi-symbol ChipKill ECC
6 – Master abort
7 – Target abort
8 – Parity Error
9 – Watchdog timeout
10 – Invalid address
11 – Mirror Broken
12 – Memory Sparing
13 - Scrub corrected error
14 - Scrub uncorrected error
15 - Physical Memory Map-out event All other values reserved.
16 – 255 Reserved

Status 62 1 Bit 0:
If set to 0, the memory error is corrected; if set to 1, the memory error is
uncorrected
Bit 1-7: Reserved values are 0

Reserved 63 1 Reserved values are 0

Requestor ID 64 8 Hardware address of the device that initiated the transaction that took the
error.

Responder ID 72 8 Hardware address of the device that responded to the transaction.

Target ID 80 8 Hardware address of the intended target of the transaction.

Card Handle 88 4 This field contains the SMBIOS handle for the Type 16 Memory Array Structure
that represents the memory card.

Module
Handle

92 4 This field contains the SMBIOS handle for the Type 17 Memory Device Structure
that represents the Memory Module.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2401

UEFI Specification, Version 2.8
N.2.7 PCI Express Error Section
Type: {0xD995E954, 0xBBC1, 0x430F, {0xAD, 0x91, 0xB4, 0x4D, 0xCB, 0x3C, 0x6F, 0x35}}

Table 84. PCI Express Error Record

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicates which of the following fields is valid:
Bit 0 –Port Type Valid
Bit 1 – Version Valid
Bit 2 – Command Status Valid
Bit 3 – Device ID Valid
Bit 4 – Device Serial Number Valid
Bit 5 – Bridge Control Status Valid
Bit 6 – Capability Structure Status Valid
Bit 7 – AER Info Valid
Bit 8-63 – Reserved

Port Type 8 4 PCIe Device/Port Type as defined in the PCI Express capabilities
register:
0: PCI Express End Point
1: Legacy PCI End Point Device
4: Root Port
5: Upstream Switch Port
6: Downstream Switch Port
7: PCI Express to PCI/PCI-X Bridge
8: PCI/PCI-X to PCI Express Bridge
9: Root Complex Integrated Endpoint Device
10: Root Complex Event Collector

Version 12 4 PCIe Spec. version supported by the platform:
Byte 0-1: PCIe Spec. Version Number
Byte0: Minor Version in BCD
Byte1: Major Version in BCD
Byte2-3: Reserved

Command Status 16 4 Byte0-1: PCI Command Register
Byte2-3: PCI Status Register

Reserved 20 4 Must be zero

Device ID 24 16 PCIe Root Port PCI/bridge PCI compatible device number and bus
number information to uniquely identify the root port or bridge.
Default values for both the bus numbers is zero.
Byte 0-1: Vendor ID
Byte 2-3: Device ID
Byte 4-6: Class Code
Byte 7: Function Number
Byte 8: Device Number
Byte 9-10: Segment Number
Byte 11: Root Port/Bridge Primary Bus Number or device bus
number
Byte 12: Root Port/Bridge Secondary Bus Number
Byte 13-14: Bit0:2: Reserved Bit3:15 Slot Number
Byte 15 Reserved
UEFI Forum, Inc. March 2019 2402

UEFI Specification, Version 2.8
N.2.8 PCI/PCI-X Bus Error Section
Type: {0xC5753963, 0x3B84, 0x4095, {0xBF, 0x78, 0xED, 0xDA, 0xD3, 0xF9, 0xC9, 0xDD}}

Table 85. PCI/PCI-X Bus Error Section

Device Serial Number 40 8 Byte 0-3: PCIe Device Serial Number Lower DW
Byte 4-7: PCIe Device Serial Number Upper DW

Bridge Control Status 48 4 This field is valid for bridges only.
Byte 0-1: Bridge Secondary Status Register
Byte 2-3: Bridge Control Register

Capability Structure 52 60 PCIe Capability Structure.
• The 60-byte structure is used to report device capabilities. This

structure is used to report the 36-byte PCIe 1.1 Capability
Structure (See Figure 7-9 of the PCI Express Base Specification,
Rev 1.1) with the last 24 bytes padded.

• This structure is also used to report the 60-byte PCIe 2.0
Capability Structure (See Figure 7-9 of the PCI Express 2.0 Base
Specification.)

• The fields in the structure vary with different device types.

• The "Next CAP pointer" field should be considered invalid and
any reserved fields of the structure are reserved for future use.

Note that PCIe devices without AER
(PCIe_AER_INFO_STRUCT_VALID_BIT=0) may report status using
this structure.

AER Info 112 96 PCIe Advanced Error Reporting Extended Capability Structure.

Mnemonic Byte
Offset

Byte
Length

Description

Validation
Bits

0 8 Indicates which of the following fields is valid:
Bit 0 –Error Status Valid
Bit 1 – Error Type Valid
Bit 2 – Bus Id Valid
Bit 3 – Bus Address Valid
Bit 4 – Bus Data Valid
Bit 5 – Command Valid
Bit 6 – Requestor Id Valid
Bit 7 – Completer Id Valid
Bit 8 – Target Id Valid
Bit 9-63 Reserved

Error Status 8 8 PCI Bus Error Status. See section O for details.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2403

UEFI Specification, Version 2.8
N.2.9 PCI/PCI-X Component Error Section
Type: {0xEB5E4685, 0xCA66, 0x4769, {0xB6, 0xA2, 0x26, 0x06, 0x8B, 0x00, 0x13, 0x26}}

Table 86. PCI/PCI-X Component Error Section

Error Type 16 2 PCI Bus error Type
Byte 0:
0 – Unknown or OEM system specific error
1 – Data Parity Error
2 – System Error
3 – Master Abort
4 – Bus Timeout or No Device Present (No DEVSEL#)
5 – Master Data Parity Error
6 – Address Parity Error
7 – Command Parity Error
Others – Reserved
Byte 1:
Reserved

Bus Id 18 2 Bits 0:7 – Bus Number
Bits 8:15 – Segment Number

Reserved 20 4

Bus Address 24 8 Memory or I/O address on the bus at the time of the error.

Bus Data 32 8 Data on the PCI bus at the time of the error.

Bus
Command

40 8 Bus command or operation at the time of the error.
Byte 7: Bits 7-1: Reserved (should be zero)
Byte 7: Bit 0: If 0, then the command is a PCI command. If 1, the command is a
PCI-X command.

Bus
Requestor Id

48 8 PCI Bus Requestor Id.

Bus
Completer
Id

56 8 PCI Bus Responder Id.

Target Id 64 8 PCI Bus intended target identifier.

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicate which fields are valid:
Bit 0 – Error Status Valid
Bit 1 – Id Info Valid
Bit 2 – Memory Number Valid
Bit 3 – IO Number Valid
Bit 4 – Register Data Pair Valid
Bit 5-63 Reserved

Error Status 8 8 PCI Component Error Status. See section O for details.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2404

UEFI Specification, Version 2.8
N.2.10 Firmware Error Record Reference
Type: {0x81212A96, 0x09ED, 0x4996, {0x94, 0x71, 0x8D, 0x72, 0x9C, 0x8E, 0x69, 0xED}}

Table 87. Firmware Error Record Reference

Id Info 16 16 Identification Information:
Bytes 0-1: Vendor Id
Bytes 1-2: Device Id
Bytes 4-6: Class Code
Byte 7: Function Number
Byte 8: Device Number
Byte 9: Bus Number
Byte 10: Segment Number
Bytes 11-15: Reserved

Memory Number 32 4 Number of PCI Component Memory Mapped register address/data
pair values present in this structure.

IO Number 36 4 Number of PCI Component Programmed IO register address/data
pair values present in this structure.

Register Data Pairs 40 2x8xN An array of address/data pair values. The address and data
information may be from 2 to 8 bytes of actual data represented in
the 8 byte array locations.

Mnemonic Byte
Offset

Byte
Length

Description

Firmware Error
Record Type

0 1 Identifies the type of firmware error record that is referenced by this
section:
0: IPF SAL Error Record
1: SOC Firmware error record Type1 is reserved and used by Legacy
CrashLog support
2: SOC Firmware error record Type2
All other values reserved

Revision 1 1 Indicates the Header Revision. For this Revision of the specification
value is 2.

Reserved 1 7 Must be zero.

Record Identifier 8 8 This value uniquely identifies the firmware error record referenced
by this section. This value may be used to retrieve the referenced
firmware error record using means appropriate for the error record
type.
Note value is ignored for Revision >=1 of the header and must be set
to NULL.

Record identifier
GUID extension

16 16 This value uniquely identifies the firmware error record referenced
by this section. This value may be used to retrieve the referenced
firmware error record using means appropriate for the error record
type.
Note: in case if Error Record Type == 2 then this filed indicates the
GUID.
For Error Record Type 0 and Type 1 this field is ignored.

Mnemonic Byte
Offset

Byte
Length

Description
UEFI Forum, Inc. March 2019 2405

UEFI Specification, Version 2.8
N.2.11 DMAr Error Sections
The DMAr error sections are divided into two different components as described below:

DMAr Generic Error Section:
This section holds information about DMAr errors in a generic form and will be
common across all DMAr unit architectures.

Architecture specific DMAr Error Section:
This section consists of DMA remapping errors specific to the architecture. In
addition, certain state information of the DMAr unit is captured at the time of error.
This section is unique for each DMAr architecture (VT-d, IOMMU).

N.2.11.1 DMAr Generic Error Section
Type: {0x5B51FEF7, 0xC79D, 0x4434, {0x8F, 0x1B, 0xAA, 0x62, 0xDE, 0x3E, 0x2C, 0x64}}

Table 88. DMAr Generic Errors

Mnemonic Byte
Offset

Byte
Length

Description

Requester-ID 0 2 Device ID associated with a fault condition

Segment
Number

2 2 PCI segment associated with a device

Fault Reason 4 1 1h: Domain mapping table entry is not present
2h: Invalid domain mapping table entry
3h: DMAr unit’s attempt to access the domain mapping table
resulted in an error
4h: Reserved bit set to non-zero value in the domain mapping
table
5h: DMA request to access an address beyond the device address
width
6h: Invalid read or write access
7h: Invalid device request
8h: DMAr unit’s attempt to access the address translation table
resulted in an error
9h: Reserved bit set to non-zero value in the address translation
table
Ah: Illegal command error
Bh: DMAr unit’s attempt to access the command buffer resulted in
an error
Other values are reserved

Access Type 5 1 0h: DMA Write
1h: DMA Read
Other values are reserved

Address Type 6 1 0h: Untranslated request
1h: Translation request
Other values are reserved

Architecture
Type

7 1 1h: VT-d architecture
2h: IOMMU architecture
Other values are reserved
UEFI Forum, Inc. March 2019 2406

UEFI Specification, Version 2.8
N.2.11.2 Intel® VT for Directed I/O specific DMAr Error Section
Type: {0x71761D37, 0x32B2, 0x45cd, {0xA7, 0xD0, 0xB0, 0xFE 0xDD, 0x93, 0xE8, 0xCF}}

All fields in this error section are specific to Intel’s VT-d architecture. This error section has a fixed size.

Table 89. Intel® VT for Directed I/O specific DMAr Errors

N.2.11.3 IOMMU specific DMAr Error Section
Type: {0x036F84E1, 0x7F37, 0x428c, {0xA7, 0x9E, 0x57, 0x5F, 0xDF, 0xAA, 0x84, 0xEC}}

Device Address 8 8 This field contains the 64-bit device virtual address in the faulted
DMA request.

Reserved 16 16 Must be 0

Mnemonic Byte
Offset

Byte
Length

Description

Version 0 1 Value of version register as defined in VT-d architecture

Revision 1 1 Value of revision field in VT-d specific DMA remapping reporting
structure

OemId 2 6 Value of OEM ID field in VT-d specific DMA remapping reporting
structure

Capability 8 8 Value of capability register in VT-d architecture

Extended
Capability

16 8 Value of extended capability register in VT-d architecture

Global
Command

24 4 Value of Global Command register in VT-d architecture
programmed by the operating system

Global Status 28 4 Value of Global Status register in VT-d architecture

Fault Status 32 4 Value of Fault Status register in VT-d architecture

Reserved 36 12 Must be 0

Fault record 48 16 Fault record as defined in the VT-d specification

Root Entry 64 16 Value from the root entry table for the given requester-ID

Context Entry 80 16 Value from the context entry table for the given requester-ID.

Level 6 Page
Table Entry

96 8 PTE entry for device virtual address in page level 6

Level 5 Page
Table Entry

104 8 PTE entry for device virtual address in page level 5

Level 4 Page
Table Entry

112 8 PTE entry for device virtual address in page level 4

Level 3 Page
Table Entry

120 8 PTE entry for device virtual address in page level 3

Level 2 Page
Table Entry

128 8 PTE entry for device virtual address in page level 2.

Level 1 Page
Table Entry

136 8 PTE entry for device virtual address in page level 1
UEFI Forum, Inc. March 2019 2407

UEFI Specification, Version 2.8
All fields in this error record are specific to AMD’s IOMMU specification. This error section has a fixed
size.

Table 90. IOMMU specific DMAr Errors

Section O: Error Status

The error status definition provides the capability to abstract information from implementation-specific
error registers into generic error codes.

Table 91. Error Status Fields

Mnemonic Byte
Offset

Byte
Length

Description

Revision 0 1 Specifies the IOMMU specification revision

Reserved 1 7 Must be 0

Control 8 8 IOMMU control register

Status 16 8 IOMMU status register

Reserved 24 8 Must be 0

Event Log Entry 32 16 IOMMU fault related event log entry as defined in the IOMMU
specification

Reserved 48 16 Must be 0

Device Table
Entry

64 32 Value from the device table for a given Requester ID

Level 6 Page
Table Entry

96 8 PTE entry for device virtual address in page level 6

Level 5 Page
Table Entry

104 8 PTE entry for device virtual address in page level 5

Level 4 Page
Table Entry

112 8 PTE entry for device virtual address in page level 4

Level 3 Page
Table Entry

120 8 PTE entry for device virtual address in page level 3

Level 2 Page
Table Entry

128 8 PTE entry for device virtual address in page level 2

Level 1 Page
Table Entry

136 8 PTE entry for device virtual address in page level 1

Bit Position Description

7:0 Reserved

15:8 Encoded value for the Error_Type. See Table 20 Error Types for details.

16 Address: Error was detected on the address signals or on the address portion of the transaction.

17 Control: Error was detected on the control signals or in the control portion of the transaction.

18 Data: Error was detected on the data signals or in the data portion of the transaction.

19 Responder: Error was detected by the responder of the transaction.

20 Requester: Error was detected by the requester of the transaction.
UEFI Forum, Inc. March 2019 2408

UEFI Specification, Version 2.8
Table 92. Error Types

21 First Error: If multiple errors are logged for a section type, this is the first error in the chronological
sequence. Setting of this bit is optional.

22 Overflow: Additional errors occurred and were not logged due to lack of logging resources.

63:23 Reserved.

Encoding Description

1 ERR_INTERNAL Error detected internal to the component.

16 ERR_BUS Error detected in the bus.

Detailed Internal Errors

4 ERR_MEM Storage error in memory (DRAM).

5 ERR_TLB Storage error in TLB.

6 ERR_CACHE Storage error in cache.

7 ERR_FUNCTION Error in one or more functional units.

8 ERR_SELFTEST component failed self test.

9 ERR_FLOW Overflow or undervalue of internal queue.

Detailed Bus Errors

17 ERR_MAP Virtual address not found on IO-TLB or IO-PDIR.

18 ERR_IMPROPER Improper access error.

19 ERR_UNIMPL Access to a memory address which is not mapped to any component

20 ERR_LOL Loss of Lockstep

21 ERR_RESPONSE Response not associated with a request

22 ERR_PARITY Bus parity error (must also set the A, C, or D Bits).

23 ERR_PROTOCOL Detection of a protocol error.

24 ERR_ERROR Detection of a PATH_ERROR

25 ERR_TIMEOUT Bus operation timeout.

26 ERR_POISONED A read was issued to data that has been poisoned.

All Others Reserved.

Bit Position Description
UEFI Forum, Inc. March 2019 2409

UEFI Specification, Version 2.8
N.2.12 CCIX PER Log Error Section

Type:{0x91335EF6, 0xEBFB, 0x4478, 0xA6A6, {0x88, 0xB7, 0x28, 0xCF, 0x75, 0xD7}}

Table 93. CCIX PER Log Error Record

Mnemonic Byte
Offset

Byte
Length

Description

Length 0 4 Length in bytes for entire structure.
Validation Bits 4 8 Indicates which of the following fields is valid:

Bit 0 – CCIX Source ID Valid

Bit 1 – CCIX Port ID Valid

Bit 2 – CCIX PER Log Valid

Bit 3-63 – Reserved
CCIX Source ID 12 1 If the agent type is an HA, SA, or RA: This field indicates the

CCIX Agent ID of the component that reported this error. In this
case bits 7:6 must be zero, since Agent ID is only 6 bits.

Otherwise, this field this specifies the CCIX Device ID (i.e. in the
case of Port, CCIX Link, or device errors).

CCIX Port ID 13 1 This field indicates the CCIX Port ID that reported this error. Bits
7:5 must be zero, since CCIX Port ID is only 5 bits.

Reserved 14 2 Must be zero.
CCIX PER Log 16 20...n DWORD (32-bit) entries in CCIX PER Log Structure, as

described in Section 7.3.2 of the CCIX Base Specification –
Revision 1.0.

NOTE: The Per Log Structure contains a header describing the
number of DWORDs in the error record.
UEFI Forum, Inc. March 2019 2410

UEFI Specification, Version 2.8
Appendix O - UEFI ACPI Data Table

To prevent ACPI namespace collision, a UEFI ACPI table format is defined. This allows creation of ACPI

tables without colliding with tables reserved in the namespace.

Table 94. UEFI Table Structure

The first use of this UEFI ACPI table format is the SMM Communication ACPI Table. This table describes a
special software SMI that can be used to initiate inter-mode communication in the OS present
environment by non-firmware agents with SMM code.

Note: The use of the SMM Communication ACPI table is deprecated in UEFI spec. 2.7. This is
due to the lack of a use case for inter-mode communication by non-firmware agents with
SMM code and support for initiating this form of communication in common OSes.

Table 95. SMM Communication ACPI Table.

Field Byte
Length

Byte Offset Description

Header

Signature 4 0 ‘UEFI’ (0x55, 0x45, 0x46, 0x49). Signature for UEFI drivers that
produce ACPI tables.

Length 4 4 Length, in bytes, of the entire UEFI Table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the UEFI Table, the table ID is the manufacture model ID.

OEM Revision 4 24 OEM revision of UEFI table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Identifier 16 36 This value contains a GUID which identifies the remaining table
contents.

DataOffset 2 52 Specifies the byte offset to the remaining data in the UEFI table.

Data X DataOffset Contains the rest of the UEFI table contents

Field Byte
Length

Byte
Offset

Description

Signature 4 0 ‘UEFI’ (0x55, 0x45, 0x46, 0x49) Signature for UEFI drivers that produce
ACPI tables.

Length 4 4 66+N. Length, in bytes, of the entire Table. N is a length of the optional
implementation specific data that can be included in this table.

Revision 1 8 2

Checksum 1 9 Entire table must sum to zero.
UEFI Forum, Inc. March 2019 2411

UEFI Specification, Version 2.8
Invocation method

There are two methods of invocation provided by this specification:

1. Using invocation register

If the invocation register is non-zero, this then this method takes precedence and the SW SMI number
field and DataOffset fields must be ignored. The invocation register entry provides the address of a
register that must be written to in order to invoke the SMM service. The caller must write the
communication buffer address into the register. This will cause an SMM invocation. Upon return from the
SMM service call the value in the register provides a return error codes from the SMM invocation. See PI/
SMM Vol 4 version xx.yy EFI_SMM_COMMUNICATION_PROTOCOL.Communicate function for valid error
codes.

OEMID 6 10 OEM ID.

OEM Table
ID

8 16 For the UEFI Table, the table ID is the manufacturer model ID.

OEM
Revision

4 24 OEM revision of UEFI table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator
Revision

4 32 Revision of utility that created the table.

Identifier 16 36 GUID {0xc68ed8e2, 0x9dc6, 0x4cbd, 0x9d, 0x94, 0xdb, 0x65, \ 0xac,
0xc5, 0xc3, 0x32}

DataOffset 2 52 Must be 54 for this version of the specification. Specifies the byte offset

of the SW SMI Number field, relative to the start of this table.

Future expansion may place additional fields between DataOffset

and SW SMI Number, so this offset should always be used to

calculate the location of SW SMI Number.

SW SMI
Number

4 54 Number to write into software SMI triggering port.

Buffer Ptr
Address

8 58 Address of the communication buffer pointer. The pointer address (this
field) and the pointer value (the actual address of the communication
buffer) are 64-bit physical addresses.
The creator of this table must initialize pointer value with 0. The
communication buffer must begin with the

EFI_SMM_COMMUNICATE_HEADER defined in the "Related

Definitions" section below. The communication buffer must be
physically contiguous.

Invocation
register

12 66 Generic Address Structure (GAS) which provides the address of a
register that must be written to with the address of a communication
buffer to invoke a management mode service. Using this method of
invocation is optional, and if not present this span of the table should be
populated with zeros. See ACPI6.0 "Generic Address Structure"

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. March 2019 2412

UEFI Specification, Version 2.8
The invocation address field uses generic address structure to specify the register address. GAS allows
the address space of the register to be Functional Fixed Hardware (FFH). If this address space is used
please refer to CPU architecture specific documentation for ascertaining how the write to the register
should be performed. For more details on the GAS format please see the ACPI Specification.

Note that for implementations that support concurrent invocation of SMM from multiple processors, the
register provided must be a per processor register. In such implementation, the calling execution context
must not migrate from one CPU to another between writing to the register, to make the SMM call, and
reading the value of the register, to read the error return code.

2. Using the SW SMI number

This method is specific to x86 CPUs .

In order to initiate inter-mode communication OS present agent has to perform the following tasks:

• Prepare communication data buffer that starts with the EFI_SMM_COMMUNICATE_HEADER.

• Check the value of the communication buffer pointer (a value at the address specified by the
Buffer Ptr Address field). If the pointer's value is zero, update it with the address of the
communication buffer. If the pointer's value is non-zero, another inter-mode communication
transaction is in progress, and the current communication attempt has to be postponed or
canceled.

Note: These steps must be performed as an atomic transaction. For example, on IA-32/x64 platforms
this can be done using the CMPXCHG CPU instruction.

• Generate software SMI using value from the SMM Communication ACPI Table. The actual
means of generating the software SMI is platform-specific.

• Set communication buffer pointer's value to zero.

 Related Definitions

typedef struct {

 EFI_GUID HeaderGuid;

 UINTN MessageLength;

 UINT8 Data[ANYSIZE_ARRAY];
} EFI_SMM_COMMUNICATE_HEADER;

HeaderGuid

Allows for disambiguation of the message format. Type EFI_GUID is defined in
InstallProtocolInterface().

MessageLength

Describes the size of Data (in bytes) and does not include the size of the header.

Data

Designates an array of bytes that is MessageLength in size
UEFI Forum, Inc. March 2019 2413

UEFI Specification, Version 2.8

UEFI Forum, Inc. March 2019 2414

Appendix P - Hardware Error Record Persistence Usage

The OS determines if a platform implements support for Hardware Error Record Persistence by reading
the HwErrRecSupport globally defined variable. If the attempt to read this variable returns
EFI_NOT_FOUND (14), then the OS will infer that the platform does not implement Hardware Error
Record Persistence. If the attempt to read this variable succeeds, then the OS uses the returned value to
determine whether the platform supports Hardware Error Record Persistence. A non-zero value indicates
that the platform supports Hardware Error Record Persistence.

P.1 Determining space
To determine the amount of space (in bytes) guaranteed by the platform for saving hardware error
records, the OS invokes QueryVariableInfo, setting the HR bit in the Attributes bitmask.

P.2 Saving Hardware error records
To save a hardware error record, the OS invokes SetVariable, supplying
EFI_HARDWARE_ERROR_VARIABLE as the VendorGuid and setting the HR bit in the Attributes bitmask.
The VariableName will be constructed by the OS by concatenating an index to the string “HwErrRec” (i.e.,
HwErrRec0001). The index portion of the variable name is determined by reading all of the hardware
error record variables currently stored on the platform and choosing an appropriate index value based on
the names of the existing variables. The platform saves the supplied Data. If insufficient space is present
to store the record, the platform will return EFI_OUT_OF_RESOURCES, in which case, the OS may clear an
existing record and retry. A retry attempt may continue to fail with status EFI_OUT_OF_RESOURCES if a
reboot is required to coalesce resources after deletion. The OS may only save error records after
ExitBootServices is called. Firmware may also use the Hardware Error Record Persistence interface to
write error records, but it may only do so before ExitBootServices is called. If firmware uses this interface
to write an error record, it must use the VariableName format used by the OS as described above and the
error records it creates must contain the firmware’s CreatorId. Firmware may overwrite error records
whose CreatorId matches the firmware’s CreatorId. Firmware may overwrite error records that have
been cleared by other components.

During OS initialization, the OS discovers the names of all persisted error record variables by enumerating
the current variable names using GetNextVariableName. Having identified the names of all error record
variables, the OS will then read and process all of the error records from the store. After the OS processes
an error record, it clears the variable if it was the creator of the variable (determined by checking the
CreatorId field of the error record).

P.3 Clearing error record variables
To clear error record variables, the OS invokes SetVariable, supplying EFI_HARDWARE_ERROR_VARIABLE
as the VendorGuid and setting the HR bit in the Attributes bitmask. The supplied DataSize, and Data
parameters will all be set to zero to indicate that the variable is to be cleared. The supplied VariableName
identifies which error record variable is to be cleared. The OS may only clear error records after
ExitBootServices has been called. The OS itself may only clear error records which it created (e.g. error
records whose CreatorId matches that of the OS). However, a management application running on the OS
may clear error records created by other components. This enables error records created by firmware or
other OSes to be cleared by the currently running OS.

UEFI Specification, Version 2.8
Appendix Q - References

Q.1 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification:

• "8802.1x Port-based access control” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi) .

• "802.1X-2004, IEEE Standard for Local and Metropolitan Area Networks Port-Based Network
Access Control” at “Links to UEFI-Related Documents” (http://uefi.org/uefi)..

• "AMD64 Architecture Programmer’s Manual” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Advanced Configuration and Power Interface Specification, 3.0”. at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading

• "Advanced Configuration and Power Interface Specification, 4.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "Address Resolution Protocol; Refer to Appendix E, “32/ 64-Bit UNDI Specification” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "BIOS Boot Specification Version 1.01” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• “CAE Specification [UUID], DCE 1.1:Remote Procedure Call, Document Number C706, Universal
Unique Identifier Appendix” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[BASE64] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) .

• "Bluetooth Network Encapsulation Protocol (BNEP) Specification, version 1.0” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi) .

• "BLUETOOTH SPECIFICATION, version 4.1” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• Bootstrap Protocol; This reference is included for backward compatibility. BC protocol supports
DHCP and BOOTP. Refer to Appendix E, “32/ 64-Bit UNDI Specification, RFC 0951” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• [DBCS] Japanese Language DBCS (Double Byte Character Set): MS-DOS Version, Sizuoka
Information Industry, AX Conference, 1991.

• “[EAP] Tunneled TLS Authentication Protocol Version 1 (EAP-TTLSv1)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• [ECMA 262] ECMA Script Language Specification (ECMA-262) Edition 5.1”.at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading "

• "EFI Specification Version 1.02” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).
UEFI Forum, Inc. March 2019 2415

UEFI Specification, Version 2.8
• "EFI Specification Version 1.10” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• "El Torito” Bootable CD-ROM Format Specification, Version 1.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• Envisioning Information, Edward R. Tufte, Graphics Press, 1990.

• File Verification Using CRC, Mark R. Nelson, Dr. Dobbs, May 1994

• HTML: The Definitive Guide, 2nd Edition, Chuck Musciano and Bill Kennedy, O’Reilly and
Associates, Inc., 1997, ISBN: 1-56592-235-2.

• "IEEE Standard for Local and metropolitan area networks: Virtual Bridged Local Area Networks,
IEEE Std 802.1Q - 2005” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Information Technology — BIOS Enhanced Disk Drive Services (EDD), working draft T13/
1386D, Revision 5a” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Intel 64 and IA=32 Architecture Software Developer’s Manual ” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "iSCSI Boot Firmware Table (iBFT) as defined in ACPI 3.0b Specification, Version 1.01,” heading
at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "ISO Standard 9995, Keyboard layouts for text and office systems” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,
Rev. 2.2,” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev.
2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Software Conventions and Runtime Architecture Guide” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "Itanium® System Abstraction Layer Specification” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• IEEE 1394 Specification, http://www.1394ta.org/Technology/Specifications/specifications.htm

• "Internet Engineering Task Force (IETF)” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.

• "ISO 639-2:1998. Codes for the Representation of Names of Languages – Part2: Alpha-3 code”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• ISO/IEC 3309:1991(E), Information Technology - Telecommunications and information
exchange between systems - High-level data link control (HDLC) procedures - Frame structure,
International Organization For Standardization, Fourth edition 1991-06-01

• ITU-T Rec. V.42, Error-Correcting Procedures for DCEs using asynchronous-to-synchronous
conversion, October, 1996

• JavaScript: The Definitive Guide, 3rd Edition, David Flanagan, O’Reilly and Associates, Inc., 1998,
ISBN: 1-56592-392-8.
UEFI Forum, Inc. March 2019 2416

UEFI Specification, Version 2.8
• JavaScript: The Complete Reference, Thomas Powell & Fritz Schneider (McGraw-Hill/ Osborne,
Emeryville California, 2004)

• "Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Microsoft Portable Executable and Common Object File Format Specification, Version 8.1”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Microsoft Windows Authenticode Portable Executable Signature Format, Version 1.0”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "OSTA Universal Disk Format Specification, Revision 2.00” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "PCI BIOS Specification, Revision 3.0” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”
at “Links to UEFI-Related Documents” (http://uefi.org/uefi) .

• "PCI Express Base Specification, Revision 2.1” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "PCI Hot-Plug Specification, Revision 1.0,” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "PCI Local Bus Specification, Revision 3.0” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "Plug and Play BIOS Specification, Version 1.0A,” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "POST Memory Manager Specification, Version 1.01,” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• Professional XML, Didier Martin, Mark Birbeck, et. al., Wrox Press, April, 2000, ISBN: 1-861003-
11-0.

• [PUI] Programming the User Interface: Principles and Examples, Judith R. Brown, Steve
Cunningham, John Wiley & Sons, 1989, ISBN: 0-471-63843-9.

• "Microsoft’s PEAP version 0” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• [PKCS] The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA: RSA Data
Security, Inc.

• "PC/SC Specification, Part 3: Requirements for PC-Connected Interface Devices” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "Processor Architecture Type” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Protected EAP Protocol (PEAP)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Protected EAP Protocol (PEAP) Version 2” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi) .

• "Request For Comments” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.
UEFI Forum, Inc. March 2019 2417

UEFI Specification, Version 2.8
• "[RFC0768] User Datagram Protocol – UDP over IPv4” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 791] Internet Protocol DARPA Internet Program Protocol (IPv4) Specification” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC0792] ICMP for Ipv4” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information

• "[RFC0793] Transmission Control Protocol – TCPv4” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information.

• "[RFC 1034] Domain Names - Concepts and Facilities” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 1035] Domain Names - Implementation and Specification” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC1350] Trivial File Transfer Protocol – TFTP” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more
information.

• "[RFC 1700] ASSIGNED NUMBERS” ate “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• "[RFC 1994] PPP Challenge Handshake Authentication Protocol (CHAP)” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "[RFC2131] Dynamic Host Configuration Protocol” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC2132] DHCP Options and BOOTP Vendor Extensions,” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC2147] Transmission Control Protocol v6 – TCPv6” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information. Refer to Appendix E, “32/64-Bit UNDI Specification,” for more
information.

• "[RFC2236] Internet Group Management Protocol” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 2246] The TLS Protocol Version 1.0” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC2315] Cryptographic Message Syntax Version 1.5” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC2347] TFTP Option Extension” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.

• "[RFC2348] TFTP Blocksize Option” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.

• "[RFC2349] TFTP Timeout Interval and Transfer Size Options” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.
UEFI Forum, Inc. March 2019 2418

UEFI Specification, Version 2.8
• "[RFC 2407]The Internet IP Security Domain of Interpretation for ISAKMP” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) .

• "[RFC 2408]Internet Security Association and Key Management Protocol(ISAKMP)” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 2409]The Internet Key Exchange (IKE)” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC2454] User Datagram Protocol – UDP over IPv6” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 2459] Internet X.509 Public Key Infrastructure Certificate and CRL Profile” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi) .

• "[RFC 2460] Internet Protocol, Version 6 (IPv6) Specification” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC2463] ICMP for Ipv6” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information

• "[RFC 2759] Microsoft PPP CHAP Extensions, Version 2” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 2818] HTTP Over TLS” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3004] The User Class option for DHCP” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• [RFC 3232] J. Reynolds, "Assigned Numbers: RFC 1700 is Replaced by an On-line Database",
January 2002

• "[RFC 3315] Dynamic Host Configuration Protocol for IPv6 (DHCPv6)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 3396] Encoding Long Options in the Dynamic Host Configuration Protocol” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3513] Internet Protocol Version 6 (IPv6) Addressing Architecture” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading.

• "[RFC 3596] DNS Extensions to Support IP Version 6” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) .

• "[RFC 3617] Uniform Resource Identifier (URI) Scheme and Applicability Statement for the
Trivial File Transfer Protocol (TFTP)” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• "[RFC 3646] DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3720] Internet Small Computer Systems Interface (iSCSI)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 3748] Extensible Authentication Protocol (EAP)” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 3986]Uniform Resource Identifiers (URI): Generic Syntax” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).
UEFI Forum, Inc. March 2019 2419

UEFI Specification, Version 2.8
• "[RFC 4173] Bootstrapping Clients using the Internet Small Computer System Interface (iSCSI)
Protocol” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 4301]Security Architecture for the Internet Protocol” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 4303]IP Encapsulation Security Payload (ESP)” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 4346] The Transport Layer Security (TLS) Protocol Version 1.1” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading.

• "[RFC 4347] Datagram Transport Layer Security” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading

• "[RFC4578] Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot
eXecution Environment (PXE)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5216] The EAP-TLS Authentication Protocol” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading.

• "[RFC 5246] The Transport Layer Security (TLS) Protocol Version 1.2” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 5247] Extensible Authentication Protocol (EAP) Key Management Framework” at “Links
to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5281] Extensible Authentication Protocol Tunneled Transport Layer Security
Authenticated Protocol Version 0” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5970] DHCPv6 Options for Network Boot,” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC 6101] The Secure Sockets Layer (SSL) Protocol Version 3.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 6347] Datagram Transport Layer Security Version 1.2 (DTLS)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[SM spec] Common Security: CDSA and CSSM, Version 2 (with corrigenda), was Signed
Manifest Specification” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• Super VGA Graphics Programming Secrets, Steve Rimmer, Windcrest / McGraw-Hill, 1993,
ISBN: 0-8306-4428-8.

• "System Management BIOS Reference Specification, Version 2.6.1” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press, 1983.

• "The Unicode Standard, Version 5.2” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Universal Serial Bus PC Legacy Compatibility Specification, Version 0.9,” heading at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "Universal Serial Bus Specification, Revision 2.0” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "USB Battery Charging Specification” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).
UEFI Forum, Inc. March 2019 2420

UEFI Specification, Version 2.8
• XML: A Primer, Simon St. Laurent, MIS:Press, 1998, ISBN:1-5582-8592-X.

Q.2 Prerequisite Specifications
In general, this specification requires that functionality defined in a number of other existing
specifications be present on a system that implements this specification. This specification requires that
those specifications be implemented at least to the extent that all the required elements are present.

This specification prescribes the use and extension of previously established industry specification tables
whenever possible. The trend to remove runtime call-based interfaces is well documented. The ACPI
(Advanced Configuration and Power Interface) specification is an example of new and innovative
firmware technologies that were designed on the premise that OS developers prefer to minimize runtime
calls into firmware. ACPI focuses on no runtime calls to the BIOS.

Q.2.1 ACPI Specification
The interface defined by the Advanced Configuration and Power Interface (ACPI) Specification is the
primary OS runtime interface for IA-32, x64 and Itanium platforms. ACPI fully defines the methodology
that allows the OS to discover and configure all platform resources. ACPI allows the description of non-
Plug and Play motherboard devices in a plug and play manner. ACPI also is capable of describing power
management and hot plug events to the OS. (For more information on ACPI, see “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading "ACPI”; see also http://uefi.org/acpi).

Q.2.2 Additional Considerations for Itanium-Based Platforms
Any information or service that is available in Itanium architecture firmware specifications supercedes
any requirement in the common supported 32-bit and Itanium architecture specifications listed above.
The Itanium architecture firmware specifications (currently the Itanium® System Abstraction Layer
Specification and portions of the Intel® Itanium® Architecture Software Developer’s Manual, volumes 1–3)
define the baseline functionality required for all Itanium architecture platforms. The major addition that
UEFI makes to these Itanium architecture firmware specifications is that it defines a boot infrastructure
and a set of services that constitute a common platform definition for high-volume Itanium architecture–
based systems to implement based on the more generalized Itanium architecture firmware
specifications.

The following specifications are the required Intel Itanium architecture specifications for all Itanium
architecture–based platforms:

• "Itanium® System Abstraction Layer Specification” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,
Rev. 2.2,” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev.
2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
UEFI Forum, Inc. March 2019 2421

UEFI Specification, Version 2.8
Appendix R - Glossary

_ADR
A reserved name in ACPI name space. It refers to an address on a bus that has
standard enumeration. An example would be PCI, where the enumeration method is
described in the PCI Local Bus specification.

_CRS
A reserved name in ACPI name space. It refers to the current resource setting of a
device. A _CRS is required for devices that are not enumerated in a standard fashion.
_CRS is how ACPI converts nonstandard devices into Plug and Play devices.

_HID
A reserved name in ACPI name space. It represents a device’s plug and play hardware
ID and is stored as a 32-bit compressed EISA ID. _HID objects are optional in ACPI.
However, a _HID object must be used to describe any device that will be enumerated
by the ACPI driver in the OS. This is how ACPI deals with non–Plug and Play devices.

_UID
A reserved name in ACPI name space. It is a serial number style ID that does not
change across reboots. If a system contains more than one device that reports the
same _HID, each device must have a unique _UID. The _UID only needs to be unique
for device that have the exact same _HID value.

ACPI Device Path
A Device Path that is used to describe devices whose enumeration is not described in
an industry-standard fashion. These devices must be described using ACPI AML in the
ACPI name space; this type of node provides linkage to the ACPI name space.

ACPI
Refers to the Advanced Configuration and Power Interface Specification and to the
concepts and technology it discusses. The specification defines a new interface to the
system board that enables the operating system to implement operating
system-directed power management and system configuration.

Alt-GR Unicode
Represents the character code of a key when the Alt-GR modifier key is held down.
This key (A2) in some keyboard layouts is defined as the right alternate key and
serves the same function as the left alternate key. However, in many other layouts it
is a secondary modifier key similar to shift. For instance, key C1 is equated to the
letter a and its Unicode character code in the typical U.K. keyboard is a non-shifted
character code of 0x0061. When holding down the Alt-GR key in conjunction with the
pressing of key C1, , the value on the same keyboard often produces an á, which is a
character code 0x00E1.
UEFI Forum, Inc. March 2019 2422

UEFI Specification, Version 2.8
Base Code (BC)
The PXE Base Code, included as a core protocol in EFI, is comprised of a simple
network stack (UDP/IP) and a few common network protocols (DHCP, Bootserver
Discovery, TFTP) that are useful for remote booting machines.

BC
See Base Code (BC)

Big Endian
A memory architecture in which the low-order byte of a multibyte datum is at the
highest address, while the high-order byte is at the lowest address. See Little Endian.

BIOS Boot Specification Device Path
A Device Path that is used to point to boot legacy operating systems; it is based on
the BIOS Boot Specification, Version 1.01.

BIOS Parameter Block (BPB)
The first block (sector) of a partition. It defines the type and location of the FAT File
System on a drive.

BIOS
Basic Input/Output System. A collection of low-level I/O service routines.

Block I/O Protocol
A protocol that is used during boot services to abstract mass storage devices. It
allows boot services code to perform block I/O without knowing the type of a device
or its controller.

Block Size
The fundamental allocation unit for devices that support the Block I/O Protocol. Not
less than 512 bytes. This is commonly referred to as sector size on hard disk drives.

Boot Device
The Device Handle that corresponds to the device from which the currently
executing image was loaded.

Boot Manager
The part of the firmware implementation that is responsible for implementing
system boot policy. Although a particular boot manager implementation is not
specified in this document, such code is generally expected to be able to enumerate
and handle transfers of control to the available OS loaders as well as UEFI
applications and drivers on a given system. The boot manager would typically be
responsible for interacting with the system user, where applicable, to determine
what to load during system startup. In cases where user interaction is not indicated,
the boot manager would determine what to load and, if multiple items are to be
loaded, what the sequencing of such loads would be.
UEFI Forum, Inc. March 2019 2423

UEFI Specification, Version 2.8
Block Size
The fundamental allocation unit for devices that support the Block I/O Protocol. Not
less than 512 bytes. This is commonly referred to as sector size on disk drives.

Boot Services Table
A table that contains the firmware entry points for accessing boot services functions
such as Task Priority Services and Memory Allocation Services. The table is accessed
through a pointer in the System Table.

Boot Services Time
The period of time between platform initialization and the call to
ExitBootServices(). During this time, UEFI Driver and applications are loaded
iteratively and the system boots from an ordered list of EFI OS loaders.

Boot Services
The collection of interfaces and protocols that are present in the boot environment.
The services minimally provide an OS loader with access to platform capabilities
required to complete OS boot. Services are also available to drivers and applications
that need access to platform capability. Boot services are terminated once the
operating system takes control of the platform.

BPB
See BIOS Parameter Block (BPB).

BTT
Block Translation Table: A software mechanism for adding single block write
atomicity to any Block Mode ranges or byte-addressable Persistent Memory ranges.

Callback

Target function which augments the Forms Processor’s ability to evaluate or process
configuration settings. Callbacks are not available when the Forms Processor is
operating in a Disconnected state.

CIM
See Common Information Model (CIM).

Cluster
A collection of disk sectors. Clusters are the basic storage units for disk files. See File
Allocation Table (FAT).

COFF
Common Object File Format, a standard file format for binary images.

Coherency Domain
(1) The global set of resources that is visible to at least one processor in a platform. 
(2) The address resources of a system as seen by a processor. It consists of both
system memory and I/O space.
UEFI Forum, Inc. March 2019 2424

UEFI Specification, Version 2.8
Common Information Model (CIM)
An object-oriented schema defined by the DMTF. CIM is an information model that
provides a common way to describe and share management information enterprise-
wide.

Console I/O Protocol
A protocol that is used during Boot Services to handle input and output of text-based
information intended for the system administrator. It has two parts, a Simple Input
Protocol that is used to obtain input from the ConsoleIn device and a Simple Text
Output Protocol that is used to control text-based output devices. The Console I/O
Protocol is also known as the EFI Console I/O Protocol.

ConsoleIn
The device handle that corresponds to the device used for user input in the boot
services environment. Typically the system keyboard.

ConsoleOut
The device handle that corresponds to the device used to display messages to the
user from the boot services environment. Typically a display screen.

DBCS
Double Byte Character Set.

Desktop Management Interface (DMI)
A platform management information framework, built by the DMTF and designed to
provide manageability for desktop and server computing platforms by providing an
interface that is: 
(1) independent of any specific desktop operating system, network operating
system, network protocol, management protocol, processor, or hardware platform; 
(2) easy for vendors to implement; and 
(3) easily mapped to higher-level protocols.

Desktop Management Task Force (DMTF)
The DMTF is a standards organization comprised of companies from all areas of the
computer industry. Its purpose is to create the standards and infrastructure for cost-
effective management of PC systems.

Device Handle
A handle points to a list of one or more protocols that can respond to requests for
services for a given device referred to by the handle.

Device I/O Protocol
A protocol that is used during boot services to access memory and I/O. Also called
the EFI Device I/O Protocol.

Device Path Instance
When an environment variable represents multiple devices, it is possible for a device
path to contain multiple device paths. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and a serial output
UEFI Forum, Inc. March 2019 2425

UEFI Specification, Version 2.8
console. This environment variable would describe a console output stream that
would send output to both devices and therefore has a Device Path that consists of
two complete device paths. Each of these paths is a device path instance.

Device Path Node
A variable-length generic data structure that is used to build a device path. Nodes are
distinguished by type, subtype, length, and path-specific data. See Device Path.

Device Path Protocol
A protocol that is used during boot services to provide the information needed to
construct and manage Device Paths. Also called the EFI Device Path Protocol.

Device Path
A variable-length binary data structure that is composed of variable-length generic
device path nodes and is used to define the programmatic path to a logical or
physical device. There are six major types of device paths: Hardware Device Path,
ACPI Device Path, Messaging Device Path, Media Device Path, BIOS Boot
Specification Device Path, and End of Hardware Device Path.

DHCP
See Dynamic Host Configuration Protocol (DHCP).

Disconnected
The state when a Forms Processor is manipulating a form set without being
connected to the Target’s pre-OS environment. For example, after booting an OS, a
Forms Processor cannot execute call-backs or read the configuration settings. For
example, when running a Forms Browser while on a remote machine that is not
connected to the Target. In these cases, the Forms Processor has limited knowledge
of the Target’s current configuration settings and limited or no ability to use call-
backs.

Disk I/O Protocol
A protocol that is used during boot services to abstract Block I/O devices to allow
non-block-sized I/O operations. Also called the EFI Disk I/O Protocol.

DMI
See DBCS.

DMTF
See Desktop Management Task Force (DMTF).

DNS
Domain Name System. A protocol used manipulating and translating hostname and
IP address

DTLS
Datagram Transport Layer Security. A protocol to provide communication privacy
above UDP.
UEFI Forum, Inc. March 2019 2426

UEFI Specification, Version 2.8
Dynamic Host Configuration Protocol (DHCP)
A protocol that is used to get information from a configuration server. DHCP is
defined by the Desktop Management Task Force (DMTF), not EFI.

EAP
Extensible Authentication Protocol. An authentication framework which supports
multiple authentication methods

EBC Image
Executable EBC image following the PE32 file format.

EBC
See EFI Byte Code (EBC).

EFI
Extensible Firmware Interface. An interface between the operating system (OS) and
the platform firmware.

EFI Byte Code (EBC)
The binary encoding of instructions as output by the EBC C compiler and linker. The
EBC Image is executed by the interpreter.

EFI File
A container consisting of a number of blocks that holds an image or a data file within
a file system that complies with this specification.

EFI Hard Disk
A hard disk that supports the new EFI partitioning scheme (GUID Partition).

EFI-compliant
Refers to a platform that complies with this specification.

EFI-conformant
See EFI-compliant.

End of Hardware Device Path
A Device Path which, depending on the subtype, is used to indicate the end of the
Device Path instance or Device Path structure.

Enhanced Mode (EM)
The 64-bit architecture extension that makes up part of the Intel® Itanium®
architecture.

Event Services
The set of functions used to manage events. Includes
EFI_BOOT_SERVICES.CheckEvent(), EFI_BOOT_SERVICES.CreateEvent(),
EFI_BOOT_SERVICES.CloseEvent(), EFI_BOOT_SERVICES.SignalEvent(),
and EFI_BOOT_SERVICES.WaitForEvent().
UEFI Forum, Inc. March 2019 2427

UEFI Specification, Version 2.8
Event
An EFI data structure that describes an “event”—for example, the expiration
of a timer.

Event Services
The set of functions used to manage events.Includes
EFI_BOOT_SERVICES.CheckEvent(), EFI_BOOT_SERVICES.CreateEvent(),
EFI_BOOT_SERVICES.CloseEvent(), EFI_BOOT_SERVICES.SignalEvent(),
and EFI_BOOT_SERVICES.WaitForEvent().

FAT File System
The file system on which the EFI File system is based. See File Allocation Table (FAT)
and GUID Partition Table (GPT).

FAT
See File Allocation Table (FAT).

File Allocation Table (FAT)
A table that is used to identify the clusters that make up a disk file. File allocation
tables come in three flavors: FAT12, which uses 12 bits for cluster numbers; FAT16,
which uses 16 bits; and FAT32, which allots 32 bits but only uses 28 (the other 4 bits
are reserved for future use).

File Handle Protocol
A component of the File System Protocol. It provides access to a file or directory. Also
called the EFI File Handle Protocol.

File System Protocol
A protocol that is used during boot services to obtain file-based access to a device. It
has two parts, a Simple File System Protocol that provides a minimal interface for
file-type access to a device, and a File Handle Protocol that provides access to a file
or directory.

Firmware
Any software that is included in read-only memory (ROM).

Font
A graphical representation corresponding to a character set, in this case Unicode.
The following are the same Latin letter in three fonts using the same size (14):

A

A

A

Font glyph
The individual elements of a font corresponding to single characters are called font
glyphs or simply glyphs. The first character in each of the above three lines is a glyph
for the letter "A" in three different fonts.
UEFI Forum, Inc. March 2019 2428

UEFI Specification, Version 2.8
Form
Logical grouping of questions with a unique identifier.

Form Set

An HII database package describing a group of forms, including one parent form and
zero or more child forms.

Forms Browser
A Forms Processor capable of displaying the user-interface information a display and
interacting with a user.

Forms Processor
An application capable of reading and processing the forms data within a forms set.

Globally Unique Identifier (GUID)
A 128-bit value used to differentiate services and structures in the boot services
environment. The format of a GUID is defined in Appendix A. See Protocol.

Glyph
The individual elements of a font corresponding to single characters. May also be
called font keyboard layout glyphs. Also see font glyph above.

GPT: See GUID Partition Table (GPT).

GPT disk layout:
The data layout on a disk consisting of a protective MBR in LBA 0, a GPT Header in
LBA 1, and additional GPT structures and partitions in the remaining LBAs. See
chapter 5.

GPTHeader
The header in a GUID Partition Table (GPT). Among other things, it contains the
number of GPT Partition Entries and the first and last LBAs that can be used for the
entries.

GPT Partition Entry
A data structure that characterizes a Partition in the GPT disk layout. Among other
things, it specifies the starting and ending LBA of the partition.

GUID Partition Table (GPT)
A data structure that describes one or more partitions. It consists of a GPTHeader
and, typically, at least one GPTPartition Entry. There are two GUID partition tables:
the Primary Partition Table (located in LBA 1 of the disk) and a Backup Partition Table
(located in the last LBA of the disk). The Backup Partition Table is a copy of the
Primary Partition Table.

GPTPartition Entry
A data structure that characterizes a GUID Partition. Among other things, it specifies
the starting and ending LBA of the partition.
UEFI Forum, Inc. March 2019 2429

UEFI Specification, Version 2.8
GUID Partition
A contiguous group of sectors on an EFI Hard Disk.

Handle
See Device Handle.

Hardware Device Path
A Device Path that defines how a hardware device is attached to the resource
domain of a system (the resource domain is simply the shared memory, memory
mapped I/O, and I/O space of the system).

HII
Human Interface Infrastructure.

HII Database
The centralized repository for HII-related information, organized as package lists.

HTML
Hypertext Markup Language. A particular implementation of SGML focused on
hypertext applications. HTML is a fairly simple language that enables the description
of pages (generally Internet pages) that include links to other pages and other data
types (such as graphics). When applied to a larger world, HTML has many
shortcomings, including localization (q.v.) and formatting issues. The HTML form
concept is of particular interest to this application.

HTTP
Hypertext transfer protocol. HTTP functions as request-response protocol in the
client-server computing rule.

IA-32
See Intel® Architecture-32 (IA-32).

IFR
Internal Form Representation. Used to represent forms in EFI so that it can be
interpreted as is or expanded easily into XHTML.

Image Handle
A handle for a loaded image; image handles support the loaded image protocol.

Image Handoff State
The information handed off to a loaded image as it begins execution; it consists of
the image’s handle and a pointer to the image’s system table.

Image Header
The initial set of bytes in a loaded image. They define the image’s encoding.

Image Services
The set of functions used to manage EFI images. Includes
EFI_BOOT_SERVICES.LoadImage(), EFI_BOOT_SERVICES.StartImage(),
UEFI Forum, Inc. March 2019 2430

http://www.unicode.org/unicode/reports/tr6

UEFI Specification, Version 2.8
EFI_BOOT_SERVICES.UnloadImage(), EFI_BOOT_SERVICES.Exit(),
EFI_BOOT_SERVICES.ExitBootServices(), and EFI_IMAGE_ENTRY_POINT.

Image
(1) An executable file stored in a file system that complies with this specification.
Images may be drivers, applications or OS loaders. Also called an EFI Image. 

(2) Executable binary file containing EBC and data. Output by the EBC linker.

IME
Input Method Editor. A program or subprogram that is used to map keystrokes to
logographic characters. For example, IMEs are used (possibly with user intervention)
to map the Kana (Hirigana or Katakana) characters on Japanese keyboards to Kanji.

Intel® Architecture-32 (IA-32)
The 32-bit and 16-bit architecture described in the Intel Architecture Software
Developer’s Manual. IA-32 is the architecture of the Intel® P6 family of processors,
which includes the Intel® Pentium® Pro, Pentium II, Pentium III, and Pentium 4
processors.

Intel® Itanium® Architecture
The Intel architecture that has 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set. This architecture is
described in the Itanium™ Architecture Software Developer’s Manual.

internationalization
In this context, is the process of making a system usable across languages and
cultures by using universally understood symbols. Internationalization is difficult due
to the differences in cultures and the difficulty of creating obvious symbols; for
example, why does a red octagon mean "Stop"?

Interpreter
The software implementation that decodes EBC binary instructions and executes
them on a VM. Also called EBC interpreter.

Keyboard layout
The physical representation of a user’s keyboard. The usage of this is in conjunction
to a structure that equates the physical key(s) and the associated action it
represents. For instance, key C1 is equated to the letter a and its Unicode value in
the typical U.K. keyboard is a non-shifted value of 0x0061.

LAN On Motherboard (LOM)
This is a network device that is built onto the motherboard (or baseboard) of the
machine.

LBA:
See Logical Block Address (LBA).
UEFI Forum, Inc. March 2019 2431

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

UEFI Specification, Version 2.8
Legacy Platform
A platform which, in the interests of providing backward-compatibility, retains
obsolete technology.

LFN
See Long File Names (LFN).

Little Endian
A memory architecture in which the low-order byte of a multibyte datum is at the
lowest address, while the high-order byte is at the highest address. See Big Endian.

Load File Protocol
A protocol that is used during boot services to find and load other modules of code.

Loaded Image Protocol
A protocol that is used during boot services to obtain information about a loaded
image. Also called the EFI Loaded Image Protocol.

Loaded Image
A file containing executable code. When started, a loaded image is given its image
handle and can use it to obtain relevant image data.

Localization
The process of focusing a system in so that it works using the symbols of a language/
culture. To a major extent the following design is influenced by the requirements of
localization.

Logical Block Address (LBA):
The address of a logical block on a disk. The first LBA on a disk is LBA 0.

Logographic
A character set that uses characters to represent words or parts of words rather than
syllables or sounds. Kanji is logographic but Kana characters are not.

LOM
See LAN On Motherboard (LOM).

Long File Names (LFN)
Refers to an extension to the FAT File System that allows file names to be longer than
the original standard (eight characters plus a three-character extension).

Machine Check Abort (MCA)
The system management and error correction facilities built into the Intel Itanium
processors.

Master Boot Record (MBR)
The data structure that resides on the LBA 0 of a hard disk and defines the partitions
on the disk.
UEFI Forum, Inc. March 2019 2432

UEFI Specification, Version 2.8
MBR
See Master Boot Record (MBR).

MBR boot code:
 x86 code in the first LBA of a disk.

MBR disk layout:
The data layout on a disk consisting of an MBR in LBA 0 and partitions described by
the MBR in the remaining LBAs. See chapter 5 and Appendix NEW.

MBR Partition Record
A data structure that characterizes a Partition in the MBR disk layout.

MCA
See Machine Check Abort (MCA).

Media Device Path
A Device Path that is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which
partition on a hard drive was being used.

Memory Allocation Services
The set of functions used to allocate and free memory, and to retrieve the memory
map. Includes EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.FreePages(), EFI_BOOT_SERVICES.AllocatePool(),
EFI_BOOT_SERVICES.FreePool(), and
EFI_BOOT_SERVICES.GetMemoryMap().

Memory Map
A collection of structures that defines the layout and allocation of system memory
during the boot process. Drivers and applications that run during the boot process
prior to OS control may require memory. The boot services implementation is
required to ensure that an appropriate representation of available and allocated
memory is communicated to the OS as part of the hand-off of control.

Memory Type
One of the memory types defined by UEFI for use by the firmware and UEFI
applications. Among others, there are types for boot services code, boot services
data, Runtime Services code, and runtime services data. Some of the types are used
for one purpose before EFI_BOOT_SERVICES.ExitBootServices() is called
and another purpose after.

Messaging Device Path
A Device Path that is used to describe the connection of devices outside the
Coherency Domain of the system. This type of node can describe physical messaging
information (e.g., a SCSI ID) or abstract information (e.g., networking protocol IP
addresses).
UEFI Forum, Inc. March 2019 2433

UEFI Specification, Version 2.8
Miscellaneous Service
Various functions that are needed to support the EFI environment. Includes
EFI_BOOT_SERVICES.InstallConfigurationTable(), ResetSystem(),
EFI_BOOT_SERVICES.Stall(), EFI_BOOT_SERVICES.SetWatchdogTimer(),
EFI_BOOT_SERVICES.GetNextMonotonicCount(), and
GetNextHighMonotonicCount().

MTFTP
See Multicast Trivial File Transfer Protocol (MTFTP).

Multicast Trivial File Transfer Protocol (MTFTP)
A protocol used to download a Network Boot Program to many clients
simultaneously from a TFTP server.

Name Space or Namespace
A namespace defines a contiguously-addressed range of Non-Volatile Memory
conceptually similar to a SCSI Logical Unit (LUN) or a NVM Express namespace.

In general, a collection of device paths; in an EFI Device Path.

Native Code
Low level instructions that are native to the host processor. As such, the processor
executes them directly with no overhead of interpretation. Contrast this with EBC,
which must be interpreted by native code to operate on a VM.

NBP
See Network Bootstrap Program (NBP) or Network Boot Program.

Network Boot Program
A remote boot image downloaded by a PXE client using the Trivial File Transport
Protocol (TFTP) or the Multicast Trivial File Transfer Protocol (MTFTP). See Network
Bootstrap Program (NBP).

Network Bootstrap Program (NBP)
This is the first program that is downloaded into a machine that has selected a PXE
capable device for remote boot services. 

A typical NBP examines the machine it is running on to try to determine if the
machine is capable of running the next layer (OS or application). If the machine is not
capable of running the next layer, control is returned to the EFI boot manager and
the next boot device is selected. If the machine is capable, the next layer is
downloaded and control can then be passed to the downloaded program. 

Though most NBPs are OS loaders, NBPs can be written to be standalone applications
such as diagnostics, backup/restore, remote management agents, browsers, etc.

Network Interface Card (NIC)
Technically, this is a network device that is inserted into a bus on the motherboard or
in an expansion board. For the purposes of this document, the term NIC will be used
UEFI Forum, Inc. March 2019 2434

UEFI Specification, Version 2.8
in a generic sense, meaning any device that enables a network connection (including
LOMs and network devices on external buses (USB, 1394, etc.)).

NIC
See Network Interface Card (NIC).

Non-spacing key
Typically an accent key that does not advance the cursor and is used to create special
characters similar to ÄäÊê. This function is provided only on certain keyboard
layouts.

NV
Nonvolatile.

Package

HII information with a unique type, such as strings, fonts, images or forms.

Package List

Group of packages identified by a GUID.

Page Memory
A set of contiguous pages. Page memory is allocated by
EFI_BOOT_SERVICES.AllocatePages() and returned by
EFI_BOOT_SERVICES.FreePages().

Partition Discovery
The process of scanning a block device to determine whether it contains a Partition.

Partition
A contiguous set of LBAs on a disk, described by the MBR and/or GPT disk layouts.

PC-AT
Refers to a PC platform that uses the AT form factor for their motherboards.

PCI Bus Driver
Software that creates a handle for every PCI Controller on a PCI Host Bus Controller
and installs both the PCI I/O Protocol and the Device Path Protocol onto that handle.
It may optionally perform PCI Enumeration if resources have not already been
allocated to all the PCI Controllers on a PCI Host Bus Controller. It also loads and
starts any UEFI drivers found in any PCI Option ROMs discovered during PCI
Enumeration. If a driver is found in a PCI Option ROM, the PCI Bus Driver will also
attach the Bus Specific Driver Override Protocol to the handle for the PCI Controller
that is associated with the PCI Option ROM that the driver was loaded from.

PCI Bus
A collection of up to 32 physical PCI Devices that share the same physical PCI bus. All
devices on a PCI Bus share the same PCI Configuration Space.
UEFI Forum, Inc. March 2019 2435

UEFI Specification, Version 2.8
PCI Configuration Space
The configuration channel defined by PCI to configure PCI Devices into the resource
domain of the system. Each PCI device must produce a standard set of registers in
the form of a PCI Configuration Header, and can optionally produce device specific
registers. The registers are addressed via Type 0 or Type 1 PCI Configuration Cycles as
described by the PCI Specification. The PCI Configuration Space can be shared across
multiple PCI Buses. On most PC-AT architecture systems and typical Intel® chipsets,
the PCI Configuration Space is accessed via I/O ports 0xCF8 and 0xCFC. Many other
implementations are possible.

PCI Controller
A hardware components that is discovered by a PCI Bus Driver, and is managed by a
PCI Device Driver. PCI Functions and PCI Controller are used equivalently in this
document.

PCI Device Driver
Software that manages one or more PCI Controllers of a specific type. A driver will
use the PCI I/O Protocol to produce a device I/O abstraction in the form of another
protocol (i.e., Block I/O, Simple Network, Simple Input, Simple Text Output, Serial I/
O, Load File).

PCI Devices
A collection of up to 8 PCI Functions that share the same PCI Configuration Space. A
PCI Device is physically connected to a PCI Buses.

PCI Enumeration
The process of assigning resources to all the PCI Controllers on a given PCI Host Bus
Controller. This includes PCI Bus Number assignments, PCI Interrupt assignments, PCI
I/O resource allocation, the PCI Memory resource allocation, the PCI Prefetchable
Memory resource allocation, and miscellaneous PCI DMA settings.

PCI Functions
A controller that provides some type of I/O services. It consumes some combination
of PCI I/O, PCI Memory, and PCI Prefetchable Memory regions, and up to 256 bytes
of the PCI Configuration Space. The PCI Function is the basic unit of configuration for
PCI.

PCI Host Bus Controller
A chipset component that produces PCI I/O, PCI Memory, and PCI Prefetchable
Memory regions in a single Coherency Domain. A PCI Host Bus Controller is
composed of one or more PCI Root Bridges.

PCI I/O Protocol
A software interface that provides access to PCI Memory, PCI I/O, and PCI
Configuration spaces for a PCI Controller. It also provides an abstraction for PCI Bus
Master DMA.
UEFI Forum, Inc. March 2019 2436

UEFI Specification, Version 2.8
PCI Option ROM
A ROM device that is accessed through a PCI Controller, and is described in the PCI
Controller’s Configuration Header. It may contain one or more PCI Device Drivers
that are used to manage the PCI Controller.

PCI Root Bridge I/O Protocol
A software abstraction that provides access to the PCI I/O, PCI Memory, and PCI
Prefetchable Memory regions in a single Coherency Domain.

PCI Root Bridge
A chipset component(s) that produces a physical PCI Local Bus.

PCI Segment
A collection of up to 256 PCI Buses that share the same PCI Configuration Space. PCI
Segment is defined in the ACPI Specification as the _SEG object. The
SAL_PCI_CONFIG_READ and SAL_PCI_CONFIG_WRITE procedures defined in chapter
9 of the SAL Specification define how to access the PCI Configuration Space in a
system that supports multiple PCI Segments. If a system only supports a single PCI
Segment the PCI Segment number is defined to be zero. The existence of PCI
Segments enables the construction of systems with greater than 256 PCI buses.

Pool Memory
A set of contiguous bytes. A pool begins on, but need not end on, an “8-byte”
boundary. Pool memory is allocated in pages—that is, firmware allocates enough
contiguous pages to contain the number of bytes specified in the allocation request.
Hence, a pool can be contained within a single page or extend across multiple pages.
Pool memory is allocated by EFI_BOOT_SERVICES.AllocatePool() and
returned by EFI_BOOT_SERVICES.FreePool().

Preboot Execution Environment (PXE)
A means by which agents can be loaded remotely onto systems to perform
management tasks in the absence of a running OS. To enable the interoperability of
clients and downloaded bootstrap programs, the client preboot code must provide a
set of services for use by a downloaded bootstrap. It also must ensure certain
aspects of the client state at the point in time when the bootstrap begins executing.

The complete PXE specification covers three areas; the client, the network and the
server.

Client

• Makes network devices into bootable devices.
• Provides APIs for PXE protocol modules in EFI and for universal drivers

in the OS.
Network

• Uses existing technology: DHCP, TFTP, etc.
• Adds “vendor-specific” tags to DHCP to define PXE-specific operation

within DHCP.
UEFI Forum, Inc. March 2019 2437

UEFI Specification, Version 2.8
• Adds multicast TFTP for high bandwidth remote boot applications.
• Defines Bootserver discovery based on DHCP packet format.
Server

• Bootserver: Responds to Bootserver discovery requests and serves up
remote boot images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into
existing network infrastructure. proxyDHCP provides the additional
DHCP information that is needed by PXE clients and Bootservers without
making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.
• Plug-In Modules: Example proxyDHCP and Bootservers provided in the

PXE SDK (software development kit) have the ability to take plug-in
modules (PIMs). These PIMs are used to change/enhance the capabilities
of the proxyDHCP and Bootservers.

Protocol Handler Services
The set of functions used to manipulate handles, protocols, and protocol interfaces.
Includes EFI_BOOT_SERVICES.InstallProtocolInterface(),
EFI_BOOT_SERVICES.UninstallProtocolInterface(),
EFI_BOOT_SERVICES.ReinstallProtocolInterface(),
EFI_BOOT_SERVICES.HandleProtocol(),
EFI_BOOT_SERVICES.RegisterProtocolNotify(),
EFI_BOOT_SERVICES.LocateHandle(), and
EFI_BOOT_SERVICES.LocateDevicePath().

Protocol Handler
A function that responds to a call to a HandleProtocol request for a given handle. A
protocol handler returns a protocol interface structure.

Protocol Interface Structure
The set of data definitions and functions used to access a particular type of device.
For example, BLOCK_IO is a protocol that encompasses interfaces to read and write
blocks from mass storage devices. See Protocol.

Protocol Revision Number
The revision number associated with a protocol. See Protocol.

Protocol
The information that defines how to access a certain type of device during boot
services. A protocol consists of a Globally Unique Identifier (GUID), a protocol
revision number, and a protocol interface structure. The interface structure contains
data definitions and a set of functions for accessing the device. A device can have
multiple protocols. Each protocol is accessible through the device’s handle.
UEFI Forum, Inc. March 2019 2438

UEFI Specification, Version 2.8
PXE Base Code Protocol
A protocol that is used to control PXE-compatible devices. It may be used by the
firmware’s boot manager to support booting from remote locations. Also called the
EFI PXE Base Code Protocol.

PXE
See Preboot Execution Environment (PXE).

Question

IFR which describes how a single configuration setting should be presented, stored,
and validated.

Read-Only Memory (ROM)
When used with reference to the UNDI specification, ROM refers to a nonvolatile
memory storage device on a NIC.

Reset

The action which forces question values to be reset to their defaults.

ROM
See Question .

Runtime Services Table
A table that contains the firmware entry points for accessing runtime services
functions such as Time Services and Virtual Memory Services. The table is accessed
through a pointer in the System Table.

Runtime Services
Interfaces that provide access to underlying platform specific hardware that may be
useful during OS runtime, such as timers. These services are available during the
boot process but also persist after the OS loader terminates boot services.

SAL
See System Abstraction Layer (SAL).

scan code
A value representing the location of a key on a keyboard. Scan codes may also
encode make (key press) and break (key release) and auto-repeat information.

Serial Protocol
A Protocol that is used during boot services to abstract byte stream devices-that is,
to communicate with character-based I/O devices.

SGML
Standard Generalized Markup Language. A markup language for defining markup
languages.

shifted Unicode
Shifted Unicode represents the Unicode character code of a key when the shift
modifier key is held down. For instance, key C1 is equated to the letter a and its
UEFI Forum, Inc. March 2019 2439

UEFI Specification, Version 2.8
Unicode character code in the typical U.K. keyboard is a non-shifted value of 0x0061.
When the shift key is held down in conjunction with the pressing of key C1, however,
the value on the same keyboard often produces an A, which is a the Unicode
character code 0x0041.

A Protocol that is used during boot services to abstract byte stream devices—that is,
to communicate with character-based I/O devices.

Simple File System Protocol
A component of the File System Protocol. It provides a minimal interface for file-type
access to a device.

Simple Input Protocol
A protocol that is used to obtain input from the ConsoleIn device. It is one of two
protocols that make up the Console I/O Protocol.

Simple Network Protocol
A protocol that is used to provide a packet-level interface to a network adapter. Also
called the EFI Simple Network Protocol.

Simple Text Output Protocol
A protocol that is used to control text-based output devices. It is one of two
protocols that make up the Console I/O Protocol.

SKU
Stock keeping unit. An acronym commonly used to reference a “version” of a
particular platform. An example might be “We have three different SKUs of this
platform.”

SMBIOS
See System Management BIOS (SMBIOS).

SNIA
Storage Network Industry Association.(www.snia.org)

SNIA Common RAID Disk Data Format
Storage Network Industry Association Common RAID Disk Data Format Specification,
Revision 1.2, July 28, 2006. (www.snia.org)

SSL
Secure Sockets Layer. A security protocol that provides communications privacy over
the Internet. It is predecessor to TLS.

StandardError
The device handle that corresponds to the device used to display error messages to
the user from the boot services environment.
UEFI Forum, Inc. March 2019 2440

UEFI Specification, Version 2.8
Status Codes
Success, error, and warning codes returned by boot services and runtime services
functions.

string
A null-terminated array of 16-bit UCS-2 encoded Unicode characters. All strings in
this specification are encoded using UCS-2 unless otherwise specified.

 Submit

The action which forces modified question values to be written back to storage.

System Abstraction Layer (SAL)
Firmware that abstracts platform implementation differences, and provides the basic
platform software interface to all higher level software.

System Management BIOS (SMBIOS)
A table-based interface that is required by the Wired for Management Baseline
Specification. It is used to relate platform-specific management information to the
OS or to an OS-based management agent.

System Table
Table that contains the standard input and output handles for a UEFI application, as
well as pointers to the boot services and runtime services tables. It may also contain
pointers to other standard tables such as the ACPI, SMBIOS, and SAL System tables. A
loaded image receives a pointer to its system table when it begins execution. Also
called the EFI System Table.

Target
The system being configured.

Task Priority Level (TPL)
The boot services environment exposes three task priority levels: “normal,”
“callback,” and “notify.”

Task Priority Services
The set of functions used to manipulate task priority levels. Includes
EFI_BOOT_SERVICES.RaiseTPL() and EFI_BOOT_SERVICES.RestoreTPL().

TFTP
See Trivial File Transport Protocol (TFTP).

Time Format
The format for expressing time in an EFI-compliant platform. For more information,
see Appendix A.

Time Services
The set of functions used to manage time. Includes GetTime(), SetTime(),
GetWakeupTime(), and SetWakeupTime().
UEFI Forum, Inc. March 2019 2441

UEFI Specification, Version 2.8
Timer Services
The set of functions used to manipulate timers. Contains a single function,
EFI_BOOT_SERVICES.SetTimer().

TLS
Transport Layer Security. A protocol to provide privacy and data integrity between
two communicating applications above TCP.

TPL
See Target .

Trivial File Transport Protocol (TFTP)
A protocol used to download a Network Boot Program from a TFTP server.

UEFI
Unified Extensible Firmware Interface. The interface between the operating system
(OS) and the platform firmware defined by this specification.

UEFI Application
Modular code that may be loaded in the boot services environment to accomplish
platform specific tasks within that environment. Examples of possible applications
might include diagnostics or disaster recovery tools shipped with a platform that run
outside the OS environment. UEFI applications may be loaded in accordance with
policy implemented by the platform firmware to accomplish a specific task. Control is
then returned from the UEFI application to the platform firmware.

UEFI Boot Service Driver
A UEFI driver that is loaded into boot services memory and stays resident until boot
services terminate.

UEFI Driver
A module of code typically inserted into the firmware via protocol interfaces. Drivers
may provide device support during the boot process or they may provide platform
services. It is important not to confuse UEFI drivers with OS drivers that load to
provide device support once the OS takes control of the platform.

UEFI OS Loader
A UEFI application that is the first piece of operating system code loaded by the
firmware to initiate the OS boot process. This code is loaded at a fixed address and
then executed. The OS takes control of the system prior to completing the OS boot
process by calling the interface that terminates all boot services.

UEFI Runtime Services Driver
A UEFI driver that is loaded into runtime services memory and stays resident during
runtime.

UNDI
See Universal Network Device Interface (UNDI).
UEFI Forum, Inc. March 2019 2442

UEFI Specification, Version 2.8
Unicode Collation Protocol
A protocol that is used during boot services to perform case-insensitive comparisons
of strings.

Unicode
An industry standard internationalized character set used for human readable
message display.

Universal Network Device Interface (UNDI)
UNDI is an architectural interface to NICs. Traditionally NICs have had custom
interfaces and custom drivers (each NIC had a driver for each OS on each platform
architecture). Two variations of UNDI are defined in this specification: H/W UNDI and
S/W UNDI. H/W UNDI is an architectural hardware interface to a NIC. S/W UNDI is a
software implementation of the H/W UNDI.

Universal Serial Bus (USB)
A bi-directional, isochronous, dynamically attachable serial interface for adding
peripheral devices such as serial ports, parallel ports, and input devices on a single
bus.

URI
Uniform resource identifier. URI is a string of characters used to identify a name of
a resource.

USB Bus Driver
Software that enumerates and creates a handle for each newly attached USB
Controller and installs both the USB I/O Protocol and the Device Path Protocol onto
that handle, starts that device driver if applicable. For each newly detached USB
Controller, the device driver is stopped, the USB I/O Protocol and the Device Path
Protocol are uninstalled from the device handle, and the device handle is destroyed.

USB Bus
A collection of up to 127 physical USB Devices that share the same physical USB bus.
All devices on a USB Bus share the bandwidth of the USB Bus.

USB Controller
A hardware component that is discovered by a USB Bus Driver, and is managed by a
USB Device Driver. USB Interface and USB Controller are used equivalently in this
document.

USB Device Driver
Software that manages one or more USB Controller of a specific type. A driver will
use the USB I/O Protocol to produce a device I/O abstraction in the form of another
protocol (i.e., Block I/O, Simple Network, Simple Input, Simple Text Output, Serial I/
O, Load File).

USB Device
A USB peripheral that is physically attached to the USB Bus.
UEFI Forum, Inc. March 2019 2443

http://en.wikipedia.org/wiki/Character_string_(computer_science)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Resource_(computer_science)

UEFI Specification, Version 2.8
USB Enumeration
A periodical process to search the USB Bus to detect if there have been any USB
Controller attached or detached. If an attach event is detected, then the USB
Controllers device address is assigned, and a child handle is created. If a detach event
is detected, then the child handle is destroyed.

USB Host Controller
Moves data between system memory and devices on the USB Bus by processing data
structures and generating the USB transactions. For USB 1.1, there are currently two
types of USB Host Controllers: UHCI and OHCI.

USB Hub
A special USB Device through which more USB devices can be attached to the USB
Bus.

USB I/O Protocol
A software interface that provides services to manage a USB Controller, and services
to move data between a USB Controller and system memory.

USB Interface
The USB Interface is the basic unit of a physical USB Device.

USB
See Universal Serial Bus (USB).

Variable Services
The set of functions used to manage variables. Includes GetVariable(),
SetVariable(), and GetNextVariableName().

Virtual Memory Services
The set of functions used to manage virtual memory. Includes
SetVirtualAddressMap() and ConvertPointer().

VM
The Virtual Machine, a pseudo processor implementation consisting of registers
which are manipulated by the interpreter when executing EBC instructions.

Watchdog Time
An alarm timer that may be set to go off. This can be used to regain control in cases
where a code path in the boot services environment fails to or is unable to return
control by the expected path.

WfM
See Wired for Management (WfM).

Wired for Management (WfM)
Refers to the Wired for Management Baseline Specification. The Specification
defines a baseline for system manageability issues; its intent is to help lower the cost
of computer ownership.
UEFI Forum, Inc. March 2019 2444

UEFI Specification, Version 2.8
x64
Processors that are compatible with instruction sets and operation modes as
exemplified by the AMD64 or Intel® Extended Memory 64 Technology (Intel® EM64T)
architecture.

XHTML
Extensible HTML. XHTML "will obey all of the grammar rules of XML (properly nested
elements, quoted attributes, and so on), while conforming to the vocabulary of
HTML (the elements and attributes that are available for use ant their relationships
to one another)." [PXML, pg., 153]. Although not completely defined, XHTML is
basically the intersection of XML and HTML and does support forms.

XML
Extensible Markup Language. A subset of SGML. Addresses many of the problems
with HTML but does not currently (1.0) support forms in any specified way.
UEFI Forum, Inc. March 2019 2445

UEFI Specification, Version 2.8
Index

Symbols
!PXE structure field definitions 2221
!PXE structures 2220

Numerics
32/64-bit UNDI interface 2220

A
ACPI 2421
ACPI _ADR 324
ACPI _ADR Device Path 290
ACPI Device Path, definition of 2422
ACPI name space 2206, 2210
ACPI Source Language 283
ACPI Terms 2210
ACPI, definition of 2422
ADD 916
_ADR, definition of 2422
Advanced Configuration and Power Interface specification 2421
Advanced Configuration and Power Interface specification See also related information
AllocateBuffer() 667, 708
AllocatePages() 161
AllocatePool() 168
alphabetic function lists 2359
AND 917
ANSI 3.64 terminals, and SIMPLE_TEXT_OUTPUT 2204
Application, EFI 16, 17
ARP cache entries 1042
ARP Protocol

Functions
Add() 1452
Configure() 1450
Delete() 1456
Find() 1454
Flush() 1456
Request() 1457, 1458

GUID 1449
Interface Structure 1449

ARP Service Binding Protocol
UEFI Forum, Inc. March 2019 2446

UEFI Specification, Version 2.8 Table of Contents
GUID 1448
Arp() 1062
Arrow shapes 446
ASHR 918
ASL See ACPI Source Language
AsyncInterruptTransfer() 785
AsyncIsochronousTransfer() 792
Attribute bits, EFI PCI I/O Protocol 691
Attribute bits, PCI Root Bridge I/O 651
attributes

architecturally defined 79
Attributes, SIMPLE_TEXT_OUTPUT 451
Attributes() 713

B
Base Code (BC), definition of 2423
Big Endian, definition of 2423
BIOS code 5
BIOS Parameter Block 499
BIOS Parameter Block (BPB), definition of 2423
BIOS, definition of 2423
BIS_ALG_ID 1089
BIS_APPLICATION_HANDLE 1079
BIS_CERT_ID 1088
Block Elements Code Chart 446
Block I/O Protocol 547, 555

Functions
FlushBlocks() 554, 560
Readblocks() 551, 556
Reset() 551, 556
WriteBlocks() 553, 558

GUID 548, 555
Interface Structure 548, 555
Revision Number 548

Block Size, definition of 2423
Blt buffer 476
Blt Operation Table 486, 490
Blt() 484
Boot Device, definition of 2423
Boot Integrity Services Protocol 1076

Functions
Free() 1082
GetBootObjectAuthorizationCertificate() 1083
UEFI Forum, Inc. March 2019 2447

UEFI Specification, Version 2.8 Table of Contents
GetBootObjectAuthorizationCheckFlag() 1084
GetBootObjectAuthorizationUpdateToken() 1085
GetSignatureInfo() 1086
Initialize() 1078
Shutdown() 1081
UpdateBootObjectAuthorizationUpdateBootObjectAuthorization_EFI_BIS() 1090
VerifyBootObject() 1098
VerifyObjectWithCredential() 1105

GUID 1076
Interface Structure 1076

boot manager 68
default media boot 70

Boot Manager, definition of 2423
boot mechanisms 86
boot order list 68
boot process

illustration of 14
overview 14

boot sequence 68
Boot Services 139, 226

global functions 139, 226
handle-based functions 139, 226

boot services 7
Boot Services Driver, definition of 2442
Boot Services Table, definition of 2424
Boot Services Table, EFI 89
Boot Services Time, definition of 2424
Boot Services, definition of 2424
booting

future boot media 88
via a network device 87
via Load File Protocol 87
via Simple File Protocol 86

booting from
CD-ROM and DVD-ROM 503
diskettes 503
hard drives 503
network devices 504
removable media 503

BPB See BIOS Parameter Block
BREAK 919
BulkTransfer() 783
bus-specific driver override protocol 378
UEFI Forum, Inc. March 2019 2448

UEFI Specification, Version 2.8 Table of Contents
C
CalculateCrc32() 224
CALL 920
Callback() 1074
calling conventions 24

general 19
IA-32 21

CDB 2225
CheckEvent() 153
_CID 288
ClearRootHubPortFeature () 800
ClearScreen() 452
Close() 510
CloseEvent() 151
CloseEventExCreateEventEx 148
CloseProtocol() 192
Cluster, definition of 2424
CMP 922
CMPI 924
COFF, definition of 2424
Coherency Domain, definition of 2424
Common Information Model (CIM), definition of 2425
compressed data

bit order 879
block body 882
block header 881
format 879, 880
overall structure 880

Compression Algorithm Specification 878
compression source code 2309
compressor design 883
Configuration() 673
ConnectController() 195
Console 2202
Console I/O protocol 428
ConsoleIn 428
ConsoleIn, definition of 2425
ConsoleOut 440
ConsoleOut, definition of 2425
ControlTransfer() 780
conventions 10

data structure descriptions 10
function descriptions 10
UEFI Forum, Inc. March 2019 2449

UEFI Specification, Version 2.8 Table of Contents
instruction descriptions 11
procedure descriptions 10
protocol descriptions 10
pseudo-code conventions 11

ConvertPointer() 259
CopyMem() 221, 663, 704
CreateEvent() 144
CreateEventEx 140, 147, 148, 152
CreateThunk() 957
_CRS, definition of 2422
cursor movement 2305

D
Debug Image Info Table 876
Debug Support Protocol 852

Functions
GetMaximumProcessorIndex() 854
InvalidateInstructionCache() 867
RegisterExceptionCallback() 863
RegisterPeriodicCallback() 855

GUID 852
Interface Structure 852

Debugport device path 872
Debugport Protocol 869

Functions
Poll() 872
Read() 871
Reset() 870
Write() 870

GUID 869
Interface Structure 869

Decompress Protocol 890
Functions

Decompress() 892
GetInfo() 890

GUID 890
Interface Structure 890

Decompress() 892
decompression source code 2339
decompressor design 889
Defined GUID Partition Entry

Attributes 122
Partition Type GUIDs 121
UEFI Forum, Inc. March 2019 2450

UEFI Specification, Version 2.8 Table of Contents
Delete() 510
design overview 7
Desktop Management Interface (DMI), definition of 2425
Desktop Management Task Force (DMTF), definition of 2425
Device Handle, definition of 2425
Device Path

for IDE disk 2208
for legacy floppy 2207
for secondary root PCI bus with PCI to PCI bridge 2209

Device Path Generation, Rules 323
Hardware vs. Messaging Device Paths 325
Housekeeping 323
Media Device Path 325
Other 326
with ACPI _ADR 324
with ACPI _HID and _UID 324

Device Path Instance, definition of 2425
Device Path Node, definition of 2426
Device Path Protocol 283

GUID 284
Interface Structure 284

device path protocol 283
Device Path, ACPI 288
Device Path, BIOS Boot Specification 326
Device Path, definition of 2426
Device Path, hardware

memory-mapped 287
PCCARD 286
PCI 286
vendor 287

Device Path, media 291, 317
Boot Specification 322
CD-ROM Media 318
File Path Media 319
hard drive 317
Media Protocol 320
Vendor-Defined Media 319

Device Path, messaging 291
1394 294
ATAPI 291
FibreChannel 292
I2O 298
InfiniBand 300
UEFI Forum, Inc. March 2019 2451

UEFI Specification, Version 2.8 Table of Contents
IPv4 299
IPv6 299
MAC Address 298
SCSI 292
UART 300
UART flow control 302
USB 294
USB class 298
Vendor-Defined 301

Device Path, nodes
ACPI Device Path 284
BIOS Boot Specification Device Path 284
End of Hardware Device Path 284
End This Instance of a Device Path 285
generic 285
Hardware Device Path 284
Media Device Path 284
Messaging Device Path 284

Device Path,overview 283
device paths

EFI simple pointer 458
PS/2 mouse 458
serial mouse 459
USB mouse 460

DHCP packet 1040
Dhcp() 1047
DHCP4 Option Data

Interface Structure 1471
DHCP4 Packet Data

Interface Structure 1465, 1488
DisconnectController() 200
Discover() 1048
Disk I/O Protocol 538

Functions
ReadDisk() 328, 329, 330, 331, 349, 350, 351, 352, 530, 531, 532, 533, 534, 535, 539, 770,

771, 1222, 1223, 2101, 2102, 2110, 2111, 2112, 2113
WriteDisk() 540, 1216, 1217, 1220, 1221, 1222, 1223, 1226

GUID 326, 348, 351, 528, 538, 770, 1216, 1219, 1698, 2101, 2107
Interface Structure 326, 348, 351, 529, 538, 770, 1216, 1219, 1698, 2101, 2107, 2153
Revision Number 538

DIV 925
DIVU 926
document
UEFI Forum, Inc. March 2019 2452

UEFI Specification, Version 2.8 Table of Contents
attributes 4
audience 6
goals 4
purpose 1

driver binding protocol 353
driver diagnostics protocol 380
Driver Model Boot Services 172
Driver Signing 1703
DriverLoaded() 377
Dynamic Host Configuration Protocol (DHCP), definition of 2427

E
EBC Image, definition of 2427
EBC Instruction

ADD 916
AND 917
ASHR 918
BREAK 919
CALL 920
CMP 922
CMPI 924
DIV 925
DIVU 926
EXTNDB 927
EXTNDD 928
EXTNDW 929
JMP 930
JMP8 931
LOADSP 932
MOD 932
MODU 933
MOV 934
MOVI 936
MOVIn 937
MOVn 938
MOVREL 939
MOVsn 940
MUL 941
MULU 942
NEG 943
NOT 944
OR 945
POP 946
UEFI Forum, Inc. March 2019 2453

UEFI Specification, Version 2.8 Table of Contents
POPn 947
PUSH 948
PUSHn 948
RET 949
SHL 950
SHR 951
STORESP 952
SUB 952
XOR 953

EBC instruction descriptions 11
EBC instruction encoding 915
EBC instruction operands 913

direct operands 913
immediate operands 914
indirect operands 913
indirect with index operands 913

EBC Instruction Set 916
EBC instruction set 916
EBC instruction syntax 914
EBC Interpreter Protocol 956

Functions
CreateThunk() 957
GetVersion() 960
RegisterICacheFlush() 959
UnloadImage() 958

GUID 957
Interface Structure 957

EBC Tools 961
EBC tools

C coding convention 961
debug support 965
EBC C compiler 961
EBC interface assembly instructions 961
EBC linker 965
EBC to EBC arguments calling convention 962
EBC to native arguments calling convention 962
function return values 962
function returns 962
image loader 965
native to EBC arguments calling convention 962
stack maintenance and argument passing 961
thunking 963
VM exception handling 966
UEFI Forum, Inc. March 2019 2454

UEFI Specification, Version 2.8 Table of Contents
EBC virtual machine 908
architectural requirements 955
runtime and software conventions 954

EFI Application 16, 17, 499
EFI Application, definition of 2442
EFI Boot Manager 500
EFI Boot Services Table 89
EFI Bus-Specific Driver Override Protocol

functions
GetDriver() 379

EFI Byte Code (EBC) 908
EFI Byte Code (EBC), definition of 2427
EFI Byte Code Virtual Machine 2
EFI Component Name Protocol 679

functions
GetControllerName() 386
GetDriverName() 385

EFI Debug Support Protocol 851
EFI debug support table 874
EFI Debugport Protocol 868
EFI debugport variable 873
EFI DHCPv4 Protocol

Functions
Build() 1476
GetModeData() 1462, 1483
Parse() 1479, 1504
Release() 1474, 1501, 1502
RenewRebind() 1473, 1496, 1499
Start() 1465, 1472, 1489, 1495
Stop() 1475, 1503
TransmitReceive() 1477

GUID 1461, 1482
Interface Structure 1461, 1482

EFI DHCPv4 Service Binding Protocol
GUID 1460, 1481

EFI Directory Structure 500
EFI Driver 499
EFI Driver Binding Protocol

functions
Start() 360
Stop() 369
Supported() 355

EFI Driver Configuration Protocol
UEFI Forum, Inc. March 2019 2455

UEFI Specification, Version 2.8 Table of Contents
functions
OptionsValid() 400
SetOptions() 398

EFI Driver Diagnostics Protocol 679
EFI Driver Diagnstics Protocol

functions
RunDiagnostics() 381

EFI Driver Model 1
EFI driver model 8
EFI Driver, definition of 2442
EFI File, definition of 2427
EFI Hard Disk, definition of 2427
EFI Image 15, 499
EFI Image handoff state 26

IA-32 23
EFI Image Header 15

PE32+ image format 15
EFI Image, definition of 2431
EFI IPv4 Configuration Protocol

Functions
GetData() 1350
Start() 1347
Stop() 1349

GUID 1347
Interface Structure 1347

EFI IPv4 Protocol
Functions

Cancel() 1344, 1384
GetModeData() 1144, 1229, 1230, 1233, 1235, 1245, 1250, 1252, 1256, 1269, 1270, 1271,

1277, 1327, 1363, 1433, 1440, 1441, 1442, 1445, 1446
Groups() 1333, 1372
Open() 1332, 1371
Receive() 1342, 1383
Route() 1334, 1373
Transmit() 1336, 1376

GUID 1326, 1362
Interface Structure 1124, 1143, 1154, 1168, 1183, 1193, 1229, 1230, 1234, 1268, 1326, 1362,

1433, 1444, 1507, 1521
EFI IPv4 Service Binding Protocol

GUID 1143, 1153, 1154, 1168, 1183, 1192, 1229, 1230, 1234, 1268, 1325, 1361, 1432, 1433,
1444, 1506, 1507, 1520, 1521

EFI MTFTP4 Protocol
Functions
UEFI Forum, Inc. March 2019 2456

UEFI Specification, Version 2.8 Table of Contents
WriteFile() 1649
EFI MTFTPv4 Protocol

Functions
Configure() 1633, 1658
GetInfo() 1634
GetModeData () 1631
ParseOptions() 1643
ReadDirectory() 1651
ReadFile() 1644

Interface Structure 1630
EFI MTFTPv4 Service Binding Protocol

GUID 1629
EFI OS Loader 16, 499
EFI OS loader, definition of 2442
EFI partitioning scheme 116
EFI Platform Driver Override Protocol

functions
DriverLoaded() 377
GetDriver() 375
GetDriverPath() 376

EFI Runtime Services Table 89
EFI Scan Codes, SIMPLE_INPUT_INTERFACE 429
EFI Service Binding Protocol

Functions
CreateChild() 389
DestroyChild() 393

GUID 388
Interface Structure 389

EFI Specification 1
Design Overview 7
Goals 4
Target Audience 6

EFI System Table 89
EFI system table location 875
EFI Tables

EFI_BOOT_SERVICES 93
EFI_CONFIGURATION_TABLE 100
EFI_RUNTIME_SERVICES 98
EFI_SYSTEM_TABLE 92
EFI_TABLE_HEADER 90

EFI tables
EFI_IMAGE_ENTRY_POINT 89

EFI time 2200
UEFI Forum, Inc. March 2019 2457

UEFI Specification, Version 2.8 Table of Contents
EFI UDPv4 Protocol
Functions

Cancel() 1302, 1611, 1627
GetModeData() 1281, 1286, 1597, 1599, 1615, 1617
Groups() 1601, 1619
Poll() 1303, 1612, 1628
Receive() 1298, 1609, 1626
Route() 1288, 1602
Transmit() 1292, 1294, 1604, 1620

GUID 1280, 1596, 1614
Interface Structure 1280, 1596, 1614

EFI USB Host Controller Protocol
functions

AsyncInterruptTransfer() 785
AsyncIsochronousTransfer () 792
BulkTransfer() 783
ClearRootHubPortFeature () 800
ControlTransfer() 780
GetRootHubPortNumber () 775
GetRootHubPortStatus () 794
GetState() 778
IsochronousTransfer() 790
Reset() 776
SetRootHubPortFeature () 797
SetState() 779
SyncInterruptTransfer() 788

EFI, definition of 2427
EFI_ALLOCATE_TYPE 161
EFI_ARP_CONFIG_DATA 1451
EFI_ARP_FIND_DATA 1455
EFI_ARP_PROTOCOL 1449
EFI_ARP_SERVICE_BINDING_PROTOCOL 1448
EFI_AUTHENTICATION_INFO_PROTOCOL 1698
EFI_BIS_PROTOCOL 1076
EFI_BIS_SIGNATURE_INFO 1087
EFI_BIS_VERSION 1079
EFI_BLOCK_IO_MEDIA 549
EFI_BOOT_SERVICES table 93
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 378
EFI-compliant, definition of 2427
EFI_COMPONENT_NAME2_PROTOCOL 384
EFI_CONFIGURATION_TABLE 100
EFI_DECOMPRESS_PROTOCOL 890
UEFI Forum, Inc. March 2019 2458

UEFI Specification, Version 2.8 Table of Contents
EFI_DEVICE_PATH 284
EFI_DEVICE_PATH protocol 283
EFI_DEVICE_PATH_UTILITIES_PROTOCOL 326, 327, 328, 329, 330, 331, 332, 348, 349, 350, 351,
352
EFI_DHCP4_CALLBACK 1468, 1491, 1498
EFI_DHCP4_CONFIG_DATA 1466, 1484, 1490, 1494
EFI_DHCP4_EVENT 1469
EFI_DHCP4_HEADER 1470, 1488, 1492
EFI_DHCP4_LISTEN_POINT 1479
EFI_DHCP4_MODE_DATA 1462, 1484, 1485, 1487
EFI_DHCP4_PACKET 1465, 1488
EFI_DHCP4_PACKET_OPTION 1471
EFI_DHCP4_PROTOCOL 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1467, 1468, 1472, 1473, 1474,
1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1489, 1491, 1495, 1496, 1497, 1498, 1500, 1504,
1505
EFI_DHCP4_SERVICE_BINDING_PROTOCOL 388, 1459, 1460, 1481
EFI_DHCP4_STATE 1463, 1486, 1493
EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN 1478
EFI_DRIVER_BINDING_PROTOCOL 353
EFI_DRIVER_DIAGNOSTICS_PROTOCOL 380
EFI_DRIVER_DIAGNOSTIC_TYPE 383
EFI_EBC_PROTOCOL 956
EFI_EDID_ACTIVE_PROTOCOL 488
EFI_EDID_DISCOVERED_PROTOCOL 487
EFI_EVENT 145
EFI_FILE_INFO 525

GUID 525
EFI_FILE_SYSTEM_INFO 527

GUID 527
EFI_FILE_SYSTEM_VOLUME_LABEL 528

GUID 528
EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE 484
EFI_GUID 176
EFI_HANDLE 176
EFI_HASH_PROTOCOL 2101, 2102, 2104, 2107, 2110, 2111, 2112, 2113, 2116
EFI_IMAGE_ENTRY_POINT 89, 215
EFI_INPUT_KEY 440
EFI_INTERFACE_TYPE 176
EFI_IP4_COMPLETION_TOKEN 1337, 1377, 1378, 1379, 1380
EFI_IP4_CONFIG_DATA 1329, 1365
EFI_IP4_CONFIG_PROTOCOL 1282, 1289, 1330, 1332, 1335, 1346, 1347, 1348, 1349, 1350, 1599,
1603, 1617
EFI_IP4_FRAGMENT_DATA 1339
UEFI Forum, Inc. March 2019 2459

UEFI Specification, Version 2.8 Table of Contents
EFI_IP4_HEADER 1339
EFI_IP4_ICMP_TYPE 1331, 1368
EFI_IP4_IPCONFIG_DATA 1351
EFI_IP4_MODE_DATA 1328, 1364
EFI_IP4_OVERRIDE_DATA 1341
EFI_IP4_PROTOCOL 1230, 1234, 1269, 1281, 1326, 1327, 1332, 1333, 1334, 1336, 1342, 1343,
1344, 1345, 1351, 1362, 1363, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1383, 1384, 1385, 1444,
1597
EFI_IP4_RECEIVE_DATA 1338
EFI_IP4_ROUTE_TABLE 1331, 1367
EFI_IP4_SERVICE_BINDING_PROTOCOL 315, 388, 1143, 1153, 1167, 1183, 1192, 1228, 1230,
1234, 1268, 1325, 1326, 1361, 1432, 1444, 1505, 1506, 1519, 1520
EFI_IP4_TRANSMIT_DATA 1340
EFI_ISCSI_INITIATOR_NAME_PROTOCOL 769
EFI_LBA 549
EFI_LOADED_IMAGE Protocol 280
EFI_LOCATE_SEARCH_TYPE 182
EFI_MANAGED_NETWORK_COMPLETION_TOKEN 1136
EFI_MANAGED_NETWORK_CONFIG_DATA 1130
EFI_MANAGED_NETWORK_FRAGMENT_DATA 1139
EFI_MANAGED_NETWORK_PROTOCOL 1127
EFI_MANAGED_NETWORK_RECEIVE_DATA 1137
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 1127
EFI_MANAGED_NETWORK_TRANSMIT_DATA 1138
EFI_MEMORY_DESCRIPTOR 165
EFI_MEMORY_TYPE 162
EFI_MTFTP4_ACK8_HEADER 1638, 1663
EFI_MTFTP4_ACK_HEADER 1637, 1663
EFI_MTFTP4_DATA8_HEADER 1638, 1663
EFI_MTFTP4_DATA_HEADER 1637, 1662
EFI_MTFTP4_ERROR_HEADER 1638, 1663
EFI_MTFTP4_OACK_HEADER 1637, 1662
EFI_MTFTP4_PACKET 1637, 1662
EFI_MTFTP4_PROTOCOL 1629, 1630, 1631, 1633, 1634, 1635, 1636, 1638, 1643, 1644, 1645,
1646, 1647, 1648, 1649, 1650, 1651, 1652, 1653, 1659, 1668, 1669, 1672, 1673, 1675, 1678
EFI_MTFTP4_REQ_HEADER 1637, 1662
EFI_NETWORK_INTERFACE_TYPE 1034
EFI_NETWORK_STATISTICS 1023
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 189
EFI_OPEN_PROTOCOL_BY_DRIVER 189, 191
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 188, 190
EFI_OPEN_PROTOCOL_EXCLUSIVE 189, 191
EFI_OPEN_PROTOCOL_GET_PROTOCOL 188, 190
UEFI Forum, Inc. March 2019 2460

UEFI Specification, Version 2.8 Table of Contents
EFI_OPEN_PROTOCOL_TEST_PROTOCOL 188, 191
EFI_OPTIONAL_PTR 260
EFI_PARITY_TYPE 468
EFI_PCI_IO_PROTOCOL_ACCESS 691
EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION 714
EFI_PCI_IO_PROTOCOL_CONFIG 691
EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS 691
EFI_PCI_IO_PROTOCOL_IO_MEM 690
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM 690
EFI_PCI_IO_PROTOCOL_WIDTH 690
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS 651
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM 651
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM 651
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH 650
EFI_PHYSICAL_ADDRESS 162
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL 373
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL 1074
EFI_PXE_BASE_CODE_CALLBACK_STATUS 1075
EFI_PXE_BASE_CODE_FUNCTION 1075
EFI_PXE_BASE_CODE_MODE 1036
EFI_PXE_BASE_CODE_MTFTP_INFO 1054
EFI_PXE_BASE_CODE_PROTOCOL 1034
EFI_PXE_BASE_CODE_TFTP_OPCODE 1054
EFI_RESET_TYPE 262
EFI_RUNTIME_SERVICES table 98
EFI_SERVICE_BINDING_PROTOCOL 388
EFI_SIMPLE_NETWORK_MODE 1012
EFI_SIMPLE_NETWORK_PROTOCOL 1010
EFI_SIMPLE_NETWORK_STATE 1014
EFI_SIMPLE_POINTER_MODE 455
EFI_SIMPLE_POINTER_STATE 457
EFI_STATUS codes ranges 2212
EFI_STATUS Error Codes 2212
EFI_STATUS Success Codes 2212
EFI_STATUS warning codes 2214
EFI_STOP_BITS_TYPE 468
EFI_SYSTEM_TABLE 92
EFI_TABLE_HEADER 90
EFI_TAPE_IO_PROTOCOL 528
EFI_TCP4_PROTOCOL 1279, 1280, 1281, 1286, 1288, 1289, 1290, 1292, 1293, 1294, 1298, 1299,
1300, 1301, 1302, 1303
EFI_TCP4_SERVICE_BINDING_PROTOCOL 388, 1279
EFI_TIME 252
UEFI Forum, Inc. March 2019 2461

UEFI Specification, Version 2.8 Table of Contents
EFI_TIME_CAPABILITIES 253
EFI_UDP4_COMPLETION_TOKEN 1291, 1293, 1301, 1605, 1621
EFI_UDP4_CONFIG_DATA 1285, 1286, 1598
EFI_UDP4_FRAGMENT_DATA 1297, 1608, 1623
EFI_UDP4_PROTOCOL 1595, 1596, 1597, 1599, 1600, 1601, 1602, 1604, 1607, 1609, 1610, 1611,
1612, 1614
EFI_UDP4_RECEIVE_DATA 1296, 1606, 1622
EFI_UDP4_SERVICE_BINDING_PROTOCOL 388, 1595
EFI_UDP4_SESSION_DATA 1607, 1623
EFI_UDP4_TRANSMIT_DATA 1297, 1608
EFI_UNICODE_COLLATION_PROTOCOL 897
EFI_USB2_HC_PROTOCOL 773
EFI_USB_IO Protocol 804
EFI_VIRTUAL_ADDRESS 167
El Torito 498, 501, 502
EnableCursor() 453
End of Hardware Device Path, definition of 2427
Enhanced Mode (EM), definition of 2427
error codes 2212
Event Services 140

function list 140
functions

CheckEvent() 153
CloseEvent() 151
CreateEvent() 144
SignalEvent () 151
WaitForEvent() 152

overview 140
event, definition of 2428
Exit() 216
ExitBootServices() 218
Extensible Firmware Interface Specification 1
EXTNDB 927
EXTNDD 928
EXTNDW 929

F
FAT file system 498
FAT File System, definition of 2428
FAT variants 499
FatToStr() 901
File Allocation Table (FAT), definition of 2428
file attribute bits, EFI_FILE_INFO 526
UEFI Forum, Inc. March 2019 2462

UEFI Specification, Version 2.8 Table of Contents
File Attributes, EFI_FILE_PROTOCOL 509
File Handle Protocol 506

Functions
Close() 510
Delete() 510
EFI_FILE_SYSTEM_INFO 527, 528
EFI_GENERIC_FILE_INFO 525
Flush() 524
GetInfo() 522
GetPosition() 521
Open() 508
Read() 511
SetInfo() 523
SetPosition() 520
Write() 512

Interface Structure 506
Revision Number 506

file names 499
file system format 498, 499
File System Protocol 504
Fill Header 2294
Firmware Interrupts level 141
firmware menu 14
Firmware, definition of 2428
Flush() 524, 669, 711
FlushBlocks() 554, 560
Free() 1082
FreeBuffer() 669, 710
FreePages() 163
FreePool() 169

G
Geometric Shapes Code Chart 446
Get Config Info 2269
Get Init Info 2266
Get State 2255
Get Status 2292
GetAttributes() 670
GetBarAttributes() 715
GetBootObjectAuthorizationCertificate() 1083
GetBootObjectAuthorizationCheckFlag() 1084
GetBootObjectAuthorizationUpdateToken() 1085
GetControl() 473
UEFI Forum, Inc. March 2019 2463

UEFI Specification, Version 2.8 Table of Contents
control bits 474
GetControllerName() 386
GetDriver() 375, 379
GetDriverName() 385
GetDriverPath() 376
GetInfo() 522, 890
GetLocation() 712
GetMaximumProcessorIndex() 854
GetMemoryMap() 164
GetNextHighMonotonicCount() 262
GetNextMonotonicCount() 222
GetNextVariableName() 233
GetPosition() 521
GetRootHubPortNumber() 775
GetRootHubPortStatus() 794

PortChangeStatus bit definition 795
PortStatus bit definition 795

GetSignatureInfo() 1086
GetState() 456, 778
GetStatus() 1027
GetTime() 251
GetVariable() 229
GetVersion() 960
GetWakeupTime() 255
globally unique identifier, definition of 2429
glossary 2422
GPT See GUID Partition Table
GUID Partition Entry 120
GUID Partition Entry, definition of 2429
GUID Partition Table 501

GPT 116, 117, 119, 120, 121, 498, 501, 502
GUID Partition Table Header 119, 502
GUID Partition Table Header, definition of 2429
GUID Partition Table, definition of 2429
GUID Partition, definition of 2430
GUID, definition of 2429

H
Handle, definition of 2430
HandleProtocol() 183
Hardware Device Path, definition of 2430
Hash

Hash 2100
UEFI Forum, Inc. March 2019 2464

UEFI Specification, Version 2.8 Table of Contents
Headless system 283
_HID 288
_HID, definition of 2422
Huffman code generation 887
Huffman coding 2309
HYPERLINK "ch10.doc" l "SIMPLE_TEXT_OUTPUT"
08d0c9ea79f9bace118c8200aa004ba90b02000000090000000303000000000000c00000000000
0046000009000000636831302e646f6300ffffadde000000000000000000000000000000000000
00001600000010000000030063006800310030002e0064006f00630013000000530049004d005
0004c0045005f0054004500580054005f004f00550054005000550054000000SIMPLE_TEXT_OUT
PUT implementation control sequences

0013000000530049004d0050004c0045005f0054004500580054005f004f005500540050005
50054000000SIMPLE_TEXT_OUTPUT implementation control sequences 2204

I
IA-32

EFI Image handoff state 23
ICMP error packet 1040
ICMP Message Types and Codes

Data Structure 1331, 1368
IDE disk device path 2209
Image Handle, definition of 2430
Image Handoff State, definition of 2430
Image Header, definition of 2430
Image Services

function list 210
functions

EFI_IMAGE_ENTRY_POINT 215
Exit() 216
ExitBootServices() 218
LoadImage() 210
StartImage() 213
UnloadImage() 214

overview 209
Image, definition of 2431
images

loading 14
implementation requirements

general 61
required elements 61

Initialize 2272
Initialize() 1016, 1078
InstallConfigurationTable() 223
UEFI Forum, Inc. March 2019 2465

UEFI Specification, Version 2.8 Table of Contents
InstallMultipleProtocolInterfaces() 207
InstallProtocolInterface() 174
instruction summary

EFI byte code virtual machine 2356
Intel Architecture-32 (IA-32), definition of 2431
Intel® Itanium™ Architecture, definition of 2431
interfaces

general categories 17
purpose 17

Interpreter, definition of 2431
Interrupt Enables 2278
InterruptStatus interrupt bit mask settings 1028
InvalidateInstructionCache() 867
Io.Read() 660, 701
Io.Write() 660, 701
IP filter operation 1060
IP4 Protocol

Functions
Poll() 1345, 1385

IPv4 Fragment Data
Data Structure 1339

IPv4 Header
Data Structure 1339

IPv4 IOCTL Data
Data Structure 1329, 1365

IPv4 Mode Data
Data Structure 1328, 1364

IPv4 Override Data
Data Structure 1341

IPv4 Receive Data
Data Structure 1338

IPv4 Route Table
Data Structure 1331, 1367

IPv4 Transmit Data
Data Structure 1340

ISO-9660 502
IsochronousTransfer() 790
Itanium architecture

EFI Image handoff state 26
firmware specifications 2421
platforms 2421
requirements, related to this specification 2421
UEFI Forum, Inc. March 2019 2466

UEFI Specification, Version 2.8 Table of Contents
J
JMP 930
JMP8 931

L
LAN On Motherboard (LOM), definition of 2431
LBA See Logical Block Address
legacy floppy device path 2208
legacy interfaces 5
legacy Master Boot Record 111

and GPT Partitions 114
Partition Record 112

legacy MBR 498
legacy OS 6
Legacy Platform, definition of 2432
legacy systems, support of 9
Little Endian, definition of 2432
Load File Protocol 1044

Functions
LoadFile() 494

GUID 494
Interface Structure 494

Loaded Image Protocol 280
functions

Unload() 281
GUID 280
Interface Stucture 280
Revision Number 280

Loaded Image, definition of 2432
LoadFile() 494
LoadImage() 210
LOADSP 932
LocateDevicePath() 185
LocateHandle() 181
LocateHandleBuffer() 203
LocateProtocol() 206
long file names 499
Long File Names (LFN), definition of 2432
LZ77 coding 2309

M
Machine Check Abort (MCA), definition of 2432
UEFI Forum, Inc. March 2019 2467

UEFI Specification, Version 2.8 Table of Contents
Managed Network Protocol
Functions

Cancel() 1141
Configure() 1131
GetModeData() 1129
Groups() 1134
McastIpToMac() 1133
Poll() 1142
Receive() 1140
Transmit() 1135

GUID 1128
Interface Structure 1128

Managed Network Service Binding Protocol
GUID 1127

Map() 665, 706
Master Boot Record 498
Master Boot Record (MBR), definition of 2432
MAX_MCAST_FILTER_CNT 1014
MBR See Master Boot Record
MCast IP To MAC 2288
MCastIPtoMAC() 1025
Media Device Path, definition of 2433
media formats 503
Mem.Read() 659, 699
Mem.Write() 659, 699
Memory Allocation Services

function list 158
functions

AllocatePages() 161
AllocatePool() 168
FreePages() 163
FreePool() 169
GetMemoryMap() 164

overview 158
Memory Attribute Definitions 166
memory map 158
Memory Map, definition of 2433
Memory Type, definition of 2433
memory type, usage

after HYPERLINK l “ExitBootServices"
08d0c9ea79f9bace118c8200aa004ba90b02000000080000001100000045007800690
0740042006f006f007400530065007200760069006300650073000000ExitBootServic
es() 159
UEFI Forum, Inc. March 2019 2468

UEFI Specification, Version 2.8 Table of Contents
before HYPERLINK l “ExitBootServices"
08d0c9ea79f9bace118c8200aa004ba90b02000000080000001100000045007800690
0740042006f006f007400530065007200760069006300650073000000ExitBootServic
es() 159

Messaging Device Path, definition of 2433
MetaiMatch() 899
migration requirements 9

EFI support on a legacy platform 10
legacy OS support 9

migration, from legacy systems 9
Miscellaneous Boot Services

overview 219
Miscellaneous Runtime Services

overview 260
Miscellaneous Services

function list 219, 261
functions

CalculateCrc32() 224
CopyMem() 221
GetNextHighMonotonicCount() 262
GetNextMonotonicCount() 222
InstallConfigurationTable() 223
ResetSystem() 248, 261, 264, 271
SetMem() 222
SetWatchdogTimer() 219
Stall() 220

MOD 932
MODU 933
MOV 934
MOVI 936
MOVIn 937
MOVn 938
MOVREL 939
MOVsn 940
Mtftp() 1052
MTFTP4 Packet Definitions 1637, 1662
MUL 941
Multicast Trivial File Transfer Protocol (MTFTP), definition of 2434
MULU 942

N
Name Space

EFI device path 2211
UEFI Forum, Inc. March 2019 2469

UEFI Specification, Version 2.8 Table of Contents
Name space 283
Name Space, definition of 2434
Native Code, definition of 2434
natural indexing 911
NEG 943
Network Boot Program, definition of 2434
Network Bootstrap Program (NBP), definition of 2434
Network Interface Card (NIC), definition of 2434
Network Interface Identifier Protocol 1032

GUID 1032
Interface Structure 1032
Revision Number 1032

nonvolatile storage 732
NOT 944
NvData 2289
NvData() 1026
NVRAM variables 68

O
opcode summary

EFI byte code virtual machine 2356
Open Modes, EFI_FILE_PROTOCOL 509
Open() 508
OpenProtocol() 186
OpenProtocolInformation() 194
OpenVolume() 505
operating system loader, definition of 2442
Option ROM 5
option ROM 9, 908

EBC 909
legacy 909
relocatable image 909
size restrictions 909

option ROM formats 967
OptionsValid() 400
OR 945
OS loader, definition of 2442
OS Loader, EFI 16
OS network stacks 2218
OutputString() 443
overview of design 7
UEFI Forum, Inc. March 2019 2470

UEFI Specification, Version 2.8 Table of Contents
P
Page Memory, definition of 2435
partition discovery 501
Partition Discovery, definition of 2435
partitioning scheme, EFI 116
PCANSI terminals, and SIMPLE_TEXT_OUTPUT 2204
PCI bus driver responsibilities 724
PCI Bus Driver, definition of 2435
PCI bus drivers 680
PCI Bus, definition of 2435
PCI Configuration Space, definition of 2436
PCI Controller, definition of 2436
PCI device driver responsibilities 725
PCI Device Driver, definition of 2436
PCI device drivers 685
PCI device paths 719
PCI Device, definition of 2436
PCI driver initialization 678
PCI driver model 678
PCI Enumeration, definition of 2436
PCI Function, definition of 2436
PCI Host Bus Controller, definition of 2436
PCI hot-plug events 732
PCI I/O Protocol 687

Functions
AllocateBuffer() 708
Attributes() 713
CopyMem() 704
Flush() 711
FreeBuffer() 710
GetBarAttributes() 715
GetLocation() 712
Io.Read() 701
Io.Write() 701
Map() 706
Mem.Read() 699
Mem.Write() 699
Pci.Read() 703
Pci.Write() 703
PollIo() 698
PollMem() 696
SetBarAttributes() 718
Unmap() 708
UEFI Forum, Inc. March 2019 2471

UEFI Specification, Version 2.8 Table of Contents
GUID 688
Interface Structure 688

PCI Option ROM, definition of 2437
PCI option ROMs 721
PCI root bridge device paths 675
PCI Root Bridge I/O Protocol 649

Functions
AllocateBuffer() 667
Configuration() 673
CopyMem() 663
Flush() 669
FreeBuffer() 669
GetAttributes() 670
Io.Read() 660
Io.Write() 660
Map() 665
Mem.Read() 659
Mem.Write() 659
Pci.Read() 661
Pci.Write() 661
PollIo() 657
PollMem() 656
SetAttributes() 671
Unmap() 666

GUID 406, 649
Interface Structure 649

PCI root bridge I/O support 644
PCI Root Bridge, definition of 2437
PCI Segment, definition of 2437
Pci.Read() 661, 703
Pci.Write() 661, 703
PE32+ image format 15
platform driver override protocol 373
plug and play option ROMs

and boot services 17
pointer movement 2305
Poll() 872
PollIo() 657, 698
PollMem() 656, 696
Pool Memory, definition of 2437
POP 946
POPn 947
Preboot Execution Environment (PXE), definition of 2437
UEFI Forum, Inc. March 2019 2472

UEFI Specification, Version 2.8 Table of Contents
prerequisite specifications 2421
Protocol

11.7Graphics Output Protocol 290
23.4PXE Base Code Callback 1038, 1046, 1073
ARP 3, 388, 390, 391, 392, 393, 394, 395, 396, 1035, 1036, 1037, 1039, 1042, 1043, 1062,

1063, 1064, 1075, 1289, 1335, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456,
1457, 1458, 1459, 1603

ARP Service Binding 1448
Block I/O 547, 555
Boot Integrity Services 1076
Boot Integrity Services (BIS) 1037, 1076
Console I/O 178, 428
Debug Support 852
Debugport 869
Decompress 890
Device Path 283
Disk I/O 538
EBC Interpreter 956
EFI DHCPv4 Service Binding 1460, 1464, 1466, 1481
EFI IPv4 3, 1143, 1153, 1167, 1228, 1230, 1267, 1282, 1325, 1326, 1327, 1329, 1330, 1331,

1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1343, 1344, 1346, 1347, 1348, 1349,
1350, 1351, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1369, 1371, 1372, 1373, 1374,
1375, 1377, 1378, 1379, 1383, 1384, 1386, 1444, 1459, 1460, 1461, 1595, 1597, 1598,
1599, 1617, 1630

EFI MTFTPv4 3, 1421, 1423, 1424, 1426, 1429, 1430, 1431, 1432, 1544, 1546, 1556, 1629,
1630, 1631, 1632, 1633, 1634, 1638, 1643, 1645, 1646, 1647, 1648, 1649, 1650, 1651,
1653, 1654, 1658, 1667, 1669, 1671, 1672, 1673, 1674, 1675, 1676, 1678, 1679

EFI MTFTPv4 Service Binding 1629
EFI Service Binding 388, 1127, 1448
EFI TCPv4 3, 1279, 1280, 1281, 1282, 1286, 1290, 1291, 1292, 1294, 1298, 1299, 1300, 1302
EFI TCPv4 Service Binding 1279
EFI UDPv4 3, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607,

1608, 1609, 1610, 1611, 1629, 1630, 1654
File Handle 506
File System 504
Load File 1044
Loaded Image 280
Managed Network 3, 1127, 1450
Managed Network Service Binding 3, 1127
Network Interface Identifier 1031, 1032, 1033, 1043, 1044
PCI I/O 687
PCI Root Bridge I/O 649
PXE Base Code 1034
UEFI Forum, Inc. March 2019 2473

UEFI Specification, Version 2.8 Table of Contents
PXE Base Code Callback 1074
Serial I/O 465
Simple File System 504
Simple Input 428, 438
Simple Network 1010, 1022, 1025, 1026, 1031, 1032, 1034, 1044, 1128
Simple Pointer 454
Unicode Collation 897

Protocol Handler Services
function list 170
functions 170

CloseProtocol() 192
ConnectController() 195
DisconnectController() 200
HandleProtocol() 183
InstallMultipleProtocolInterfaces() 207
InstallProtocolInterface() 174
LocateDevicePath () 185
LocateHandle() 181
LocateHandleBuffer() 203
LocateProtocol() 206
OpenProtocol() 186
OpenProtocolInformation() 194
ProtocolsPerHandle() 202
RegisterProtocolNotify() 180
ReinstallProtocolInterface() 178
UninstallMutipleProtocolInterfaces() 208
UninstallProtocolInterface() 177

overview 170
Protocol Handler, definition of 2438
Protocol Interface, definition of 2438
Protocol Revision Number, definition of 2438
Protocol, definition of 2438
protocols 44

code illustrating 45
construction of 45
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 378
EFI_DEVICE_PATH 283
EFI_DRIVER_BINDING_PROTOCOL 353
EFI_DRIVER_DIAGNOSTICS_PROTOCOL 380
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL 373
EFI_USB2_HC_PROTOCOL 773
EFI_USB_IO Protocol 804
list of 46
UEFI Forum, Inc. March 2019 2474

UEFI Specification, Version 2.8 Table of Contents
UGA protocols 476
ProtocolsPerHandle() 202
PUSH 948
PUSHn 948
PXE Base Code Callback Protocol 1074

Functions
Callback() 1074

GUID 1074
Interface Structure 1074
Revision Number 1074

PXE Base Code Protocol 1034
Functions

Arp() 1062
Dhcp() 1047
Discover() 1048
Mtftp() 1052
SetIpFilter() 1061
SetPackets() 1066
SetParameters() 1063
SetStationIp() 1065
Start() 1044
Stop() 1046
UdpRead() 1058
UdpWrite() 1056

GUID 1035
Interface Structure 1035
Revision Number 1035

PXE boot server bootstrap types 1050
PXE tag definitions for EFI 1043

Q
QueryCapsuleCapsule() 271
QueryMode() 448

R
Read() 511, 871
Read(), SERIAL_IO 475
ReadBlocks() 551, 556
ReadDisk() 539
ReadKeyStroke() 439
Read-Only Memory (ROM), definition of 2439
Receive 2300
Receive Filters 2280
UEFI Forum, Inc. March 2019 2475

UEFI Specification, Version 2.8 Table of Contents
Receive() 1030
ReceiveFilters() 1018
ReceiveFilterSetting bit mask values 1014
RegisterExceptionCallback() 863
RegisterICacheFlush() 959
RegisterPeriodicCallback() 855
RegisterProtocolNotify() 180
ReinstallProtocolInterface() 178
Reset, PXE 2276
Reset, UNDI 2276
Reset(), Debugport Protocol 870
Reset(), EFI_BLOCK_IO 551, 556
Reset(), EFI_SIMPLE_POINTER 455
Reset(), SERIAL_IO 470
Reset(), Simple Network Protocol 1017
Reset(), SIMPLE_INPUT 438
Reset(), SIMPLE_TEXT_OUTPUT 443
Reset(), USB Host Controller 776
ResetSystem() 248, 261, 264, 271
RestoreTPL() 157
RET 949
RunDiagnostics() 381
Runtime Services 139, 226

Miscellaneous Runtime Services 260
Time Services 251
Variable Services 229
Virtual Memory Services 257

runtime services 7, 18
Runtime Services Driver, definition of 2442
Runtime Services Table, definition of 2439
Runtime Services Table, EFI 89
Runtime Services, definition of 2439

S
SAL, definition of 2439
SAS Boot 303, 305
SCSI Pass Thru device paths 749
SCSI Pass Thru Protocol

using 2306
Secondary Root PCI Bus with PCI to PCI Bridge Device Path 2210
Security

Driver Signing 1703
Hash 2100, 2101, 2102, 2103, 2104, 2107, 2110, 2111, 2112, 2113, 2114, 2116
UEFI Forum, Inc. March 2019 2476

UEFI Specification, Version 2.8 Table of Contents
Serial I/O Protocol 465
Functions

GetControl() 473
Read() 475
Reset() 470
SetAttributes() 471
SetControl() 472
Write() 474

GUID 466
Interface Structure 466
Revision Number 466

SERIAL_IO_MODE 467
services 17
SetAttribute() 449
SetAttributes() 471, 671
SetBarAttributes() 718
SetControl() 472

control bits 473
SetCursorPosition() 452
SetInfo() 523
SetIpFilter() 1061
SetMem() 222
SetMode() 449, 483, 489
SetOptions() 398
SetPackets() 1066
SetParameters() 1063
SetPosition() 520
SetRootHubPortFeature () 797
SetState() 779
SetStationIp() 1065
SetTime() 254
SetTimer() 154
SetVariable() 235
SetVirtualAddressMap() 258
SetWakeupTime() 256
SetWatchdogTimer() 219
SHL 950
SHR 951
Shutdown 2277
Shutdown() 1018, 1081
SignalEvent() 151
Simple File System Protocol 504

functions
UEFI Forum, Inc. March 2019 2477

UEFI Specification, Version 2.8 Table of Contents
OpenVolume() 505
GUID 504
Interface Structure 504
Revision Number 504

Simple Input Protocol 428, 438
Functions

ReadKeyStroke() 439
Reset() 438

GUID 438
Interface Structure 438
Scan Codes for 429

Simple Network Protocol 1010, 1034, 1044
Functions

GetStatus() 1027
Initialize() 1016
MCastIPtoMAC() 1025
NVData() 1026
Receive() 1030
ReceiveFilters() 1018
Reset() 1017
Shutdown() 1018
Start() 1014
StationAddress() 1021
Statistics() 1022
Stop() 1015
Transmit() 1028

GUID 1010
Interface Structure 1010
Revision Number 1010

Simple Pointer Protocol 454, 2305
Functions

GetState() 456
Reset() 455

GUID 454
Protocol Interface Structure 454

Simple Text Output Protocol
Functions

ClearScreen() 452
EnableCursor() 453
OutputString() 443
Querymode() 448
Reset() 443
SetAttribute() 449
UEFI Forum, Inc. March 2019 2478

UEFI Specification, Version 2.8 Table of Contents
SetCursorPosition() 452
Setmode() 449
TestString() 447

GUID 441
Interface Structure 441

SIMPLE_INPUT protocol, implementation 2202
SIMPLE_TEXT_OUTPUT protocol, implementation 2202
SIMPLE_TEXT_OUTPUT_MODE 442
SMBIOS, definition of 2440
specifications, other 2421
specifications, prerequisite 2421
Stall() 220
StandardError 440
StandardError, definition of 2440
Start 2257
Start() 360, 1014
Start(), PXE Base Code Protocol 1044
StartImage() 213
Station Address 2282
StationAddress() 1021
Statistics 2284
Statistics() 1022
Status Codes, definition of 2441
Stop 2265
Stop() 369, 1015
Stop(), PXE Base Code Protocol 1046
STORESP 952
StriColl() 898
StrLwr() 900
StrToFat() 902
StrUpr() 900
SUB 952
success codes 2212
Supported() 355
SyncInterruptTransfer() 788
System Abstraction Layer (SAL), definition of 2441
System Management BIOS (SMBIOS), definition of 2441
System Partition 498, 500
system partition 7
System Table, definition of 2441
System Table, EFI 89
UEFI Forum, Inc. March 2019 2479

UEFI Specification, Version 2.8 Table of Contents
T
table-based interfaces 7
Task Priority Level (TPL), definition of 2441
task priority levels

general 140
restrictions 141
usage 140

Task Priority Services 140
function list 140
functions

RestoreTPL() 157
overview 140

terminology, definitions 2422
TestString() 447
TFTP error packet 1040
Time Format, definition of 2441
Time Services

function list 251
functions

GetTime() 251
GetWakeupTime() 255
SetTime() 254
SetWakeupTime() 256

overview 251
Timer Services 140

function list 140
functions

SetTimer() 154
overview 140

TPL restrictions 141
TPL See task priority levels
TPL_APPLICATION level 140, 141
TPL_HIGH_LEVEL 141
TPL_NOTIFY level 141
Transmit 2297
Transmit() 1028
Trivial File Transport Protocol (TFTP), definition of 2442

U
UDP port filter operation 1060
UDP4 Service Binding Protocol

GUID 1279, 1595, 1613
UdpRead() 1058
UEFI Forum, Inc. March 2019 2480

UEFI Specification, Version 2.8 Table of Contents
UdpWrite() 1056
UGA Draw Protocol

Functions
Blt() 484
SetMode() 483, 489

GUID 478
protocol interface structure 478

UGA protocols 476
_UID 288
_UID, definition of 2422
UNDI C definitions 2226
UNDI CDB 2225
UNDI CDB field definitions 2225
UNDI command descriptor block 2225
UNDI command format 2224
UNDI commands 2252

Fill Header 2294
Get Config Info 2269
Get Init Info 2266
Get State 2255
Get Status 2292
Initialize 2272
Interrupt Enables 2278
issuing 2223
linking & queuing 2254
MCast IP To MAC 2288
NvData 2289
Receive 2300
Receive Filters 2280
Reset 2276
Shutdown 2277
Start 2257
Station Address 2282
Statistics 2284
Stop 2265
Transmit 2297

UNDI Specification
Definitions 2215
driver types 2219
Referenced Specifications 2216

UNDI Specification, 32/64-Bit 2215
Unicode Collation Protocol 897

Functions
UEFI Forum, Inc. March 2019 2481

UEFI Specification, Version 2.8 Table of Contents
FatToStr() 901
MetaiMatch() 899
StriColl() 898
StrLwr() 900
StrToFat() 902
StrUpr() 900

GUID 897
Interface Structure 897

Unicode control characters, supported 428
UNICODE DRAWING CHARACTERS 445
Unicode, definition of 2443
UninstallMultipleProtocolInterfaces() 208
UninstallProtocolInterface() 177
Universal Graphics Adapter protocols 476
Universal Network Device Interface (UNDI), definition of 2443
Universal Serial Bus (USB), definition of 2443
Unload() 281
UnloadImage() 214, 958
Unmap() 666, 708
Update Capsule 263
UpdateBootObjectAuthorization() 1090

Manifest Syntax 1091
UpdateCapsule() 264
USB Bus Driver 802

Bus Enumeration 803
Driver Binding Protocol 802
Entry Point 802
Hot-Plug Event 802

USB Bus Driver, definition of 2443
USB Bus, definition of 2443
USB Controller, definition of 2443
USB Device Driver 803

Driver Binding Protocol 803
Entry Point 803

USB Device Driver, definition of 2443
USB Device, definition of 2443
USB Driver Model 801
USB Enumeration, definition of 2444
USB Host Controller Protocol 773

GUID 773
Interface Structure 773

USB host controller protocol 773
USB Host Controller, definition of 2444
UEFI Forum, Inc. March 2019 2482

UEFI Specification, Version 2.8 Table of Contents
USB hub port change status bitmap 796
USB hub port status bitmap 795
USB Hub, definition of 2444
USB I/O Protocol

functions
UsbAsyncInterruptTransfer () 809
UsbAsyncIsochronousTransfer () 815
UsbBulkTransfer () 808
UsbControlTransfer() 806
UsbGetConfigDescriptor () 818
UsbGetDeviceDescriptor () 817
UsbGetEndpointDescriptor() 821
UsbGetInterfaceDescriptor () 820
UsbGetStringDescriptor() 823
UsbGetSupportedLanguages() 824
UsbIsochronousTransfer () 814
UsbPortReset() 825
UsbSyncInterruptTransfer () 813

USB I/O protocol 804
GUID 804
Interface Structure 804

USB Interface, definition of 2444
USB port feature 798
USB transfer result error codes 807
UsbAsyncInterruptTransfer() 809
UsbAsyncIsochronousTransfer () 815
UsbBulkTransfer() 808
UsbControlTransfer() 806
UsbGetConfigDescriptor() 818
UsbGetDeviceDescriptor () 817
UsbGetEndpointDescriptor() 821
UsbGetInterfaceDescriptor() 820
UsbGetStringDescriptor() 823
UsbGetSupportedLanguages() 824
UsbIsochronousTransfer() 814
UsbPortReset() 825
UsbSyncInterruptTransfer() 813

V
Variable Attributes 231
Variable Services

function list 229
functions
UEFI Forum, Inc. March 2019 2483

UEFI Specification, Version 2.8 Table of Contents
GetNextVariableName() 233
GetVariable() 229
SetVariable() 235

overview 229
variables

global 79
non-volatile 80

VerifyBootObject() 1098
Manifest Syntax 1099

VerifyObjectWithCredential() 1105
Manifest Syntax 1106

virtual machine 908
registers 910

Virtual Memory Services
function list 258
functions

ConvertPointer() 259
SetVirtualAddressMap () 258

overview 257
VM, definition of 2444

W
WaitForEvent() 152
warning codes 2214
Watchdog timer, definition of 2444
WIN_CERTIFICATE 1707, 1708, 1709, 1710
Wired for Management (WfM), definition of 2444
Write() 512, 870
Write(), SERIAL_IO 474
WriteBlocks() 553, 558
WriteDisk() 540

X
x64 27
XOR 953
UEFI Forum, Inc. March 2019 2484

	Acknowledgments
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 - Introduction
	1.1 UEFI Driver Model Extensions
	1.2 Organization
	1.3 Goals
	1.4 Target Audience
	1.5 UEFI Design Overview
	1.6 UEFI Driver Model
	1.6.1 UEFI Driver Model Goals
	1.6.2 Legacy Option ROM Issues

	1.7 Migration Requirements
	1.7.1 Legacy Operating System Support
	1.7.2 Supporting the UEFI Specification on a Legacy Platform

	1.8 Conventions Used in this Document
	1.8.1 Data Structure Descriptions
	1.8.2 Protocol Descriptions
	1.8.3 Procedure Descriptions
	1.8.4 Instruction Descriptions
	1.8.5 Pseudo-Code Conventions
	1.8.6 Typographic Conventions
	1.8.7 Number formats
	1.8.8 Binary prefixes
	1.8.9 Revision Numbers

	2 - Overview
	2.1 Boot Manager
	2.1.1 UEFI Images
	2.1.2 UEFI Applications
	2.1.3 UEFI OS Loaders
	2.1.4 UEFI Drivers

	2.2 Firmware Core
	2.2.1 UEFI Services
	2.2.2 Runtime Services

	2.3 Calling Conventions
	2.3.1 Data Types
	2.3.2 IA-32 Platforms
	2.3.3 Intel® Itanium®-Based Platforms
	2.3.4 x64 Platforms
	2.3.5 AArch32 Platforms
	2.3.6 AArch64 Platforms
	2.3.7 RISC-V Platforms

	2.4 Protocols
	2.5 UEFI Driver Model
	2.5.1 Legacy Option ROM Issues
	2.5.2 Driver Initialization
	2.5.3 Host Bus Controllers
	2.5.4 Device Drivers
	2.5.5 Bus Drivers
	2.5.6 Platform Components
	2.5.7 Hot-Plug Events
	2.5.8 EFI Services Binding

	2.6 Requirements
	2.6.1 Required Elements
	2.6.2 Platform-Specific Elements
	2.6.3 Driver-Specific Elements
	2.6.4 Extensions to this Specification published elsewhere

	3 - Boot Manager
	3.1 Firmware Boot Manager
	3.1.1 Boot Manager Programming
	3.1.2 Load Option Processing
	3.1.3 Load Options
	3.1.4 Boot Manager Capabilities
	3.1.5 Launching Boot#### Applications
	3.1.6 Launching Boot#### Load Options Using Hot Keys
	3.1.7 Required System Preparation Applications

	3.2 Boot Manager Policy Protocol
	EFI_BOOT_MANAGER_POLICY_PROTOCOL
	EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()
	EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

	3.3 Globally Defined Variables
	3.4 Boot Option Recovery
	3.4.1 OS-Defined Boot Option Recovery
	3.4.2 Platform-Defined Boot Option Recovery
	3.4.3 Boot Option Variables Default Boot Behavior

	3.5 Boot Mechanisms
	3.5.1 Boot via the Simple File Protocol
	3.5.2 Boot via the Load File Protocol

	4 - EFI System Table
	4.1 UEFI Image Entry Point
	EFI_IMAGE_ENTRY_POINT

	4.2 EFI Table Header
	EFI_TABLE_HEADER

	4.3 EFI System Table
	EFI_SYSTEM_TABLE

	4.4 EFI Boot Services Table
	EFI_BOOT_SERVICES

	4.5 EFI Runtime Services Table
	EFI_RUNTIME_SERVICES

	4.6 EFI Configuration Table & Properties Table
	EFI_CONFIGURATION_TABLE
	EFI_PROPERTIES_TABLE
	EFI_MEMORY_ATTRIBUTES_TABLE

	4.7 Image Entry Point Examples
	4.7.1 Image Entry Point Examples
	4.7.2 UEFI Driver Model Example
	4.7.3 UEFI Driver Model Example (Unloadable)
	4.7.4 EFI Driver Model Example (Multiple Instances)

	5 - GUID Partition Table (GPT) Disk Layout
	5.1 GPT and MBR disk layout comparison
	5.2 LBA 0 Format
	5.2.1 Legacy Master Boot Record (MBR)
	5.2.2 OS Types
	5.2.3 Protective MBR
	5.2.4 Partition Information

	5.3 GUID Partition Table (GPT) Disk Layout
	5.3.1 GPT overview
	5.3.2 GPT Header
	5.3.3 GPT Partition Entry Array

	6 - Block Translation Table (BTT) Layout
	6.1 Block Translation Table (BTT) Background
	6.2 Block Translation Table (BTT) Data Structures
	6.2.1 BTT Info Block
	6.2.2 BTT Map Entry
	6.2.3 BTT Flog
	6.2.4 BTT Data Area
	6.2.5 NVDIMM Label Protocol Address Abstraction Guid

	6.3 BTT Theory of Operation
	6.3.1 BTT Arenas
	6.3.2 Atomicity of Data Blocks in an Arena
	6.3.3 Atomicity of BTT Data Structures
	6.3.4 Writing the Initial BTT layout
	6.3.5 Validating BTT Arenas at start-up
	6.3.6 Validating the Flog entries at start-up
	6.3.7 Read Path
	6.3.8 Write Path

	7 - Services — Boot Services
	7.1 Event, Timer, and Task Priority Services
	EFI_BOOT_SERVICES.CreateEvent()
	EFI_BOOT_SERVICES.CreateEventEx()
	EFI_BOOT_SERVICES.CloseEvent()
	EFI_BOOT_SERVICES.SignalEvent()
	EFI_BOOT_SERVICES.WaitForEvent()
	EFI_BOOT_SERVICES.CheckEvent()
	EFI_BOOT_SERVICES.SetTimer()
	EFI_BOOT_SERVICES.RaiseTPL()
	EFI_BOOT_SERVICES.RestoreTPL()

	7.2 Memory Allocation Services
	EFI_BOOT_SERVICES.AllocatePages()
	EFI_BOOT_SERVICES.FreePages()
	EFI_BOOT_SERVICES.GetMemoryMap()
	EFI_BOOT_SERVICES.AllocatePool()
	EFI_BOOT_SERVICES.FreePool()

	7.3 Protocol Handler Services
	EFI_BOOT_SERVICES.InstallProtocolInterface()
	EFI_BOOT_SERVICES.UninstallProtocolInterface()
	EFI_BOOT_SERVICES.ReinstallProtocolInterface()
	EFI_BOOT_SERVICES.RegisterProtocolNotify()
	EFI_BOOT_SERVICES.LocateHandle()
	EFI_BOOT_SERVICES.HandleProtocol()
	EFI_BOOT_SERVICES.LocateDevicePath()
	EFI_BOOT_SERVICES.OpenProtocol()
	EFI_BOOT_SERVICES.CloseProtocol()
	EFI_BOOT_SERVICES.OpenProtocolInformation()
	EFI_BOOT_SERVICES.ConnectController()
	EFI_BOOT_SERVICES.DisconnectController()
	EFI_BOOT_SERVICES.ProtocolsPerHandle()
	EFI_BOOT_SERVICES.LocateHandleBuffer()
	EFI_BOOT_SERVICES.LocateProtocol()
	EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces()
	EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces()

	7.4 Image Services
	EFI_BOOT_SERVICES.LoadImage()
	EFI_BOOT_SERVICES.StartImage()
	EFI_BOOT_SERVICES.UnloadImage()
	EFI_IMAGE_ENTRY_POINT
	EFI_BOOT_SERVICES.Exit()
	EFI_BOOT_SERVICES.ExitBootServices()

	7.5 Miscellaneous Boot Services
	EFI_BOOT_SERVICES.SetWatchdogTimer()
	EFI_BOOT_SERVICES.Stall()
	EFI_BOOT_SERVICES.CopyMem()
	EFI_BOOT_SERVICES.SetMem()
	EFI_BOOT_SERVICES.GetNextMonotonicCount()
	EFI_BOOT_SERVICES.InstallConfigurationTable()
	EFI_BOOT_SERVICES.CalculateCrc32()

	8 - Services — Runtime Services
	8.1 Runtime Services Rules and Restrictions
	8.1.1 Related Definitions
	8.1.2 Exception for Machine Check, INIT, and NMI

	8.2 Variable Services
	GetVariable()
	GetNextVariableName()
	SetVariable()
	8.2.1 Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor
	8.2.2 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor
	8.2.3 Using the EFI_VARIABLE_AUTHENTICATION descriptor
	QueryVariableInfo()

	8.2.4 Hardware Error Record Persistence

	8.3 Time Services
	GetTime()
	SetTime()
	GetWakeupTime()
	SetWakeupTime()

	8.4 Virtual Memory Services
	SetVirtualAddressMap()
	ConvertPointer()

	8.5 Miscellaneous Runtime Services
	8.5.1 Reset System
	ResetSystem()

	8.5.2 Get Next High Monotonic Count
	GetNextHighMonotonicCount()

	8.5.3 Update Capsule
	UpdateCapsule()
	EFI_MEMORY_RANGE_CAPSULE_GUID
	QueryCapsuleCapabilities()

	8.5.4 Exchanging information between the OS and Firmware
	8.5.5 Delivery of Capsules via file on Mass Storage device
	8.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of capsules after restart

	9 - Protocols — EFI Loaded Image
	9.1 EFI Loaded Image Protocol
	EFI_LOADED_IMAGE_PROTOCOL
	EFI_LOADED_IMAGE_PROTOCOL.Unload()

	9.2 EFI Loaded Image Device Path Protocol
	EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

	10 - Protocols — Device Path Protocol
	10.1 Device Path Overview
	10.2 EFI Device Path Protocol
	EFI_DEVICE_PATH_PROTOCOL

	10.3 Device Path Nodes
	10.3.1 Generic Device Path Structures
	10.3.2 Hardware Device Path
	10.3.3 ACPI Device Path
	10.3.4 Messaging Device Path
	10.3.5 Media Device Path
	10.3.6 BIOS Boot Specification Device Path

	10.4 Device Path Generation Rules
	10.4.1 Housekeeping Rules
	10.4.2 Rules with ACPI _HID and _UID
	10.4.3 Rules with ACPI _ADR
	10.4.4 Hardware vs. Messaging Device Path Rules
	10.4.5 Media Device Path Rules
	10.4.6 Other Rules

	10.5 Device Path Utilities Protocol
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance()

	10.6 EFI Device Path Display Format Overview
	10.6.1 Design Discussion
	10.6.2 Device Path to Text Protocol
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText()
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()

	10.6.3 Device Path from Text Protocol
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDevicePath()

	11 - Protocols — UEFI Driver Model
	11.1 EFI Driver Binding Protocol
	EFI_DRIVER_BINDING_PROTOCOL
	EFI_DRIVER_BINDING_PROTOCOL.Supported()
	EFI_DRIVER_BINDING_PROTOCOL.Start()
	EFI_DRIVER_BINDING_PROTOCOL.Stop()

	11.2 EFI Platform Driver Override Protocol
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

	11.3 EFI Bus Specific Driver Override Protocol
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

	11.4 EFI Driver Diagnostics Protocol
	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL
	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics()

	11.5 EFI Component Name Protocol
	EFI_COMPONENT_NAME2_PROTOCOL
	EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()
	EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()

	11.6 EFI Service Binding Protocol
	EFI_SERVICE_BINDING_PROTOCOL
	EFI_SERVICE_BINDING_PROTOCOL.CreateChild()
	EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

	11.7 EFI Platform to Driver Configuration Protocol
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Response()
	11.7.1 DMTF SM CLP ParameterTypeGuid

	11.8 EFI Driver Supported EFI Version Protocol
	EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL

	11.9 EFI Driver Family Override Protocol
	11.9.1 Overview
	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL
	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion ()

	11.10 EFI Driver Health Protocol
	EFI_DRIVER_HEALTH_PROTOCOL
	EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus()
	EFI_DRIVER_HEALTH_PROTOCOL.Repair ()
	11.10.1 UEFI Boot Manager Algorithms
	11.10.2 UEFI Driver Algorithms

	11.11 EFI Adapter Information Protocol
	EFI_ADAPTER_INFORMATION_PROTOCOL
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_GET_INFO()
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_SET_INFO()
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES()

	11.12 EFI Adapter Information Protocol Information Types
	11.12.1 Network Media State
	11.12.2 Network Boot
	11.12.3 SAN MAC Address
	11.12.4 IPV6 Support from UNDI
	11.12.5 Network Media Type

	12 - Protocols — Console Support
	12.1 Console I/O Protocol
	12.1.1 Overview
	12.1.2 ConsoleIn Definition

	12.2 Simple Text Input Ex Protocol
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()

	12.3 Simple Text Input Protocol
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke()
	12.3.1 ConsoleOut or StandardError

	12.4 Simple Text Output Protocol
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

	12.5 Simple Pointer Protocol
	EFI_SIMPLE_POINTER_PROTOCOL
	EFI_SIMPLE_POINTER_PROTOCOL.Reset()
	EFI_SIMPLE_POINTER_PROTOCOL.GetState()

	12.6 EFI Simple Pointer Device Paths
	12.7 Absolute Pointer Protocol
	EFI_ABSOLUTE_POINTER_PROTOCOL
	EFI_ABSOLUTE_POINTER_PROTOCOL.Reset()
	EFI_ABSOLUTE_POINTER_PROTOCOL.GetState()

	12.8 Serial I/O Protocol
	EFI_SERIAL_IO_PROTOCOL
	12.8.1 Serial Device Identification
	12.8.2 Serial Device Type GUIDs
	EFI_SERIAL_IO_PROTOCOL.Reset()
	EFI_SERIAL_IO_PROTOCOL.SetAttributes()
	EFI_SERIAL_IO_PROTOCOL.SetControl()
	EFI_SERIAL_IO_PROTOCOL.GetControl()
	EFI_SERIAL_IO_PROTOCOL.Write()
	EFI_SERIAL_IO_PROTOCOL.Read()

	12.9 Graphics Output Protocol
	12.9.1 Blt Buffer
	EFI_GRAPHICS_OUTPUT_PROTOCOL
	EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()
	EFI_EDID_DISCOVERED_PROTOCOL
	EFI_EDID_ACTIVE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

	12.10 Rules for PCI/AGP Devices

	13 - Protocols — Media Access
	13.1 Load File Protocol
	EFI_LOAD_FILE_PROTOCOL
	EFI_LOAD_FILE_PROTOCOL.LoadFile()

	13.2 Load File 2 Protocol
	EFI_LOAD_FILE2_PROTOCOL
	EFI_LOAD_FILE2_PROTOCOL.LoadFile()

	13.3 File System Format
	13.3.1 System Partition
	13.3.2 Partition Discovery
	13.3.3 Number and Location of System Partitions
	13.3.4 Media Formats

	13.4 Simple File System Protocol
	EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
	EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

	13.5 File Protocol
	EFI_FILE_PROTOCOL
	EFI_FILE_PROTOCOL.Open()
	EFI_FILE_PROTOCOL.Close()
	EFI_FILE_PROTOCOL.Delete()
	EFI_FILE_PROTOCOL.Read()
	EFI_FILE_PROTOCOL.Write()
	EFI_FILE_PROTOCOL.OpenEx()
	EFI_FILE_PROTOCOL.ReadEx()
	EFI_FILE_PROTOCOL.WriteEx()
	EFI_FILE_PROTOCOL.SetPosition()
	EFI_FILE_PROTOCOL.GetPosition()
	EFI_FILE_PROTOCOL.GetInfo()
	EFI_FILE_PROTOCOL.SetInfo()
	EFI_FILE_PROTOCOL.Flush()
	EFI_FILE_INFO
	EFI_FILE_SYSTEM_INFO
	EFI_FILE_SYSTEM_VOLUME_LABEL

	13.6 Tape Boot Support
	13.6.1 Tape I/O Support
	13.6.2 Tape I/O Protocol
	EFI_TAPE_IO_PROTOCOL
	EFI_TAPE_IO_PROTOCOL.TapeRead()
	EFI_TAPE_IO_PROTOCOL.TapeWrite()
	EFI_TAPE_IO_PROTOCOL.TapeRewind()
	EFI_TAPE_IO_PROTOCOL.TapeSpace()
	EFI_TAPE_IO_PROTOCOL.TapeWriteFM()
	EFI_TAPE_IO_PROTOCOL.TapeReset()

	13.6.3 Tape Header Format

	13.7 Disk I/O Protocol
	EFI_DISK_IO_PROTOCOL
	EFI_DISK_IO_PROTOCOL.ReadDisk()
	EFI_DISK_IO_PROTOCOL.WriteDisk()

	13.8 Disk I/O 2 Protocol
	EFI_DISK_IO2_PROTOCOL
	EFI_DISK_IO2_PROTOCOL.Cancel()
	EFI_DISK_IO2_PROTOCOL.ReadDiskEx()
	EFI_DISK_IO2_PROTOCOL.WriteDiskEx()
	EFI_DISK_IO2_PROTOCOL.FlushDiskEx()

	13.9 Block I/O Protocol
	EFI_BLOCK_IO_PROTOCOL
	EFI_BLOCK_IO_PROTOCOL.Reset()
	EFI_BLOCK_IO_PROTOCOL.ReadBlocks()
	EFI_BLOCK_IO_PROTOCOL.WriteBlocks()
	EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

	13.10 Block I/O 2 Protocol
	EFI_BLOCK_IO2_PROTOCOL
	EFI_BLOCK_IO2_PROTOCOL.Reset()
	EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx()
	EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx()
	EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx()

	13.11 Inline Cryptographic Interface Protocol
	EFI_BLOCK_IO_CRYPTO_PROTOCOL
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks()

	13.12 Erase Block Protocol
	EFI_ERASE_BLOCK_PROTOCOL
	EFI_ERASE_BLOCK_PROTOCOL.EraseBlocks()

	13.13 ATA Pass Thru Protocol
	EFI_ATA_PASS_THRU_PROTOCOL
	EFI_ATA_PASS_THRU_PROTOCOL.PassThru()
	EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()
	EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()
	EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_ATA_PASS_THRU_PROTOCOL.GetDevice()
	EFI_ATA_PASS_THRU_PROTOCOL.ResetPort()
	EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice()

	13.14 Storage Security Command Protocol
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()

	13.15 NVM Express Pass Through Protocol
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()

	13.16 SD MMC Pass Thru Protocol
	EFI_SD_MMC_PASS_THRU_PROTOCOL
	EFI_SD_MMC_PASS_THRU_PROTOCOL.PassThru()
	EFI_SD_MMC_PASS_THRU_PROTOCOL.GetNextSlot()
	EFI_SD_MMC_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_SD_MMC_PASS_THRU_PROTOCOL.GetSlotNumber()
	EFI_SD_MMC_PASS_THRU_PROTOCOL.ResetDevice()

	13.17 RAM Disk Protocol
	EFI_RAM_DISK_PROTOCOL
	EFI_RAM_DISK_PROTOCOL.Register()
	EFI_RAM_DISK_PROTOCOL.Unregister()

	13.18 Partition Information Protocol
	13.19 NVDIMM Label Protocol
	EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageInformation()
	EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageRead()
	EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageWrite()

	13.20 EFI UFS Device Config Protocol
	EFI_UFS_DEVICE_CONFIG_PROTOCOL
	EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsDescriptor()
	EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsFlag()
	EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsAttribute()

	14 - Protocols — PCI Bus Support
	14.1 PCI Root Bridge I/O Support
	14.1.1 PCI Root Bridge I/O Overview

	14.2 PCI Root Bridge I/O Protocol
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()
	14.2.1 PCI Root Bridge Device Paths

	14.3 PCI Driver Model
	14.3.1 PCI Driver Initialization
	14.3.2 PCI Bus Drivers
	14.3.3 PCI Device Drivers

	14.4 EFI PCI I/O Protocol
	EFI_PCI_IO_PROTOCOL
	EFI_PCI_IO_PROTOCOL.PollMem()
	EFI_PCI_IO_PROTOCOL.PollIo()
	EFI_PCI_IO_PROTOCOL.Mem.Read() EFI_PCI_IO_PROTOCOL.Mem.Write()
	EFI_PCI_IO_PROTOCOL.Io.Read() EFI_PCI_IO_PROTOCOL.Io.Write()
	EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.Pci.Write()
	EFI_PCI_IO_PROTOCOL.CopyMem()
	EFI_PCI_IO_PROTOCOL.Map()
	EFI_PCI_IO_PROTOCOL.Unmap()
	EFI_PCI_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_IO_PROTOCOL.Flush()
	EFI_PCI_IO_PROTOCOL.GetLocation()
	EFI_PCI_IO_PROTOCOL.Attributes()
	EFI_PCI_IO_PROTOCOL.GetBarAttributes()
	EFI_PCI_IO_PROTOCOL.SetBarAttributes()
	14.4.1 PCI Device Paths
	14.4.2 PCI Option ROMs
	14.4.3 Nonvolatile Storage
	14.4.4 PCI Hot-Plug Events

	15 - Protocols — SCSI Driver Models and Bus Support
	15.1 SCSI Driver Model Overview
	15.2 SCSI Bus Drivers
	15.2.1 Driver Binding Protocol for SCSI Bus Drivers
	15.2.2 SCSI Enumeration

	15.3 SCSI Device Drivers
	15.3.1 Driver Binding Protocol for SCSI Device Drivers

	15.4 EFI SCSI I/O Protocol
	EFI_SCSI_IO_PROTOCOL
	EFI_SCSI_IO_PROTOCOL.GetDeviceType()
	EFI_SCSI_IO_PROTOCOL.GetDeviceLocation()
	EFI_SCSI_IO_PROTOCOL.ResetBus()
	EFI_SCSI_IO_PROTOCOL.ResetDevice()
	EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand()

	15.5 SCSI Device Paths
	15.5.1 SCSI Device Path Example
	15.5.2 ATAPI Device Path Example
	15.5.3 Fibre Channel Device Path Example
	15.5.4 InfiniBand Device Path Example

	15.6 SCSI Pass Thru Device Paths
	15.7 Extended SCSI Pass Thru Protocol
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

	16 - Protocols — iSCSI Boot
	16.1 Overview
	16.1.1 iSCSI UEFI Driver Layering

	16.2 EFI iSCSI Initiator Name Protocol
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

	17 - Protocols — USB Support
	17.1 USB2 Host Controller Protocol
	17.1.1 USB Host Controller Protocol Overview
	EFI_USB2_HC_PROTOCOL
	EFI_USB2_HC_PROTOCOL.GetCapability()
	EFI_USB2_HC_PROTOCOL.Reset()
	EFI_USB2_HC_PROTOCOL.GetState()
	EFI_USB2_HC_PROTOCOL.SetState()
	EFI_USB2_HC_PROTOCOL.ControlTransfer()
	EFI_USB2_HC_PROTOCOL.BulkTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.IsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()
	EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()
	EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

	17.2 USB Driver Model
	17.2.1 Scope
	17.2.2 USB Bus Driver
	17.2.3 USB Device Driver
	17.2.4 USB I/O Protocol
	EFI_USB_IO_PROTOCOL
	EFI_USB_IO_PROTOCOL.UsbControlTransfer()
	EFI_USB_IO_PROTOCOL.UsbBulkTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()
	EFI_USB_IO_PROTOCOL.UsbPortReset()

	17.3 USB Function Protocol
	EFI_USBFN_IO_PROTOCOL
	EFI_USBFN_IO_PROTOCOL.DetectPort()
	EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints()
	EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()
	EFI_USBFN_IO_PROTOCOL.GetDeviceInfo()
	EFI_USBFN_IO_PROTOCOL.GetVendorIdProductId()
	EFI_USBFN_IO_PROTOCOL.AbortTransfer()
	EFI_USBFN_IO_PROTOCOL.GetEndpointStallState()
	EFI_USBFN_IO_PROTOCOL.SetEndpointStallState()
	EFI_USBFN_IO_PROTOCOL.EventHandler()
	EFI_USBFN_IO_PROTOCOL.Transfer()
	EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize()
	EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()
	EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()
	EFI_USBFN_IO_PROTOCOL.StartController()
	EFI_USBFN_IO_PROTOCOL.StopController()
	EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()
	EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy()

	18 - Protocols — Debugger Support
	18.1 Overview
	18.2 EFI Debug Support Protocol
	18.2.1 EFI Debug Support Protocol Overview
	EFI_DEBUG_SUPPORT_PROTOCOL
	EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

	18.3 EFI Debugport Protocol
	18.3.1 EFI Debugport Overview
	EFI_DEBUGPORT_PROTOCOL
	EFI_DEBUGPORT_PROTOCOL.Reset()
	EFI_DEBUGPORT_PROTOCOL.Write()
	EFI_DEBUGPORT_PROTOCOL.Read()
	EFI_DEBUGPORT_PROTOCOL.Poll()

	18.3.2 Debugport Device Path
	18.3.3 EFI Debugport Variable

	18.4 EFI Debug Support Table
	18.4.1 Overview
	18.4.2 EFI System Table Location
	18.4.3 EFI Image Info

	19 - Protocols — Compression Algorithm Specification
	19.1 Algorithm Overview
	19.2 Data Format
	19.2.1 Bit Order
	19.2.2 Overall Structure
	19.2.3 Block Structure

	19.3 Compressor Design
	19.3.1 Overall Process
	19.3.2 String Info Log
	19.3.3 Huffman Code Generation

	19.4 Decompressor Design
	19.5 Decompress Protocol
	EFI_DECOMPRESS_PROTOCOL
	EFI_DECOMPRESS_PROTOCOL.GetInfo()
	EFI_DECOMPRESS_PROTOCOL.Decompress()

	20 - Protocols — ACPI Protocols
	EFI_ACPI_TABLE_PROTOCOL
	EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()
	EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable()

	21 - Protocols — String Services
	21.1 Unicode Collation Protocol
	EFI_UNICODE_COLLATION_PROTOCOL
	EFI_UNICODE_COLLATION_PROTOCOL.StriColl()
	EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()
	EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()
	EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

	21.2 Regular Expression Protocol
	EFI_REGULAR_EXPRESSION_PROTOCOL
	EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()
	EFI_REGULAR_EXPRESSION_PROTOCOL.GetInfo()
	21.2.1 EFI Regular Expression Syntax Type Definitions

	22 - EFI Byte Code Virtual Machine
	22.1 Overview
	22.1.1 Processor Architecture Independence
	22.1.2 OS Independent
	22.1.3 EFI Compliant
	22.1.4 Coexistence of Legacy Option ROMs
	22.1.5 Relocatable Image
	22.1.6 Size Restrictions Based on Memory Available

	22.2 Memory Ordering
	22.3 Virtual Machine Registers
	22.4 Natural Indexing
	22.4.1 Sign Bit
	22.4.2 Bits Assigned to Natural Units
	22.4.3 Constant
	22.4.4 Natural Units

	22.5 EBC Instruction Operands
	22.5.1 Direct Operands
	22.5.2 Indirect Operands
	22.5.3 Indirect with Index Operands
	22.5.4 Immediate Operands

	22.6 EBC Instruction Syntax
	22.7 Instruction Encoding
	22.7.1 Instruction Opcode Byte Encoding
	22.7.2 Instruction Operands Byte Encoding
	22.7.3 Index/Immediate Data Encoding

	22.8 EBC Instruction Set
	ADD
	AND
	ASHR
	BREAK
	CALL
	CMP
	CMPI
	DIV
	DIVU
	EXTNDB
	EXTNDD
	EXTNDW
	JMP
	JMP8
	LOADSP
	MOD
	MODU
	MOV
	MOVI
	MOVIn
	MOVn
	MOVREL
	MOVsn
	MUL
	MULU
	NEG
	NOT
	OR
	POP
	POPn
	PUSH
	PUSHn
	RET
	SHL
	SHR
	STORESP
	SUB
	XOR

	22.9 Runtime and Software Conventions
	22.9.1 Calling Outside VM
	22.9.2 Calling Inside VM
	22.9.3 Parameter Passing
	22.9.4 Return Values
	22.9.5 Binary Format

	22.10 Architectural Requirements
	22.10.1 EBC Image Requirements
	22.10.2 EBC Execution Interfacing Requirements
	22.10.3 Interfacing Function Parameters Requirements
	22.10.4 Function Return Requirements
	22.10.5 Function Return Values Requirements

	22.11 EBC Interpreter Protocol
	EFI_EBC_PROTOCOL
	EFI_EBC_PROTOCOL.CreateThunk()
	EFI_EBC_PROTOCOL.UnloadImage()
	EFI_EBC_PROTOCOL.RegisterICacheFlush()
	EFI_EBC_PROTOCOL.GetVersion()

	22.12 EBC Tools
	22.12.1 EBC C Compiler
	22.12.2 C Coding Convention
	22.12.3 EBC Interface Assembly Instructions
	22.12.4 Stack Maintenance and Argument Passing
	22.12.5 Native to EBC Arguments Calling Convention
	22.12.6 EBC to Native Arguments Calling Convention
	22.12.7 EBC to EBC Arguments Calling Convention
	22.12.8 Function Returns
	22.12.9 Function Return Values
	22.12.10 Thunking
	22.12.11 EBC Linker
	22.12.12 Image Loader
	22.12.13 Debug Support

	22.13 VM Exception Handling
	22.13.1 Divide By 0 Exception
	22.13.2 Debug Break Exception
	22.13.3 Invalid Opcode Exception
	22.13.4 Stack Fault Exception
	22.13.5 Alignment Exception
	22.13.6 Instruction Encoding Exception
	22.13.7 Bad Break Exception
	22.13.8 Undefined Exception

	22.14 Option ROM Formats
	22.14.1 EFI Drivers for PCI Add-in Cards
	22.14.2 Non-PCI Bus Support

	23 - Firmware Update and Reporting
	23.1 Firmware Management Protocol
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackageInfo()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackageInfo()

	23.2 Dependency Expression Instruction Set
	PUSH_GUID
	PUSH_VERSION
	DECLARE_VERSION_NAME
	AND
	OR
	NOT
	TRUE
	FALSE
	EQ
	GT
	GTE
	LT
	LTE
	END

	23.3 Delivering Capsules Containing Updates to Firmware Management Protocol
	23.3.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID
	23.3.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE
	23.3.3 Firmware Processing of the Capsule Identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

	23.4 EFI System Resource Table
	EFI_SYSTEM_RESOURCE_TABLE
	23.4.1 Adding and Removing Devices from the ESRT
	23.4.2 ESRT and Firmware Management Protocol
	23.4.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries

	23.5 Delivering Capsule Containing JSON payload
	23.5.1 EFI_JSON_CAPSULE_ ID_GUID
	23.5.2 Defined JSON Capsule Data Structure
	23.5.3 Firmware Processing of the Capsule Identified by EFI_JSON_CAPSULE_ID_GUID

	24 - Network Protocols — SNP, PXE, BIS and HTTP Boot
	24.1 Simple Network Protocol
	EFI_SIMPLE_NETWORK_PROTOCOL
	EFI_SIMPLE_NETWORK.Start()
	EFI_SIMPLE_NETWORK.Stop()
	EFI_SIMPLE_NETWORK.Initialize()
	EFI_SIMPLE_NETWORK.Reset()
	EFI_SIMPLE_NETWORK.Shutdown()
	EFI_SIMPLE_NETWORK.ReceiveFilters()
	EFI_SIMPLE_NETWORK.StationAddress()
	EFI_SIMPLE_NETWORK.Statistics()
	EFI_SIMPLE_NETWORK.MCastIPtoMAC()
	EFI_SIMPLE_NETWORK.NvData()
	EFI_SIMPLE_NETWORK.GetStatus()
	EFI_SIMPLE_NETWORK.Transmit()
	EFI_SIMPLE_NETWORK.Receive()

	24.2 Network Interface Identifier Protocol
	EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

	24.3 PXE Base Code Protocol
	EFI_PXE_BASE_CODE_PROTOCOL
	EFI_PXE_BASE_CODE_PROTOCOL.Start()
	EFI_PXE_BASE_CODE_PROTOCOL.Stop()
	EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()
	EFI_PXE_BASE_CODE_PROTOCOL.Discover()
	EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()
	EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()
	EFI_PXE_BASE_CODE_PROTOCOL.Arp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()
	EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()
	24.3.1 Netboot6

	24.4 PXE Base Code Callback Protocol
	EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL
	EFI_PXE_BASE_CODE_CALLBACK.Callback()

	24.5 Boot Integrity Services Protocol
	EFI_BIS_PROTOCOL
	EFI_BIS_PROTOCOL.Initialize()
	EFI_BIS_PROTOCOL.Shutdown()
	EFI_BIS_PROTOCOL.Free()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()
	EFI_BIS_PROTOCOL.GetSignatureInfo()
	EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()
	EFI_BIS_PROTOCOL.VerifyBootObject()
	EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

	24.6 DHCP options for ISCSI on IPV6
	24.7 HTTP Boot
	24.7.1 Boot from URL
	24.7.2 Concept configuration for a typical HTTP Boot scenario
	24.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical HTTP Boot scenario
	24.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in Corporate Environment)
	24.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6)
	24.7.6 EFI HTTP Boot Callback Protocol
	EFI_HTTP_BOOT_CALLBACK_PROTOCOL
	EFI_HTTP_BOOT_CALLBACK_PROTOCOL.Callback()

	25 - Network Protocols — Managed Network
	25.1 EFI Managed Network Protocol
	EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()
	EFI_MANAGED_NETWORK_PROTOCOL.Configure()
	EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()
	EFI_MANAGED_NETWORK_PROTOCOL.Groups()
	EFI_MANAGED_NETWORK_PROTOCOL.Transmit()
	EFI_MANAGED_NETWORK_PROTOCOL.Receive()
	EFI_MANAGED_NETWORK_PROTOCOL.Cancel()
	EFI_MANAGED_NETWORK_PROTOCOL.Poll()

	26 - Network Protocols — Bluetooth
	26.1 EFI Bluetooth Host Controller Protocol
	EFI_BLUETOOTH_HC_PROTOCOL
	BLUETOOTH_HC_PROTOCOL.SendCommand()
	BLUETOOTH_HC_PROTOCOL.ReceiveEvent()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent()
	BLUETOOTH_HC_PROTOCOL.SendACLData()
	BLUETOOTH_HC_PROTOCOL.ReceiveACLData()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData()
	BLUETOOTH_HC_PROTOCOL.SendSCOData()
	BLUETOOTH_HC_PROTOCOL.ReceiveSCOData()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData()

	26.2 EFI Bluetooth Bus Protocol
	EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL
	EFI_BLUETOOTH_IO_PROTOCOL
	BLUETOOTH_IO_PROTOCOL.GetDeviceInfo
	BLUETOOTH_IO_PROTOCOL.GetSdpInfo
	BLUETOOTH_IO_PROTOCOL.L2CapRawSend
	BLUETOOTH_IO_PROTOCOL.L2CapRawReceive
	BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive
	BLUETOOTH_IO_PROTOCOL.L2CapSend
	BLUETOOTH_IO_PROTOCOL.L2CapReceive
	BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive
	BLUETOOTH_IO_PROTOCOL.L2CapConnect
	BLUETOOTH_IO_PROTOCOL.L2CapDisconnect
	BLUETOOTH_IO_PROTOCOL.L2CapRegisterService

	26.3 EFI Bluetooth Configuration Protocol
	EFI_BLUETOOTH_CONFIG_PROTOCOL
	BLUETOOTH_CONFIG_PROTOCOL.Init
	BLUETOOTH_CONFIG_PROTOCOL.Scan
	BLUETOOTH_CONFIG_PROTOCOL.Connect
	BLUETOOTH_CONFIG_PROTOCOL.Disconnect
	BLUETOOTH_CONFIG_PROTOCOL.GetData
	BLUETOOTH_CONFIG_PROTOCOL.SetData
	BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData
	BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback

	26.4 EFI Bluetooth Attribute Protocol
	EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL
	EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL

	26.5 EFI Bluetooth LE Configuration Protocol
	EFI_BLUETOOTH_LE_CONFIG_PROTOCOL
	BLUETOOTH_LE_CONFIG_PROTOCOL.Init
	BLUETOOTH_LE_CONFIG_PROTOCOL.Scan
	BLUETOOTH_LE_CONFIG_PROTOCOL.Connect
	BLUETOOTH_LE_CONFIG_PROTOCOL.Disconnect
	BLUETOOTH_LE_CONFIG_PROTOCOL.GetData
	BLUETOOTH_LE_CONFIG_PROTOCOL.SetData
	BLUETOOTH_LE_CONFIG_PROTOCOL.GetRemoteData
	BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpAuthCallback
	BLUETOOTH_LE_CONFIG_PROTOCOL.SendSmpAuthData
	BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpGetDataCallback
	BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpSetDataCallback
	BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback

	27 - Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
	27.1 VLAN Configuration Protocol
	EFI_VLAN_CONFIG_PROTOCOL
	EFI_VLAN_CONFIG_PROTOCOL.Set ()
	EFI_VLAN_CONFIG_PROTOCOL.Find()
	EFI_VLAN_CONFIG_PROTOCOL.Remove ()

	27.2 EAP Protocol
	EFI_EAP_PROTOCOL
	EFI_EAP.SetDesiredAuthMethod()
	EFI_EAP.RegisterAuthMethod()
	27.2.1 EAPManagement Protocol
	EFI_EAP_MANAGEMENT_PROTOCOL
	EFI_EAP_MANAGEMENT.GetSystemConfiguration()
	EFI_EAP_MANAGEMENT.SetSystemConfiguration()
	EFI_EAP_MANAGEMENT.InitializePort()
	EFI_EAP_MANAGEMENT.UserLogon()
	EFI_EAP_MANAGEMENT.UserLogoff()
	EFI_EAP_MANAGEMENT.GetSupplicantStatus()
	EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()
	EFI_EAP_MANAGEMENT.GetSupplicantStatistics()

	27.2.2 EFI EAP Management2 Protocol
	EFI_EAP_MANAGEMENT2_PROTOCOL
	EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()

	27.2.3 EFI EAP Configuration Protocol
	EFI_EAP_CONFIGURATION_PROTOCOL
	EFI_EAP_CONFIGURATION_PROTOCOL.SetData()
	EFI_EAP_CONFIGURATION_PROTOCOL.GetData()

	27.3 EFI Wireless MAC Connection Protocol
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate()

	27.4 EFI Wireless MAC Connection II Protocol
	EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL
	EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.GetNetworks()
	EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.ConnectNetwork()
	EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.DisconnectNetwork()

	27.5 EFI Supplicant Protocol
	27.5.1 Supplicant Service Binding Protocol
	EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL

	27.5.2 Supplicant Protocol
	EFI_SUPPLICANT_PROTOCOL
	EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket()
	EFI_SUPPLICANT_PROTOCOL.ProcessPacket()
	EFI_SUPPLICANT_PROTOCOL.SetData()
	EFI_SUPPLICANT_PROTOCOL.GetData()

	28 - Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
	28.1 EFI TCPv4 Protocol
	28.1.1 TCP4 Service Binding Protocol
	EFI_TCP4_SERVICE_BINDING_PROTOCOL

	28.1.2 TCP4 Protocol
	EFI_TCP4_PROTOCOL
	EFI_TCP4_PROTOCOL.GetModeData()
	EFI_TCP4_PROTOCOL.Configure()
	EFI_TCP4_PROTOCOL.Routes()
	EFI_TCP4_PROTOCOL.Connect()
	EFI_TCP4_PROTOCOL.Accept()
	EFI_TCP4_PROTOCOL.Transmit()
	EFI_TCP4_PROTOCOL.Receive()
	EFI_TCP4_PROTOCOL.Close()
	EFI_TCP4_PROTOCOL.Cancel()
	EFI_TCP4_PROTOCOL.Poll()

	28.2 EFI TCPv6 Protocol
	28.2.1 TCPv6 Service Binding Protocol
	EFI_TCP6_SERVICE_BINDING_PROTOCOL

	28.2.2 TCPv6 Protocol
	EFI_TCP6_PROTOCOL
	EFI_TCP6_PROTOCOL.GetModeData()
	EFI_TCP6_PROTOCOL.Configure()
	EFI_TCP6_PROTOCOL.Connect()
	EFI_TCP6_PROTOCOL.Accept()
	EFI_TCP6_PROTOCOL.Transmit()
	EFI_TCP6_PROTOCOL.Receive()
	EFI_TCP6_PROTOCOL.Close()
	EFI_TCP6_PROTOCOL.Cancel()
	EFI_TCP6_PROTOCOL.Poll()

	28.3 EFI IPv4 Protocol
	28.3.1 IP4 Service Binding Protocol
	EFI_IP4_SERVICE_BINDING_PROTOCOL

	28.3.2 IP4 Protocol
	EFI_IP4_PROTOCOL
	EFI_IP4_PROTOCOL.GetModeData()
	EFI_IP4_PROTOCOL.Configure()
	EFI_IP4_PROTOCOL.Groups()
	EFI_IP4_PROTOCOL.Routes()
	EFI_IP4_PROTOCOL.Transmit()
	EFI_IP4_PROTOCOL.Receive()
	EFI_IP4_PROTOCOL.Cancel()
	EFI_IP4_PROTOCOL.Poll()

	28.4 EFI IPv4 Configuration Protocol
	EFI_IP4_CONFIG_PROTOCOL
	EFI_IP4_CONFIG_PROTOCOL.Start()
	EFI_IP4_CONFIG_PROTOCOL.Stop()
	EFI_IP4_CONFIG_PROTOCOL.GetData()
	Related Definitions

	28.5 EFI IPv4 Configuration II Protocol
	EFI_IP4_CONFIG2_PROTOCOL
	EFI_IP4_CONFIG2_PROTOCOL.SetData()
	EFI_IP4_CONFIG2_PROTOCOL.GetData()
	EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify ()
	EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify ()

	28.6 EFI IPv6 Protocol
	28.6.1 IPv6 Service Binding Protocol
	EFI_IP6_SERVICE_BINDING_PROTOCOL

	28.6.2 IPv6 Protocol
	EFI_IP6_PROTOCOL
	EFI_IP6_PROTOCOL.GetModeData()
	EFI_IP6_PROTOCOL.Configure()
	EFI_IP6_PROTOCOL.Groups()
	EFI_IP6_PROTOCOL.Routes()
	EFI_IP6_PROTOCOL.Neighbors()
	EFI_IP6_PROTOCOL.Transmit()
	EFI_IP6_PROTOCOL.Receive()
	EFI_IP6_PROTOCOL.Cancel()
	EFI_IP6_PROTOCOL.Poll()

	28.7 EFI IPv6 Configuration Protocol
	EFI_IP6_CONFIG_PROTOCOL
	EFI_IP6_CONFIG_PROTOCOL.SetData()
	EFI_IP6_CONFIG_PROTOCOL.GetData()
	EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify ()
	EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()

	28.8 IPsec
	28.8.1 IPsec Overview
	28.8.2 EFI IPsec Configuration Protocol
	EFI_IPSEC_CONFIG_PROTOCOL
	EFI_IPSEC_CONFIG_PROTOCOL.SetData()
	EFI_IPSEC_CONFIG_PROTOCOL.GetData()
	EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector()
	EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify ()
	EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify ()

	28.8.3 EFI IPsec Protocol
	EFI_IPSEC_PROTOCOL
	EFI_IPSEC_PROTOCOL.Process()

	28.8.4 EFI IPsec2 Protocol
	EFI_IPSEC2_PROTOCOL
	EFI_IPSEC2_PROTOCOL.ProcessExt()

	28.9 Network Protocol - EFI FTP Protocol
	EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary
	EFI_FTP4_PROTOCOL
	EFI_FTP4_PROTOCOL.GetModeData()
	EFI_FTP4_PROTOCOL.Connect()
	EFI_FTP4_PROTOCOL.Close()
	EFI_FTP4_PROTOCOL.Configure()
	EFI_FTP4_PROTOCOL.ReadFile()
	EFI_FTP4_PROTOCOL.WriteFile()
	EFI_FTP4_PROTOCOL.ReadDirectory()
	EFI_FTP4_PROTOCOL.Poll()

	28.10 EFI TLS Protocols
	28.10.1 EFI TLS Service Binding Protocol
	EFI_TLS_SERVICE_BINDING_PROTOCOL

	28.10.2 EFI TLS Protocol
	EFI_TLS_PROTOCOL
	EFI_TLS_PROTOCOL.SetSessionData ()
	EFI_TLS_PROTOCOL.GetSessionData ()
	EFI_TLS_PROTOCOL.BuildResponsePacket ()
	EFI_TLS_PROTOCOL.ProcessPacket ()

	28.10.3 EFI TLS Configuration Protocol
	EFI_TLS_CONFIGURATION_PROTOCOL
	EFI_TLS_CONFIGURATION_PROTOCOL.SetData()
	EFI_TLS_CONFIGURATION_PROTOCOL.GetData()

	29 - Network Protocols — ARP, DHCP, DNS, HTTP and REST
	29.1 ARP Protocol
	EFI_ARP_SERVICE_BINDING_PROTOCOL
	EFI_ARP_PROTOCOL
	EFI_ARP_PROTOCOL.Configure()
	EFI_ARP_PROTOCOL.Add()
	EFI_ARP_PROTOCOL.Find()
	Related Definitions
	EFI_ARP_PROTOCOL.Delete()
	EFI_ARP_PROTOCOL.Flush()
	EFI_ARP_PROTOCOL.Request()
	EFI_ARP_PROTOCOL.Cancel()

	29.2 EFI DHCPv4 Protocol
	EFI_DHCP4_SERVICE_BINDING_PROTOCOL
	EFI_DHCP4_PROTOCOL
	EFI_DHCP4_PROTOCOL.GetModeData()
	EFI_DHCP4_PROTOCOL.Configure()
	EFI_DHCP4_PROTOCOL.Start()
	EFI_DHCP4_PROTOCOL.RenewRebind()
	EFI_DHCP4_PROTOCOL.Release()
	EFI_DHCP4_PROTOCOL.Stop()
	EFI_DHCP4_PROTOCOL.Build()
	EFI_DHCP4_PROTOCOL.TransmitReceive()
	EFI_DHCP4_PROTOCOL.Parse()

	29.3 EFI DHCP6 Protocol
	29.3.1 DHCP6 Service Binding Protocol
	EFI_DHCP6_SERVICE_BINDING_PROTOCOL

	29.3.2 DHCP6 Protocol
	EFI_DHCP6_PROTOCOL
	EFI_DHCP6_PROTOCOL.GetModeData ()
	EFI_DHCP6_PROTOCOL.Configure ()
	EFI_DHCP6_PROTOCOL.Start ()
	EFI_DHCP6_PROTOCOL.InfoRequest ()
	EFI_DHCP6_PROTOCOL.RenewRebind ()
	EFI_DHCP6_PROTOCOL.Decline ()
	EFI_DHCP6_PROTOCOL.Release ()
	EFI_DHCP6_PROTOCOL.Stop ()
	EFI_DHCP6_PROTOCOL.Parse ()

	29.4 EFI DNSv4 Protocol
	EFI_DNS4_SERVICE_BINDING_PROTOCOL
	EFI_DNS4_PROTOCOL
	EFI_DNS4_PROTOCOL.GetModeData()
	EFI_DNS4_PROTOCOL.Configure()
	EFI_DNS4_PROTOCOL.HostNameToIp()
	EFI_DNS4_PROTOCOL.IpToHostName()
	EFI_DNS4_PROTOCOL.GeneralLookUp()
	EFI_DNS4_PROTOCOL.UpdateDnsCache()
	EFI_DNS4_PROTOCOL.Poll()
	EFI_DNS4_PROTOCOL.Cancel()

	29.5 EFI DNSv6 Protocol
	29.5.1 DNS6 Service Binding Protocol
	EFI_DNS6_SERVICE_BINDING_PROTOCOL

	29.5.2 DNS6 Protocol
	EFI_DNS6_PROTOCOL
	EFI_DNS6_PROTOCOL.GetModeData()
	EFI_DNS6_PROTOCOL.Configure()
	EFI_DNS6_PROTOCOL.HostNameToIp()
	EFI_DNS6_PROTOCOL.IpToHostName()
	EFI_DNS6_PROTOCOL.GeneralLookUp()
	EFI_DNS6_PROTOCOL.UpdateDnsCache()
	EFI_DNS6_PROTOCOL.POLL()
	EFI_DNS6_PROTOCOL.Cancel()

	29.6 EFI HTTP Protocols
	29.6.1 HTTP Service Binding Protocol
	EFI_HTTP_SERVICE_BINDING_PROTOCOL

	29.6.2 EFI HTTP Protocol Specific Definitions
	EFI_HTTP_PROTOCOL
	EFI_HTTP_PROTOCOL.GetModeData()
	EFI_HTTP_PROTOCOL.Configure()
	EFI_HTTP_PROTOCOL.Request()
	EFI_HTTP_PROTOCOL.Cancel()
	EFI_HTTP_PROTOCOL.Response()
	EFI_HTTP_PROTOCOL.Poll()

	29.6.3 HTTP Utilities Protocol
	EFI_HTTP_UTILITIES_PROTOCOL
	EFI_HTTP_UTILITIES_PROTOCOL.Build()
	EFI_HTTP_UTILITIES_PROTOCOL.Parse()

	29.7 EFI REST Support Overview
	29.7.1 EFI REST Protocol
	EFI_REST_PROTOCOL
	EFI_REST_PROTOCOL.SendReceive()
	EFI_REST_PROTOCOL.GetServiceTime()

	29.7.2 EFI REST EX Protocol
	EFI_REST_EX_SERVICE_BINDING_PROTOCOL
	EFI_REST_EX_PROTOCOL
	EFI_REST_EX_PROTOCOL.SendReceive()
	EFI_REST_EX_PROTOCOL.GetService()
	EFI_REST_EX_PROTOCOL.GetModeData()
	EFI_REST_EX_PROTOCOL.Configure()
	EFI_REST_EX_PROTOCOL.AsyncSendReceive()
	EFI_REST_EX_PROTOCOL.EventService()
	EFI_REST_EX_PROTOCOL.EventService()

	29.7.3 EFI REST JSON Resource to C Structure Converter
	EFI_REST_JSON_STRUCTURE.Register ()
	EFI_REST_JSON_STRUCTURE.ToStructure ()
	EFI_REST_JSON_STRUCTURE.ToJson ()
	EFI_REST_JSON_STRUCTURE.DestroyStructure ()

	30 - Network Protocols — UDP and MTFTP
	30.1 EFI UDP Protocol
	30.1.1 UDP4 Service Binding Protocol
	EFI_UDP4_SERVICE_BINDING_PROTOCOL

	30.1.2 UDP4 Protocol
	EFI_UDP4_PROTOCOL
	EFI_UDP4_PROTOCOL.GetModeData()
	EFI_UDP4_PROTOCOL.Configure()
	EFI_UDP4_PROTOCOL.Groups()
	EFI_UDP4_PROTOCOL.Routes()
	EFI_UDP4_PROTOCOL.Transmit()
	EFI_UDP4_PROTOCOL.Receive()
	EFI_UDP4_PROTOCOL.Cancel()
	EFI_UDP4_PROTOCOL.Poll()

	30.2 EFI UDPv6 Protocol
	30.2.1 UDP6 Service Binding Protocol
	EFI_UDP6_SERVICE_BINDING_PROTOCOL

	30.2.2 EFI UDP6 Protocol
	EFI_UDP6_PROTOCOL
	EFI_UDP6_PROTOCOL.GetModeData()
	EFI_UDP6_PROTOCOL.Configure()
	EFI_UDP6_PROTOCOL.Groups()
	EFI_UDP6_PROTOCOL.Transmit()
	EFI_UDP6_PROTOCOL.Receive()
	EFI_UDP6_PROTOCOL.Cancel()
	EFI_UDP6_PROTOCOL.Poll()

	30.3 EFI MTFTPv4 Protocol
	EFI_MTFTP4_SERVICE_BINDING_PROTOCOL
	EFI_MTFTP4_PROTOCOL
	EFI_MTFTP4_PROTOCOL.GetModeData()
	EFI_MTFTP4_PROTOCOL.Configure()
	EFI_MTFTP4_PROTOCOL.GetInfo()
	EFI_MTFTP4_PROTOCOL.ParseOptions()
	EFI_MTFTP4_PROTOCOL.ReadFile()
	EFI_MTFTP4_PROTOCOL.WriteFile()
	EFI_MTFTP4_PROTOCOL.ReadDirectory()
	EFI_MTFTP4_PROTOCOL.POLL()

	30.4 EFI MTFTPv6 Protocol
	30.4.1 MTFTP6 Service Binding Protocol
	EFI_MTFTP6_SERVICE_BINDING_PROTOCOL

	30.4.2 MTFTP6 Protocol
	EFI_MTFTP6_PROTOCOL
	EFI_MTFTP6_PROTOCOL.GetModeData()
	EFI_MTFTP6_PROTOCOL.Configure()
	EFI_MTFTP6_PROTOCOL.GetInfo()
	EFI_MTFTP6_PROTOCOL.ParseOptions()
	EFI_MTFTP6_PROTOCOL.ReadFile()
	EFI_MTFTP6_PROTOCOL.WriteFile()
	EFI_MTFTP6_PROTOCOL.ReadDirectory()
	EFI_MTFTP6_PROTOCOL.Poll()

	31 - EFI Redfish Service Support
	31.1 EFI Redfish Discover Protocol
	31.1.1 Overview
	31.1.2 EFI Redfish Discover Driver
	31.1.3 EFI Redfish Discover Client
	31.1.4 EFI Redfish Discover Protocol
	EFI_REDFISH_DISCOVER_PROTOCOL.GetNetworkInterfaceList ()
	EFI_REDFISH_DISCOVER_PROTOCOL.AcquireRedfishService ()
	EFI_REDFISH_DISCOVER_PROTOCOL.AbortAcquireRedfishService ()
	EFI_REDFISH_DISCOVER_PROTOCOL.ReleaseRedfishService ()

	31.1.5 Implementation Examples

	31.2 EFI Redfish JSON Structure Converter
	31.2.1 The Guidance of Writing EFI Redfish JSON Structure Converter

	32 - Secure Boot and Driver Signing
	32.1 Secure Boot
	EFI_AUTHENTICATION_INFO_PROTOCOL
	EFI_AUTHENTICATION_INFO_PROTOCOL.Get()
	EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

	32.2 UEFI Driver Signing Overview
	32.2.1 Digital Signatures
	32.2.2 Embedded Signatures
	32.2.3 Creating Image Digests from Images
	32.2.4 Code Definitions
	WIN_CERTIFICATE
	WIN_CERTIFICATE_EFI_PKCS1_15
	WIN_CERTIFICATE_UEFI_GUID

	32.3 Firmware/OS Key Exchange: creating trust relationships
	32.3.1 Enrolling The Platform Key
	32.3.2 Clearing The Platform Key
	32.3.3 Transitioning to Audit Mode
	32.3.4 Transitioning to Deployed Mode
	32.3.5 Enrolling Key Exchange Keys
	32.3.6 Platform Firmware Key Storage Requirements

	32.4 Firmware/OS Key Exchange: passing public keys
	32.4.1 Signature Database
	EFI_SIGNATURE_DATA

	32.4.2 Image Execution Information Table

	32.5 UEFI Image Validation
	32.5.1 Overview
	32.5.2 Authorized User
	32.5.3 Signature Database Update

	32.6 Code Definitions
	32.6.1 UEFI Image Variable GUID & Variable Name

	33 - Human Interface Infrastructure Overview
	33.1 Goals
	33.2 Design Discussion
	33.2.1 Drivers And Applications
	33.2.2 Localization
	33.2.3 User Input
	33.2.4 Keyboard Layout
	33.2.5 Forms
	33.2.6 Strings
	33.2.7 Fonts
	33.2.8 Images
	33.2.9 HII Database
	33.2.10 Forms Browser
	33.2.11 Configuration Settings
	33.2.12 Form Callback Logic
	33.2.13 Driver Model Interaction
	33.2.14 Human Interface Component Interactions
	33.2.15 Standards Map Forms

	33.3 Code Definitions
	33.3.1 Package Lists and Package Headers
	EFI_HII_PACKAGE_HEADER

	33.3.2 Simplified Font Package
	33.3.3 Font Package
	33.3.4 Device Path Package
	33.3.5 GUID Package
	33.3.6 String Package
	33.3.7 Image Package
	33.3.8 Forms Package
	33.3.9 Keyboard Package
	33.3.10 Animations Package

	34 - HII Protocols
	34.1 Font Protocol
	EFI_HII_FONT_PROTOCOL
	EFI_HII_FONT_PROTOCOL.StringToImage()
	EFI_HII_FONT_PROTOCOL.StringIdToImage()
	EFI_HII_FONT_PROTOCOL.GetGlyph()
	EFI_HII_FONT_PROTOCOL.GetFontInfo()

	34.2 EFI HII Font Ex Protocol
	EFI_HII_FONT_EX_PROTOCOL
	EFI_HII_FONT_EX_PROTOCOL.StringToImageEx()
	EFI_HII_FONT_EX_PROTOCOL.StringIdToImageEx()
	EFI_HII_FONT_EX_PROTOCOL.GetGlyphEx()
	EFI_HII_FONT_EX_PROTOCOL.GetFontInfoEx()
	EFI_HII_FONT_EX_PROTOCOL.GetGlyphInfo()
	34.2.1 Code Definitions
	EFI_FONT_DISPLAY_INFO
	EFI_IMAGE_OUTPUT

	34.3 String Protocol
	EFI_HII_STRING_PROTOCOL
	EFI_HII_STRING_PROTOCOL.NewString()
	EFI_HII_STRING_PROTOCOL.GetString()
	EFI_HII_STRING_PROTOCOL.SetString()
	EFI_HII_STRING_PROTOCOL.GetLanguages()
	EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages()

	34.4 Image Protocol
	EFI_HII_IMAGE_PROTOCOL
	EFI_HII_IMAGE_PROTOCOL.NewImage()
	EFI_HII_IMAGE_PROTOCOL.GetImage()
	EFI_HII_IMAGE_PROTOCOL.SetImage()
	EFI_HII_IMAGE_PROTOCOL.DrawImage()
	EFI_HII_IMAGE_PROTOCOL.DrawImageId()

	34.5 EFI HII Image Ex Protocol
	EFI_HII_IMAGE_EX_PROTOCOL
	EFI_HII_IMAGE_EX_PROTOCOL.NewImageEx()
	EFI_HII_IMAGE_EX_PROTOCOL.GetImageEx()
	EFI_HII_IMAGE_EX_PROTOCOL.SetImageEx()
	EFI_HII_IMAGE_EX_PROTOCOL.DrawImageEx()
	EFI_HII_IMAGE_EX_PROTOCOL.DrawImageIdEx()
	EFI_HII_IMAGE_EX_PROTOCOL.GetImageInfo()

	34.6 EFI HII Image Decoder Protocol
	EFI_HII_IMAGE_DECODER_PROTOCOL.DecodeImage()
	EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageDecoderName()
	EFI_HII_IMAGE_DECODER_PROTOCOL.GetImageInfo()
	EFI_HII_IMAGE_DECODER_PROTOCOL.Decode()

	34.7 Font Glyph Generator Protocol
	EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL
	EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyph()
	EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyphImage()

	34.8 Database Protocol
	EFI_HII_DATABASE_PROTOCOL
	EFI_HII_DATABASE_PROTOCOL.NewPackageList()
	EFI_HII_DATABASE_PROTOCOL.RemovePackageList()
	EFI_HII_DATABASE_PROTOCOL.UpdatePackageList()
	EFI_HII_DATABASE_PROTOCOL.ListPackageLists()
	EFI_HII_DATABASE_PROTOCOL.ExportPackageLists()
	EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify()
	EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify()
	EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts()
	EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout()
	EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()
	EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle()
	34.8.1 Database Structures
	EFI_HII_DATABASE_NOTIFY
	EFI_HII_DATABASE_NOTIFY_TYPE

	35 - HII Configuration Processing and Browser Protocol
	35.1 Introduction
	35.1.1 Common Configuration Data Format
	35.1.2 Data Flow

	35.2 Configuration Strings
	35.2.1 String Syntax
	35.2.2 String Types

	35.3 EFI Configuration Keyword Handler Protocol
	EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL
	EFI_KEYWORD_HANDLER _PROTOCOL.SetData()
	EFI_KEYWORD_HANDLER _PROTOCOL.GetData()

	35.4 EFI HII Configuration Routing Protocol
	EFI_HII_CONFIG_ROUTING_PROTOCOL
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg()

	35.5 EFI HII Configuration Access Protocol
	EFI_HII_CONFIG_ACCESS_PROTOCOL
	EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig()
	EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig()
	EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()

	35.6 Form Browser Protocol
	EFI_FORM_BROWSER2_PROTOCOL
	EFI_FORM_BROWSER2_PROTOCOL.SendForm()
	EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()

	35.7 HII Popup Protocol
	EFI_HII_POPUP_PROTOCOL
	EFI_HII_POPUP_PROTOCOL.CreatePopup()

	36 - User Identification
	36.1 User Identification Overview
	36.1.1 User Identify
	36.1.2 User Profiles
	36.1.3 Credential Providers
	36.1.4 Security Considerations
	36.1.5 Deferred Execution

	36.2 User Identification Process
	36.2.1 User Identification Process
	36.2.2 Changing The Current User Profile
	36.2.3 Ready To Boot

	36.3 Code Definitions
	36.3.1 User Manager Protocol
	EFI_USER_MANAGER_PROTOCOL
	EFI_USER_MANAGER_PROTOCOL.Create()
	EFI_USER_MANAGER_PROTOCOL.Delete()
	EFI_USER_MANAGER_PROTOCOL.GetNext()
	EFI_USER_MANAGER_PROTOCOL.Current()
	EFI_USER_MANAGER_PROTOCOL.Identify()
	EFI_USER_MANAGER_PROTOCOL.Find()
	EFI_USER_MANAGER_PROTOCOL.Notify()
	EFI_USER_MANAGER_PROTOCOL.GetInfo()
	EFI_USER_MANAGER_PROTOCOL.SetInfo()
	EFI_USER_MANAGER_PROTOCOL.DeleteInfo()
	EFI_USER_MANAGER_PROTOCOL.GetNextInfo()

	36.3.2 Credential Provider Protocols
	EFI_USER_CREDENTIAL2_PROTOCOL
	EFI_USER_CREDENTIAL2_PROTOCOL.Enroll()
	EFI_USER_CREDENTIAL2_PROTOCOL.Form()
	EFI_USER_CREDENTIAL2_PROTOCOL.Tile()
	EFI_USER_CREDENTIAL2_PROTOCOL.Title()
	EFI_USER_CREDENTIAL2_PROTOCOL.User()
	EFI_USER_CREDENTIAL2_PROTOCOL.Select()
	EFI_USER_CREDENTIAL2_PROTOCOL.Deselect()
	EFI_USER_CREDENTIAL2_PROTOCOL.Default()
	EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo()
	EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo()
	EFI_USER_CREDENTIAL2_PROTOCOL.Delete()

	36.3.3 Deferred Image Load Protocol
	EFI_DEFERRED_IMAGE_LOAD_PROTOCOL
	EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetImageInfo()

	36.4 User Information
	36.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD
	36.4.2 EFI_USER_INFO_CBEFF_RECORD
	36.4.3 EFI_USER_INFO_CREATE_DATE_RECORD
	36.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD
	36.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD
	36.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD
	36.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD
	36.4.8 EFI_USER_INFO_GUID_RECORD
	36.4.9 EFI_USER_INFO_FAR_RECORD
	36.4.10 EFI_USER_INFO_IDENTIFIER_RECORD
	36.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD
	36.4.12 EFI_USER_INFO_NAME_RECORD
	36.4.13 EFI_USER_INFO_PKCS11_RECORD
	36.4.14 EFI_USER_INFO_RETRY_RECORD
	36.4.15 EFI_USER_INFO_USAGE_DATE_RECORD
	36.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD

	36.5 User Information Table

	37 - Secure Technologies
	37.1 Hash Overview
	37.1.1 Hash References
	EFI_HASH_SERVICE_BINDING_PROTOCOL
	EFI_HASH_PROTOCOL
	EFI_HASH_PROTOCOL.GetHashSize()
	EFI_HASH_PROTOCOL.Hash()

	37.1.2 Other Code Definitions
	EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH, EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH

	37.2 Hash2 Protocols
	37.2.1 EFI Hash2 Service Binding Protocol
	EFI_HASH2_SERVICE_BINDING_PROTOCOL

	37.2.2 EFI Hash2 Protocol
	EFI_HASH2_PROTOCOL
	EFI_HASH2_PROTOCOL.GetHashSize()
	EFI_HASH2_PROTOCOL.Hash()
	EFI_HASH2_PROTOCOL.HashInit()
	EFI_HASH2_PROTOCOL.HashUpdate()
	EFI_HASH2_PROTOCOL.HashFinal()

	37.2.3 Other Code Definitions
	EFI_HASH2_OUTPUT

	37.3 Key Management Service
	EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL
	EFI_KMS_PROTOCOL.GetServiceStatus()
	EFI_KMS_PROTOCOL.RegisterClient()
	EFI_KMS_PROTOCOL.CreateKey()
	EFI_KMS_PROTOCOL.GetKey()
	EFI_KMS_PROTOCOL.AddKey()
	EFI_KMS_PROTOCOL.DeleteKey()
	EFI_KMS_PROTOCOL.GetKeyAttributes()
	EFI_KMS_PROTOCOL.AddKeyAttributes()
	EFI_KMS_PROTOCOL.DeleteKeyAttributes()
	EFI_KMS_PROTOCOL.GetKeyByAttributes()

	37.4 PKCS7 Verify Protocol
	EFI_PKCS7_VERIFY_PROTOCOL
	EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer()
	EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature()

	37.5 Random Number Generator Protocol
	EFI_RNG_PROTOCOL
	EFI_RNG_PROTOCOL.GetInfo
	EFI_RNG_PROTOCOL.GetRNG
	37.5.1 EFI RNG Algorithm Definitions
	37.5.2 RNG References

	37.6 Smart Card Reader and Smart Card Edge Protocols
	37.6.1 Smart Card Reader Protocol
	EFI_SMART_CARD_READER_PROTOCOL Summary
	EFI_SMART_CARD_READER_PROTOCOL.SCardConnect()
	EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect()
	EFI_SMART_CARD_READER_PROTOCOL.SCardStatus()
	EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()
	EFI_SMART_CARD_READER_PROTOCOL.SCardControl()
	EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()

	37.6.2 Smart Card Edge Protocol
	EFI_SMART_CARD_EDGE_PROTOCOL
	EFI_SMART_CARD_EDGE_PROTOCOL.GetContext()
	EFI_SMART_CARD_EDGE_PROTOCOL. Connect()
	EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn
	EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName
	EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetData()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials()
	EFI_SMART_CARD_EDGE_PROTOCOL.SignData()
	EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData()
	EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement()

	38 - Miscellaneous Protocols
	38.1 EFI Timestamp Protocol
	EFI_TIMESTAMP_PROTOCOL
	EFI_TIMESTAMP_PROTOCOL.GetTimestamp()
	EFI_TIMESTAMP_PROTOCOL.GetProperties ()

	38.2 Reset Notification Protocol
	EFI_RESET_NOTIFICATION_PROTOCOL
	EFI_RESET_NOTIFICATION_PROTOCOL.RegisterResetNotify()
	EFI_RESET_NOTIFICATION_PROTOCOL.UnregisterResetNotify()

	Index

