Compare commits

..

7 Commits

Author SHA1 Message Date
f79f04361a Added a ClearScreen call to the graphics init.
This should erase everything on the screen before anything else.
2019-08-20 16:42:57 +01:00
6238fbf8fe Added serial functions to the kernel header, making them global.
Also moved the definition of IRQ_Functions out of the header, as this is changed.
2019-08-20 16:42:24 +01:00
d3c8dd45c7 Enable all serial debugging outputs in the interrupt handlers.
Serial should be working now, but i can never trust things to work first time.
2019-08-20 16:41:50 +01:00
4af4ad89a4 Updated the kernel.c comments.
Minor changes, but whatever.
2019-08-20 16:41:11 +01:00
c5178d56bd Semantics. 2019-08-20 16:40:48 +01:00
f33b63d1fb Removed beep on boot.
That stuff hurts, man.
Also moved all the ASM port wrappers into their own file.
2019-08-20 16:40:20 +01:00
d830acbbd4 Fix WritePort mistakes in the serial file. 2019-08-20 16:39:20 +01:00
8 changed files with 282 additions and 249 deletions

View File

@ -576,11 +576,7 @@ typedef struct __attribute__((aligned(64), packed)) {
} XSAVE_AREA; } XSAVE_AREA;
static void* IRQ_Handlers[16] = { static void* IRQ_Handlers[16];
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
static const char* ExceptionStrings[] = { static const char* ExceptionStrings[] = {
"Division by Zero", "Division by Zero",
@ -642,6 +638,12 @@ size_t ReadCPUFrequency(size_t* PerformanceDest, uint8_t AvgOrDirect);
uint32_t ReadPort(uint16_t Port, int Length); uint32_t ReadPort(uint16_t Port, int Length);
uint32_t WritePort(uint16_t Port, uint32_t Data, int Length); uint32_t WritePort(uint16_t Port, uint32_t Data, int Length);
/* Serial functions */
void serial_write(const char chr);
void serial_print(const char* data);
void serial_printf(const char* format, ...);
void init_serial();
/* ==================== Registers ==================== */ /* ==================== Registers ==================== */
size_t ReadModelSpecificRegister(size_t MSR); size_t ReadModelSpecificRegister(size_t MSR);
size_t WriteModelSpecificRegister(size_t MSR, size_t Data); size_t WriteModelSpecificRegister(size_t MSR, size_t Data);
@ -686,7 +688,7 @@ void ScanCPUFeatures(size_t RAX, size_t RCX);
/* ==================== Interrupts ==================== */ /* ==================== Interrupts ==================== */
uint64_t time; static uint64_t time;
void IRQ_Common(INTERRUPT_FRAME* Frame, size_t Interupt); void IRQ_Common(INTERRUPT_FRAME* Frame, size_t Interupt);
void ISR_Common(INTERRUPT_FRAME* Frame, size_t Interrupt); void ISR_Common(INTERRUPT_FRAME* Frame, size_t Interrupt);

View File

@ -79,7 +79,8 @@ __attribute__((aligned(4096))) static size_t FirstPageTable[512] = {0};
void timer_wait(int ticks){ void timer_wait(int ticks){
uint64_t FinalTick = time + ticks; uint64_t FinalTick = time + ticks;
while(time < FinalTick); int i = 0;
while(i < ticks * 1000) { i++; };
} }
@ -99,7 +100,15 @@ void PrepareSystem(FILELOADER_PARAMS* FLOP) {
InstallGDT(); InstallGDT();
InstallIDT(); InstallIDT();
beep(); // WARNING!
// W A R N I N G !
// This is L O U D!
// Turn your volume down!
// Seriously!
// LOWER!
// IT'S LOUD!
//beep();
if(SetIdentityMap(FLOP->RTServices) == NULL) { if(SetIdentityMap(FLOP->RTServices) == NULL) {
Memory_Info.MemoryMap = FLOP->MemoryMap; Memory_Info.MemoryMap = FLOP->MemoryMap;
@ -570,209 +579,6 @@ size_t ReadCPUFrequency(size_t* Perfs, uint8_t AverageOrDirect) {
return Frequency; return Frequency;
} }
uint32_t ReadPort(uint16_t Port, int Length) {
uint32_t Data;
if(Length == 1) { // Read a byte
__asm__ __volatile__("inb %[address], %[value]" : : [value] "a" ((uint8_t) Data), [address] "d" (Port) :);
} else if (Length == 2) { // Read a word
__asm__ __volatile__("inw %[address], %[value]" : : [value] "a" ((uint16_t) Data), [address] "d" (Port) :);
} else if (Length == 4) { // Read a long (dword)
__asm__ __volatile__("inl %[address], %[value]" : : [value] "a" (Data), [address] "d" (Port) :);
} else {
printf("ReadPort: Invalid Read Length.\r\n");
}
return Data;
}
uint32_t WritePort(uint16_t Port, uint32_t Data, int Length) {
if(Length == 1) { // Write a byte
__asm__ __volatile__("outb %[value], %[address]" : : [value] "a" ((uint8_t) Data), [address] "d" (Port) :);
} else if (Length == 2) { // Write a word
__asm__ __volatile__("outw %[value], %[address]" : : [value] "a" ((uint16_t) Data), [address] "d" (Port) :);
} else if (Length == 4) { // Write a long (dword)
__asm__ __volatile__("outl %[value], %[address]" : : [value] "a" (Data), [address] "d" (Port) :);
} else {
printf("WritePort: Invalid Write Length.\r\n");
}
return Data;
}
size_t ReadModelSpecificRegister(size_t MSR) {
size_t RegHigh = 0, RegLow = 0;
__asm__ __volatile__("rdmsr" : "=a" (RegLow), "=d" (RegHigh) : "c" (MSR) :);
return (RegHigh << 32 | RegLow);
}
size_t WriteModelSpecificRegister(size_t MSR, size_t Data) {
size_t DataLow = 0, DataHigh = 0;
DataLow = ((uint32_t* )&Data)[0];
DataHigh = ((uint32_t* )&Data)[1];
__asm__ __volatile__("wrmsr" : : "a" (DataLow), "c" (MSR), "d" (DataHigh) : );
return Data;
}
// VMXCSR - Vex-Encoded MXCSR. These are preferred when AVX is available.
uint32_t ReadVexMXCSR() {
uint32_t Data;
__asm__ __volatile__("vstmxcsr %[dest]" : [dest] "=m" (Data) : :);
return Data;
}
uint32_t WriteVexMXCSR(uint32_t Data) {
__asm__ __volatile__("vldmxcsr %[src]" : : [src] "m" (Data) :);
return Data;
}
// MXCSR - SSE Control Register.
uint32_t ReadMXCSR() {
uint32_t Data;
__asm__ __volatile__("stmxcsr %[dest]" : [dest] "=m" (Data) : :);
return Data;
}
uint32_t WriteMXCSR(uint32_t Data) {
__asm__ __volatile__("ldmxcsr %[src]" : : [src] "m" (Data) :);
return Data;
}
// Control Register : CRX + RFLAGS. Specify 'f' for RFLAGS, X for CRX.
size_t ReadControlRegister(int CRX) {
size_t Data;
switch(CRX) {
case 0:
__asm__ __volatile__("mov %%cr0, %[dest]" : [dest] "=r" (Data) : :);
break;
case 1:
__asm__ __volatile__("mov %%cr1, %[dest]" : [dest] "=r" (Data) : :);
break;
case 2:
__asm__ __volatile__("mov %%cr2, %[dest]" : [dest] "=r" (Data) : :);
break;
case 3:
__asm__ __volatile__("mov %%cr3, %[dest]" : [dest] "=r" (Data) : :);
break;
case 4:
__asm__ __volatile__("mov %%cr4, %[dest]" : [dest] "=r" (Data) : :);
break;
case 8:
__asm__ __volatile__("mov %%cr8, %[dest]" : [dest] "=r" (Data) : :);
break;
case 'f':
// Push flags and pop them into our buffer
__asm__ __volatile__("pushfq\n\t" "popq %[dest]" : [dest] "=r" (Data) : :);
break;
default:
break;
}
return Data;
}
size_t WriteControlRegister(int CRX, size_t Data) {
switch(CRX) {
case 0:
__asm__ __volatile__("mov %[dest], %%cr0" : : [dest] "r" (Data) :);
break;
case 1:
__asm__ __volatile__("mov %[dest], %%cr1" : : [dest] "r" (Data) :);
break;
case 2:
__asm__ __volatile__("mov %[dest], %%cr2" : : [dest] "r" (Data) :);
break;
case 3:
__asm__ __volatile__("mov %[dest], %%cr3" : : [dest] "r" (Data) :);
break;
case 4:
__asm__ __volatile__("mov %[dest], %%cr4" : : [dest] "r" (Data) :);
break;
case 8:
__asm__ __volatile__("mov %[dest], %%cr8" : : [dest] "r" (Data) :);
break;
case 'f':
__asm__ __volatile__("pushq %[dest]\n\t" "popfq" : : [dest] "r" (Data) : "cc");
break;
default:
break;
}
return Data;
}
// XCR = eXtended Control Register.
// XCR0 is used to enable AVX/SSE.
size_t ReadExtendedControlRegister(size_t XCRX) {
size_t RegHigh = 0, RegLow = 0;
__asm__ __volatile__("xgetbv" : "=a" (RegLow), "=d" (RegHigh) : "c" (XCRX) :);
return (RegHigh << 32 | RegLow);
}
size_t WriteExtendedControlRegister(size_t XCRX, size_t Data) {
__asm__ __volatile__("xsetbv" : : "a" ( ((uint32_t*)&Data)[0]), "c" (XCRX), "d" ( ((uint32_t*)&Data)[1] ) :);
return Data;
}
// The following two functions are utility - for determining whether we're operating in Long Mode.
// TODO: Move into DescriptorTables.c
size_t ReadXCS() {
size_t Data = 0;
__asm__ __volatile__("mov %%cs, %[dest]" : [dest] "=r" (Data) : :);
return Data;
}
DESCRIPTOR_TABLE_POINTER FetchGDT() {
DESCRIPTOR_TABLE_POINTER GDTrData = {0};
__asm__ __volatile__("sgdt %[dest]" : [dest] "=m" (GDTrData) : :);
return GDTrData;
}
void SetGDT(DESCRIPTOR_TABLE_POINTER GDTrData) {
__asm__ __volatile__("lgdt %[src]" : : [src] "m" (GDTrData) :);
}
DESCRIPTOR_TABLE_POINTER FetchIDT() {
DESCRIPTOR_TABLE_POINTER IDTrData = {0};
__asm__ __volatile__("sidt %[dest]" : [dest] "=m" (IDTrData) : :);
return IDTrData;
}
void SetIDT(DESCRIPTOR_TABLE_POINTER IDTrData) {
__asm__ __volatile__("lidt %[src]" : : [src] "m" (IDTrData) :);
}
// LDT = Local Descriptor Table (= GDT entry for current segment)
uint16_t FetchLDT() {
uint16_t LDTrData = 0;
__asm__ __volatile__("sldt %[dest]" : [dest] "=m" (LDTrData) : :);
return LDTrData;
}
void SetLDT(uint16_t LDTrData) {
__asm__ __volatile__("lldt %[src]" : : [src] "m" (LDTrData) :);
}
// TSR - Tast State Register
uint16_t FetchTSR() {
uint16_t TSRData = 0;
__asm__ __volatile__ ("str %[dest]" : [dest] "=m" (TSRData) : :);
return TSRData;
}
void SetTSR(uint16_t TSRData) {
__asm__ __volatile__("ltr %[src]" : : [src] "m" (TSRData) :);
}
void InstallGDT() { void InstallGDT() {
DESCRIPTOR_TABLE_POINTER GDTData = {0}; DESCRIPTOR_TABLE_POINTER GDTData = {0};

View File

@ -37,6 +37,8 @@ void SetupPrinting(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE GPU) {
Print_Info.cursorPos = 0; Print_Info.cursorPos = 0;
Print_Info.scrollMode = 0; Print_Info.scrollMode = 0;
ClearScreen(GPU);
} }
void WriteScaledFormatString(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE GPU, void WriteScaledFormatString(EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE GPU,

View File

@ -34,11 +34,13 @@
#include <kernel.h> #include <kernel.h>
#ifdef __x86_64__
typedef unsigned long long int uword_t; typedef unsigned long long int uword_t;
#else
typedef unsigned int uword_t;
#endif static void* IRQ_Handlers[16] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
/* All of the ISR routines call this function for now. /* All of the ISR routines call this function for now.
@ -48,11 +50,10 @@ typedef unsigned int uword_t;
void ISR_Common(INTERRUPT_FRAME* Frame, size_t Exception) { void ISR_Common(INTERRUPT_FRAME* Frame, size_t Exception) {
/* Only the first 32 ISR/IRQs are reserved for exceptions by the CPU. We can handle up to 512 interrupts total, though. */ /* Only the first 32 ISR/IRQs are reserved for exceptions by the CPU. We can handle up to 512 interrupts total, though. */
if(Exception < 32) { if(Exception < 32) {
/* exception_messages is an array of c-strings defined in kernel.h */ /* ExceptionStrings is an array of c-strings defined in kernel.h */
// TODO: Serial!
//serial_print(0x3F8, exception_messages[Exception]); serial_print(ExceptionStrings[Exception]);
//serial_print(0x3F8, " Exception.\r\n"); serial_print(" Exception.\r\n");
printf("%s exception!", ExceptionStrings[Exception]); printf("%s exception!", ExceptionStrings[Exception]);
panic(); panic();
} }
@ -62,8 +63,8 @@ void ISR_Common(INTERRUPT_FRAME* Frame, size_t Exception) {
into what went wrong. In pure Curle style, though, we just ignore the error code. */ into what went wrong. In pure Curle style, though, we just ignore the error code. */
void ISR_Error_Common(EXCEPTION_FRAME* Frame, size_t Exception) { void ISR_Error_Common(EXCEPTION_FRAME* Frame, size_t Exception) {
if(Exception < 32) { if(Exception < 32) {
//serial_print(0x3F8, ExceptionStrings[Exception]); serial_print(ExceptionStrings[Exception]);
//serial_printf(0x3F8, " Exception. Context given: %d\r\n", Frame->ErrorCode); serial_printf(" Exception. Context given: %d\r\n", Frame->ErrorCode);
printf("%s exception. Context: %x", ExceptionStrings[Exception], Frame->ErrorCode); printf("%s exception. Context: %x", ExceptionStrings[Exception], Frame->ErrorCode);
panic(); panic();
} }

View File

@ -20,13 +20,17 @@
void gdb_end() {} /* GDB Debugging stump */ void gdb_end() {} /* GDB Debugging stump */
static size_t time = 0;
int kernel_main(FILELOADER_PARAMS* FLOP) { int kernel_main(FILELOADER_PARAMS* FLOP) {
init_serial();
serial_printf("Kernel has been given control of the computer.\nStarting bootstrap init.\n");
/* The kernel is started in 64-bit Long Mode by Syncboot. */ /* The kernel is started in 64-bit Long Mode by Syncboot. */
/* Here, we start by drawing a splash, then loading a GDT and IDT into the placeholder UEFI gives us. */
/* PrepareSystem just initializes all hardware features and gets the system ready to execute every function.
/* Most of this is just preparing the interrupts system, but there is a bit of messing with AVX features, which are used extensively in drawing graphics. */
/* Not sure how well serial would work in UEFI. */
// TODO: look at this.
PrepareSystem(FLOP); PrepareSystem(FLOP);
gdb_end(); /* The first important step. Waypoint it for gdb debugging. */ gdb_end(); /* The first important step. Waypoint it for gdb debugging. */

216
kernel/ports.c Normal file
View File

@ -0,0 +1,216 @@
/************************
*** Team Kitty, 2019 ***
*** Sync ***
***********************/
/* This file contains code required for directly communicating with hardware.
* This means ASM, most of the time. These are just wrapper functions that make ASM a little bit less daunting.
*/
#include <kernel.h>
uint32_t ReadPort(uint16_t Port, int Length) {
uint32_t Data;
if(Length == 1) { // Read a byte
__asm__ __volatile__("inb %[address], %[value]" : : [value] "a" ((uint8_t) Data), [address] "d" (Port) :);
} else if (Length == 2) { // Read a word
__asm__ __volatile__("inw %[address], %[value]" : : [value] "a" ((uint16_t) Data), [address] "d" (Port) :);
} else if (Length == 4) { // Read a long (dword)
__asm__ __volatile__("inl %[address], %[value]" : : [value] "a" (Data), [address] "d" (Port) :);
} else {
printf("ReadPort: Invalid Read Length.\r\n");
}
return Data;
}
uint32_t WritePort(uint16_t Port, uint32_t Data, int Length) {
if(Length == 1) { // Write a byte
__asm__ __volatile__("outb %[value], %[address]" : : [value] "a" ((uint8_t) Data), [address] "d" (Port) :);
} else if (Length == 2) { // Write a word
__asm__ __volatile__("outw %[value], %[address]" : : [value] "a" ((uint16_t) Data), [address] "d" (Port) :);
} else if (Length == 4) { // Write a long (dword)
__asm__ __volatile__("outl %[value], %[address]" : : [value] "a" (Data), [address] "d" (Port) :);
} else {
printf("WritePort: Invalid Write Length.\r\n");
}
return Data;
}
size_t ReadModelSpecificRegister(size_t MSR) {
size_t RegHigh = 0, RegLow = 0;
__asm__ __volatile__("rdmsr" : "=a" (RegLow), "=d" (RegHigh) : "c" (MSR) :);
return (RegHigh << 32 | RegLow);
}
size_t WriteModelSpecificRegister(size_t MSR, size_t Data) {
size_t DataLow = 0, DataHigh = 0;
DataLow = ((uint32_t* )&Data)[0];
DataHigh = ((uint32_t* )&Data)[1];
__asm__ __volatile__("wrmsr" : : "a" (DataLow), "c" (MSR), "d" (DataHigh) : );
return Data;
}
// VMXCSR - Vex-Encoded MXCSR. These are preferred when AVX is available.
uint32_t ReadVexMXCSR() {
uint32_t Data;
__asm__ __volatile__("vstmxcsr %[dest]" : [dest] "=m" (Data) : :);
return Data;
}
uint32_t WriteVexMXCSR(uint32_t Data) {
__asm__ __volatile__("vldmxcsr %[src]" : : [src] "m" (Data) :);
return Data;
}
// MXCSR - SSE Control Register.
uint32_t ReadMXCSR() {
uint32_t Data;
__asm__ __volatile__("stmxcsr %[dest]" : [dest] "=m" (Data) : :);
return Data;
}
uint32_t WriteMXCSR(uint32_t Data) {
__asm__ __volatile__("ldmxcsr %[src]" : : [src] "m" (Data) :);
return Data;
}
// Control Register : CRX + RFLAGS. Specify 'f' for RFLAGS, X for CRX.
size_t ReadControlRegister(int CRX) {
size_t Data;
switch(CRX) {
case 0:
__asm__ __volatile__("mov %%cr0, %[dest]" : [dest] "=r" (Data) : :);
break;
case 1:
__asm__ __volatile__("mov %%cr1, %[dest]" : [dest] "=r" (Data) : :);
break;
case 2:
__asm__ __volatile__("mov %%cr2, %[dest]" : [dest] "=r" (Data) : :);
break;
case 3:
__asm__ __volatile__("mov %%cr3, %[dest]" : [dest] "=r" (Data) : :);
break;
case 4:
__asm__ __volatile__("mov %%cr4, %[dest]" : [dest] "=r" (Data) : :);
break;
case 8:
__asm__ __volatile__("mov %%cr8, %[dest]" : [dest] "=r" (Data) : :);
break;
case 'f':
// Push flags and pop them into our buffer
__asm__ __volatile__("pushfq\n\t" "popq %[dest]" : [dest] "=r" (Data) : :);
break;
default:
break;
}
return Data;
}
size_t WriteControlRegister(int CRX, size_t Data) {
switch(CRX) {
case 0:
__asm__ __volatile__("mov %[dest], %%cr0" : : [dest] "r" (Data) :);
break;
case 1:
__asm__ __volatile__("mov %[dest], %%cr1" : : [dest] "r" (Data) :);
break;
case 2:
__asm__ __volatile__("mov %[dest], %%cr2" : : [dest] "r" (Data) :);
break;
case 3:
__asm__ __volatile__("mov %[dest], %%cr3" : : [dest] "r" (Data) :);
break;
case 4:
__asm__ __volatile__("mov %[dest], %%cr4" : : [dest] "r" (Data) :);
break;
case 8:
__asm__ __volatile__("mov %[dest], %%cr8" : : [dest] "r" (Data) :);
break;
case 'f':
__asm__ __volatile__("pushq %[dest]\n\t" "popfq" : : [dest] "r" (Data) : "cc");
break;
default:
break;
}
return Data;
}
// XCR = eXtended Control Register.
// XCR0 is used to enable AVX/SSE.
size_t ReadExtendedControlRegister(size_t XCRX) {
size_t RegHigh = 0, RegLow = 0;
__asm__ __volatile__("xgetbv" : "=a" (RegLow), "=d" (RegHigh) : "c" (XCRX) :);
return (RegHigh << 32 | RegLow);
}
size_t WriteExtendedControlRegister(size_t XCRX, size_t Data) {
__asm__ __volatile__("xsetbv" : : "a" ( ((uint32_t*)&Data)[0]), "c" (XCRX), "d" ( ((uint32_t*)&Data)[1] ) :);
return Data;
}
// The following two functions are utility - for determining whether we're operating in Long Mode.
// TODO: Move into DescriptorTables.c
size_t ReadXCS() {
size_t Data = 0;
__asm__ __volatile__("mov %%cs, %[dest]" : [dest] "=r" (Data) : :);
return Data;
}
DESCRIPTOR_TABLE_POINTER FetchGDT() {
DESCRIPTOR_TABLE_POINTER GDTrData = {0};
__asm__ __volatile__("sgdt %[dest]" : [dest] "=m" (GDTrData) : :);
return GDTrData;
}
void SetGDT(DESCRIPTOR_TABLE_POINTER GDTrData) {
__asm__ __volatile__("lgdt %[src]" : : [src] "m" (GDTrData) :);
}
DESCRIPTOR_TABLE_POINTER FetchIDT() {
DESCRIPTOR_TABLE_POINTER IDTrData = {0};
__asm__ __volatile__("sidt %[dest]" : [dest] "=m" (IDTrData) : :);
return IDTrData;
}
void SetIDT(DESCRIPTOR_TABLE_POINTER IDTrData) {
__asm__ __volatile__("lidt %[src]" : : [src] "m" (IDTrData) :);
}
// LDT = Local Descriptor Table (= GDT entry for current segment)
uint16_t FetchLDT() {
uint16_t LDTrData = 0;
__asm__ __volatile__("sldt %[dest]" : [dest] "=m" (LDTrData) : :);
return LDTrData;
}
void SetLDT(uint16_t LDTrData) {
__asm__ __volatile__("lldt %[src]" : : [src] "m" (LDTrData) :);
}
// TSR - Tast State Register
uint16_t FetchTSR() {
uint16_t TSRData = 0;
__asm__ __volatile__ ("str %[dest]" : [dest] "=m" (TSRData) : :);
return TSRData;
}
void SetTSR(uint16_t TSRData) {
__asm__ __volatile__("ltr %[src]" : : [src] "m" (TSRData) :);
}

View File

@ -457,7 +457,7 @@ static void printchar(int Char, void* Args) {
case '\a': // Alert case '\a': // Alert
// TODO: Audio alert. // TODO: Audio alert.
break; break;
case '\b': // Backspace case '\b': // Back a space - NOT backspace, does not remove previous character.
if(Arg->cursorPos != 0) { if(Arg->cursorPos != 0) {
Arg->cursorPos--; Arg->cursorPos--;
} }

View File

@ -35,13 +35,13 @@
void serial_set_baud_rate(uint16_t com, uint16_t divisor) { void serial_set_baud_rate(uint16_t com, uint16_t divisor) {
WritePort(SERIAL_LINE_COMMAND_PORT(com), WritePort(SERIAL_LINE_COMMAND_PORT(com),
SERIAL_LINE_ENABLE_DLAB, 8); SERIAL_LINE_ENABLE_DLAB, 1);
WritePort(SERIAL_DATA_PORT(com), WritePort(SERIAL_DATA_PORT(com),
(divisor >> 8) & 0x00FF, 8); (divisor >> 8) & 0x00FF, 1);
WritePort(SERIAL_DATA_PORT(com), WritePort(SERIAL_DATA_PORT(com),
divisor & 0x00FF, 8); divisor & 0x00FF, 1);
} }
@ -58,7 +58,7 @@ void serial_configure_line(uint16_t com) {
* Value: | 0 | 0 | 0 0 0 | 0 | 1 1 | = 0x03 * Value: | 0 | 0 | 0 0 0 | 0 | 1 1 | = 0x03
*/ */
WritePort(SERIAL_LINE_COMMAND_PORT(com), 0x0B, 8); WritePort(SERIAL_LINE_COMMAND_PORT(com), 0x0B, 1);
} }
/** serial_configure_buffers: /** serial_configure_buffers:
@ -75,7 +75,7 @@ void serial_configure_buffers(uint16_t com) {
* Value: | 1 1 | 0 | 0 | 0 | 1 | 1 | 1 | = 0xC7 * Value: | 1 1 | 0 | 0 | 0 | 1 | 1 | 1 | = 0xC7
*/ */
WritePort(SERIAL_FIFO_COMMAND_PORT(com), 0xC7, 8); WritePort(SERIAL_FIFO_COMMAND_PORT(com), 0xC7, 1);
} }
/** serial_configure_modem /** serial_configure_modem
@ -88,7 +88,7 @@ void serial_configure_modem(uint16_t com) {
* Value: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | = 0x03 * Value: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | = 0x03
*/ */
WritePort(SERIAL_MODEM_COMMAND_PORT(com), 0x3, 8); WritePort(SERIAL_MODEM_COMMAND_PORT(com), 0x3, 1);
} }
/** serial_check_tqueue: /** serial_check_tqueue:
@ -100,7 +100,7 @@ void serial_configure_modem(uint16_t com) {
*/ */
int serial_check_tqueue(uint16_t com) { int serial_check_tqueue(uint16_t com) {
return ReadPort(SERIAL_LINE_STATUS_PORT(com), 8) & 0x20; return ReadPort(SERIAL_LINE_STATUS_PORT(com), 1) & 0x20;
} }
/** serial_write: /** serial_write:
@ -110,10 +110,11 @@ int serial_check_tqueue(uint16_t com) {
* @param data The character to write. * @param data The character to write.
*/ */
void serial_write(uint16_t com, const char chr) { void serial_write(const char chr) {
uint16_t com = SERIAL_COM1_BASE;
//Hang until we have access to the COM port. //Hang until we have access to the COM port.
while(serial_check_tqueue(com) == 0); while(serial_check_tqueue(com) == 0);
WritePort(com, chr, 0); WritePort(com, chr, 1);
} }
/** serial_print: /** serial_print:
@ -124,9 +125,9 @@ void serial_write(uint16_t com, const char chr) {
* @param data The string to write. * @param data The string to write.
*/ */
void serial_print(uint16_t com, const char* data) { void serial_print(const char* data) {
for(size_t i = 0; i < strlen(data); i++) { for(size_t i = 0; i < strlen(data); i++) {
serial_write(com, data[i]); serial_write(data[i]);
} }
} }
@ -137,7 +138,8 @@ void serial_print(uint16_t com, const char* data) {
* @param ... The substitutions. * @param ... The substitutions.
*/ */
void serial_printf(uint16_t com, const char* format, ...) { void serial_printf(const char* format, ...) {
uint16_t com = SERIAL_COM1_BASE;
uint32_t storage; //To hold temporary variables uint32_t storage; //To hold temporary variables
char stringstore[10] = {0}; //To convert ints to strings. char stringstore[10] = {0}; //To convert ints to strings.
va_list list; va_list list;
@ -151,7 +153,7 @@ void serial_printf(uint16_t com, const char* format, ...) {
storage = va_arg(list, int); storage = va_arg(list, int);
int_to_ascii(storage, stringstore); int_to_ascii(storage, stringstore);
serial_print(com, stringstore); serial_print(stringstore);
empty_string(stringstore); empty_string(stringstore);
i += 2; i += 2;
@ -159,21 +161,21 @@ void serial_printf(uint16_t com, const char* format, ...) {
storage = va_arg(list, int); storage = va_arg(list, int);
int_to_hex(storage, stringstore); int_to_hex(storage, stringstore);
serial_print(com, stringstore); serial_print(stringstore);
empty_string(stringstore); empty_string(stringstore);
i += 2; i += 2;
} else if(format[i+1] == 's') { } else if(format[i+1] == 's') {
serial_print(com, va_arg(list, char*)); serial_print(va_arg(list, char*));
i += 2; i += 2;
} else { } else {
serial_print(com, "ERROR: Attempting to parse unknown format string."); serial_print("ERROR: Attempting to parse unknown format string.");
return; return;
} }
} else { } else {
serial_write(com, format[i]); serial_write(format[i]);
i++; i++;
} }
} }
@ -182,7 +184,7 @@ void serial_printf(uint16_t com, const char* format, ...) {
void init_serial() { void init_serial() {
// Disable interrupts // Disable interrupts
WritePort(SERIAL_COM1_BASE + 1, 0x00, 0); WritePort(SERIAL_COM1_BASE + 1, 0x00, 1);
// Set baud rate divisor. // Set baud rate divisor.
serial_set_baud_rate(SERIAL_COM1_BASE, 3); serial_set_baud_rate(SERIAL_COM1_BASE, 3);