Shuffle files in preparation for the shift to UEFI
This commit is contained in:
parent
d4e6dd4da8
commit
8df29db4bf
188
arch/i386/boot.s → arch/uefi_x64/boot.s
Executable file → Normal file
188
arch/i386/boot.s → arch/uefi_x64/boot.s
Executable file → Normal file
|
@ -1,94 +1,94 @@
|
|||
[BITS 32] ;... somehow.
|
||||
|
||||
[GLOBAL start]
|
||||
start:
|
||||
mov esp, _sys_stack ; Stack pointer!
|
||||
jmp stublet ; This has a purpse. I don't know what it is, but there is one.
|
||||
|
||||
ALIGN 4 ; 4KB alignment, required by GRUB.
|
||||
mboot: ; This is all magic, and all of it required for GRUB to see our stuff.
|
||||
MULTIBOOT_ALIGN equ 1<<0
|
||||
MULTIBOOT_MEM equ 1<<1
|
||||
MULTIBOOT_AOUT equ 1<<16
|
||||
MULTIBOOT_MAGIC equ 0x1BADB002
|
||||
MULTIBOOT_FLAGS equ MULTIBOOT_ALIGN | MULTIBOOT_MEM | MULTIBOOT_AOUT
|
||||
MULTIBOOT_CHECKSUM equ -(MULTIBOOT_MAGIC + MULTIBOOT_FLAGS)
|
||||
EXTERN code, bss, end
|
||||
|
||||
dd MULTIBOOT_MAGIC
|
||||
dd MULTIBOOT_FLAGS
|
||||
dd MULTIBOOT_CHECKSUM
|
||||
|
||||
dd mboot
|
||||
dd code
|
||||
dd bss
|
||||
dd end
|
||||
dd start
|
||||
|
||||
stublet: ; Where the kernel stuff goes.
|
||||
|
||||
;=====================================
|
||||
;===Priority: 32 bit Protected Mode===
|
||||
;=====================================
|
||||
|
||||
cli ; Interrupts be gone!
|
||||
|
||||
xor cx, cx ; CX - GP, useful here.
|
||||
kbempty:
|
||||
in al, 64h ; Read keyboard status
|
||||
test al, 02h ; Check if the buffer is full
|
||||
loopnz kbempty ; Wait until it is
|
||||
mov al, 0d1h ; Prepare a message
|
||||
out 64h, al ; And then send it to the keyboard (controller)
|
||||
kbempty2:
|
||||
in al, 64h ; Read the status again
|
||||
test al, 02h ; Check if it's processed our message
|
||||
loopnz kbempty2 ; And wait until it has
|
||||
mov al, 0dfh ; Prepare a different message, telling it to enable A20
|
||||
out 60h, al ; Send the message
|
||||
mov cx, 14h ; Restore the value of CX
|
||||
wait_kb: ; Insinuate a 25uS delay to allow the processor to catch up
|
||||
out 0edh, ax
|
||||
loop wait_kb
|
||||
|
||||
mov eax, cr0 ; Read the control register
|
||||
or al, 1 ; Set bit 1: protected mode
|
||||
mov cr0, eax ; Set the control register back
|
||||
jmp $+2 ; Clear the queue
|
||||
nop ; (jump straight to kernel)
|
||||
nop
|
||||
|
||||
;==================================
|
||||
;===32-bit Protected Mode active===
|
||||
;==================================
|
||||
; Call the kernel
|
||||
|
||||
EXTERN kernel_main
|
||||
call kernel_main
|
||||
jmp $
|
||||
|
||||
[GLOBAL load_gdt]
|
||||
[EXTERN gp]
|
||||
load_gdt:
|
||||
lgdt [gp] ; Load the new GDT pointer
|
||||
|
||||
mov ax, 0x10
|
||||
mov ds, ax
|
||||
mov es, ax
|
||||
mov fs, ax
|
||||
mov gs, ax
|
||||
mov ss, ax
|
||||
jmp 0x08:flush
|
||||
flush:
|
||||
ret
|
||||
|
||||
[GLOBAL idt_load]
|
||||
[EXTERN idtp]
|
||||
idt_load:
|
||||
lidt [idtp]
|
||||
ret
|
||||
|
||||
|
||||
SECTION .bss
|
||||
resb 8192
|
||||
_sys_stack:
|
||||
[BITS 32] ;... somehow.
|
||||
|
||||
[GLOBAL start]
|
||||
start:
|
||||
mov esp, _sys_stack ; Stack pointer!
|
||||
jmp stublet ; This has a purpse. I don't know what it is, but there is one.
|
||||
|
||||
ALIGN 4 ; 4KB alignment, required by GRUB.
|
||||
mboot: ; This is all magic, and all of it required for GRUB to see our stuff.
|
||||
MULTIBOOT_ALIGN equ 1<<0
|
||||
MULTIBOOT_MEM equ 1<<1
|
||||
MULTIBOOT_AOUT equ 1<<16
|
||||
MULTIBOOT_MAGIC equ 0x1BADB002
|
||||
MULTIBOOT_FLAGS equ MULTIBOOT_ALIGN | MULTIBOOT_MEM | MULTIBOOT_AOUT
|
||||
MULTIBOOT_CHECKSUM equ -(MULTIBOOT_MAGIC + MULTIBOOT_FLAGS)
|
||||
EXTERN code, bss, end
|
||||
|
||||
dd MULTIBOOT_MAGIC
|
||||
dd MULTIBOOT_FLAGS
|
||||
dd MULTIBOOT_CHECKSUM
|
||||
|
||||
dd mboot
|
||||
dd code
|
||||
dd bss
|
||||
dd end
|
||||
dd start
|
||||
|
||||
stublet: ; Where the kernel stuff goes.
|
||||
|
||||
;=====================================
|
||||
;===Priority: 32 bit Protected Mode===
|
||||
;=====================================
|
||||
|
||||
cli ; Interrupts be gone!
|
||||
|
||||
xor cx, cx ; CX - GP, useful here.
|
||||
kbempty:
|
||||
in al, 64h ; Read keyboard status
|
||||
test al, 02h ; Check if the buffer is full
|
||||
loopnz kbempty ; Wait until it is
|
||||
mov al, 0d1h ; Prepare a message
|
||||
out 64h, al ; And then send it to the keyboard (controller)
|
||||
kbempty2:
|
||||
in al, 64h ; Read the status again
|
||||
test al, 02h ; Check if it's processed our message
|
||||
loopnz kbempty2 ; And wait until it has
|
||||
mov al, 0dfh ; Prepare a different message, telling it to enable A20
|
||||
out 60h, al ; Send the message
|
||||
mov cx, 14h ; Restore the value of CX
|
||||
wait_kb: ; Insinuate a 25uS delay to allow the processor to catch up
|
||||
out 0edh, ax
|
||||
loop wait_kb
|
||||
|
||||
mov eax, cr0 ; Read the control register
|
||||
or al, 1 ; Set bit 1: protected mode
|
||||
mov cr0, eax ; Set the control register back
|
||||
jmp $+2 ; Clear the queue
|
||||
nop ; (jump straight to kernel)
|
||||
nop
|
||||
|
||||
;==================================
|
||||
;===32-bit Protected Mode active===
|
||||
;==================================
|
||||
; Call the kernel
|
||||
|
||||
EXTERN kernel_main
|
||||
call kernel_main
|
||||
jmp $
|
||||
|
||||
[GLOBAL load_gdt]
|
||||
[EXTERN gp]
|
||||
load_gdt:
|
||||
lgdt [gp] ; Load the new GDT pointer
|
||||
|
||||
mov ax, 0x10
|
||||
mov ds, ax
|
||||
mov es, ax
|
||||
mov fs, ax
|
||||
mov gs, ax
|
||||
mov ss, ax
|
||||
jmp 0x08:flush
|
||||
flush:
|
||||
ret
|
||||
|
||||
[GLOBAL idt_load]
|
||||
[EXTERN idtp]
|
||||
idt_load:
|
||||
lidt [idtp]
|
||||
ret
|
||||
|
||||
|
||||
SECTION .bss
|
||||
resb 8192
|
||||
_sys_stack:
|
50
arch/i386/linker.ld → arch/uefi_x64/linker.ld
Executable file → Normal file
50
arch/i386/linker.ld → arch/uefi_x64/linker.ld
Executable file → Normal file
|
@ -1,25 +1,25 @@
|
|||
OUTPUT_FORMAT("elf32-i386")
|
||||
ENTRY(start)
|
||||
phys = 0x00100000;
|
||||
SECTIONS
|
||||
{
|
||||
.text phys : AT(phys) {
|
||||
code = .;
|
||||
*(.text)
|
||||
*(.rodata)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
.data : AT(phys + (data - code))
|
||||
{
|
||||
data = .;
|
||||
*(.data)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
.bss : AT(phys + (bss - code))
|
||||
{
|
||||
bss = .;
|
||||
*(.bss)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
end = .;
|
||||
}
|
||||
OUTPUT_FORMAT("elf32-i386")
|
||||
ENTRY(start)
|
||||
phys = 0x00100000;
|
||||
SECTIONS
|
||||
{
|
||||
.text phys : AT(phys) {
|
||||
code = .;
|
||||
*(.text)
|
||||
*(.rodata)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
.data : AT(phys + (data - code))
|
||||
{
|
||||
data = .;
|
||||
*(.data)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
.bss : AT(phys + (bss - code))
|
||||
{
|
||||
bss = .;
|
||||
*(.bss)
|
||||
. = ALIGN(4096);
|
||||
}
|
||||
end = .;
|
||||
}
|
18
arch/i386/make.config → arch/uefi_x64/make.config
Executable file → Normal file
18
arch/i386/make.config → arch/uefi_x64/make.config
Executable file → Normal file
|
@ -1,9 +1,9 @@
|
|||
KERNEL_ARCH_CFLAGS=
|
||||
KERNEL_ARCH_CPPFLAGS=
|
||||
KERNEL_ARCH_LDFLAGS=
|
||||
KERNEL_ARCH_LIBS=
|
||||
|
||||
KERNEL_ARCH_OBJS= \
|
||||
$(ARCHDIR)/boot.o \
|
||||
$(ARCHDIR)/sys_clock.o \
|
||||
$(ARCHDIR)/tty.o
|
||||
KERNEL_ARCH_CFLAGS=
|
||||
KERNEL_ARCH_CPPFLAGS=
|
||||
KERNEL_ARCH_LDFLAGS=
|
||||
KERNEL_ARCH_LIBS=
|
||||
|
||||
KERNEL_ARCH_OBJS= \
|
||||
$(ARCHDIR)/boot.o \
|
||||
$(ARCHDIR)/sys_clock.o \
|
||||
$(ARCHDIR)/tty.o
|
68
arch/i386/sys_clock.c → arch/uefi_x64/sys_clock.c
Executable file → Normal file
68
arch/i386/sys_clock.c → arch/uefi_x64/sys_clock.c
Executable file → Normal file
|
@ -1,35 +1,35 @@
|
|||
/************************
|
||||
*** Team Kitty, 2019 ***
|
||||
*** Sync ***
|
||||
***********************/
|
||||
|
||||
/* This file provides an interface to
|
||||
* the hardware timer / RTC. Not much
|
||||
* more to be said about it. */
|
||||
|
||||
#include <kernel/utils.h>
|
||||
#include <kernel.h>
|
||||
#include <kernel/serial.h>
|
||||
#include <kernel/descriptor_tables.h>
|
||||
|
||||
size_t timer_ticks = 0;
|
||||
size_t flag = 0;
|
||||
void timer_handler(struct int_frame* r) {
|
||||
gdb_end();
|
||||
timer_ticks++;
|
||||
|
||||
if(timer_ticks % 18 == 0) {
|
||||
if(++flag % 2 == 0) {
|
||||
serial_print(0x3F8, "Tick.");
|
||||
} else {
|
||||
serial_print(0x3F8, "Tock.");
|
||||
}
|
||||
}
|
||||
|
||||
if(timer_ticks > 18)
|
||||
timer_ticks = 0;
|
||||
}
|
||||
|
||||
void timer_install() {
|
||||
irq_install_handler(0, &timer_handler);
|
||||
/************************
|
||||
*** Team Kitty, 2019 ***
|
||||
*** Sync ***
|
||||
***********************/
|
||||
|
||||
/* This file provides an interface to
|
||||
* the hardware timer / RTC. Not much
|
||||
* more to be said about it. */
|
||||
|
||||
#include <kernel/utils.h>
|
||||
#include <kernel.h>
|
||||
#include <kernel/serial.h>
|
||||
#include <kernel/descriptor_tables.h>
|
||||
|
||||
size_t timer_ticks = 0;
|
||||
size_t flag = 0;
|
||||
void timer_handler(struct int_frame* r) {
|
||||
gdb_end();
|
||||
timer_ticks++;
|
||||
|
||||
if(timer_ticks % 18 == 0) {
|
||||
if(++flag % 2 == 0) {
|
||||
serial_print(0x3F8, "Tick.");
|
||||
} else {
|
||||
serial_print(0x3F8, "Tock.");
|
||||
}
|
||||
}
|
||||
|
||||
if(timer_ticks > 18)
|
||||
timer_ticks = 0;
|
||||
}
|
||||
|
||||
void timer_install() {
|
||||
irq_install_handler(0, &timer_handler);
|
||||
}
|
|
@ -1,7 +0,0 @@
|
|||
set timeout=10
|
||||
set default=0
|
||||
|
||||
menuentry "ProjectRED" {
|
||||
multiboot /boot/red.kernel
|
||||
boot
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
defualt=0
|
||||
timeout=0
|
||||
|
||||
title ProjectRED
|
||||
kernel /boot/kernel.elf
|
Binary file not shown.
3
libc/.gitignore
vendored
3
libc/.gitignore
vendored
|
@ -1,3 +0,0 @@
|
|||
*.a
|
||||
*.d
|
||||
*.o
|
|
@ -1,91 +0,0 @@
|
|||
DEFAULT_HOST!=../default-host.sh
|
||||
HOST?=DEFAULT_HOST
|
||||
HOSTARCH!==../target-to-arch.sh $(HOST)
|
||||
|
||||
CFLAGS?=-O2 -g
|
||||
CPPFLAGS?=
|
||||
LDFLAGS?=
|
||||
LIBS?=
|
||||
|
||||
DESTDIR?=
|
||||
PREFIX?=/usr/local
|
||||
EXEC_PREFIX?=$(PREFIX)
|
||||
INCLUDEDIR?=$(PREFIX)/include
|
||||
LIBDIR?=$(EXEC_PREFIX)/lib
|
||||
|
||||
CFLAGS:=$(CFLAGS) -ffreestanding -Wall -Wextra
|
||||
CPPFLAGS:=$(CPPFLAGS) -D__is_libc -Iinclude
|
||||
LIBK_CFLAGS:=$(CFLAGS)
|
||||
LIBK_CPPFLAGS:=$(CPPFLAGS) -D__is_libk
|
||||
|
||||
ARCHDIR=arch/$(HOSTARCH)
|
||||
|
||||
include $(ARCHDIR)/make.config
|
||||
|
||||
CFLAGS:=$(CFLAGS) $(ARCH_CFLAGS)
|
||||
CPPFLAGS:=$(CPPFLAGS) $(ARCH_CPPFLAGS)
|
||||
LIBK_CFLAGS:=$(LIBK_CFLAGS) $(KERNEL_ARCH_CFLAGS)
|
||||
LIBK_CPPFLAGS:=$(LIBK_CPPFLAGS) $(KERNEL_ARCH_CPPFLAGS)
|
||||
|
||||
FREEOBJS=\
|
||||
$(ARCH_FREEOBJS)\
|
||||
stdio/printf.o\
|
||||
stdio/putchar.o\
|
||||
stdio/puts.o\
|
||||
stdlib/abort.o\
|
||||
string/memcmp.o\
|
||||
string/memcpy.o\
|
||||
string/memmove.o\
|
||||
string/memset.o\
|
||||
string/strlen.o\
|
||||
|
||||
HOSTEDOBJS=\
|
||||
$(ARCH_HOSTEDOBJS)\
|
||||
|
||||
OBJS=\
|
||||
$(FREEOBJS)\
|
||||
$(HOSTEDOBJS)\
|
||||
|
||||
LIBK_OBJS=$(FREEOBJS:.o=.libk.o)
|
||||
|
||||
BINARIES=libk.a
|
||||
|
||||
.PHONY: all clean install install-headers install-libs
|
||||
.SUFFIXES: .o .libk.o .c .s
|
||||
|
||||
all: $(BINARIES)
|
||||
|
||||
libc.a: $(OBJS)
|
||||
$(AR) rcs $@ $(OBJS)
|
||||
libk.a: $(LIBK_OBJS)
|
||||
$(AR) rcs $@ $(LIBK_OBJS)
|
||||
|
||||
.c.o:
|
||||
$(CC) -MD -c $< -o $@ -std=gnull $(CFLAGS) $(CPPFLAGS)
|
||||
|
||||
.c.s:
|
||||
$(CC) -MD -c $< -o $@ $(CFLAGS) $(CPPFLAGS)
|
||||
.c.libk.o:
|
||||
$(CC) -MD -c $< -o $@ -std=gnull $(LIBK_CFLAGS) $(LIBK_CPPFLAGS)
|
||||
.s.libk.o:
|
||||
$(CC) -MD -c $< -o $@ $(LIBK_CFLAGS) $(LIBK_CPPFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f $(BINARIES) *.a
|
||||
rm -f $(OBJS) $(LIBK_OBJS) *.o */*.o */*/*.o
|
||||
rm -f $(OBJS:.o=.d) $(LIBK_OBJS:.o=.d) *.d */*.d */*/*.d
|
||||
|
||||
install: install-headers install-libs
|
||||
|
||||
install-headers:
|
||||
mkdir -p $(DESTDIR)$(INCLUDEDIR)
|
||||
cp -R --preserve-timestamps include/. $(DESTDIR)$(INCLUDEDIR)/.
|
||||
install-libs: $(BINARIES)
|
||||
mkdir -p $(DESTDIR)$(LIBDIR)
|
||||
cp $(BINARIES) $(DESTDIR) $(LIBDIR)
|
||||
|
||||
-include $(OBJS:.o=.d)
|
||||
-include $(LIBK_OBJS:.o=.d)
|
||||
|
||||
|
||||
|
|
@ -1,8 +0,0 @@
|
|||
ARCH_CFLAGS=
|
||||
ARCH_CPPFLAGS=
|
||||
KERNEL_ARCH_CFLAGS=
|
||||
KERNEL_ARCH_CPPFLAGS=
|
||||
|
||||
ARCH_FREEOBJS=\
|
||||
|
||||
ARCH_HOSTEDOBJS=\
|
|
@ -1,19 +0,0 @@
|
|||
#ifndef _STDIO_H
|
||||
#define _STDIO_H 1
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
#define EOF (-1)
|
||||
|
||||
struct __sFile {
|
||||
int unused;
|
||||
};
|
||||
|
||||
typedef struct __sFile FILE;
|
||||
|
||||
#define stderr (_impure_ptr->_stderr)
|
||||
|
||||
int printf(const char* __restrict, ...);
|
||||
int putchar(int);
|
||||
int puts(const char*);
|
||||
#endif
|
|
@ -1,594 +0,0 @@
|
|||
#ifndef _STDLIB_H
|
||||
#define _STDLIB_H 1
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
__attribute__((__noreturn__)) void abort(void);
|
||||
|
||||
/*
|
||||
Default header file for malloc-2.8.x, written by Doug Lea
|
||||
and released to the public domain, as explained at
|
||||
http://creativecommons.org/publicdomain/zero/1.0/
|
||||
|
||||
This header is for ANSI C/C++ only. You can set any of
|
||||
the following #defines before including:
|
||||
|
||||
* If USE_DL_PREFIX is defined, it is assumed that malloc.c
|
||||
was also compiled with this option, so all routines
|
||||
have names starting with "dl".
|
||||
|
||||
* If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this
|
||||
file will be #included AFTER <malloc.h>. This is needed only if
|
||||
your system defines a struct mallinfo that is incompatible with the
|
||||
standard one declared here. Otherwise, you can include this file
|
||||
INSTEAD of your system system <malloc.h>. At least on ANSI, all
|
||||
declarations should be compatible with system versions
|
||||
|
||||
* If MSPACES is defined, declarations for mspace versions are included.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stddef.h> /* for size_t */
|
||||
|
||||
#ifndef ONLY_MSPACES
|
||||
#define ONLY_MSPACES 0 /* define to a value */
|
||||
#elif ONLY_MSPACES != 0
|
||||
#define ONLY_MSPACES 1
|
||||
#endif /* ONLY_MSPACES */
|
||||
#ifndef NO_MALLINFO
|
||||
#define NO_MALLINFO 0
|
||||
#endif /* NO_MALLINFO */
|
||||
|
||||
#ifndef MSPACES
|
||||
#if ONLY_MSPACES
|
||||
#define MSPACES 1
|
||||
#else /* ONLY_MSPACES */
|
||||
#define MSPACES 0
|
||||
#endif /* ONLY_MSPACES */
|
||||
#endif /* MSPACES */
|
||||
|
||||
#if !ONLY_MSPACES
|
||||
|
||||
#if !NO_MALLINFO
|
||||
#ifndef HAVE_USR_INCLUDE_MALLOC_H
|
||||
#ifndef _MALLOC_H
|
||||
#ifndef MALLINFO_FIELD_TYPE
|
||||
#define MALLINFO_FIELD_TYPE size_t
|
||||
#endif /* MALLINFO_FIELD_TYPE */
|
||||
#ifndef STRUCT_MALLINFO_DECLARED
|
||||
#define STRUCT_MALLINFO_DECLARED 1
|
||||
struct mallinfo {
|
||||
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
|
||||
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
|
||||
MALLINFO_FIELD_TYPE smblks; /* always 0 */
|
||||
MALLINFO_FIELD_TYPE hblks; /* always 0 */
|
||||
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
|
||||
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
|
||||
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
|
||||
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
|
||||
MALLINFO_FIELD_TYPE fordblks; /* total free space */
|
||||
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
|
||||
};
|
||||
#endif /* STRUCT_MALLINFO_DECLARED */
|
||||
#endif /* _MALLOC_H */
|
||||
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
|
||||
#endif /* !NO_MALLINFO */
|
||||
|
||||
/*
|
||||
malloc(size_t n)
|
||||
Returns a pointer to a newly allocated chunk of at least n bytes, or
|
||||
null if no space is available, in which case errno is set to ENOMEM
|
||||
on ANSI C systems.
|
||||
|
||||
If n is zero, malloc returns a minimum-sized chunk. (The minimum
|
||||
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
|
||||
systems.) Note that size_t is an unsigned type, so calls with
|
||||
arguments that would be negative if signed are interpreted as
|
||||
requests for huge amounts of space, which will often fail. The
|
||||
maximum supported value of n differs across systems, but is in all
|
||||
cases less than the maximum representable value of a size_t.
|
||||
*/
|
||||
void* malloc(size_t);
|
||||
|
||||
/*
|
||||
free(void* p)
|
||||
Releases the chunk of memory pointed to by p, that had been previously
|
||||
allocated using malloc or a related routine such as realloc.
|
||||
It has no effect if p is null. If p was not malloced or already
|
||||
freed, free(p) will by default cuase the current program to abort.
|
||||
*/
|
||||
void free(void*);
|
||||
|
||||
/*
|
||||
calloc(size_t n_elements, size_t element_size);
|
||||
Returns a pointer to n_elements * element_size bytes, with all locations
|
||||
set to zero.
|
||||
*/
|
||||
void* calloc(size_t, size_t);
|
||||
|
||||
/*
|
||||
realloc(void* p, size_t n)
|
||||
Returns a pointer to a chunk of size n that contains the same data
|
||||
as does chunk p up to the minimum of (n, p's size) bytes, or null
|
||||
if no space is available.
|
||||
|
||||
The returned pointer may or may not be the same as p. The algorithm
|
||||
prefers extending p in most cases when possible, otherwise it
|
||||
employs the equivalent of a malloc-copy-free sequence.
|
||||
|
||||
If p is null, realloc is equivalent to malloc.
|
||||
|
||||
If space is not available, realloc returns null, errno is set (if on
|
||||
ANSI) and p is NOT freed.
|
||||
|
||||
if n is for fewer bytes than already held by p, the newly unused
|
||||
space is lopped off and freed if possible. realloc with a size
|
||||
argument of zero (re)allocates a minimum-sized chunk.
|
||||
|
||||
The old unix realloc convention of allowing the last-free'd chunk
|
||||
to be used as an argument to realloc is not supported.
|
||||
*/
|
||||
void* realloc(void*, size_t);
|
||||
|
||||
/*
|
||||
realloc_in_place(void* p, size_t n)
|
||||
Resizes the space allocated for p to size n, only if this can be
|
||||
done without moving p (i.e., only if there is adjacent space
|
||||
available if n is greater than p's current allocated size, or n is
|
||||
less than or equal to p's size). This may be used instead of plain
|
||||
realloc if an alternative allocation strategy is needed upon failure
|
||||
to expand space; for example, reallocation of a buffer that must be
|
||||
memory-aligned or cleared. You can use realloc_in_place to trigger
|
||||
these alternatives only when needed.
|
||||
|
||||
Returns p if successful; otherwise null.
|
||||
*/
|
||||
void* realloc_in_place(void*, size_t);
|
||||
|
||||
/*
|
||||
memalign(size_t alignment, size_t n);
|
||||
Returns a pointer to a newly allocated chunk of n bytes, aligned
|
||||
in accord with the alignment argument.
|
||||
|
||||
The alignment argument should be a power of two. If the argument is
|
||||
not a power of two, the nearest greater power is used.
|
||||
8-byte alignment is guaranteed by normal malloc calls, so don't
|
||||
bother calling memalign with an argument of 8 or less.
|
||||
|
||||
Overreliance on memalign is a sure way to fragment space.
|
||||
*/
|
||||
void* memalign(size_t, size_t);
|
||||
|
||||
/*
|
||||
int posix_memalign(void** pp, size_t alignment, size_t n);
|
||||
Allocates a chunk of n bytes, aligned in accord with the alignment
|
||||
argument. Differs from memalign only in that it (1) assigns the
|
||||
allocated memory to *pp rather than returning it, (2) fails and
|
||||
returns EINVAL if the alignment is not a power of two (3) fails and
|
||||
returns ENOMEM if memory cannot be allocated.
|
||||
*/
|
||||
int posix_memalign(void**, size_t, size_t);
|
||||
|
||||
/*
|
||||
valloc(size_t n);
|
||||
Equivalent to memalign(pagesize, n), where pagesize is the page
|
||||
size of the system. If the pagesize is unknown, 4096 is used.
|
||||
*/
|
||||
void* valloc(size_t);
|
||||
|
||||
/*
|
||||
mallopt(int parameter_number, int parameter_value)
|
||||
Sets tunable parameters The format is to provide a
|
||||
(parameter-number, parameter-value) pair. mallopt then sets the
|
||||
corresponding parameter to the argument value if it can (i.e., so
|
||||
long as the value is meaningful), and returns 1 if successful else
|
||||
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
|
||||
normally defined in malloc.h. None of these are use in this malloc,
|
||||
so setting them has no effect. But this malloc also supports other
|
||||
options in mallopt:
|
||||
|
||||
Symbol param # default allowed param values
|
||||
M_TRIM_THRESHOLD -1 2*1024*1024 any (-1U disables trimming)
|
||||
M_GRANULARITY -2 page size any power of 2 >= page size
|
||||
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
|
||||
*/
|
||||
int mallopt(int, int);
|
||||
|
||||
#define M_TRIM_THRESHOLD (-1)
|
||||
#define M_GRANULARITY (-2)
|
||||
#define M_MMAP_THRESHOLD (-3)
|
||||
|
||||
/*
|
||||
malloc_footprint();
|
||||
Returns the number of bytes obtained from the system. The total
|
||||
number of bytes allocated by malloc, realloc etc., is less than this
|
||||
value. Unlike mallinfo, this function returns only a precomputed
|
||||
result, so can be called frequently to monitor memory consumption.
|
||||
Even if locks are otherwise defined, this function does not use them,
|
||||
so results might not be up to date.
|
||||
*/
|
||||
size_t malloc_footprint(void);
|
||||
|
||||
/*
|
||||
malloc_max_footprint();
|
||||
Returns the maximum number of bytes obtained from the system. This
|
||||
value will be greater than current footprint if deallocated space
|
||||
has been reclaimed by the system. The peak number of bytes allocated
|
||||
by malloc, realloc etc., is less than this value. Unlike mallinfo,
|
||||
this function returns only a precomputed result, so can be called
|
||||
frequently to monitor memory consumption. Even if locks are
|
||||
otherwise defined, this function does not use them, so results might
|
||||
not be up to date.
|
||||
*/
|
||||
size_t malloc_max_footprint(void);
|
||||
|
||||
/*
|
||||
malloc_footprint_limit();
|
||||
Returns the number of bytes that the heap is allowed to obtain from
|
||||
the system, returning the last value returned by
|
||||
malloc_set_footprint_limit, or the maximum size_t value if
|
||||
never set. The returned value reflects a permission. There is no
|
||||
guarantee that this number of bytes can actually be obtained from
|
||||
the system.
|
||||
*/
|
||||
size_t malloc_footprint_limit(void);
|
||||
|
||||
/*
|
||||
malloc_set_footprint_limit();
|
||||
Sets the maximum number of bytes to obtain from the system, causing
|
||||
failure returns from malloc and related functions upon attempts to
|
||||
exceed this value. The argument value may be subject to page
|
||||
rounding to an enforceable limit; this actual value is returned.
|
||||
Using an argument of the maximum possible size_t effectively
|
||||
disables checks. If the argument is less than or equal to the
|
||||
current malloc_footprint, then all future allocations that require
|
||||
additional system memory will fail. However, invocation cannot
|
||||
retroactively deallocate existing used memory.
|
||||
*/
|
||||
size_t malloc_set_footprint_limit(size_t bytes);
|
||||
|
||||
/*
|
||||
malloc_inspect_all(void(*handler)(void *start,
|
||||
void *end,
|
||||
size_t used_bytes,
|
||||
void* callback_arg),
|
||||
void* arg);
|
||||
Traverses the heap and calls the given handler for each managed
|
||||
region, skipping all bytes that are (or may be) used for bookkeeping
|
||||
purposes. Traversal does not include include chunks that have been
|
||||
directly memory mapped. Each reported region begins at the start
|
||||
address, and continues up to but not including the end address. The
|
||||
first used_bytes of the region contain allocated data. If
|
||||
used_bytes is zero, the region is unallocated. The handler is
|
||||
invoked with the given callback argument. If locks are defined, they
|
||||
are held during the entire traversal. It is a bad idea to invoke
|
||||
other malloc functions from within the handler.
|
||||
|
||||
For example, to count the number of in-use chunks with size greater
|
||||
than 1000, you could write:
|
||||
static int count = 0;
|
||||
void count_chunks(void* start, void* end, size_t used, void* arg) {
|
||||
if (used >= 1000) ++count;
|
||||
}
|
||||
then:
|
||||
malloc_inspect_all(count_chunks, NULL);
|
||||
|
||||
malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
|
||||
*/
|
||||
void malloc_inspect_all(void (*handler)(void*, void*, size_t, void*), void* arg);
|
||||
|
||||
#if !NO_MALLINFO
|
||||
/*
|
||||
mallinfo()
|
||||
Returns (by copy) a struct containing various summary statistics:
|
||||
|
||||
arena: current total non-mmapped bytes allocated from system
|
||||
ordblks: the number of free chunks
|
||||
smblks: always zero.
|
||||
hblks: current number of mmapped regions
|
||||
hblkhd: total bytes held in mmapped regions
|
||||
usmblks: the maximum total allocated space. This will be greater
|
||||
than current total if trimming has occurred.
|
||||
fsmblks: always zero
|
||||
uordblks: current total allocated space (normal or mmapped)
|
||||
fordblks: total free space
|
||||
keepcost: the maximum number of bytes that could ideally be released
|
||||
back to system via malloc_trim. ("ideally" means that
|
||||
it ignores page restrictions etc.)
|
||||
|
||||
Because these fields are ints, but internal bookkeeping may
|
||||
be kept as longs, the reported values may wrap around zero and
|
||||
thus be inaccurate.
|
||||
*/
|
||||
|
||||
struct mallinfo mallinfo(void);
|
||||
#endif /* NO_MALLINFO */
|
||||
|
||||
/*
|
||||
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
|
||||
|
||||
independent_calloc is similar to calloc, but instead of returning a
|
||||
single cleared space, it returns an array of pointers to n_elements
|
||||
independent elements that can hold contents of size elem_size, each
|
||||
of which starts out cleared, and can be independently freed,
|
||||
realloc'ed etc. The elements are guaranteed to be adjacently
|
||||
allocated (this is not guaranteed to occur with multiple callocs or
|
||||
mallocs), which may also improve cache locality in some
|
||||
applications.
|
||||
|
||||
The "chunks" argument is optional (i.e., may be null, which is
|
||||
probably the most typical usage). If it is null, the returned array
|
||||
is itself dynamically allocated and should also be freed when it is
|
||||
no longer needed. Otherwise, the chunks array must be of at least
|
||||
n_elements in length. It is filled in with the pointers to the
|
||||
chunks.
|
||||
|
||||
In either case, independent_calloc returns this pointer array, or
|
||||
null if the allocation failed. If n_elements is zero and "chunks"
|
||||
is null, it returns a chunk representing an array with zero elements
|
||||
(which should be freed if not wanted).
|
||||
|
||||
Each element must be freed when it is no longer needed. This can be
|
||||
done all at once using bulk_free.
|
||||
|
||||
independent_calloc simplifies and speeds up implementations of many
|
||||
kinds of pools. It may also be useful when constructing large data
|
||||
structures that initially have a fixed number of fixed-sized nodes,
|
||||
but the number is not known at compile time, and some of the nodes
|
||||
may later need to be freed. For example:
|
||||
|
||||
struct Node { int item; struct Node* next; };
|
||||
|
||||
struct Node* build_list() {
|
||||
struct Node** pool;
|
||||
int n = read_number_of_nodes_needed();
|
||||
if (n <= 0) return 0;
|
||||
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
|
||||
if (pool == 0) die();
|
||||
// organize into a linked list...
|
||||
struct Node* first = pool[0];
|
||||
for (i = 0; i < n-1; ++i)
|
||||
pool[i]->next = pool[i+1];
|
||||
free(pool); // Can now free the array (or not, if it is needed later)
|
||||
return first;
|
||||
}
|
||||
*/
|
||||
void** independent_calloc(size_t, size_t, void**);
|
||||
|
||||
/*
|
||||
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
|
||||
|
||||
independent_comalloc allocates, all at once, a set of n_elements
|
||||
chunks with sizes indicated in the "sizes" array. It returns
|
||||
an array of pointers to these elements, each of which can be
|
||||
independently freed, realloc'ed etc. The elements are guaranteed to
|
||||
be adjacently allocated (this is not guaranteed to occur with
|
||||
multiple callocs or mallocs), which may also improve cache locality
|
||||
in some applications.
|
||||
|
||||
The "chunks" argument is optional (i.e., may be null). If it is null
|
||||
the returned array is itself dynamically allocated and should also
|
||||
be freed when it is no longer needed. Otherwise, the chunks array
|
||||
must be of at least n_elements in length. It is filled in with the
|
||||
pointers to the chunks.
|
||||
|
||||
In either case, independent_comalloc returns this pointer array, or
|
||||
null if the allocation failed. If n_elements is zero and chunks is
|
||||
null, it returns a chunk representing an array with zero elements
|
||||
(which should be freed if not wanted).
|
||||
|
||||
Each element must be freed when it is no longer needed. This can be
|
||||
done all at once using bulk_free.
|
||||
|
||||
independent_comallac differs from independent_calloc in that each
|
||||
element may have a different size, and also that it does not
|
||||
automatically clear elements.
|
||||
|
||||
independent_comalloc can be used to speed up allocation in cases
|
||||
where several structs or objects must always be allocated at the
|
||||
same time. For example:
|
||||
|
||||
struct Head { ... }
|
||||
struct Foot { ... }
|
||||
|
||||
void send_message(char* msg) {
|
||||
int msglen = strlen(msg);
|
||||
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
|
||||
void* chunks[3];
|
||||
if (independent_comalloc(3, sizes, chunks) == 0)
|
||||
die();
|
||||
struct Head* head = (struct Head*)(chunks[0]);
|
||||
char* body = (char*)(chunks[1]);
|
||||
struct Foot* foot = (struct Foot*)(chunks[2]);
|
||||
// ...
|
||||
}
|
||||
|
||||
In general though, independent_comalloc is worth using only for
|
||||
larger values of n_elements. For small values, you probably won't
|
||||
detect enough difference from series of malloc calls to bother.
|
||||
|
||||
Overuse of independent_comalloc can increase overall memory usage,
|
||||
since it cannot reuse existing noncontiguous small chunks that
|
||||
might be available for some of the elements.
|
||||
*/
|
||||
void** independent_comalloc(size_t, size_t*, void**);
|
||||
|
||||
/*
|
||||
bulk_free(void* array[], size_t n_elements)
|
||||
Frees and clears (sets to null) each non-null pointer in the given
|
||||
array. This is likely to be faster than freeing them one-by-one.
|
||||
If footers are used, pointers that have been allocated in different
|
||||
mspaces are not freed or cleared, and the count of all such pointers
|
||||
is returned. For large arrays of pointers with poor locality, it
|
||||
may be worthwhile to sort this array before calling bulk_free.
|
||||
*/
|
||||
size_t bulk_free(void**, size_t n_elements);
|
||||
|
||||
/*
|
||||
pvalloc(size_t n);
|
||||
Equivalent to valloc(minimum-page-that-holds(n)), that is,
|
||||
round up n to nearest pagesize.
|
||||
*/
|
||||
void* pvalloc(size_t);
|
||||
|
||||
/*
|
||||
malloc_trim(size_t pad);
|
||||
|
||||
If possible, gives memory back to the system (via negative arguments
|
||||
to sbrk) if there is unused memory at the `high' end of the malloc
|
||||
pool or in unused MMAP segments. You can call this after freeing
|
||||
large blocks of memory to potentially reduce the system-level memory
|
||||
requirements of a program. However, it cannot guarantee to reduce
|
||||
memory. Under some allocation patterns, some large free blocks of
|
||||
memory will be locked between two used chunks, so they cannot be
|
||||
given back to the system.
|
||||
|
||||
The `pad' argument to malloc_trim represents the amount of free
|
||||
trailing space to leave untrimmed. If this argument is zero, only
|
||||
the minimum amount of memory to maintain internal data structures
|
||||
will be left. Non-zero arguments can be supplied to maintain enough
|
||||
trailing space to service future expected allocations without having
|
||||
to re-obtain memory from the system.
|
||||
|
||||
Malloc_trim returns 1 if it actually released any memory, else 0.
|
||||
*/
|
||||
int malloc_trim(size_t);
|
||||
|
||||
/*
|
||||
malloc_stats();
|
||||
Prints on stderr the amount of space obtained from the system (both
|
||||
via sbrk and mmap), the maximum amount (which may be more than
|
||||
current if malloc_trim and/or munmap got called), and the current
|
||||
number of bytes allocated via malloc (or realloc, etc) but not yet
|
||||
freed. Note that this is the number of bytes allocated, not the
|
||||
number requested. It will be larger than the number requested
|
||||
because of alignment and bookkeeping overhead. Because it includes
|
||||
alignment wastage as being in use, this figure may be greater than
|
||||
zero even when no user-level chunks are allocated.
|
||||
|
||||
The reported current and maximum system memory can be inaccurate if
|
||||
a program makes other calls to system memory allocation functions
|
||||
(normally sbrk) outside of malloc.
|
||||
|
||||
malloc_stats prints only the most commonly interesting statistics.
|
||||
More information can be obtained by calling mallinfo.
|
||||
|
||||
malloc_stats is not compiled if NO_MALLOC_STATS is defined.
|
||||
*/
|
||||
void malloc_stats(void);
|
||||
|
||||
#endif /* !ONLY_MSPACES */
|
||||
|
||||
/*
|
||||
malloc_usable_size(void* p);
|
||||
|
||||
Returns the number of bytes you can actually use in
|
||||
an allocated chunk, which may be more than you requested (although
|
||||
often not) due to alignment and minimum size constraints.
|
||||
You can use this many bytes without worrying about
|
||||
overwriting other allocated objects. This is not a particularly great
|
||||
programming practice. malloc_usable_size can be more useful in
|
||||
debugging and assertions, for example:
|
||||
|
||||
p = malloc(n);
|
||||
assert(malloc_usable_size(p) >= 256);
|
||||
*/
|
||||
size_t malloc_usable_size(const void*);
|
||||
|
||||
#if MSPACES
|
||||
|
||||
/*
|
||||
mspace is an opaque type representing an independent
|
||||
region of space that supports mspace_malloc, etc.
|
||||
*/
|
||||
typedef void* mspace;
|
||||
|
||||
/*
|
||||
create_mspace creates and returns a new independent space with the
|
||||
given initial capacity, or, if 0, the default granularity size. It
|
||||
returns null if there is no system memory available to create the
|
||||
space. If argument locked is non-zero, the space uses a separate
|
||||
lock to control access. The capacity of the space will grow
|
||||
dynamically as needed to service mspace_malloc requests. You can
|
||||
control the sizes of incremental increases of this space by
|
||||
compiling with a different DEFAULT_GRANULARITY or dynamically
|
||||
setting with mallopt(M_GRANULARITY, value).
|
||||
*/
|
||||
mspace create_mspace(size_t capacity, int locked);
|
||||
|
||||
/*
|
||||
destroy_mspace destroys the given space, and attempts to return all
|
||||
of its memory back to the system, returning the total number of
|
||||
bytes freed. After destruction, the results of access to all memory
|
||||
used by the space become undefined.
|
||||
*/
|
||||
size_t destroy_mspace(mspace msp);
|
||||
|
||||
/*
|
||||
create_mspace_with_base uses the memory supplied as the initial base
|
||||
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
|
||||
space is used for bookkeeping, so the capacity must be at least this
|
||||
large. (Otherwise 0 is returned.) When this initial space is
|
||||
exhausted, additional memory will be obtained from the system.
|
||||
Destroying this space will deallocate all additionally allocated
|
||||
space (if possible) but not the initial base.
|
||||
*/
|
||||
mspace create_mspace_with_base(void* base, size_t capacity, int locked);
|
||||
|
||||
/*
|
||||
mspace_track_large_chunks controls whether requests for large chunks
|
||||
are allocated in their own untracked mmapped regions, separate from
|
||||
others in this mspace. By default large chunks are not tracked,
|
||||
which reduces fragmentation. However, such chunks are not
|
||||
necessarily released to the system upon destroy_mspace. Enabling
|
||||
tracking by setting to true may increase fragmentation, but avoids
|
||||
leakage when relying on destroy_mspace to release all memory
|
||||
allocated using this space. The function returns the previous
|
||||
setting.
|
||||
*/
|
||||
int mspace_track_large_chunks(mspace msp, int enable);
|
||||
|
||||
#if !NO_MALLINFO
|
||||
/*
|
||||
mspace_mallinfo behaves as mallinfo, but reports properties of
|
||||
the given space.
|
||||
*/
|
||||
struct mallinfo mspace_mallinfo(mspace msp);
|
||||
#endif /* NO_MALLINFO */
|
||||
|
||||
/*
|
||||
An alias for mallopt.
|
||||
*/
|
||||
int mspace_mallopt(int, int);
|
||||
|
||||
/*
|
||||
The following operate identically to their malloc counterparts
|
||||
but operate only for the given mspace argument
|
||||
*/
|
||||
void* mspace_malloc(mspace msp, size_t bytes);
|
||||
void mspace_free(mspace msp, void* mem);
|
||||
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
|
||||
void* mspace_realloc(mspace msp, void* mem, size_t newsize);
|
||||
void* mspace_realloc_in_place(mspace msp, void* mem, size_t newsize);
|
||||
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
|
||||
void** mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void* chunks[]);
|
||||
void** mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void* chunks[]);
|
||||
size_t mspace_bulk_free(mspace msp, void**, size_t n_elements);
|
||||
size_t mspace_usable_size(const void* mem);
|
||||
void mspace_malloc_stats(mspace msp);
|
||||
int mspace_trim(mspace msp, size_t pad);
|
||||
size_t mspace_footprint(mspace msp);
|
||||
size_t mspace_max_footprint(mspace msp);
|
||||
size_t mspace_footprint_limit(mspace msp);
|
||||
size_t mspace_set_footprint_limit(mspace msp, size_t bytes);
|
||||
void mspace_inspect_all(mspace msp, void (*handler)(void*, void*, size_t, void*), void* arg);
|
||||
#endif /* MSPACES */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}; /* end of extern "C" */
|
||||
#endif
|
||||
|
||||
#endif /* MALLOC_280_H */
|
|
@ -1,13 +0,0 @@
|
|||
#ifndef _STRING_H
|
||||
#define _STRING_H 1
|
||||
|
||||
#include <stddef.h>
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
int memcmp(const void*, const void*, size_t);
|
||||
void* memcpy(void* __restrict, const void* __restrict, size_t);
|
||||
void* memmove(void*, const void*, size_t);
|
||||
void* memset(void*, int, size_t);
|
||||
size_t strlen(const char*);
|
||||
|
||||
#endif
|
|
@ -1,5 +0,0 @@
|
|||
#ifndef _SYS_CDEFS_H
|
||||
#define _SYS_CDEFS_H 1
|
||||
|
||||
#define __red_libc 1
|
||||
#endif
|
|
@ -1,93 +0,0 @@
|
|||
#include <limits.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
static bool print(const char* data, size_t length) {
|
||||
const unsigned char* bytes = (const unsigned char*)data;
|
||||
for (size_t i = 0; i < length; i++)
|
||||
if (putchar(bytes[i]) == EOF)
|
||||
return false' return true;
|
||||
}
|
||||
|
||||
int printf(const char* restrict format, ...) {
|
||||
va_list parameters;
|
||||
va_start(parameters, format);
|
||||
|
||||
int written = 0;
|
||||
|
||||
while (*format != '\0') {
|
||||
size_t maxrem = INT_MAX - writen;
|
||||
|
||||
if (format[0] != '%' || format[1] == '%') {
|
||||
if (format[0] == '%')
|
||||
format++;
|
||||
size_t amount = 1;
|
||||
|
||||
while (format[amount] && format[amount] != '%')
|
||||
amount++;
|
||||
|
||||
if (maxrem < amount) {
|
||||
// TODO: Set an OVERFLOW error
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((!print(format, amount))
|
||||
return -1;
|
||||
|
||||
format += amount;
|
||||
written += amount;
|
||||
continue;
|
||||
}
|
||||
|
||||
const char* first_format = format++;
|
||||
|
||||
switch (*format) {
|
||||
case 'c':
|
||||
format++;
|
||||
char c = (char)va_arg(parameters, int);
|
||||
if (!maxrem) {
|
||||
// TODO: Set OVERFLOW
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!print(&c, sizeof(c)))
|
||||
return -1;
|
||||
written++;
|
||||
break;
|
||||
case 's':
|
||||
format++;
|
||||
|
||||
const char* str = va_arg(parameters, const char*);
|
||||
size_t len = strlen(str);
|
||||
|
||||
if (maxrem < len) {
|
||||
// TODO: Set OVERFLOW
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!print(str, len))
|
||||
return -1;
|
||||
|
||||
written += len;
|
||||
break;
|
||||
default:
|
||||
format = first_format;
|
||||
size_t len = strlen(format);
|
||||
if (maxrem < len) {
|
||||
// TODO: Set OVERFLOW
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!print(format, len))
|
||||
return -1;
|
||||
written += len;
|
||||
format += len;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
va_end(parameters);
|
||||
return written;
|
||||
}
|
|
@ -1,15 +0,0 @@
|
|||
#include <stdio.h>
|
||||
|
||||
#if defined(__is_libk)
|
||||
#include <kernel/tty.h>
|
||||
#endif
|
||||
|
||||
int putchar(int ic) {
|
||||
#if defined(__is_libk)
|
||||
char c = (char)ic;
|
||||
term_write(&c, sizeof(c));
|
||||
#else
|
||||
// TODO: Implement stdio & the write call
|
||||
#endif
|
||||
return ic;
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
#include <stdio.h>
|
||||
|
||||
int puts(const char* string) {
|
||||
return printf("%s\n"), string);
|
||||
}
|
|
@ -1,15 +0,0 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
__attribute__((__noreturn__)) void abort(void) {
|
||||
|
||||
#if defined(__is_libk)
|
||||
// TODO: Kernel panic.
|
||||
printf(">>PANIC<<<\n abort() panicked!\n");
|
||||
#else
|
||||
printf("abort() called\n");
|
||||
#endif
|
||||
while (1) {
|
||||
}
|
||||
__builtin_unreachable();
|
||||
}
|
|
@ -1,13 +0,0 @@
|
|||
#include <string.h>
|
||||
|
||||
int memcmp(const void* aptr, const void* bptr, size_t size_ {
|
||||
const unsigned char* a = (const unsigned char*)aptr;
|
||||
const unsigned char* b = (const unsigned char*)bptr;
|
||||
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
if(a[i] < b[i]
|
||||
return -1
|
||||
else if(b[i] < a[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
|
@ -1,14 +0,0 @@
|
|||
#include <string.h>
|
||||
|
||||
void* memmove(void* dstptr, const void* srcptr, size_t size) {
|
||||
unsigned char* dst = (unsigned char*)dstptr;
|
||||
const unsigned char* stc = (const unsigned char*)srcptr;
|
||||
if (dst < src) {
|
||||
for (size_t i = o; i < size; i++)
|
||||
dst[i] = src[i];
|
||||
} else {
|
||||
for (size_t i = size; i != 0; i--)
|
||||
dst[i - 1] = src[i - 1];
|
||||
}
|
||||
return dstptr;
|
||||
}
|
|
@ -1,8 +0,0 @@
|
|||
#include <string.h>
|
||||
|
||||
void* memset(void* bufptr, int value, size_t size) {
|
||||
unsigned char* buf = (unsigned char*)bufptr;
|
||||
for (size_t i = 0; i < size; i++)
|
||||
buf[i] = (unsigned char)value;
|
||||
return bufptr;
|
||||
}
|
|
@ -1,7 +0,0 @@
|
|||
#include <string.h>
|
||||
|
||||
size_t strlen(const char* str) {
|
||||
size_t len = 0;
|
||||
while (str[len])
|
||||
len++ return len;
|
||||
}
|
BIN
red.kernel
BIN
red.kernel
Binary file not shown.
Loading…
Reference in New Issue
Block a user