Chroma/chroma/system/drivers/elf.c

92 lines
4.0 KiB
C

#include <kernel/chroma.h>
/************************
*** Team Kitty, 2020 ***
*** Chroma ***
***********************/
/*
* This file provides utility functions for parsing ELF headers.
* This exists so that the kernel can find itself for remapping,
* but I may end up using ELF as the kernel's executable format.
* Writing an ELF loader is on the to-do list, after all.
! This needs to be cleaned up.
! This creates a mess of numbers on the print
! This is hacky and hardcoded as heck and needs to be fixed
*/
extern size_t KernelLocation;
int ParseKernelHeader(size_t InitrdPtr) {
int flag = 0;
SerialPrintf("[ boot] Searching for kernel... Constants start at 0x%p / 0x%p\r\n", ((size_t) (&_kernel_text_start) - KernelAddr) + InitrdPtr, (size_t) (&_kernel_text_start));
// We stop at the constants in the kernel, otherwise we'll read the constant ELF64MAGIC which is stored inside the kernel...
size_t headerLoc = 0;
for(size_t i = InitrdPtr; i < ((size_t) (&_kernel_text_start) - KernelAddr) + InitrdPtr; i++) {
if(*((volatile uint32_t*)(i)) == ELF64MAGIC) {
SerialPrintf("[ boot] Matched kernel header at 0x%p.\r\n", i);
headerLoc = i;
}
if(FIXENDIAN32(*((volatile uint32_t*)(i))) == ELF64MAGIC) {
SerialPrintf("[ boot] Matched little-endian kernel header at 0x%p.\r\n", i);
headerLoc = i;
}
}
if(headerLoc) {
/* For whatever reason, reading a size_t here fails. The max that seems to work is uint16_t, so we read in the
* 64 bit address by constructing it from 4 individual reads.
* Note that these 4 reads are little endian, so we need to flip them around individually
*/
uint16_t EntryPoint0 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF)));
uint16_t EntryPoint1 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 2)));
uint16_t EntryPoint2 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 4)));
uint16_t EntryPoint3 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 6)));
size_t EntryPoint = ((size_t) EntryPoint0 << 48) | ((size_t) EntryPoint1 << 32) | ((size_t) EntryPoint2 << 16) | ((size_t) EntryPoint3);
/* At this point, EntryPoint is a little-endian 64 bit integer. That means we have to fix its endianness in order to read it */
SerialPrintf("[ boot] Fixing entry point from 0x%p to 0x%p\r\n", EntryPoint, FIXENDIAN64(EntryPoint));
EntryPoint = FIXENDIAN64(EntryPoint);
/* Now we can continue as normal */
uint8_t HeaderClass = *((volatile uint8_t*)(headerLoc + ELF_IDENT_CLASS_OFF));
uint16_t ExecutableType = (uint16_t) *((volatile uint8_t*)(headerLoc + ELFTYPE_OFF));
uint16_t MachineType = (uint16_t) *((volatile uint8_t*)(headerLoc + ELFMACHINE_OFF));
SerialPrintf(
"[ boot] ELF header at 0x%p.\r\n\tConsidering ELF with:\r\n\tBitness %d: %d\r\n\tEntry point 0x%p\r\n\tFile type %s : 0x%x\r\n\tArchitecture %s : 0x%x\r\n",
headerLoc,
HeaderClass == 2 ? 64 : 32,
HeaderClass,
EntryPoint,
ExecutableType == FIXENDIAN16(0x0200) ? "EXECUTABLE" : "OTHER",
FIXENDIAN16(ExecutableType),
MachineType == FIXENDIAN16(0x3E00) ? "AMD64" : "OTHER",
FIXENDIAN16(MachineType));
if(EntryPoint == (size_t) (&_kernel_text_start)) {
SerialPrintf("[ boot] Header at 0x%p matches kernel header.\r\n", headerLoc);
flag = 1;
// At this point, we've found the right ELF64 executable!
// Great, now we can map it into the proper place
KernelLocation = headerLoc;
}
if(!flag) {
for(char i = 0; i < 64; i++) {
SerialPrintf("[ boot] Header dump part %x: 0x%x\r\n", i, *((volatile uint8_t*)(headerLoc + i)));
}
}
}
return flag;
}