#pragma once #include #include #include #include /************************ *** Team Kitty, 2021 *** *** Chroma *** ***********************/ #define MAX_CORES 8 #define MAX_PROCESSES 128 #define PROCESS_STACK 65535 static size_t strlen(const char* String) { size_t Len = 0; while(String[Len] != '\0') { Len++; } return Len; }; /** * @brief All the data a process needs. * * Contains all the process-specific structs. * Lots of private members, out of necessity */ class Process { // Tells the scheduler, and system at large, what the current state of the process is enum ProcessState { PROCESS_AVAILABLE, // Process is ready to be scheduled PROCESS_RUNNING, // Process is active on the CPU PROCESS_WAITING, // Process is blocked by external activity PROCESS_CRASH, // Process has encountered an error and needs to be culled PROCESS_NOT_STARTED,// Process is waiting for bootstrap PROCESS_REAP // Process wants to die }; // The process' buffers, for moving data in and out of the system enum BufferTypes { STDOUT, STDIN, STDERR }; // The data that actually represents one of the above buffers. struct Buffer { uint8_t* Data; size_t Length; size_t LengthAllocated; uint8_t Type; // An entry of BufferTypes. } __attribute__((packed)); // A packet used for IPC struct ProcessMessage { uint8_t MessageID; size_t Source; // Originating PID size_t Destination; // Target PID size_t Content; // Pointer to the data. size_t Length; // Size of the data. End is Content + Length size_t Response; bool Read; // True if message has been read bool Free; // True if memory can be reused for something else } __attribute__((packed)); // Important information about the process. // Its' stack and stack pointer, plus the page tables. struct ProcessHeader { uint8_t* Stack; size_t RSP; address_space_t* AddressSpace; }; private: ProcessHeader Header; ProcessState State; bool User; // Is this process originated in userspace? size_t UniquePID; // Globally Unique ID. size_t KernelPID; // If in kernel space, the PID. size_t ParentPID; // If this process was forked, the parent's PID. char Name[128]; size_t Entry; // The entry point uint8_t Core; bool ORS = false; bool IsActive = false; bool IsInterrupted = false; // True if an interrupt was fired while this process is active uint8_t Signals[8]; // Interrupt / IRQ / Signal handlers. uint8_t Sleeping; // 0 if active, else the process is waiting for something. TODO: remove this, use State? ProcessMessage* Messages; // A queue of IPC messages. size_t LastMessage; // The index of the current message. uint8_t* ProcessMemory; size_t ProcessMemorySize; // TODO: Stack Trace & MFS public: Process(size_t KPID) : State(PROCESS_AVAILABLE), UniquePID(-1), KernelPID(KPID) { }; Process(const char* ProcessName, size_t KPID, size_t UPID, size_t EntryPoint, bool Userspace) : UniquePID(UPID), KernelPID(KPID), Entry(EntryPoint), ORS(false), LastMessage(0), User(Userspace), Sleeping(0) { memcpy((void*) ProcessName, Name, strlen(Name) + 1); }; Process(const Process &Instance) { memcpy(this, &Instance, sizeof(Process)); }; Process& operator=(const Process &Instance) { memcpy(this, &Instance, sizeof(Process)); return *this; }; /*************************************************************/ void InitMemory(); void InitMessages(); /*************************************************************/ void SetCore(size_t CoreID) { Core = CoreID; }; void IncreaseSleep(size_t Interval) { Sleeping += Interval; }; void DecreaseSleep(size_t Interval) { Sleeping -= Interval; }; /*************************************************************/ ProcessHeader* GetHeader() { return &Header; }; size_t GetParent() const { return ParentPID; }; bool IsValid() const { return KernelPID != 0; }; bool IsUsed() const { return (State != ProcessState::PROCESS_AVAILABLE && State != ProcessState::PROCESS_CRASH && State != ProcessState::PROCESS_REAP) && IsValid(); }; bool IsSleeping() const { return Sleeping; }; size_t GetSleepCounter() const { return Sleeping; }; bool CanRun(const size_t CPU) const { bool flag = !(ORS && !IsActive); return State == ProcessState::PROCESS_WAITING && Core == CPU && KernelPID != 0 && flag && !IsSleeping(); } size_t GetCore() const { return Core; }; }; class ProcessManagement { public: TSS64 TSS[MAX_CORES]; uint32_t CoreCount = 1; ProcessManagement(); static ProcessManagement* instance(); void Wait(); void Initialize(); void InitialiseCore(int APIC, int ID); void NotifyAllCores(); // TODO: Process* size_t SwitchContext(INTERRUPT_FRAME* CurrentFrame); void MapThreadMemory(size_t from, size_t to, size_t length); void InitProcess(/*func EntryPoint*/ int argc, char** argv); void InitProcessPagetable(bool Userspace); void InitProcessArch(); size_t HandleRequest(size_t CPU); inline void yield() { __asm __volatile("int 100"); } };