Compare commits
No commits in common. "e6466309496ddf19b6731b4c6860c752d38bf1bf" and "986c7816b1aca0fda5e80c692bc75780da8e0c8f" have entirely different histories.
e646630949
...
986c7816b1
|
@ -24,7 +24,6 @@ SET(src_files
|
|||
${CMAKE_SOURCE_DIR}/chroma/system/memory/abstract_allocator.c
|
||||
${CMAKE_SOURCE_DIR}/chroma/system/memory/physmem.c
|
||||
${CMAKE_SOURCE_DIR}/chroma/system/drivers/keyboard.c
|
||||
${CMAKE_SOURCE_DIR}/chroma/system/drivers/elf.c
|
||||
)
|
||||
|
||||
SET(lib_files
|
||||
|
|
|
@ -11,30 +11,6 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* ELF headers hate me.
|
||||
* Let's do this the hard way. */
|
||||
|
||||
#define ELF_IDENT_MAGIC_OFF 0x0
|
||||
#define ELF_IDENT_CLASS_OFF 0x4
|
||||
#define ELF_IDENT_DATA_OFF 0x5
|
||||
#define ELF_IDENT_VERSION_OFF 0x6
|
||||
#define ELF_IDENT_OSABI_OFF 0x7
|
||||
#define ELF_IDENT_ABI_VERSION_OFF 0x8
|
||||
#define ELF_IDENT_PAD_OFF 0x9
|
||||
#define ELFTYPE_OFF 0x10
|
||||
#define ELFMACHINE_OFF 0x12
|
||||
#define ELFVERSION_OFF 0x14
|
||||
#define ELFENTRY_OFF 0x18
|
||||
#define ELFPHOFF_OFF 0x20
|
||||
#define ELFSHOFF_OFF 0x28
|
||||
#define ELFFLAGS_OFF 0x30
|
||||
#define ELFEHSIZE_OFF 0x34
|
||||
#define ELFPHENTSIZE_OFF 0x36
|
||||
#define ELFPHNUM_OFF 0x38
|
||||
#define ELFSHENTSIZE_OFF 0x3A
|
||||
#define ELFSHNUM_OFF 0x3C
|
||||
#define ELFSHSTRNDX_OFF 0x40
|
||||
|
||||
#define BOOT_MAGIC "BOOT"
|
||||
|
||||
/* minimum protocol level:
|
||||
|
@ -132,6 +108,30 @@ typedef struct {
|
|||
} __attribute__((packed)) bootinfo;
|
||||
|
||||
|
||||
typedef struct {
|
||||
uint32_t Magic;
|
||||
uint8_t Class;
|
||||
uint8_t Endianness;
|
||||
uint8_t Version;
|
||||
uint8_t ABI;
|
||||
uint8_t ABIVersion;
|
||||
uint8_t Unused[7];
|
||||
uint16_t Type;
|
||||
uint16_t TargetArchitecture;
|
||||
uint32_t ELFVersion;
|
||||
size_t EntryPoint;
|
||||
size_t ProgramHeadersTable;
|
||||
size_t SectionHeadersTable;
|
||||
uint32_t Flags;
|
||||
uint16_t ELFHeaderSize;
|
||||
uint16_t ProgramHeadersEntrySize;
|
||||
uint16_t ProgramHeaderEntries;
|
||||
uint16_t SectionHeadersEntrySize;
|
||||
uint16_t SectionHeaderEntries;
|
||||
uint16_t SectionHeaderNameEntry;
|
||||
uint8_t End;
|
||||
} __attribute__((packed)) ELF64Header_t;
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -69,8 +69,6 @@ void InitPrint();
|
|||
void SetupInitialGDT();
|
||||
void SetupIDT();
|
||||
|
||||
int ParseKernelHeader(size_t InitrdPtr);
|
||||
|
||||
int Main();
|
||||
|
||||
void Exit();
|
||||
|
|
|
@ -8,6 +8,8 @@
|
|||
*** Chroma ***
|
||||
***********************/
|
||||
|
||||
size_t KernelLocation;
|
||||
|
||||
|
||||
/************************************************
|
||||
* C O N S T A N T S A N D M A C R O S
|
||||
|
@ -28,11 +30,6 @@
|
|||
|
||||
#define REINTERPRET_CAST(target, intermediate, value) ((target*)((intermediate*)value))
|
||||
|
||||
#define FIXENDIAN64(x) __builtin_bswap64(x)
|
||||
#define FIXENDIAN32(x) __builtin_bswap32(x)
|
||||
#define FIXENDIAN16(x) __builtin_bswap16(x)
|
||||
|
||||
|
||||
#define CONCAT(x, y) x ## y
|
||||
#define CONCAT2(x, y) CONCAT(x, y)
|
||||
#define ASSERT(exp, error) \
|
||||
|
@ -58,7 +55,6 @@
|
|||
#define ERR_INST 0x10
|
||||
|
||||
#define ELF64MAGIC 0x7F454c46
|
||||
#define ELF64MAGICBE 0x464c457F
|
||||
|
||||
|
||||
/*
|
||||
|
@ -110,7 +106,7 @@
|
|||
|
||||
#define MMIO_REGION 0xFFFFFFFFF8000000ull // Cannot move!
|
||||
#define FB_REGION 0xFFFFFFFFFC000000ull // Cannot move!
|
||||
#define FB_PHYSICAL 0x00000000FD000000ull // Physical location of the Framebuffer
|
||||
#define FB_PHYSICAL 0x00000000E0000000ull // Physical location of the Framebuffer
|
||||
#define KERNEL_REGION 0xFFFFFFFFFFE00000ull // -2MiB, from bootloader
|
||||
|
||||
#define USER_REGION 0x00007FFFFFFFFFFFull // Not needed yet, but we're higher half so we might as well be thorough
|
||||
|
|
|
@ -20,13 +20,48 @@ address_space_t KernelAddressSpace;
|
|||
|
||||
int Main(void) {
|
||||
KernelAddressSpace = (address_space_t) {0};
|
||||
KernelLocation = 0x112600;
|
||||
|
||||
SerialPrintf("\r\n[ boot] Booting Chroma..\r\n");
|
||||
SerialPrintf("[ boot] Kernel loaded at 0x%p, ends at 0x%p, is %d bytes long.\r\n", KernelAddr, KernelEnd, KernelEnd - KernelAddr);
|
||||
SerialPrintf("[ boot] Initrd is physically at 0x%p, and is %d bytes long.\r\n", bootldr.initrd_ptr, bootldr.initrd_size);
|
||||
SerialPrintf("[ boot] Initrd's header is 0x%p\r\n", FIXENDIAN32(*((volatile uint32_t*)(bootldr.initrd_ptr))));
|
||||
|
||||
ParseKernelHeader(bootldr.initrd_ptr);
|
||||
SerialPrintf("[ boot] Searching for kernel... Constants start at 0x%p\r\n", &_kernel_text_start);
|
||||
// We stop at the constants in the kernel, otherwise we'll read the constant ELF64MAGIC which is stored inside the kernel...
|
||||
|
||||
size_t headerLoc = 0;
|
||||
for(size_t i = KernelAddr; i < KernelEnd; i++) {
|
||||
if(i < (size_t) (&_kernel_text_start) - KernelAddr) {
|
||||
if(*((volatile uint32_t*)(i)) == ELF64MAGIC) {
|
||||
SerialPrintf("[ boot] Matched kernel header at 0x%p.\r\n", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int flag = 0;
|
||||
|
||||
if(headerLoc) {
|
||||
ELF64Header_t* PotentialKernelHeader = (ELF64Header_t*) &headerLoc;
|
||||
SerialPrintf(
|
||||
"[ boot] Considering ELF with:\r\n\tBitness %d\r\n\tEntry point 0x%p\r\n\tFile type %s : %d\r\n\tArchitecture %s : %d\r\n",
|
||||
PotentialKernelHeader->Class == 2 ? 64 : 32, PotentialKernelHeader->EntryPoint, PotentialKernelHeader->Type == 0x02 ? "EXECUTABLE" : "OTHER", PotentialKernelHeader->Type, PotentialKernelHeader->TargetArchitecture == 0x3E ? "AMD64" : "OTHER", PotentialKernelHeader->TargetArchitecture);
|
||||
if(PotentialKernelHeader->EntryPoint == KernelAddr) {
|
||||
SerialPrintf("[ boot] Header at 0x%p matches kernel header.\r\n", headerLoc);
|
||||
flag = 1;
|
||||
}
|
||||
|
||||
if(!flag) {
|
||||
|
||||
for(size_t i = 0; i < 8; i++) {
|
||||
SerialPrintf("[ boot] Header dump part %d: 0x%x\r\n", i, *((volatile uint32_t*)(headerLoc + i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(!flag) {
|
||||
SerialPrintf("[ boot] Unable to find kernel in memory. Fatal error.\r\n");
|
||||
//for(;;) {}
|
||||
}
|
||||
|
||||
SerialPrintf("[ boot] The bootloader has put the paging tables at 0x%p.\r\n", ReadControlRegister(3));
|
||||
|
||||
|
|
|
@ -1,91 +0,0 @@
|
|||
#include <kernel/chroma.h>
|
||||
/************************
|
||||
*** Team Kitty, 2020 ***
|
||||
*** Chroma ***
|
||||
***********************/
|
||||
|
||||
/*
|
||||
* This file provides utility functions for parsing ELF headers.
|
||||
* This exists so that the kernel can find itself for remapping,
|
||||
* but I may end up using ELF as the kernel's executable format.
|
||||
* Writing an ELF loader is on the to-do list, after all.
|
||||
! This needs to be cleaned up.
|
||||
! This creates a mess of numbers on the print
|
||||
! This is hacky and hardcoded as heck and needs to be fixed
|
||||
*/
|
||||
extern size_t KernelLocation;
|
||||
|
||||
int ParseKernelHeader(size_t InitrdPtr) {
|
||||
int flag = 0;
|
||||
|
||||
SerialPrintf("[ boot] Searching for kernel... Constants start at 0x%p / 0x%p\r\n", ((size_t) (&_kernel_text_start) - KernelAddr) + InitrdPtr, (size_t) (&_kernel_text_start));
|
||||
// We stop at the constants in the kernel, otherwise we'll read the constant ELF64MAGIC which is stored inside the kernel...
|
||||
|
||||
size_t headerLoc = 0;
|
||||
for(size_t i = InitrdPtr; i < ((size_t) (&_kernel_text_start) - KernelAddr) + InitrdPtr; i++) {
|
||||
if(*((volatile uint32_t*)(i)) == ELF64MAGIC) {
|
||||
SerialPrintf("[ boot] Matched kernel header at 0x%p.\r\n", i);
|
||||
headerLoc = i;
|
||||
}
|
||||
|
||||
if(FIXENDIAN32(*((volatile uint32_t*)(i))) == ELF64MAGIC) {
|
||||
SerialPrintf("[ boot] Matched little-endian kernel header at 0x%p.\r\n", i);
|
||||
headerLoc = i;
|
||||
}
|
||||
}
|
||||
|
||||
if(headerLoc) {
|
||||
/* For whatever reason, reading a size_t here fails. The max that seems to work is uint16_t, so we read in the
|
||||
* 64 bit address by constructing it from 4 individual reads.
|
||||
* Note that these 4 reads are little endian, so we need to flip them around individually
|
||||
*/
|
||||
uint16_t EntryPoint0 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF)));
|
||||
uint16_t EntryPoint1 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 2)));
|
||||
uint16_t EntryPoint2 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 4)));
|
||||
uint16_t EntryPoint3 = FIXENDIAN16(*((volatile uint16_t*)(headerLoc + ELFENTRY_OFF + 6)));
|
||||
size_t EntryPoint = ((size_t) EntryPoint0 << 48) | ((size_t) EntryPoint1 << 32) | ((size_t) EntryPoint2 << 16) | ((size_t) EntryPoint3);
|
||||
|
||||
/* At this point, EntryPoint is a little-endian 64 bit integer. That means we have to fix its endianness in order to read it */
|
||||
SerialPrintf("[ boot] Fixing entry point from 0x%p to 0x%p\r\n", EntryPoint, FIXENDIAN64(EntryPoint));
|
||||
EntryPoint = FIXENDIAN64(EntryPoint);
|
||||
|
||||
/* Now we can continue as normal */
|
||||
uint8_t HeaderClass = *((volatile uint8_t*)(headerLoc + ELF_IDENT_CLASS_OFF));
|
||||
uint16_t ExecutableType = (uint16_t) *((volatile uint8_t*)(headerLoc + ELFTYPE_OFF));
|
||||
uint16_t MachineType = (uint16_t) *((volatile uint8_t*)(headerLoc + ELFMACHINE_OFF));
|
||||
|
||||
|
||||
SerialPrintf(
|
||||
"[ boot] ELF header at 0x%p.\r\n\tConsidering ELF with:\r\n\tBitness %d: %d\r\n\tEntry point 0x%p\r\n\tFile type %s : 0x%x\r\n\tArchitecture %s : 0x%x\r\n",
|
||||
headerLoc,
|
||||
HeaderClass == 2 ? 64 : 32,
|
||||
HeaderClass,
|
||||
EntryPoint,
|
||||
ExecutableType == FIXENDIAN16(0x0200) ? "EXECUTABLE" : "OTHER",
|
||||
FIXENDIAN16(ExecutableType),
|
||||
MachineType == FIXENDIAN16(0x3E00) ? "AMD64" : "OTHER",
|
||||
FIXENDIAN16(MachineType));
|
||||
|
||||
|
||||
|
||||
|
||||
if(EntryPoint == (size_t) (&_kernel_text_start)) {
|
||||
SerialPrintf("[ boot] Header at 0x%p matches kernel header.\r\n", headerLoc);
|
||||
flag = 1;
|
||||
// At this point, we've found the right ELF64 executable!
|
||||
// Great, now we can map it into the proper place
|
||||
KernelLocation = headerLoc;
|
||||
}
|
||||
|
||||
if(!flag) {
|
||||
|
||||
for(char i = 0; i < 64; i++) {
|
||||
SerialPrintf("[ boot] Header dump part %x: 0x%x\r\n", i, *((volatile uint8_t*)(headerLoc + i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return flag;
|
||||
|
||||
}
|
||||
|
|
@ -52,8 +52,6 @@
|
|||
extern size_t _kernel_rodata_start;
|
||||
extern size_t _kernel_data_start;
|
||||
|
||||
size_t KernelLocation;
|
||||
|
||||
//__attribute__((aligned(4096))) static size_t Pagetable[512] = {0};
|
||||
|
||||
#define LAST_ENTRY 0xFF8
|
||||
|
@ -153,9 +151,8 @@ void InitPaging() {
|
|||
|
||||
//TODO: Disallow execution of rodata and data, and bootldr/environment
|
||||
for(void* Address = CAST(void*, KERNEL_REGION);
|
||||
Address < CAST(void*, KERNEL_REGION + (KernelEnd - KernelAddr));
|
||||
Address < CAST(void*, KERNEL_REGION + (KernelEnd - KernelAddr)); // Lower half of Kernel
|
||||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
SerialPrintf("[ mem] Mapping 0x%p to 0x%p, relative to kernel at 0x%p\r\n", (CAST(size_t, Address) - KERNEL_REGION) + KernelLocation, Address, (CAST(size_t, Address) - KERNEL_REGION));
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - KERNEL_REGION) + KernelLocation, MAP_EXEC);
|
||||
}
|
||||
|
||||
|
@ -164,9 +161,9 @@ void InitPaging() {
|
|||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - KERNEL_REGION) + KERNEL_PHYSICAL_2, MAP_EXEC);
|
||||
}*/
|
||||
SerialPrintf("[ mem] Framebuffer at 0x%p, is 0x%p long. Mapping to 0x%p.\r\n", bootldr.fb_ptr, bootldr.fb_size, FB_REGION);
|
||||
|
||||
for(void* Address = CAST(void*, FB_REGION);
|
||||
Address < CAST(void*, bootldr.fb_size + FB_REGION);
|
||||
Address < CAST(void*, 0x200000); // TODO: Turn this into a calculation with bootldr.fb_size
|
||||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - FB_REGION) + FB_PHYSICAL, MAP_WRITE);
|
||||
}
|
||||
|
|
|
@ -1,310 +0,0 @@
|
|||
|
||||
void InitPagingT() {
|
||||
|
||||
size_t* PML4 = (size_t*) 0xFFA000; // Layer 4
|
||||
size_t* PDPE_RAM = (size_t*) 0xFFE000; // Layer 3, contains map for the first 4GB of RAM
|
||||
size_t* PDE_RAM = (size_t*) 0xFFF000;
|
||||
|
||||
size_t* PDPE_KERNEL = (size_t*) 0xFFB000; // Layer 3, contains map for the Kernel and everything it needs to run.
|
||||
size_t* PDE_KERNEL_FB = (size_t*) 0xFFC000; // Layer 2, contains map for the linear framebuffer.
|
||||
|
||||
size_t* PT_KERNEL = (size_t*) 0xFFD000; // Layer 1, the page table for the kernel itself.
|
||||
|
||||
size_t fb_ptr = (size_t) &fb;
|
||||
|
||||
SET_ADDRESS(PML4, PDPE_RAM); // 3rd Layer entry for RAM
|
||||
SET_ADDRESS(PML4 + LAST_ENTRY, PDPE_KERNEL); // 3rd Layer entry for Kernel
|
||||
|
||||
SET_ADDRESS(PDPE_KERNEL + LAST_ENTRY, PDE_KERNEL_FB); // 2nd Layer entry for the framebuffer
|
||||
|
||||
// Set the 480th entry (PDE_KERNEL_FB + (480 * 8))
|
||||
// To the framebuffer + flags
|
||||
SET_ADDRESS(PDE_KERNEL_FB + 3840, USERWRITEABLE_FLAGS(fb_ptr));
|
||||
|
||||
// In 4 byte increments, we're gonna map 3840 (the framebuffer)
|
||||
// Up to (4096 - 8) in the PDE_KERNEL_FB with 2MB paging.
|
||||
size_t MappingIterations = 1;
|
||||
for(size_t i = 3844; i < 4088; i += 4) {
|
||||
SET_ADDRESS(PDE_KERNEL_FB + i, USERWRITEABLE_FLAGS(fb_ptr) + (MappingIterations * (2 * MiB)));
|
||||
MappingIterations++;
|
||||
}
|
||||
|
||||
// Now we map the last entry of PDE_KERNEL_FB to our Page Table
|
||||
SET_ADDRESS(PDE_KERNEL_FB + LAST_ENTRY, PT_KERNEL);
|
||||
|
||||
// Mapping the kernel into the page tables....
|
||||
|
||||
SET_ADDRESS(PT_KERNEL, 0xFF8001); // bootldr, bootinfo
|
||||
SET_ADDRESS(PT_KERNEL + 8, 0xFF9001); // environment
|
||||
|
||||
// Map the kernel itself
|
||||
SET_ADDRESS(PT_KERNEL + 16, KernelAddr + 1);
|
||||
|
||||
// Iterate through the pages, identity mapping each one
|
||||
MappingIterations = 1;
|
||||
size_t MappingOffset = 0x14;
|
||||
for(size_t i = 0; i < ((KernelEnd - KernelAddr) >> 12); i++) {
|
||||
// Page Table + (0x10 increasing by 0x04 each time) = x * 4KiB
|
||||
SET_ADDRESS(PT_KERNEL + MappingOffset, (MappingIterations * (4 * KiB)));
|
||||
MappingOffset += 4;
|
||||
MappingIterations++;
|
||||
}
|
||||
|
||||
// Now we need to map the core stacks. Top-down, from 0xDFF8
|
||||
// There's always at least one core, so we do that one fixed.
|
||||
// TODO: Account for 0-core CPUs
|
||||
SET_ADDRESS(PT_KERNEL + LAST_ENTRY, 0xF14003);
|
||||
MappingIterations = 1;
|
||||
// For every core:
|
||||
for(size_t i = 0; i < (bootldr.numcores + 3U) >> 2; i++) {
|
||||
// PT_KERNEL[512 - (iterations + 1)] = 0x14003 + (iterations * page-width)
|
||||
SET_ADDRESS(PT_KERNEL + LAST_ENTRY - (MappingIterations * 8), 0xF14003 + (4096 * MappingIterations));
|
||||
MappingIterations++;
|
||||
}
|
||||
|
||||
SET_ADDRESS(PDPE_RAM, PDE_RAM + PAGE_PRESENT + PAGE_RW);
|
||||
SET_ADDRESS(PDPE_RAM + 8, 0xF10000 + PAGE_PRESENT + PAGE_RW);
|
||||
SET_ADDRESS(PDPE_RAM + 16, 0xF11000 + PAGE_PRESENT + PAGE_RW);
|
||||
SET_ADDRESS(PDPE_RAM + 24, 0xF12000 + PAGE_PRESENT + PAGE_RW);
|
||||
|
||||
// Identity map 4GB of ram
|
||||
// Each page table can only hold 512 entries, but we
|
||||
// just set up 4 of them - overflowing PDE_RAM (0xF000)
|
||||
// will take us into 0x10000, into 0x11000, into 0x120000.
|
||||
for(size_t i = 0; i < 512 * 4/*GB*/; i++) {
|
||||
// add PDE_RAM, 4
|
||||
// mov eax, 0x83
|
||||
// add eax, 2*1024*1024
|
||||
SET_ADDRESS(PDE_RAM + (i * 4), USERWRITEABLE_FLAGS(i * (2 * MiB)));
|
||||
}
|
||||
|
||||
// Map first 2MB of memory
|
||||
SET_ADDRESS(PDE_RAM, 0xF13000 + PAGE_PRESENT + PAGE_RW);
|
||||
|
||||
for(size_t i = 0; i < 512; i++) {
|
||||
SET_ADDRESS(0xF13000 + i * 4, i * (4 * KiB) + PAGE_PRESENT + PAGE_RW);
|
||||
}
|
||||
|
||||
// 0xA000 should now contain our memory map.
|
||||
|
||||
}
|
||||
|
||||
void TraversePageTables() {
|
||||
|
||||
}
|
||||
|
||||
|
||||
void InitPagingOldImpl() {
|
||||
|
||||
// Disable paging so that we can work with the pagetable
|
||||
//size_t registerTemp = ReadControlRegister(0);
|
||||
//UNSET_PGBIT(registerTemp);
|
||||
//WriteControlRegister(0, registerTemp);
|
||||
|
||||
// Clear space for our pagetable
|
||||
size_t PagetableDest = 0x1000;
|
||||
memset((char*)PagetableDest, 0, 4096);
|
||||
|
||||
// Start setting pagetable indexes
|
||||
*((size_t*)PagetableDest) = 0x2003; // PDP at 0x2000, present & r/w
|
||||
*((size_t*)PagetableDest + 0x1000) = 0x3003; // PDT at 0x3000, present & r/w
|
||||
*((size_t*)PagetableDest + 0x2000) = 0x4003; // PT at 0x4000, present & r/w
|
||||
|
||||
size_t value = 0x3;
|
||||
size_t offset = 8;
|
||||
for(size_t i = 0; i < 512; i++) { // 512 iterations (entries into the page table)
|
||||
*((size_t*) PagetableDest + offset) = value; // We're setting 512 bytes with x003
|
||||
// (identity mapping the first 4 megabytes of memory)
|
||||
// (mapping the page table to itself)
|
||||
value += 4096; // Point to start of next page
|
||||
offset += 8; // + 8 bytes (next entry in list)
|
||||
}
|
||||
|
||||
// Enable PAE paging
|
||||
size_t reg = ReadControlRegister(4);
|
||||
SET_PAEBIT(reg);
|
||||
WriteControlRegister(4, reg);
|
||||
|
||||
WriteControlRegister(3, PagetableDest);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* size_t registerTemp = ReadControlRegister(4);
|
||||
if(registerTemp & (1 << 7)) {
|
||||
TOGGLE_PGEBIT(registerTemp);
|
||||
WriteControlRegister(4, registerTemp);
|
||||
}
|
||||
|
||||
if(registerTemp & (1 << 7))
|
||||
WriteControlRegister(4, registerTemp ^ (1 << 7));
|
||||
|
||||
size_t CPUIDReturn;
|
||||
asm volatile("cpuid" : "=d" (CPUIDReturn) : "a" (0x80000001) : "%rbx", "%rcx");
|
||||
|
||||
if(CPUIDReturn & (1 << 26)) {
|
||||
SerialPrintf("System supports 1GB pages.\r\n");
|
||||
|
||||
if(registerTemp & (1 << 12)) {
|
||||
SerialPrintf("PML5 paging available - using that instead.\r\n");
|
||||
|
||||
if(MemorySize > (1ULL << 57))
|
||||
SerialPrintf("System has over 128Petabytes of RAM. Please consider upgrading the OS on your supercomputer.\r\n");
|
||||
|
||||
size_t MaxPML5 = 1;
|
||||
size_t MaxPML4 = 1;
|
||||
size_t MaxPDP = 512;
|
||||
|
||||
size_t LastPML4Entry = 512;
|
||||
size_t LastPDPEntry = 512;
|
||||
|
||||
size_t MemorySearchDepth = MemorySize;
|
||||
|
||||
while(MemorySearchDepth > (256ULL << 30)) {
|
||||
MaxPML5++;
|
||||
MemorySearchDepth -= (256ULL << 30);
|
||||
}
|
||||
|
||||
if(MaxPML5 > 512)
|
||||
MaxPML5 = 512;
|
||||
|
||||
if(MemorySearchDepth) {
|
||||
LastPDPEntry = ( (MemorySearchDepth + ((1 << 30) - 1)) & (~0ULL << 30)) >> 30;
|
||||
|
||||
if(MaxPML5 > 512)
|
||||
MaxPML5 = 512;
|
||||
|
||||
}
|
||||
|
||||
size_t PML4Size = PAGETABLE_SIZE * MaxPML5;
|
||||
size_t PDPSize = PML4Size * MaxPML4;
|
||||
|
||||
size_t PML4Base = AllocatePagetable(PML4Size + PDPSize);
|
||||
size_t PDPBase = PML4Base + PML4Size;
|
||||
|
||||
for(size_t PML5Entry = 0; PML5Entry < MaxPML5; PML5Entry++) {
|
||||
Pagetable[PML5Entry] = PML4Base + (PML5Entry << 12);
|
||||
|
||||
if(PML5Entry == (MaxPML5 - 1))
|
||||
MaxPML4 = LastPML4Entry;
|
||||
|
||||
for(size_t PML4Entry = 0; PML4Entry < MaxPML4; PML4Entry++) {
|
||||
|
||||
((size_t*) Pagetable[PML5Entry])[PML4Entry] = PDPBase + (((PML5Entry << 9) + PML5Entry) << 12);
|
||||
|
||||
if( (PML5Entry == (MaxPML5 - 1)) && (PML4Entry == (MaxPML4 -1)) )
|
||||
MaxPDP = LastPDPEntry;
|
||||
|
||||
for(size_t PDPEntry = 0; PDPEntry < MaxPDP; PDPEntry++) {
|
||||
((size_t* ) ((size_t* ) Pagetable[PML5Entry])[PML4Entry])[PDPEntry] = ( ((PML5Entry << 18) + (PML4Entry << 9) + PDPEntry) << 30) | (0x83);
|
||||
}
|
||||
|
||||
((size_t* ) Pagetable[PML5Entry])[PML4Entry] |= 0x3;
|
||||
}
|
||||
|
||||
Pagetable[PML5Entry] |= 0x3;
|
||||
}
|
||||
} else {
|
||||
SerialPrintf("PML4 available - using that instead.\r\n");
|
||||
size_t MemorySearchDepth = MemorySize;
|
||||
|
||||
if(MemorySearchDepth > (1ULL << 48))
|
||||
SerialPrintf("RAM limited to 256TB.\r\n");
|
||||
|
||||
size_t MaxPML4 = 1;
|
||||
size_t MaxPDP = 512;
|
||||
|
||||
size_t LastPDPEntry = 512;
|
||||
|
||||
while(MemorySearchDepth > (512ULL << 30)) {
|
||||
MaxPML4++;
|
||||
MemorySearchDepth -= (512ULL << 30);
|
||||
}
|
||||
|
||||
if(MaxPML4 > 512)
|
||||
MaxPML4 = 512;
|
||||
|
||||
if(MemorySearchDepth) {
|
||||
LastPDPEntry = ( (MemorySearchDepth + ((1 << 30) - 1)) & (~0ULL << 30)) >> 30;
|
||||
|
||||
if(LastPDPEntry > 512)
|
||||
LastPDPEntry = 512;
|
||||
}
|
||||
|
||||
size_t PDPSize = PAGETABLE_SIZE * MaxPML4;
|
||||
size_t PDPBase = AllocatePagetable(PDPSize);
|
||||
|
||||
for(size_t PML4Entry = 0; PML4Entry < MaxPML4; PML4Entry++) {
|
||||
Pagetable[PML4Entry] = PDPBase + (PML4Entry << 12);
|
||||
|
||||
if(PML4Entry == (MaxPML4 - 1)) {
|
||||
MaxPDP = LastPDPEntry;
|
||||
}
|
||||
|
||||
for(size_t PDPEntry = 0; PDPEntry < MaxPDP; PDPEntry++) {
|
||||
((size_t* ) Pagetable[PML4Entry])[PDPEntry] = (((PML4Entry << 9) + PDPEntry) << 30) | 0x83;
|
||||
}
|
||||
|
||||
Pagetable[PML4Entry] |= 0x3;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
SerialPrintf("System does not support 1GB pages - using 2MiB paging instead.\r\n");
|
||||
|
||||
size_t MemorySearchDepth = MemorySize;
|
||||
|
||||
if(MemorySearchDepth > (1ULL << 48)) {
|
||||
SerialPrintf("Usable RAM is limited to 256TB, and the page table alone will use 1GB of space in memory.\r\n");
|
||||
}
|
||||
|
||||
size_t MaxPML4 = 1, MaxPDP = 512, MaxPD = 512, LastPDPEntry = 1;
|
||||
|
||||
while(MemorySearchDepth > (512ULL << 30)) {
|
||||
MaxPML4++;
|
||||
MemorySearchDepth -= (512ULL << 30);
|
||||
}
|
||||
|
||||
if(MaxPML4 > 512)
|
||||
MaxPML4 = 512;
|
||||
|
||||
if(MemorySearchDepth) {
|
||||
LastPDPEntry = ((MemorySearchDepth + ((1 << 30) - 1)) & (~0ULL << 30)) >> 30;
|
||||
|
||||
if(LastPDPEntry > 512)
|
||||
LastPDPEntry = 512;
|
||||
}
|
||||
|
||||
size_t PDPSize = PAGETABLE_SIZE * MaxPML4;
|
||||
size_t PDSize = PDPSize * MaxPDP;
|
||||
|
||||
size_t PDPBase = AllocatePagetable(PDPSize + PDSize);
|
||||
size_t PDBase = PDPBase + PDSize;
|
||||
|
||||
for(size_t PML4Entry = 0; PML4Entry < MaxPML4; PML4Entry++) {
|
||||
Pagetable[PML4Entry] = PDBase + (PML4Entry << 12);
|
||||
|
||||
if(PML4Entry == (MaxPML4 - 1)) {
|
||||
MaxPDP = LastPDPEntry;
|
||||
}
|
||||
|
||||
for(size_t PDPEntry = 0; PDPEntry < MaxPDP; PDPEntry++) {
|
||||
( (size_t* ) Pagetable[PML4Entry])[PDPEntry] = PDBase + (((PML4Entry << 9) + PDPEntry) << 12);
|
||||
|
||||
for(size_t PDEntry = 0; PDEntry < MaxPD; PDEntry++) {
|
||||
( (size_t* ) ((size_t*) Pagetable[PML4Entry])[PDPEntry])[PDEntry] = (( (PML4Entry << 18) + (PDPEntry << 9) + PDPEntry) << 21) | 0x83;
|
||||
}
|
||||
|
||||
( (size_t* ) Pagetable[PML4Entry])[PDPEntry] |= 0x3;
|
||||
}
|
||||
|
||||
Pagetable[PML4Entry] |= 0x3;
|
||||
}
|
||||
}
|
||||
|
||||
WriteControlRegister(3, Pagetable);
|
||||
|
||||
registerTemp = ReadControlRegister(4);
|
||||
if(!(registerTemp & (1 << 7))) {
|
||||
TOGGLE_PGEBIT(registerTemp);
|
||||
WriteControlRegister(4, registerTemp);
|
||||
}*/
|
|
@ -1,379 +0,0 @@
|
|||
#include <kernel/chroma.h>
|
||||
#include <lainlib/lainlib.h>
|
||||
|
||||
/************************
|
||||
*** Team Kitty, 2020 ***
|
||||
*** Chroma ***
|
||||
***********************/
|
||||
|
||||
/****************************************
|
||||
* W O R K I N P R O G R E S S *
|
||||
****************************************
|
||||
*
|
||||
* This file contains functions for virtual memory management.
|
||||
*
|
||||
* Virtual Memory Management is still a work in progress.
|
||||
* The functions here are hold-offs from old versions of the software implemented here, as well as from the EFI version of Chroma, called Sync.
|
||||
*
|
||||
* There, these functions worked, but here, under BIOS, it's a lot more difficult.
|
||||
* It will take some time to get these functions working.
|
||||
*
|
||||
* The general plan, being that the BOOTBOOT loader has given us static addresses for all of our doodads,
|
||||
* is to keep the core kernel where it is (FFFFFFFFFFE00000) and load in modules and libraries around it.
|
||||
*
|
||||
* We start in the higher half, so we'll dedicate the lower half (7FFFFFFFFFFF and below) to userspace.
|
||||
*
|
||||
* That means we have about 3 terabytes of RAM for the kernel.
|
||||
* This will be identity mapped, always.
|
||||
*
|
||||
* Handily, since most modern processors ignore the highest 2 bytes of a virtual address, and the kernel
|
||||
* is mapped to 0x80000000000 and above, we can use the nomenclature:
|
||||
* * 0x00007FFFFFFFFFFF and below is user space.
|
||||
* * 0xFFFF800000000000 and above is kernel space.
|
||||
* The processor will ignore the first 4 chars, and this provides a great deal of readability for the
|
||||
* future of the kernel.
|
||||
*
|
||||
* We'll have a kernel heap mapped into this kernel space, as well as a kernel stack (for task switching and error tracing).
|
||||
* These will be 1GB each.
|
||||
* We may have to increase this in the future, once Helix is fully integrated.
|
||||
* Helix will take a lot of memory, as it is a fully featured 3D engine. We may have to implement things like
|
||||
* texture streaming and mipmapping. Minimising RAM usage is NOT a priority for me, but it would be nice
|
||||
* to have a minimum requirement above 32GB.
|
||||
*
|
||||
* // TODO: Expand Kernel Heap
|
||||
*
|
||||
*
|
||||
* //TODO: there are lots of calls to AllocateFrame here, those need to be separated out into AllocateZeroFrame if necessary.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
extern size_t _kernel_text_start;
|
||||
extern size_t _kernel_rodata_start;
|
||||
extern size_t _kernel_data_start;
|
||||
|
||||
//__attribute__((aligned(4096))) static size_t Pagetable[512] = {0};
|
||||
|
||||
#define LAST_ENTRY 0xFF8
|
||||
|
||||
#define SET_ADDRESS(a,b) ((*(size_t*) (a)) = (size_t) b)
|
||||
|
||||
/*
|
||||
* It turns out it's useful to have macros for the standard
|
||||
* data size units.
|
||||
*
|
||||
* Who would've thoguht?
|
||||
*/
|
||||
|
||||
#define KiB 1 * 1024
|
||||
#define MiB 1 * 1024 * KiB
|
||||
|
||||
|
||||
#define PAGE_PRESENT 1
|
||||
#define PAGE_RW 2
|
||||
#define PAGE_USER 4
|
||||
#define PAGE_GLOBAL 8
|
||||
|
||||
|
||||
#define USERWRITEABLE_FLAGS(a) ((a & 0xFFFFFF00) + 0x83)
|
||||
|
||||
// The AbstractAllocator control struct
|
||||
static allocator_t Allocator = NULL;
|
||||
// The AbstractAllocator Ticketlock.
|
||||
static ticketlock_t AllocatorLock = {0};
|
||||
|
||||
// Entries to help allocate the Kernel Stack
|
||||
static list_entry_t StackFreeList;
|
||||
static ticketlock_t StackLock = {0};
|
||||
static void* StackPointer = (void*) KERNEL_STACK_REGION;
|
||||
|
||||
// A temporary itoa function for better debugging..
|
||||
const char* IntToAscii(int In) {
|
||||
char* OutputBuffer = " ";
|
||||
|
||||
size_t Temp, i = 0, j = 0;
|
||||
|
||||
do {
|
||||
Temp = In % 10;
|
||||
OutputBuffer[i++] = (Temp < 10) ? (Temp + '0') : (Temp + 'a' - 10);
|
||||
} while (In /= 10);
|
||||
|
||||
OutputBuffer[i--] = 0;
|
||||
|
||||
for(j = 0; j < i; j++, i--) {
|
||||
Temp = OutputBuffer[j];
|
||||
OutputBuffer[j] = OutputBuffer[i];
|
||||
OutputBuffer[i] = Temp;
|
||||
}
|
||||
|
||||
return OutputBuffer;
|
||||
|
||||
}
|
||||
|
||||
|
||||
void InitPaging() {
|
||||
StackFreeList = (list_entry_t) { &StackFreeList, &StackFreeList };
|
||||
|
||||
size_t Size = AlignUpwards(AllocatorSize(), PAGE_SIZE);
|
||||
Allocator = PhysAllocateZeroMem(Size);
|
||||
Allocator = CreateAllocatorWithPool(Allocator, Size);
|
||||
|
||||
SerialPrintf("[ Mem] Everything preallocated for paging.\n");
|
||||
|
||||
KernelAddressSpace = (address_space_t) {
|
||||
.Lock = {0},
|
||||
.PML4 = PhysAllocateZeroMem(PAGE_SIZE)
|
||||
};
|
||||
|
||||
size_t* Pagetable = KernelAddressSpace.PML4;
|
||||
|
||||
//SerialPrintf("[ Mem] About to identity map the higher half.\n");
|
||||
// Identity map the higher half
|
||||
for(int i = 256; i < 512; i++) {
|
||||
Pagetable[i] = (size_t)PhysAllocateZeroMem(PAGE_SIZE);
|
||||
Pagetable[i] = (size_t)(((char*)Pagetable[i]) - DIRECT_REGION);
|
||||
Pagetable[i] |= (PAGE_PRESENT | PAGE_RW);
|
||||
//SerialPrintf("%d", i - 256);
|
||||
}
|
||||
|
||||
SerialPrintf("[ Mem] Identity mapping higher half complete.\n");
|
||||
|
||||
MMapEnt* TopEntry = (MMapEnt*)(((&bootldr) + bootldr.size) - sizeof(MMapEnt));
|
||||
size_t LargestAddress = TopEntry->ptr + TopEntry->size;
|
||||
|
||||
SerialPrintf("[ Mem] About to map lower memory into the Direct Region.\n");
|
||||
for(size_t Address = 0; Address < AlignUpwards(LargestAddress, PAGE_SIZE); Address += PAGE_SIZE) {
|
||||
MapVirtualMemory(&KernelAddressSpace, (size_t*)(((char*)Address) + DIRECT_REGION), Address, MAP_WRITE);
|
||||
}
|
||||
SerialPrintf("[ Mem] Lower half mapping complete.\n");
|
||||
|
||||
SerialPrintf("[ Mem] Mapping kernel into new memory map.\r\n");
|
||||
|
||||
//TODO: Disallow execution of rodata and data, and bootldr/environment
|
||||
for(void* Address = CAST(void*, KERNEL_REGION);
|
||||
Address < CAST(void*, KERNEL_REGION + 0x2000); // Lower half of Kernel
|
||||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - KERNEL_REGION) + KERNEL_PHYSICAL, MAP_EXEC);
|
||||
}
|
||||
|
||||
for(void* Address = CAST(void*, KERNEL_REGION + 0x2000);
|
||||
Address < CAST(void*, KERNEL_REGION + 0x12000); // Higher half of kernel
|
||||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - KERNEL_REGION) + KERNEL_PHYSICAL_2, MAP_EXEC);
|
||||
}
|
||||
|
||||
for(void* Address = CAST(void*, FB_REGION);
|
||||
Address < CAST(void*, 0x200000); // TODO: Turn this into a calculation with bootldr.fb_size
|
||||
Address = CAST(void*, CAST(char*, Address) + PAGE_SIZE)) {
|
||||
MapVirtualMemory(&KernelAddressSpace, Address, (CAST(size_t, Address) - FB_REGION) + FB_PHYSICAL, MAP_WRITE);
|
||||
}
|
||||
|
||||
SerialPrintf("[ Mem] Kernel mapped into pagetables. New PML4 at 0x%p\r\n", KernelAddressSpace.PML4);
|
||||
//ASSERT(Allocator != NULL);
|
||||
}
|
||||
|
||||
static size_t GetCachingAttribute(pagecache_t Cache) {
|
||||
switch (Cache) {
|
||||
case CACHE_WRITE_BACK: return 0;
|
||||
case CACHE_WRITE_THROUGH: return 1 << 2;
|
||||
case CACHE_NONE: return 1 << 3;
|
||||
case CACHE_WRITE_COMBINING: return 1 << 6;
|
||||
}
|
||||
|
||||
return 1 << 3;
|
||||
}
|
||||
|
||||
static bool ExpandAllocator(size_t NewSize) {
|
||||
size_t AllocSize = AlignUpwards(AllocatorPoolOverhead() + sizeof(size_t) * 5 + NewSize, PAGE_SIZE);
|
||||
void* Pool = PhysAllocateMem(AllocSize);
|
||||
return AddPoolToAllocator(Allocator, Pool, AllocSize) != NULL;
|
||||
}
|
||||
|
||||
static void GetPageFromTables(address_space_t* AddressSpace, size_t VirtualAddress, size_t** Page) {
|
||||
|
||||
//ASSERT(Page != NULL);
|
||||
//ASSERT(AddressSpace != NULL);
|
||||
|
||||
size_t* Pagetable = AddressSpace->PML4;
|
||||
for(int Level = 4; Level > 1; Level--) {
|
||||
size_t* Entry = &Pagetable[(VirtualAddress >> (12u + 9u * (Level - 1))) & 0x1FFU];
|
||||
|
||||
ASSERT(*Entry & PAGE_PRESENT, "Page not present during retrieval");
|
||||
|
||||
Pagetable = (size_t*)((char*)(*Entry & 0x7ffffffffffff000ull) + DIRECT_REGION);
|
||||
}
|
||||
|
||||
ASSERT(Pagetable[(VirtualAddress >> 12U) & 0x1FFU] & PAGE_PRESENT, "PDPE not present during retrieval");
|
||||
*Page = &Pagetable[(VirtualAddress >> 12U) & 0x1FFU];
|
||||
|
||||
}
|
||||
|
||||
void SetAddressSpace(address_space_t* AddressSpace) {
|
||||
//ASSERT(AddressSpace != NULL);
|
||||
|
||||
if((size_t)((char*)ReadControlRegister(3) + DIRECT_REGION) != (size_t) &AddressSpace->PML4) {
|
||||
WriteControlRegister(3, CAST(size_t, &AddressSpace->PML4));
|
||||
}
|
||||
}
|
||||
|
||||
void MapVirtualMemory(address_space_t* AddressSpace, void* VirtualAddress, size_t PhysicalAddress, mapflags_t Flag) {
|
||||
|
||||
//bool MapGlobally = false;
|
||||
size_t Virtual = (size_t)VirtualAddress;
|
||||
|
||||
//ASSERT(AddressSpace != NULL);
|
||||
TicketAttemptLock(&AddressSpace->Lock);
|
||||
|
||||
size_t Flags = PAGE_PRESENT;
|
||||
|
||||
if(Flag & MAP_WRITE)
|
||||
Flags |= MAP_WRITE;
|
||||
|
||||
if(Virtual < USER_REGION)
|
||||
Flags |= PAGE_USER;
|
||||
//TODO: Global mapping
|
||||
|
||||
size_t* Pagetable = AddressSpace->PML4;
|
||||
for(int Level = 4; Level > 1; Level--) {
|
||||
size_t* Entry = &Pagetable[(Virtual >> (12u + 9u * (Level - 1))) & 0x1FFu];
|
||||
|
||||
if(!(*Entry & PAGE_PRESENT)) {
|
||||
directptr_t Pointer = PhysAllocateZeroMem(PAGE_SIZE);
|
||||
*Entry = (size_t)(((char*)Pointer) + DIRECT_REGION);
|
||||
}
|
||||
|
||||
*Entry |= Flags;
|
||||
|
||||
Pagetable = (size_t*)(((char*)(*Entry & 0x7ffffffffffff000ull) + DIRECT_REGION));
|
||||
}
|
||||
|
||||
size_t* Entry = &Pagetable[(Virtual >> 12u) & 0x1FFu];
|
||||
*Entry = Flags | PhysicalAddress;
|
||||
|
||||
|
||||
if(AddressSpace != NULL) {
|
||||
TicketUnlock(&AddressSpace->Lock);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void UnmapVirtualMemory(address_space_t* AddressSpace, void* VirtualAddress){
|
||||
//ASSERT(AddressSpace != NULL);
|
||||
|
||||
TicketAttemptLock(&AddressSpace->Lock);
|
||||
|
||||
size_t* Entry;
|
||||
GetPageFromTables(AddressSpace, (size_t)VirtualAddress, &Entry);
|
||||
|
||||
*Entry = 0;
|
||||
InvalidatePage((size_t)VirtualAddress);
|
||||
|
||||
if(AddressSpace != NULL) {
|
||||
TicketUnlock(&AddressSpace->Lock);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void CacheVirtualMemory(address_space_t* AddressSpace, void* VirtualAddress, pagecache_t Cache) {
|
||||
|
||||
//ASSERT(AddressSpace != NULL);
|
||||
|
||||
TicketAttemptLock(&AddressSpace->Lock);
|
||||
|
||||
size_t* Entry;
|
||||
|
||||
GetPageFromTables(AddressSpace, (size_t)VirtualAddress, &Entry);
|
||||
|
||||
*Entry &= ~((1 << 6) | (1 << 2) | (1 << 3));
|
||||
*Entry |= GetCachingAttribute(Cache);
|
||||
|
||||
InvalidatePage((size_t)VirtualAddress);
|
||||
|
||||
if(AddressSpace != NULL) {
|
||||
TicketUnlock(&AddressSpace->Lock);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void* AllocateMemory(size_t Bits) {
|
||||
TicketAttemptLock(&AllocatorLock);
|
||||
|
||||
void* Result = AllocatorMalloc(Allocator, Bits);
|
||||
|
||||
if(Result == NULL) {
|
||||
if(!ExpandAllocator(Bits)) {
|
||||
TicketUnlock(&AllocatorLock);
|
||||
return 0ULL;
|
||||
}
|
||||
|
||||
Result = AllocatorMalloc(Allocator, Bits);
|
||||
}
|
||||
|
||||
if(Result != NULL) {
|
||||
memset(Result, 0, Bits);
|
||||
}
|
||||
|
||||
TicketUnlock(&AllocatorLock);
|
||||
return Result;
|
||||
|
||||
}
|
||||
|
||||
void* ReallocateMemory(void* Address, size_t NewSize) {
|
||||
TicketAttemptLock(&AllocatorLock);
|
||||
void* Result = AllocatorRealloc(Allocator, Address, NewSize);
|
||||
|
||||
if(Result == NULL) {
|
||||
if(!ExpandAllocator(NewSize)) {
|
||||
TicketUnlock(&AllocatorLock);
|
||||
return 0ULL;
|
||||
}
|
||||
|
||||
Result = AllocatorRealloc(Allocator, Address, NewSize);
|
||||
}
|
||||
|
||||
TicketUnlock(&AllocatorLock);
|
||||
return Result;
|
||||
|
||||
}
|
||||
|
||||
void FreeMemory(void* Address) {
|
||||
TicketAttemptLock(&AllocatorLock);
|
||||
AllocatorFree(Allocator, Address);
|
||||
TicketUnlock(&AllocatorLock);
|
||||
}
|
||||
|
||||
void* AllocateKernelStack() {
|
||||
void* StackAddress = NULL;
|
||||
size_t StackSize = PAGE_SIZE * 4;
|
||||
|
||||
TicketAttemptLock(&StackLock);
|
||||
if(ListIsEmpty(&StackFreeList)) {
|
||||
StackAddress = StackPointer;
|
||||
StackPointer = (void*)(((char*)StackPointer) + (4*KiB) + StackSize);
|
||||
|
||||
for(size_t i = 0; i < (StackSize / PAGE_SIZE); i++) {
|
||||
directptr_t NewStack;
|
||||
NewStack = PhysAllocateZeroMem(PAGE_SIZE);
|
||||
MapVirtualMemory(&KernelAddressSpace, (void*)((size_t)StackAddress + i * PAGE_SIZE), (size_t)((char*)NewStack) - DIRECT_REGION, MAP_WRITE);
|
||||
}
|
||||
} else {
|
||||
list_entry_t* StackEntry = StackFreeList.Next;
|
||||
ListRemove(StackEntry);
|
||||
memset(StackEntry, 0, StackSize);
|
||||
StackAddress = (void*)StackEntry;
|
||||
}
|
||||
|
||||
TicketUnlock(&StackLock);
|
||||
|
||||
StackAddress = (void*)((size_t)StackAddress + StackSize);
|
||||
StackAddress = (void*)((size_t)StackAddress - sizeof(size_t) * 2);
|
||||
|
||||
return StackAddress;
|
||||
}
|
||||
|
||||
void FreeKernelStack(void* StackAddress) {
|
||||
TicketAttemptLock(&StackLock);
|
||||
list_entry_t* ListEntry = (list_entry_t*)(((size_t)(StackAddress) + (sizeof(size_t) * 2)) - (PAGE_SIZE * 4));
|
||||
ListAdd(&StackFreeList, ListEntry);
|
||||
TicketUnlock(&StackLock);
|
||||
}
|
Loading…
Reference in New Issue
Block a user